
Università degli Studi dell’Insubria

DIPARTIMENTO DI SCIENZE E ALTA TECNOLOGIA

Corso di Dottorato in Informatica e Matematica del Calcolo

Ph.D. Thesis

Preconditioned fast solvers for large
linear systems with specific sparse
and/or Toeplitz-like structures and

applications

Candidato:

Fabio Durastante
Relatori:

Prof. Daniele Bertaccini
Prof. Stefano Serra Capizzano

XXX Ciclo

“Lo scopo della Matematica è di determinare il
valore numerico delle incognite che si
presentano nei problemi pratici. Newton, Euler,
Lagrange, Cauchy, Gauss, e tutti i grandi
matematici sviluppano le loro mirabili teorie
fino al calcolo delle cifre decimali necessarie”

Giuseppe Peano

“Non esistono problemi dai quali si può
prescindere. Non c’è niente di più penoso di
coloro i quali suddividono il pensiero
dell’uomo in un pensiero da cui non si può
prescindere e in uno da cui si può prescindere.
Fra costoro si celano i nostri futuri carnefici.”

Una partita a scacchi con Albert Einstein,
Friedrich Dürrenmatt

Contents

Contents 3

List of Figures 7

List of Tables 9

List of Algorithms 11

1 Introduction 13

1.1 Sparsity, Structure and Sequence of Matrices 16
1.2 Applications and Computational Framework 17

2 Some Iterative Methods and Preconditioners 19

2.1 Krylov Iterative Methods 22
2.1.1 The Conjugate Gradient: CG 25
2.1.2 Generalized Minimal Residual: GMRES 33
2.1.3 Flexible GMRES (FGMRES): GMRES With Variable

Preconditioning 44
2.1.4 The Bi–Lanczos Algorithm: BiCG, BiCGstab and

BiCGstab(l) 47
2.1.5 Which Krylov Subspace Method Should We Use? 58

2.2 Sparsity and Structure 59
2.2.1 Toeplitz and Generalized Locally Toeplitz Matrix

Sequences 61
2.3 Multigrid Preconditioners 70
2.4 Approximate Inverse Preconditioners 76

2.4.1 On the Decay of the Entries of A−1 78
2.4.2 Inversion and Sparsification or INVS 83

4 fabio durastante

2.4.3 Incomplete Biconjugation: AINV 89

Part I Sparse Structure and Preconditioners

3 Interpolatory Updates of Approximate Inverse Precondition-
ers 101

3.1 Interpolated Preconditioners 103
3.2 Numerical Examples 111

4 Approximation of Functions of Large Matrices 121

4.1 Computing Function of Matrices 122
4.2 The Updating Technique 124
4.3 Numerical Examples 129

4.3.1 Role of g and τ 130
4.3.2 ApproximatingΨ(A) 131
4.3.3 ApproximatingΨ(A)v 134
4.3.4 Choosing the Reference Preconditioner(s) 137
4.3.5 Ψ(A)v With Updates and With Krylov Subspace

Methods 140

5 Sparse Preconditioner for Mixed Classical and Fractional PDEs143

5.1 Matrix approach 144
5.1.1 The Short–Memory Principle 150
5.1.2 Multidimensional FPDEs 152

5.2 Solution Strategies 153
5.2.1 Approximate Inverse Preconditioners 154
5.2.2 Updating Factorizations for the Approximate In-

verses 155
5.3 Numerical Examples 156

6 Fractional PDEs Constrained Optimization 167

6.1 Theoretical Results 169
6.1.1 The 1D Case 169
6.1.2 The 2D Case: Riesz Space Fractional Diffusion 172
6.1.3 The Semilinear Case 174

6.2 Algorithms 175
6.2.1 Discretization of the FPDEs 176
6.2.2 Preconditioners for FPDEs 179
6.2.3 Optimization Routine: the L–BFGS Algorithm 180

preconditioned fast solvers for some large linear systems 5

6.3 Numerical examples 181
6.3.1 Constrained Optimization Results 181
6.3.2 Accelerating Convergence 182

Part II Toeplitz–Like Structure and Preconditioners

7 Optimizing a Multigrid Runge–Kutta Smoother 195

7.1 The Model Problems and the GLT Spectral Analysis 196
7.1.1 The 1D Model Problem 197
7.1.2 The 2D model problem 202
7.1.3 Further Discretizations 203
7.1.4 The Convection-Diffusion Equation 204

7.2 The Optimized Multigrid Preconditioner 205
7.2.1 Runge-Kutta Smoothers 205
7.2.2 Projection and Restriction Operators 211
7.2.3 Few Observations on the Optimization Procedure 213
7.2.4 Optimizing the Spectral Radius 215

7.3 Numerical Examples 216
7.3.1 The 2D Case 219

8 Structured Preconditioners for Fast Solution of FDEs 223

8.1 Linear Multistep Formulas in Boundary Value Form 225
8.2 Structured Preconditioners 229
8.3 Numerical Examples 236

9 Future Perspectives 245

A A Brief Introduction to Fractional Calculus 247

A.1 Definition of Some Fractional Operators 249
A.1.1 Physical meaning of the fractional operators 254

A.2 Fractional Partial Differential Equations 255
A.2.1 Sobolev spaces of fractional order 257

A.3 Some Classical Discretization Formulas 262
A.3.1 Finite Differences for Riemann–Liouville Fractional

Derivatives 262
A.3.2 Finite Differences for Riesz Fractional Derivatives 266

Bibliography 271

List of Figures

2.1 Representing sparse matrix: pattern and matrix graph. 60
2.2 Representing sparse matrix: city plot. 60
2.3 Example 2.1. Cityplots of the A matrix (on the left) and of

A−1 on the right. 79
2.4 AINV(A, ε) for the HB/sherman1 matrix at various ε. 93

3.1 Memory occupation for the ZT
α matrices. 106

3.2 Finite element mesh for the experiments. 112

4.1 Behavior of the error for exp(A) as τ and g vary. The 50 × 50
matrix argument A has the expression in (4.11) with α � β �

0.5 (left), α � β � 1.2 (right). The x–axis reports the number
of diagonals the function g selects while the y–axis reports
the error with respect to the Matlab’s expm(A). AINV is used
with the tolerance τ given in the legend. 131

4.2 Accuracy w.r.t. N for exp(A)v 137
4.3 Selection of the reference preconditioner(s) 140

5.1 Decay of the Fourier coefficients as in Propositions 5.1 and 5.2148
5.2 Decay of the inverse matrix relative to the various discretiza-

tions, n � 300 and α � 1.7 151
5.3 Preconditioners for FPDE – Example 1 – Solution 159

6.1 Left column: coefficients and desired state from equation (6.28).
Right column: coefficients and desired state from equation
(6.29). 183

6.2 Desired state (on the left) and result of the optimization
procedure (on the right) for Problem (6.14) with coefficients
from equation (6.30), 2α � 2β � 1.8 and regularization
parameter λ � 1e − 6. 184

8 fabio durastante

7.1 Distribution of the eigenvalues of A for the cases a(x) � 1
and a generic a(x). 198

7.2 Stability region for the three formulation of the Runge-Kutta
algorithm for the (1D) model problem with coefficient func-
tion a(x) � 1 + 0.6 sin(40πx). 211

7.3 Amplification factor for different coarsening strategies. 213
7.4 Isoline of the function f (α, c) � log10(max(θ,x) |P2(z(θ, c , x; r))|2)

for various a(x). 214
7.5 Convergence for (1D) transport with standard Runge-Kutta

formulation using the standard and the weighted objective
function. 217

7.6 Multigrid algorithm in the form illustrated in [45] for the
CFLmax � 17.658213 and CFLmed � 8.829107, applied to a
nonconstant coefficient problem like the one in equation (7.3).218

7.7 Convergence for (1D) transport with standard Runge–Kutta
formulation, objective functions for both variable and fixed
coefficients. 219

7.8 Behaviour with finer and finer grids for the GMRES(50) and
BiCGstab algorithms. Coefficients in equation (7.33). The size
of the discretization grid is given by (2k − 1) × (2k − 1) over
the [0, 2]2 × [0, 5] with 80 time steps. The unpreconditioned
version is used as comparison. 222

8.1 Lemma 8.1. Clustering on the eigenvalues (on the left) and
on the singular values (on the right) for the preconditioner
gk(Jm)

−1 Jm for Jm from Problem (8.1) and k � ⌈m/5⌉. 235
8.2 Experiment 1. Spectra of both the matrix of the system and

of the preconditioned matrices with α � 2 and 2 step GBDF
formula with m � 97 and s � 128. 238

A.1 Non locality for left– and right–sided Riemann–Liouville
fractional derivative. 251

List of Tables

3.1 Interpolatory update - 1 - GMRES 113
3.2 Interpolatory update - 2 - GMRES 114
3.3 Interpolatory update - 2 - GMRES(50) 115
3.4 Interpolatory update - 2 - BiCGstab 115
3.5 Interpolatory update - 3 - GMRES 117
3.6 Interpolatory update - 3 - GMRES(50) 117
3.7 Interpolatory update - 3 - BiCGstab 118
3.8 Interpolatory update - 4 - GMRES 119
3.9 Interpolatory update - 4 - GMRES(50) 119
3.10 Interpolatory update - 4 - BiCGstab 120

4.1 Execution time in seconds for log(A) 132
4.2 Errors for the computation of exp(A) 133
4.3 Timings in seconds for exp(A) 133
4.4 Execution time in seconds and relative errors for exp(A) 134
4.5 Iterates average and execution time in seconds for log(A)v 135
4.6 Error for exp(A)v 135
4.7 Error and timings in second for exp(A)v 136
4.8 Accuracy w.r.t. N and timings for exp(A)v 138
4.9 Error and timings in second for log(A)v 139
4.10 Error and timings in second for log(A)v 139
4.11 Errors and execution time for exp(A)v 142

5.1 Preconditioners for FPDE – Ratio of fill–in 155
5.2 Preconditioners for FPDE – Example 1 – GMRES(50) 158
5.3 Preconditioners for FPDE – Example 1 – BiCGstab 158
5.4 Preconditioners for FPDE – Example 1 – GMRES 160
5.5 Preconditioners for FPDE – Example 2 – GMRES(50) 160
5.6 Preconditioners for FPDE – Example 2 – GMRES 160
5.7 Preconditioners for FPDE – Example 2 – BiCGstab 161

10 fabio durastante

5.8 Preconditioners for FPDE – Example 3 – BiCGstab 162
5.9 Preconditioners for FPDE – Example 3 – GMRES 163
5.10 Preconditioners for FPDE – Example 3 – BiCGstab(2) 164
5.11 Preconditioners for FPDE – Example 4 – Direct solution 165

6.1 FPDEs Constrained Optimization – FADE problem 185
6.2 FPDEs Constrained Optimization – Riesz problem 1 187
6.3 FPDEs Constrained Optimization – Riesz problem 2a 188
6.4 FPDEs Constrained Optimization – Riesz problem 2b 189
6.5 FPDEs Constrained Optimization – Semilinear problem 190

7.1 Optimized Runge–Kutta parameters for a test coefficient
function 210

7.2 Optimization parameters for the standard Runge-Kutta w.r.t.
coarsening strategy 213

7.3 Comparison of the optimization procedure with the case of
variable and constant coefficients. 215

7.4 Multigrid preconditioner for the GMRES algorithm 220

8.1 Structured preconditioners for FDEs 237
8.2 Structured preconditioners for FDEs – Experiment 1 242
8.3 Structured preconditioners for FDEs – Experiment 2 243

List of Algorithms

2.1 Lanczos algorithm 25
2.2 Conjugate Gradient method 29
2.3 Preconditioned Conjugate Gradient method 31
2.4 Arnoldi 33
2.5 GMRES 36
2.6 Restarted GMRES or GMRES(m) 38
2.7 GMRES with left preconditioning 42
2.8 GMRES with right preconditioning 43
2.9 FGMRES: GMRES with variable preconditioning 46
2.10 Lanczos Biorthogonalization or Bi–Lanczos 48
2.11 Bi–Conjugate Gradients, or BiCG 49
2.12 Conjugate Gradient Squared Method (CGS) 52
2.13 BiCGstab method 53
2.14 BiCGStab(2) 57
2.15 Circulant matrix–vector product 64
2.16 Multigrid cycle (MGM) 72
2.17 Setup phase of MGM preconditioner 76
2.18 V–cycle preconditioner 77
2.19 Sparse product algorithm. 85
2.20 Positional fill level inversion of a sparse triangular matrix

or INVK 87
2.21 Inversion of triangular matrices with numerical drop or

INVT 88
2.22 Biconjugation 90
2.23 Left Looking Biconjugation for Z 92
2.24 Practical left-looking biconjugation 95
2.25 Practical left-looking biconjugation stabilized 97

1

Introduction

“Ogni problema della matematica applicata e
computazionale si riconduce alla fine a
risolvere un sistema di equazioni lineari”

P. Zellini, La matematica degli dei e gli algoritmi
degli uomini

The innermost computational kernel of many large–scale scientific
applications and industrial numerical simulations, in particular where
systems of partial differential equations or optimization problems are
involved in the models, is often a sequence of large linear systems that
can be either sparse or can show some kind of structure. This thesis deals
with specific methods for addressing their solution, while keeping in
mind and exploiting the originating setting.

Computing the solution of these linear systems typically consumes
a significant portion of the overall computational time required by the
simulation hence we focus our attention on the efficiency of the proposed
techniques.

Recent advances in technology have led to a dramatic growth in the
size of the matrices to be handled, and iterative techniques are often
used in such circumstances, especially when decompositional and direct
approaches require prohibitive storage requirements. Often, an iterative
solver with a suitable preconditioner is more appropriate. Nevertheless,
a preconditioner that is good for every type of linear system, i.e., for
every problem, does not exist.

Let us consider the linear system

A x � b, (1.1)

where A is a real n × n matrix, b is the known vector and x is the vector
of the unknowns. In the following, we concentrate on iterative solvers as
methods for computing an approximate solution of the algebraic linear
system (1.1). Recall that an iterative solver is a strategy that generates a

14 fabio durastante

sequence of candidate approximations x(k), k � 0, 1, . . . , for the solution
starting from a given initial guess x(0). The iterative methods we consider
involve the matrix A only in the context of matrix–vector multiplications.
Thus, the structure and/or the sparsity of the underlying matrices is
used to design an efficient implementation.

Lack of robustness and sometimes erratic convergence behavior are
recognized potential weakness of iterative solvers. These issues hamper
the acceptance of iterative methods despite their intrinsic appeal for
large linear systems. Both the efficiency and robustness of iterative
techniques can be substantially improved by using preconditioning. Pre-
conditioning transforms the original linear system into a mathematically
equivalent one, i.e., having the same solution and, under appropriate
conditions, an iterative solver can converge faster. In this context it is
appropriate to quote Saad in [244],

“In general, the reliability of iterative techniques, when dealing with various
applications, depends much more on the quality of the preconditioner than on
the particular Krylov subspace accelerators used.”

The main original contribution of this thesis can be summarized as
follows: new preconditioning techniques, the related spectral analysis of
the preconditioned matrices, the analysis of the computational cost, and
few numerical experiments, confirming that the proposed techniques
are effective and competitive with respect to the existing ones.

Consider the linear algebraic system

Ax � b, x, b ∈ R
n , A ∈ R

n×n . (1.2)

Often we look for a mathematically (but not computationally!) equiv-
alent linear system with more favorable spectral properties for its
matrix Ã

Ãx � b̃, x, b̃ ∈ R
n , Ã ∈ R

n×n , (1.3)

in order to speed up the convergence of the iterations of a given iterative
solver. The linear system (1.3) is the preconditioned version of (1.2)
and the matrix (or the matrices) that transform (1.2) in (1.3), usually
implicitly, is (are) called preconditioner (preconditioners).

This thesis opens with Chapter 2 that represents an introduction
to both classes of iterative solvers considered here: Krylov subspace
methods and multigrid methods (MGM). Then, by taking into account
the structures introduced in Section 2.2, we focus on some of the
standard preconditioners from which our new contributions spring
forth, see Sections 2.3 and 2.4.

preconditioned fast solvers for some large linear systems 15

In Part I we introduce our proposal for sparse approximate inverse
preconditioners for either the solution of time–dependent Partial Dif-
ferential Equations (PDEs), Chapter 3, and Fractional Differential Equa-
tions, containing both classical and fractional terms, Chapter 5. More
precisely, we propose a new technique for updating preconditioners
for dealing with sequences (see Section 1.1) of linear systems for PDEs
and FDEs, that can be used also to compute matrix functions of large
matrices via quadrature formula in Chapter 4 and for optimal control of
FDEs in Chapter 6. At last, in Part II, we consider structured precondi-
tioners for quasi–Toeplitz systems. The focus is towards the numerical
treatment of discretized convection–diffusion equations in Chapter 7
and on the solution of FDEs with linear multistep formula in boundary
value form in Chapter 8.

Chapter 3 contains excerpts from Bertaccini and Durastante [33] and
Durastante [106]. My main contribution in this works lies in the
extension with higher order interpolation formulas of the original
techniques from Benzi and Bertaccini [20] and Bertaccini [31]. I
have worked both on the theoretical statements and on the writing
of the codes.

Chapter 4 contains excerpts from Bertaccini, Popolizio, and Durastante
[41]. For this paper my main contribution has been the coding
and the development of the strategy for selecting the reference
preconditioner(s), in order to build the sequence of updated
preconditioners.

Chapter 5 contains excerpts from Bertaccini and Durastante [35]. My
main contribution in this work has been the idea of extending the
use of approximate inverse preconditioners to treat sequences of
matrices with structural decay of the entries, coming from the
discretization of Fractional Differential Equations on Cartesian
meshes. Operatively, I have worked on both the building of the
theory and the writing of codes.

Chapter 6 contains excerpts from Cipolla and Durastante [81], the the-
oretical analysis needed to construct the sequence of discrete
problems is the product of both authors and has been done in an
equally distributed way. My main contribution concerns the appli-
cation to this case of both the techniques and the preconditioners
developed in Chapters 3 and 5.

Chapter 7 contains excerpts from Bertaccini, Donatelli, Durastante, and
Serra-Capizzano [32]. For this work my main contribution was
the construction of the optimized Runge–Kutta smoother, based

16 fabio durastante

on the spectral analysis made with the tools in [126]. I have also
worked on the implementation of the prototype of a multigrid
V–cycle preconditioner.

Chapter 8 contains excerpts from Bertaccini and Durastante [34]. My
main contribution in this work regards the theoretical framework,
namely the application of the GLT Theory to the classical pre-
conditioners in Bertaccini [27–30] and Bertaccini and Ng [38],
and to the extension of the considered techniques for treating
the numerical solution of discretized space–fractional differential
equations.

1.1 Sparsity, Structure and Sequence of Matrices

We focus our attention on iterative methods based on the matrix–vector
product kernel. One of our main goals is exploiting cases in which this
operation can be performed efficiently and at a cost that is below O(n2)
for an n × n matrix. Both sparsity and structure or sparsity, whenever
present, can help for this; see Section 2.2.

Several preconditioning strategies have been developed during the
years, see, e.g., the survey [19] and the book [211]. In the following
Parts I and II, both the approaches have been used and, whenever
possible, ideas and instruments coming from one setting have been
applied to the other.

Another important issue is that whenever we face a problem that
comes from the discretization of, e.g., a differential model or from the
solution of an optimization problem, we do not have just one linear
system, but we should think about a sequence of linear systems (and then
sequence of matrices) parametrized by the underlying discretization
step(s). Some important properties for our computational tasks can be
interpreted only in term of matrix sequences. All over the thesis we will
distinguish mainly between two kinds of sequences:

1. {An}n≥1 with An ∈ Rdn×dn or An ∈ Cdn×dn , that are sequences of

matrices of growing dimension dn
n→∞−→ ∞,

2. {A(k)}k with A(k) ∈ Rdn×dn or A(k) ∈ Cdn×dn with a fixed value of dn .

Generally speaking, we focus on the first kind of sequences, i.e., se-
quences of matrices of growing dimension, for dealing with spectral
properties and discussing features that the discrete problem inherits
from the continuous, through classical asymptotic arguments; see, e.g.,
Section 2.2.1 and Part II.

preconditioned fast solvers for some large linear systems 17

1.2 Applications and Computational Framework

In this thesis, the design of the preconditioners we propose starts from
applications instead of treating the problem in a completely general
way. The reason is that not all types of linear systems can be addressed
with the same tools. In this sense, the techniques for designing effi-
cient iterative solvers depends mostly on properties inherited from the
continuous problem, that has originated the discretized sequence of
matrices. Classical examples are locality, isotropy in the PDE context,
whose discrete counterparts are sparsity and matrices constant along the
diagonals, respectively; see Section 2.2. Therefore, it is often important
to take into account the properties of the originating continuous model
for obtaining better performances and for providing an accurate conver-
gence analysis. In Parts I and II, we consider linear systems that arise in
the solution of both linear and nonlinear partial differential equation of
both integer and fractional type. For the latter case, an introduction to
both the theory and the numerical treatment is given in Appendix A.

The approximation of functions of large matrices is treated in Chap-
ter 4. Functions of matrices are ubiquitous in the solution of ordinary,
partial and fractional differential equations, systems of coupled differ-
ential equations, hybrid differential–algebraic problems, equilibrium
problems, measures of complex networks, and in many more contexts;
see again Chapter 4.

All the algorithms and the strategies presented in this thesis are
developed having in mind their parallel implementation. In particular,
we consider the processor–co–processor framework, in which the main
part of the computation is performed on a Graphics Processing Unit
(GPU) accelerator. We recall that GPU–accelerated computing works
by offloading the compute–intensive portions of our numerical linear
algebra codes to the GPU, while the remainder of the code still runs
on the CPU. Particularly, it is possible to implement efficiently matrix–
vector multiplications, and these are the numerical kernel of both the
iterative methods the preconditioners considered in Chapter 2.

2

Some Iterative Methods and Preconditioners

“Reason cannot permit our knowledge to
remain in an unconnected and rhapsodistic
state, but requires that the sum of our
cognitions should constitute a system. It is thus
alone that they can advance the ends of
reason.”

I. Kant, The Critique of Pure Reason.

In the thesis, we concentrate on the solution of linear system A x � b,
where A is (if not otherwise stated) a real nonsingular square matrix, b
is the known vector, and x is the vector of the unknowns.

In order to find an approximation for x, we could use direct methods.
However, often numerical approximation of many problems, in particu-
lar of partial differential equations, produces sparse and/or structured
matrices A. Direct methods may not be the best choice when A is large
and sparse and/or structured because

• they can destroy the underlying sparsity/structure during the resolution
process.

• We could be interested in approximations with a lower accuracy than
the one provided by, e.g., Gaussian Elimination with pivoting. This
could be due to the low precision of the data or to the truncation
error introduced by the approximation process generating the linear
system(s).

• They cannot use the information given by the initial guess for the
solution x. The former is often available (and precious) in many classes
of problems.

All these issues can be fulfilled by iterative methods.
Observe that differently from direct methods, iterative methods do

not terminate after a finite number of steps. They require some stopping
criteria in order to become algorithms. We terminate the underlying

20 fabio durastante

iterations when an estimate for the ‖ · ‖ norm of the (unknown!) relative
error

‖e(k)‖

‖x‖

is less than a user-prescribed quantity ε, i.e.,

‖e(k)‖

‖x‖
�

‖x(k) − x‖

‖x‖
< ε

and the iteration count k is less than a maximum allowed N . Very often,
the estimate of the error is based on the residual r(k):

r(k) � b − A x(k) ,

a quantity that is easy to compute. Unfortunately, by using the following
straightforward identities

A e(k) � −r(k) , ‖b‖ ≤ ‖A‖ ‖x‖,

we derive the following upper bound for the norm of the relative error

‖e(k)‖

‖x‖
≤ k(A)

‖r(k)‖

‖b‖
,

where κ(A) � ‖A‖ ‖A−1‖ is the condition number of the matrix A. There-
fore, if at step k we experience that

‖r(k)‖

‖b‖
< ε

and stop the iterative method, then our computed approximation x(k)

can be quite far from x if k(A) is large, i.e., the relative error can be κ(A)
times greater than the desired accuracy, ε.

For what concerns the use of preconditioning, there are three basic
equivalent systems we can consider. Thus let us allow for an invertible
matrix M, whose properties will be defined later on in specific problem
context. With the following transformation, we have a left preconditioning
(with M):

M−1Ax � M−1b, Ã � M−1A, (2.1)

a right preconditioning:
{

AM−1u � b, Ã � AM−1 ,
x � M−1u,

(2.2)

preconditioned fast solvers for some large linear systems 21

or a split preconditioning scheme, respectively, for which we use the
matrix M in the factored form M � M1M2, supposed well defined:

{

M−1
1 AM−1

2 u � M−1
1 b, Ã � M−1

1 AM−1
2 ,

x � M−1
2 u.

(2.3)

What kind of transformation are we looking for? Potentially, M should
be invertible, approximating A in some way, if A is sparse, then it would
be nice to have a sparse M as well in order to reduce the computational
cost of the matrix-vector products that may be needed for computing
M−1v with an auxiliary iterative method or a suitable direct solver. Our
selection would be fine if we achieve a faster and cheaper convergence
to the desired accuracy of our iterative method with respect to what
happens when applying it directly to (1.2). The first problem is that
some of the requirements above are mutually contradictory and a
reasonable compromise is mandatory.

The first thought could be trying M � A. In this way, the product
M−1A is (A and then M are supposed invertible) A−1A � I and then we
could obtain the solution without iterating. This trivial approach has
two flaws: (a) the time needed for computing the inverse of A is usually
(much) higher than solving (1.2) with, say, the popular sparse Gaussian
elimination (see, e.g., [134]) and, (b) the inverse of a sparse matrix is
dense, in general.

Theorem 2.1 (Gilbert [129]). The inverse of a sparse matrix can be dense.

We have to account the time for computing our transformation
and the time needed for the application to the iterative solver of our
preconditioner M−1. We stress that applying the preconditioner does
not require computing the matrix–matrix product, a procedure that is
too expensive to be taken into account. In all the considered cases, it is
enough to compute matrix–vector products. Summarizing the above,
we can express the time required to calculate the solution Tslv of the
linear system Ax � b with a preconditioned iterative method as:

Tslv � Tsetup + Nit × Tit , (2.4)

where Tsetup is the time for computing our transformation, Nit is the
number of iteration of the iterative solver needed to obtain the solution
within the required tolerance and Tit is the time needed for each iteration,
supposed constant for simplicity.

The main issue is that we need to find a balance between having M
as a good approximation for A, i.e., in principle, minimizing ‖M−1A− I‖

22 fabio durastante

or ‖M − A‖ in some norm, and a reasonable setup time (Tsetup) for
building (possibly implicitly) the preconditioner M and the Tit 1, time
needed for the iterations, having in mind to reduce Tslv with respect
to the other approaches. Otherwise we are wasting computational
resources.

In the sequel we recall some notions concerning Krylov subspace
methods, Section 2.1, we define the aspects of sparsity and structure we
are interested in, Section 2.2, and we introduce the two general classes
of preconditioners, Sections 2.3 and 2.4, of which our proposals are
special instances.

2.1 Krylov Iterative Methods

The idea of projection techniques is based on the extraction of an approxi-
mate solution for

Ax � b,

A ∈ Rn×n , through the projection of the approximations in a specific
subspace of Rn . If K is the search subspace or the subspace of candidate
approximants and is of dimension m, then in general m constraints
should be imposed in order to have a hope to extract a unique solution.
Usually, these constraints are imposed by m independent orthogonality
conditions. This requires defining another subspace of Rn , L, the
subspace of constraints. This construction is shared by other mathematical
frameworks and it is called the Petrov-Galerkin condition.

We say that a projection technique onto the subspace K is orthogonal
to Lwhen the candidate approximate solution (x̃) for the underlying
linear system is determined by imposing

x̃ ∈ K, and b − Ax̃⊥L,
where ⊥ means “orthogonal to”, i.e., when the scalar product of the
vector b − Ax̃ against any vector in L is zero.

Specifically, following the nomenclature in [244], we call here a
projection method orthogonal if K� L, and then oblique if it is otherwise.

In order to include the information on an initial guess x(0), we
should extract x̃ in the affine subspace x(0) +Kand then the problem
reformulates as finding x̃ such that

x̃ ∈ x(0) +K, b − Ax̃⊥L. (2.5)

Most standard techniques use a sequence of projections. A new pro-
jection uses a new pair of subspaces Kand L at each iteration and an

1 The Tit increases as a consequence of the loss of sparsity of the fictitious product M−1A.

preconditioned fast solvers for some large linear systems 23

initial guess x(0) as the most recent approximation obtained from the
previous approximation step. Note that projection forms a unifying
framework for many iterative solvers, including many of the classical
stationary methods, e.g., if we take K� L� Span{ei}, where ei is the
ith unitary vector of Rn , then we obtain the Gauss-Seidel method. The
projections are cycled for i � 1, . . . , n until convergence.

When K � L the Petrov-Galerkin conditions (2.5) are called the
Galerkin conditions.

Now, let us consider a very illustrative matrix representation of the
above projection techniques.

Let V � [v1 , . . . , vm] an n×m matrix whose columns are the vectors
vi , i � 1, . . . ,m which form a basis of K and W � [w1 , . . . ,wm] an
n × m matrix whose columns are the vectors w1 , . . . ,wm which form
a basis of L. If the candidate approximation for the solution of the
underlying linear system is

x̃ � x(0) + V y, (2.6)

then the orthogonality conditions for the residual vector r with respect
to vectors vi

r⊥L ⇒ WT(b − Ax̃) � 0

lead to the following system of equations:

WT A V y � WT r(0) , (2.7)

where r(0) � b − A x(0) is the initial residual. If the matrix WT A V is
nonsingular, then we can use the matrix-vector notation for writing the
approximate solution x̃ as

x̃ � x(0) + V
!
WT A V

�−1
WTr(0).

Usually, the matrix M � WT A V is not formed explicitly but algorithms
can compute the product w � Mv for any vector v and this is enough
for all iterative methods considered here.

We note that if m is small compared to n (supposed always large
here) and M � WT A V is nonsingular, then we could compute x̃ by
solving the m × m linear system My � WTr(0) by, e.g., a direct method.
However, M, the “projected version” of A can be singular even if A is
not. An example of this issue is given by the nonsingular A defined as

A �

(

0 I
I I

)

. (2.8)

24 fabio durastante

By taking V � W � [e1 , . . . , em], where the eis are the canonical basis
vectors of Rm , we end with a null m × m matrix M because WT A V is
made of all zeros.

There are at least two very important cases where M is nonsingular.

Proposition 2.1 (Saad [244]). If A, Kand Lsatisfy one of the two conditions

(a) A is symmetric and definite and K� L, or
(b) A is nonsingular and AK� L,

then M � WT A V is nonsingular for any choice of the bases of K e L.

A Krylov subspace Tm for the matrix M, with m ∈ N, related to a non
null vector v is defined as

Tm(M, v) � Span{v,Mv,M2v, . . . ,Mm−1v}. (2.9)

We note two important properties that characterize the Krylov subspace
methods.

Remark 2.1.

• The Krylov subspaces are nested, i.e., Tm(M, v) ⊆ Tm+1(M, v). A Krylov
subspace method is an algorithm that at step m ≥ 1 uses Krylov subspaces
for Km and for Lm .

• The property Tm(M, v) ⊆ Tm+1(M, v), m � 1, 2, . . . (and Tm(M, v) � Rn

for m ≥ n because Tm is a subspace) of the Krylov subspaces implies that
any method for which a Petrov-Galerkin condition holds, in exact arithmetic,
terminates in at most n steps. In practice one wants the methods to produce the
desired approximation to the solution of the underlying linear system within a
number of iteration much fewer than n.

By choosing Km and Lm as different Krylov subspaces, we can have
different projection methods. Here we mention only the ones that will
be used in the following chapters.

In particular, we consider Krylov subspace iterative algorithms
derived from the Lanczos and Arnoldi famous algorithms.

The first one was introduced in 1950 by Lanczos [178] for estimating
eigenvalues of sparse symmetric matrices. It generates a sequence
of symmetric tridiagonal matrices whose eigenvalues, under suitable
hypotheses, converge to those of M.

The second is due to Arnoldi [6], and was published in 1951 with the
idea of extending the above Lanczos strategy to nonsymmetric matrices.
It is based on the Hessenberg reduction of the matrix M.

preconditioned fast solvers for some large linear systems 25

2.1.1 The Conjugate Gradient: CG

The Conjugate Gradient (CG) algorithm is one of the most used, well
known, and effective iterative techniques for solving linear systems
with Hermitian and (positive or negative) definite matrices. CG is an or-
thogonal projection technique on the Krylov subspace Tm(M, r(0)) (2.9),
where r(0) � b − Mx(0) is the initial residual. In theory, the underlying
algorithm can be derived in at least two different ways:

1. by the minimization of a quadratic form, see, e.g., the seminal paper by
Hestenes and Stiefel [157] and Golub and Van Loan [134];

2. by the tridiagonal reduction of the original matrix generated by the
Lanczos algorithm; see Saad [244].

Here we will derive the Conjugate Gradient algorithm as a Krylov
subspace method, i.e., by imposing that the approximate solution x(m)

belongs to the affine subspace x(0) + Km where Km is chosen to be a
Krylov subspace, while the residual r(m)

� b − A x(m) is orthogonal
to another Krylov subspace, the subspace of constraints; see [244]. We
proceed through the Lanczos Algorithm 2.1, that, under our hypotheses,
transforms the underlying linear system generating a sequence of linear
systems of increasing size, whose matrices are tridiagonal, i.e., the only
nonzero entries are on the main, sub and super diagonals.

Algorithm 2.1: Lanczos algorithm
Input: A ∈ Rn×n , v1 ∈ Rn such that ‖v1‖2 � 1
Output: Vm � [v1 , . . . , vm], Tm � trid(β, α, β) ∈ Rm×m

1 for j � 1, . . . ,m do
2 w j � Av j − β j v j−1 ;
3 α j �< w j , v j > ;
4 w j � w j − α j v j ;
5 β j+1 � ‖w j‖2 ;
6 if β j+1 � 0 then
7 return;
8 end
9 v j+1 � w j/‖w j ‖2 ;

10 end

A sequence {x(j)}, converging to the solution of the linear system
A x � b, can be generated by a sequence of m orthonormal vectors
{v1 , . . . , vm}, m ≤ n, such that

x(j) − x(0) ∈ Span{v1 , . . . , v j}, j ≤ n ,

26 fabio durastante

where x(0) is an initial guess for x and x(j) is such that the residual
r(j)

� b − A x(j) is minimum in some norm to be specified later. The
Lanczos algorithm, introduced in 1950 for computing eigenvalues of
symmetric matrices, see [178], neglecting rounding errors, generates a
sequence of orthonormal vectors {v1 , . . . , v j} by the three term relation

β j+1v j+1 � Av j − α jv j − β jv j−1. (2.10)

After j steps we obtain

Span{v1 , . . . , v j} � Span{v1 ,Av1 , . . . ,A
j−1v1} � Kj(A, v1).

If Vj is the n × j matrix whose columns are v1 , . . . , v j , then we obtain:

x(j) − x(0) � Vjy
(j) , y(j) ∈ R

j ,

VT
j Vj � I j , AVj � VjT j + r̃ je

T
j , eT

j � (0 · · · 0 1) j .

where
r̃ j � (A − α j I)v j − β jv j−1.

The matrix T j is symmetric tridiagonal

T j �



α1 β2

β2 α2 β3

. . .
. . .

. . .
. . .

. . . β j

β j α j


. (2.11)

If, at the mth iteration, m ≤ n, we have ‖r̃m‖ � 0, then we find that

AVm � VmTm ⇒ Tm � VT
mAVm ,

i.e., A can be considered reduced to the tridiagonal Tm . By the previous
steps and from (10) we find

Ax � b ⇒ A(x − x(0)) � b − Ax(0) � r(0) ,

⇒ VT
mAVmym � VT

mr(0) ⇒ Tmym � VT
mr(0) ,

and therefore

ym � T−1
m VT

mr(0) ⇒ x � x(0) + VmT−1
m (VT

mr(0)). (2.12)

From (2.12), we build the sequence {x(j)} approximating x:

x(j)
� x(0) + VjT

−1
j (VT

j r(0)). (2.13)

preconditioned fast solvers for some large linear systems 27

We do not need to store vectors v j , j < i − 1. Indeed, at step m, a
factorization LmUm for Tm can be generated dynamically:

Lm �



1
λ2 1

. . .
. . .
λm 1


, Um �



η1 β2

. . .
. . .
. . . βm

ηm


,

From (2.13) and T−1
m � U−1

m L−1
m

x(m)
� x(0) + VmU−1

m L−1
m (VT

mr(0)),

by posing
Pm � VmU−1

m , zm � L−1
m (VT

mr(0)),

we express
x(m)

� x(0) + Pmzm .

Thus pm , the last column of Pm , can be computed from the previous
one:

pm �

vm − βmpm−1

ηm
, λm �

βm

ηm−1
, ηm � αm − λmβm ,

by observing that zm � (zm−1 ζm)
T , where ζm is a scalar, and

x(m)
� x(m−1)

+ ζmpm

that is the candidate approximation generated by updating the one of
the previous step. Note that the residual vector r(m)

� b − A x(m) is in
the direction of vm+1, because (see [244])

r(m)
� b − Mx(m)

� −βm+1(e
T
mT−1

m VT
mr(0))vm+1. (2.14)

Moreover, the following result holds.

Proposition 2.2. The vectors p1 , . . . , pm , where Pm � [p1 , . . . , pm], are
“A–orthogonal” or conjugate, i.e., < A pi , p j >� 0, i , j.

As a consequence of (2.14), we provide a version of CG from Lanczos
Algorithm 2.1.

Let us express the solution and residual vectors at step jth as

x(j+1)
� x(j)

+ α jp j ,⇐ r(j+1)
� r(j) − α jAp j .

28 fabio durastante

The mutual orthogonality of r(j)s give us the α js:

0 �< r(j+1) , r(j) >�< r(j) − α j Mp j , r
(j) >,

α j �
< r(j) , r(j) >

< Mp j , r(j) >
. (2.15)

The next search direction, p j+1, is a linear combination of r(j+1) and p j , i.e.,
p j+1 � r(j+1)

+ β jp j . Therefore, < Ap j , r(j) >�< Ap j , p j − β j−1p j−1 >�<
Ap j , p j > that can be substituted in (2.15). Moreover, from the previous
relations

β j � −
< r(j+1) ,Mp j >

< p j ,Mp j >
�

< r(j+1) , (r(j+1) − r(j)) >

α j < p j ,Mp j >

�
< r(j+1) , r(j+1) >

< r(j) , r(j) >
,

(2.16)

we obtain the Conjugate Gradient method (Algorithm 2.2).
The CG algorithm, like the other Krylov subspace methods, has the

nice property that the matrix A itself need not be formed or stored,
only a routine for matrix-vector products is required in order to use the
algorithm. This is the reason why Krylov subspace methods are often
called matrix-free.

We need store only four vectors x, w, p, and r. Each iteration requires
a single matrix–vector product to compute w � Ap, two scalar products
(one for pTw and one to compute ‖r‖2), and three operations of the
form α x+y, where x and y are vectors and α is a scalar. It is remarkable
that the iteration can progress without storing a basis for the entire
Krylov subspace thanks to the existence of a three-term relation for the
symmetric and tridiagonal matrix in the Lanczos process. In particular,
the symmetric Lanczos algorithm can be viewed as a simplification
of Arnoldi’s algorithm from the following section, when the matrix is
symmetric.

It is clear that the CG-type algorithms, i.e., algorithms defined
through short-term recurrences, are more desirable than those algo-
rithms which require storing the entire sequences of vectors as is going
to happen with the GMRES algorithm in the following section. The
former algorithms require less memory and operations per step. An
optimal Krylov subspace projection means a technique which mini-
mizes a certain norm of the error, or residual, on the Krylov subspace
independently from the starting vector. Such methods can be defined

preconditioned fast solvers for some large linear systems 29

Algorithm 2.2: Conjugate Gradient method
Input: A ∈ Rn×n SPD, Maximum number of iterations Nmax ,

Initial Guess x(0)

Output: x̃, candidate approximation.
1 r(0) ← ‖b − Ax(0)‖2, r � r(0), p ← r;
2 ρ0 ← ‖r(0)‖2;
3 for k � 1, . . . ,Nmax do
4 if k � 1 then
5 p ← r;
6 end
7 else
8 β ← ρ1/ρ0;
9 p ← r + β p;

10 end
11 w ← A p;
12 α ← ρ1/pTw;
13 x ← x + αp;
14 r ← r − αw;
15 ρ1 ← ‖r‖2

2 ;
16 if <Stopping criteria satisfied> then
17 Return: x̃ � x;
18 end

19 end

from the Arnoldi process. However, it was shown by Faber and Man-
teuffel that the latter cannot happen if A is non-Hermitian; see, e.g., [138,
Chapter 6].

Now, let us consider what CG does by analyzing its convergence.

Theorem 2.2. Let x∗ be such that A x∗ � b, A be symmetric and positive
definite. If Pm is the set of polynomials of degree at most m, then the mth
iteration of Conjugate Gradient produces an approximation x(m) such that

‖x∗ − x(m)‖A � min
p∈Pm

p(0)�1

‖p(A) (x∗ − x(0))‖A

≤‖x∗ − x(0)‖A

��������
min
p∈Pm

p(0)�1

max
λ∈λ(A)

p(z)

��������
,

(2.17)

where the A–norm ‖ · ‖A is defined as ‖ · ‖A �< A·, · >1/2.

30 fabio durastante

Corollary 2.1. If A is symmetric and positive definite and the eigenvalues of
A are such that 0 < λ1 ≤ . . . ≤ λn , we have

‖x∗ − x(m)‖A

‖x∗ − x(0)‖A

≤ 2 *,
√

k2(A) − 1
√

k2(A) + 1
+-

m

, (2.18)

where k2(A) � λn/λ1 is the 2–norm condition number of A.

A detailed proof for Corollary 2.1 can be found in [244, Sections 6.10
and 6.11].

Corollary 2.2. Under the same hypotheses of Corollary 2.1, the Conjugate
Gradient terminates after n iterations in exact arithmetic.

Theorem 2.3. Let A be Hermitian and positive definite. Let m an integer,
1 < m < n and c > 0 a constant such that for the eigenvalues of A we have

0 < λ1 ≤ λ2 ≤ λ3 ≤ . . . ≤ λn−m+1 ≤ c < . . . ≤ λn .

Let us suppose that the Conjugate Gradient method (Algorithm 2.2) in exact
arithmetic is used. Then, fixed a ε > 0 we have

k∗ � argmin
k

{

k :
‖x∗ − x(k)‖A

‖x∗‖A
≤ ε

}

is bounded from above by

min
{⌈

1

2

√

c/λ1 log
(

2

ε

)

+ m + 1
⌉
, n

}

. (2.19)

For the matrices that naturally occurs in applications, this is a
situation that is usually far from being common or realistic. Thus, to
put ourselves in the hypothesis of Theorem 2.3, we can consider the
preconditioned Conjugate Gradient method (PCG). Since we are dealing
with a matrix A that is symmetric and definite, we should preserve
this for the preconditioned system (1.3). Therefore, we may search
for a preconditioner M that is still symmetric and positive definite.
With this choice, we can form the Cholesky factorization (see, e.g.,[133])
for M � LLT , with L a lower triangular factor, and apply the split
preconditioning from (2.3). However, this is not the only possible choice
to preserve symmetry. Even in the case of left preconditioning (2.1),
in which M−1A is not symmetric, this can be achieved. For obtaining
this observe that M−1A is self–adjoint with respect to both the inner

preconditioned fast solvers for some large linear systems 31

products < ·, · >M and < ·, · >A:

< M−1Ax, y >M� < Ax, y >�< x,Ay >�< x,MM−1Ay >

� < x,M−1Ay >M ,

< M−1Ax, y >A� < AM−1Ax, y >�< x,AM−1Ay >

� < x,M−1Ay >A .

(2.20)

Therefore, we can modify the original CG from Algorithm 2.2, by
substituting the usual Euclidean product with the M–inner product
and observing that this has not to be computed explicitly, since

< z(j) , z(j) >M� < M−1r(j) ,M−1r(j) >M�< r(j) , z(j) >,

< M−1Ap(j) , p(j) >M� < Ap(j) , p(j) > .

Therefore the substitution of the inner product can be implemented as
summarized in Algorithm 2.3. Similarly one can observe that for the

Algorithm 2.3: Preconditioned Conjugate Gradient method
Input: A ∈ Rn×n SPD, Maximum number of iterations Nmax ,

Initial Guess x(0), M ∈ Rn×n SPD preconditioner
Output: x̃, candidate approximation.

1 r(0) ← b − Ax(0), z(0) ← M−1r(0), p(0) ← z(0);
2 for j � 0, . . . ,Nmax do
3 α j ← <r(j) ,z(j)>/Ap(j) ,p(j);
4 x(j+1) ← x(j)

+ α jp
(j);

5 r(j+1) ← r(j) − α jAp(j);
6 if <Stopping criteria satisfied> then

7 Return: x̃ � x(j+1);
8 end

9 z(j+1) ← M−1r(j+1);
10 β j ← <r(j+1) ,z(j+1)>/<r(j) ,z(j)>;
11 p(j+1) ← z(j+1)

+ β jp
(j);

12 end

right preconditioning (2.2) the matrix AM−1 is not Hermitian with either
the Euclidean or the M–inner product. On the other hand, we can retain
symmetry (Hermitianity if A and M have complex entries) with respect
to the M−1–inner product. With these observations Algorithm 2.3 can be
restated consequently. This reformulation is mathematically equivalent
to Algorithm 2.3; see [244] for the details and the construction.

32 fabio durastante

The condition under which Theorem 2.3 holds can be extended
from a single matrix with a given spectrum, to the case of a sequence of
matrices, in the sense of Section 1.1. As we hinted in there, when we
deal with linear systems that come from real problems we never work
with a single matrix A, but with a sequence {An}n ∈ Rn×n (or, possibly,
Cn×n), whose dimension grows with respect to some discretization
parameter. To encompass these general cases under the same theory
and recognize the same convergence behavior given in Theorem 2.3, we
need to introduce the concept of proper cluster.

Definition 2.1 ([132, 279] – Cluster (proper)). A sequence of matrices
{An}n≥0, An ∈ Cn×n , has a proper cluster of eigenvalues at p ∈ C if,∀ε > 0,
the number of eigenvalues of An not in the ε–neighborhood D(p , ε) � {z ∈
C | |z − p | < ε} of p is bounded by a constant r that does not depend on
n. Eigenvalues not in the proper cluster are called outliers. Furthermore,
{An}n is properly clustered at a nonempty closed set S ⊆ C if for any ε > 0

qε(n , S) � ♯

λ j(An) : λ j < D(S, ε) �

⋃

p∈S

D(p , ε)

� O(1), n → +∞,

in which D(S, ε) is now the ε–neighborhood of the set S, and we have denoted
by qε(n , S) the cardinality of the set of the outliers.

Thus, under the presence of a properly clustered spectrum, we can
restate the convergence result Theorem 2.3 with a constant ratio λ1/c

that is independent from the size of the matrix, and thus a number
of iterations needed for achieving a tolerance ε that is independent
from the size of the matrix. Observe that since every An has only real
eigenvalues, the set S of Definition 2.1 is a nonempty closed subset of R
separated from zero. We have obtained what is usually called an optimal
rate of convergence.

Remark 2.2. Some requirements in Definition 2.1 can be relaxed. To ensure
the optimal rate of convergence of a Krylov method for symmetric matrices
the cluster should be proper. However, a somewhat “fast convergence” can be
obtained also if the number of eigenvalues not in the cluster is bounded by a
function of the size o(n) for n → +∞. Another limiting case of this approach,
as we will see in the following sections, is represented by non–Hermitian matrix
sequences. Generalizations for dealing with these cases are also available, even
if the role of the eigenvalues, in this case, is not anymore so crucial. We will
come back on these convergence properties in Sections 2.1.2 to 2.1.4.

preconditioned fast solvers for some large linear systems 33

2.1.2 Generalized Minimal Residual: GMRES

Generalized Minimum Residual, or GMRES is a projection method
approximating the solution of linear system Ax � b on the affine
subspace x(0) + Tm(A, v1), being x(0) the starting guess for the solution.
The Petrov–Galerkin condition for GMRES can be written as L �

ATm(A, r(0)), with r(0) � b−A x(0). GMRES, at each iteration, determines
x(j+1) such that ‖r(j+1)‖2 is minimum. To build it we need to introduce
the Arnoldi algorithm: an orthogonal projection method on Km(A, v1) �
Tm(A, v1) for general non–Hermitian matrices. It was introduced in
1951 as a way to reduce a matrix in Hessenberg form and this is the main
use of it here. Moreover, Arnoldi suggested in [6] that the eigenvalues
of the Hessenberg matrix generated from a n × n matrix A, after a
number of steps less than n, can give approximations for the extremal
eigenvalues of A. Later, the underlying algorithm was discovered to be
an effective (cheap under appropriate assumptions) and powerful tool
for approximating eigenvalues of large and sparse matrices. A shift–
and–invert strategy is needed if one is searching other eigenvalues; see,
e.g., [248] and references therein.

Algorithm 2.4: Arnoldi
Input: A ∈ Rn×n , v1 ∈ Rn such that ‖v1‖2 � 1
Output: Vm � [v1 , . . . , vm], Hm ∈ R(m+1)×m

1 for j � 0, . . . ,m do
2 hi , j ←< A v j , vi >, i � 1, . . . , j;

3 w j ← A v j −
∑ j

i�1
hi , j vi ;

4 h j+1, j ← ‖w j‖2;
5 if h j+1, j � 0 then
6 exit;
7 end
8 v j ← w j/h j+1, j ;
9 end

At each step in Algorithm 2.4 A is multiplied by v j and the resulting
vector w j is orthonormalized against all previous vectors v j by a Gram-
Schmidt-like process. The process stops if w j computed in Line 3 is the
zero vector.

Note that we need to store the (usually dense) matrix n × m Vm ,
whose columns are given by v1,. . . , vm at each step m, and the (m+1)×m
upper Hessenberg matrix Hm � (hi , j) with m2

+ 1 nonzero entries.

34 fabio durastante

Theorem 2.4. If Algorithm 2.4 does not terminate before step m, then vectors
v1, v2, . . . , vm form an orthonormal basis for the Krylov subspace

Km(A, v1) � Span{v1 , A v1 , . . . , Am−1 v1}.

Theorem 2.5. Let Vm an n × m with columns v1 , . . . , vm , Hm � (hi , j) the
(m + 1) × m upper Hessenberg matrix whose entries are computed in the
Arnoldi Algorithm 2.4 and Hm the m × m submatrix extracted from Hm by
deleting its last line. Then

A Vm � Vm Hm + wm eT
m � Vm+1 Hm , (2.21)

where em is [0, . . . , 0, 1]T ∈ Rm and

VH
m A Vm � Hm . (2.22)

Theorem 2.6. The Arnoldi Algorithm 2.4 stops at step j < n if and only if
the minimal polynomial of v1 has degree j. In this case the subspace Kj is
invariant for A.

Let us write the GMRES algorithm starting from its properties:

A Vm � VmHm + wmeT
m � Vm+1Hm , (2.23)

Vm � [v1 , . . . , vm] is the orthonormal basis of Km(M, v1) and Hm is
the m × m Hessenberg submatrix extracted from Hm by deleting the
(m + 1)th line. At step m, the candidate solution x(m) will be the vector
minimizing the residual in the 2–norm:

‖r(m)‖2 � ‖b − A x(m)‖2. (2.24)

From the previous relations, we find

b − A x(m)
� b − A (x(0) + Vmy)

� r(0) − A Vmy

� Vm+1

(

VT
m+1r(0) − Hmy

)

� Vm+1(βe1 − Hmy)

where β � ‖r(0)‖2, e1 � [1, 0, . . . , 0]Tm+1. To minimize the expression

‖βe1 − Hmy‖2 , y ∈ R
m (2.25)

preconditioned fast solvers for some large linear systems 35

we need to solve a linear least squares problem (m + 1)×m. Its approxi-
mate solution at step m is given by

x(m)
� x(0) + Vmy(m) ,

where y � y(m) ∈ Rm minimizes (2.25). We use modified Gram–Schmidt
orthogonalization in GMRES Algorithm 2.5.

To solve the least squares problem (2.25), it is useful to transform
the upper Hessenberg matrix into an upper triangular one by Givens
plane rotations Q j (see, e.g., [134]) that is

Q � Qm−1 · . . . · Q1 ∈ R
(m+1)×(m+1)

min
y

‖βe1 − Hmy‖2 � min
y

‖Qβe1 − QHmy‖2

� min
y

‖g(m) − Rmy‖2

where g(m) ∈ Rm+1, Rm ∈ R(m+1)×m , y ∈ Rm . It can be easily checked
that the last component of g(m) is the norm of the residual r(m); see Saad
and Schultz in [249]. By observing that

‖βe1 − Hmy‖2
2 � ‖Qβe1 − QHmy‖2

2

� ‖g(m) − Rmy‖2
2

� |eT
m+1g(m) |2 + ‖ĝ(m) − Rmy‖2

2 ,

we retrieve
y(m)

� R−1
m ĝ(m) ,

where Rm ∈ Rm×m is the upper triangular matrix extracted by deleting
the last line from Rm and ĝ(m) is the vector whose entries are the first
m of g(m). The plane rotations Q j , j � 1, . . . ,m − 1, can be applied, for
each iteration of GMRES, at the mth matrix Hm . This gives also the
residual norm without computing explicitly r(m)

� b − A x(m).
GMRES stops at step jth if and only if h j+1, j � 0. In this case (and in

exact arithmetic), the computed solution x(j) can be considered exact
because b − A x(j)

� 0 and x � x(j) ∈ Kj(A, v1). It is the only possible
forced stop for GMRES, and is a Lucky Breakdown differently to what
we will see for bi–Lanczos, BiCG, BiCGstab,etc.. Note that, for the same
reasons of CG, GMRES terminates in at most n iterations in exact
arithmetic. Nevertheless, GMRES can stagnate until the last step, i.e.,

36 fabio durastante

Algorithm 2.5: GMRES
Input: A ∈ Rn×n ,b ∈ Rn , Maximum number of iteration m, Initial

Guess x(0)

Output: x̃ candidate approximation.
1 r(0) ← b − A x(0);
2 β ← ‖r(0)‖2;
3 v1 ← r(0)/β;
4 for j � 1, . . . ,m do
5 w j ← A v j ;
6 for i � 1, . . . , j do
7 hi , j ←< w j , vi >;
8 w j ← w j − hi , j vi ;
9 end

10 h j+1, j ← ‖w j‖2;
11 if h j+1, j � 0 or <Stopping criteria satisfied> then
12 m � j;
13 break;
14 end
15 v j+1 � w j/‖w j ‖2;
16 end

17 Compute y(m) such that
‖r(m)‖2 � ‖b − A x(m)‖2 � ‖βe1 − Hmy‖2 � miny∈Rm ;

18 Build candidate approximation x̃;

there can be no significant residual error reduction until the nth step;
see [138] for more details and considerations on convergence issues.

There are various possibilities to modify GMRES for overcoming
the memory issues we mentioned.
Among the most common GMRES variants we recall (see, e.g., Saad
[244, Section 6.5]):

• Quasi-GMRES: instead of the orthogonalization procedure Arnoldi, we
keep in memory at most a fixed number k of vectors vm−k+1 , . . . , vm . In
this way, Hm becomes a banded Hessenberg matrix.

• Restarted GMRES (see Algorithm 2.6): after a maximum number of
iterations k, usually from 10 up to 50, if GMRES has not reached
convergence, then we set r(0) � r(m), x(0) � x(m), and we return to the
beginning of the cycle.

The limit of these strategies is that we must pay something for the

preconditioned fast solvers for some large linear systems 37

loss of information due to partial orthogonalization, in the case of the
Quasi-GMRES, or to restarting in the case of Restarted-GMRES. The
price we pay can be summarized as follows: the possibility of stagnation
of the algorithms when the matrix of the underlying linear system is
not positive definite, less robustness, and the absence of the nice and
complete convergence theory of GMRES.

Proposition 2.3. If A is positive definite, i.e., xT A x > 0, ‖x‖ > 0, then
GMRES(m) (and then GMRES that can be considered GMRES(m) with
m � ∞) converges for all m ≥ 1.

If r(j)
� b − A x(j), then at step jth of GMRES, we have

‖r(j)‖2 � ‖(I − A q j−1(A))r(0)‖2

� min
q(z)∈P j−1

‖(I − Aq(A))r(0)‖2 ,

where q j(z) is a polynomial of degree at most j − 1 in z.

Theorem 2.7. If A can be diagonalized, i.e., if we can find X ∈ Rn×n non
singular and such that

A � XΛX−1 , Λ � diag(λ1 , . . . , λn), κ2(X) � ‖X‖2 ‖X−1‖2 ,

κ2(X) � ‖X‖2 ‖X−1‖2 condition number of X, then at step m, we have

‖r‖2 ≤ κ2(X)‖r(0)‖2 min
p(z)∈Pm ,p(0)�1

max
i�1,...,n

|p(λi)|, (2.26)

where p(z) is the polynomial of degree less or equal to m such that p(0) � 1
and the expression in the right–hand side in (2.26) is minimum.

Let us focus now again on the natural case of a sequence of matrices
of growing size {An}n , with An ∈ Rn×n .

Thus, we can consider a linear system with a matrix An having a
spectrum σ(An) clustered around a certain point (Definition 2.1) in the
complex plane far from the origin2. It is natural to partition σ(An) as
follows

σ(An) � σc(An) ∪ σ0(An) ∪ σ1(An),

where σc(An)denotes the clustered set of eigenvalues of An and σ0(An)∪
σ1(An) denotes the set of the outliers. Here we assume that the clustered
set σc(An) of eigenvalues is contained in a convex set Ω.

2 If the spectrum of An is not clustered and we consider the use of a preconditioner with a
given matrix sequence Pn , then the following analysis will focus on, e.g., Kn � P−1

n An or
Kn � An P−1

n .

38 fabio durastante

Algorithm 2.6: Restarted GMRES or GMRES(m)
Input: A ∈ Rn×n , b ∈ Rn , Maximum number of iteration m,

Initial Guess x(0)

Output: x̃ candidate approximation.
1 r(0) ← b − A x(0);
2 β ← ‖r(0)‖2;
3 v1 ← r(0)/β;
4 for j � 1, . . . ,m do
5 w j ← A v j ;
6 for i � 1, . . . , j do
7 hi , j ←< w j , vi >;
8 w j ← w j − hi , j vi ;
9 end

10 h j+1, j ← ‖w j‖2;
11 if h j+1, j � 0 or <Stopping criteria satisfied> then
12 m � j;
13 exit;
14 end
15 v j+1 � w j/‖w j ‖2;
16 end

17 Compute y(m) such that
‖r(m)‖2 � ‖b − A x(m)‖2 � ‖βe1 − Hmy‖2 � miny∈Rm ;

18 if <Stopping criteria not satisfied> then

19 r(0) ← r(m);
20 x(0) ← x(m);
21 Goto 2;
22 end
23 Build candidate approximation x̃;

preconditioned fast solvers for some large linear systems 39

Now, let us consider in more detail the sets

σ0(An) � {λ̂1 , λ̂2 , . . . , λ̂ j0} and σ1(An) � {λ̃1 , λ̃2 , . . . , λ̃ j1}

denoting two sets of j0 and j1 outliers, respectively. The sets σ0 and σ1

are defined such that, if λ̂ j ∈ σ0(An), then we have

1 <
������1 −

z

λ̂ j

������ ≤ c j , ∀z ∈ Ω,

while, for λ̃ j ∈ σ1(An),

0 <
������1 −

z

λ̃ j

������ < 1, ∀z ∈ Ω,

respectively.
Under the above assumptions, we can state the following bound.

Theorem 2.8 (Bertaccini and Ng [39]). The number of full GMRES itera-
tions j needed to attain a tolerance ε on the relative residual in the 2-norm
‖r(j)‖2/‖r(0)‖2 for the linear system Anx � b, where An is diagonalizable, is
bounded above by

min


j0 + j1 +


log(ε) − log(κ2(Xn))

log(ρ)
−

j0
∑

ℓ�1

log(cℓ)

log(ρ)

 , n

, (2.27)

where

ρk
�

(

a/d +

√

(a/d)2 − 1
) k

+

(

a/d +

√

(a/d)2 − 1
)−k

(

c/d +

√

(c/d)2 − 1
) k

+

(

c/d +

√

(c/d)2 − 1
)−k

, (2.28)

and the setΩ ∈ C+ is the ellipse with center c, focal distance d and major semi
axis a.

We stress that

ρ ≃ ρ̃ �
a +

√
a2 − d2

c +
√

c2 − d2
.

In particular, when the major axis is parallel to the imaginary axis, is
centered in (c , 0), c > 0, and has length 2a, while the minor axis 2b,
respectively, we have a ≥ b and

ρ̃ �

a +

√

a2 − |a2 − b2 |

c +
√

c2
+ |a2 − b2 |

�
a + b

c +
√

c2
+ a2 − b2

.

40 fabio durastante

In practice for our model problems, we use this expression to approxi-
mate ρ in the bound (2.27).

According to Theorem 2.8, the outliers do not affect the asymptotic
convergence rate of the GMRES method, but rather they introduce

a latency effect of j0 + j1 iterations plus the term
∑ j0

l�1
log(cl)/ log(ρ);

see (2.27).
We stress that the condition number of Xn , the matrix that diag-

onalizes An , cannot be neglected in the above bound, otherwise the
eigenvalues alone can give highly misleading information on the conver-
gence process, see [140]. On the other hand, if Xn has a huge condition
number (e.g., growing exponentially with the size of the matrix), then
the underlying bound is useless.

Remark 2.3. Following [138], let us consider some GMRES issues for A
highly nonnormal and/or A non definite. In these two cases, the results based on
the Chebyshev polynomials cannot be used any more and we have to reconsider
the bound (2.26) on the residual and its sharpness.

• Nondefinite matrices. If the eigenvalues are clustered around the origin,
then finding a minimizing polynomial that has value 1 on the origin and is
less than 1 everywhere on some closed curve around the origin containing the
eigenvalues, is impossible by the maximum principle. Therefore, the convergence
analysis becomes less useful and the bound is not sharp at all. Similarly, it is
impossible to build a polynomial having value 1 on the origin and having small
absolute value in all the scattered eigenvalues, unless we let the polynomial
degree grow. But in this way we retrieve a slow convergence3.

• Nonnormal matrices. the bound depends on the condition number of the
eigenvector matrix X, if it is large, then the convergence analysis can produce
again a nonsharp bound.

We can say more: any convergence curve is possible; see the next the-
orem proposed in Greenbaum, Pták, and Strakoš [139] and Greenbaum
and Strakoš [140].

Theorem 2.9 (Greenbaum, Pták, and Strakoš [139]). Given a non-
increasing positive sequence { fk}k�0,...,n−1 with fn−1 > 0 and a set of nonzero
complex numbers {λi}i�1,2,...,n ⊂ C, there exists a matrix A with eigenvalues
λ1 , λ2 , . . . , λn and a right–hand side b with ‖b‖ � f0 such that the residual
vectors r(k) at each step of the GMRES algorithm applied to solve Ax � b with
x(0) � 0, satisfy ‖r(k)‖ � fk , ∀ k � 1, 2, . . . , n − 1.

3 A high polynomial degree implies that the underlying Krylov subspace has large
dimension, possibly approaching the degree of freedom of the problem or even more
and therefore more iterations are required by GMRES.

preconditioned fast solvers for some large linear systems 41

Remark 2.4. Observe that the assumption fn−1 > 0 in the above theorem
means that GMRES reaches the solution exactly at iteration n, and both the
dimension of the Krylov space and the degree of the minimizing polynomial is
n. The result can be modified to obtain every iteration/residual graph.

In case of GMRES or GMRES(m), or any other solver for non–
Hermitian linear systems, the same three preconditioning options (left–,
right–, split–) are available, even though we will see that the mathemat-
ical equivalence between them is lost. Moreover, if the preconditioner
is ill–conditioned, then these differences become substantial.

Let us build a GMRES algorithm for the solution of (2.1), i.e., GMRES
using the Krylov subspace Km(M

−1A, r(0)) or the left–preconditioned
Krylov subspace, i.e.,

Km(M
−1A, r(0)) � Span

{

r(0) ,M−1Ar(0) , . . .
!
M−1A

�m−1
r(0)

}

.

This is obtained simply by using the Arnoldi Algorithm 2.4 with the
modified Gram–Schmidt process and is summarized in Algorithm 2.7.
Observe that in this algorithm all the residual vectors and their norms
are computed with respect to the preconditioned residuals. Therefore,
to enforce a stopping criterion based on the (unpreconditioned) residual,
in theory we need to multiply the preconditioned residuals by M and
store them separately from the preconditioned ones. Alternatively, at

each step, compute and use the true residual r
(j)
true � b − Ax(j), which

has the same cost as the previous approach (one more matrix-vector

product per iteration), and compare it in norm with ε‖r(0)true‖.
Let us build GMRES for the solution of (2.2), i.e., GMRES using

the Krylov subspace Km(AM−1 , r(0)), the right–preconditioned Krylov
subspace:

Km(AM−1 , r(0)) � Span
{

r(0) ,AM−1r(0) , . . .
!
AM−1

�m−1
r(0)

}

.

Similarly to GMRES Algorithm 2.5, we derive Algorithm 2.8.
Line 16 of Algorithm 2.8 forms the approximate solution of the

linear system as a linear combination of the preconditioned vectors z(i),
for i � 1, . . . ,m. Since these vectors v(i) are obtained by using the same
preconditioner M−1, i.e., M−1Vmy(m), we do not need to store them.
On the other hand, if we use a nonconstant preconditioner, as is the
case of performing few iterations of another method instead of a fixed
approximation M for A, then we need to store all the z(i)s explicitly for
providing the candidate approximation. In this way we derive Flexible
GMRES/FGMRES; see Section 2.1.3.

42 fabio durastante

Algorithm 2.7: GMRES with left preconditioning
Input: A ∈ Rn×n , Maximum number of iterations m, Initial Guess

x(0), M ∈ Rn×n preconditioner
Output: x̃ candidate approximation.

1 r(0) ← M−1(b − Ax(0)); /* Arnoldi process */

2 β ← ‖r(0)‖2;
3 v(1)

� r(0)/β;
4 for j � 1, . . . ,m do

5 w ← M−1Az(j);
6 for i � 1, . . . , j do

7 hi , j ←< w, v(i) >;
8 w ← w − hi , jv

(i);
9 end

10 h j+1, j ← ‖w‖2;
11 v(j+1) ← w/h j+1, j ;
12 end

13 Vm ← [v(1) , . . . , v(m)]; /* Build the Krylov subspace basis */

14 y(m) ← arg miny ‖βe1 − Hmy‖2;
15 x(m) ← x(0) + Vmy(m);

// Convergence check and possibly a restart

16 if <Stopping criteria satisfied> then

17 Return: x̃ � x(m);
18 else

19 x(0) ← x(m); /* Restart */

20 goto 1;
21 end

If our preconditioner M is a positive definite matrix, or if M can be
factored as M � LU, then we can use split-preconditioning. In this case
we need to work with the following system equivalent to Ax � b:

L−1AU−1u � L−1b, x � U−1u.

We initialize the algorithm with the residual r(0) � L−1(b − Ax(0))
and, to assemble the candidate approximate solution, we multiply the
linear combination Vmy(m) by U−1. Note that, also in this case, the
residual vectors and their norms are computed with respect to the
preconditioned residuals. Therefore, to enforce a stopping criterion
based on the (unpreconditioned) residual, we need to multiply the

preconditioned fast solvers for some large linear systems 43

Algorithm 2.8: GMRES with right preconditioning
Input: A ∈ Rn×n , Maximum number of iterations m, Initial Guess

x(0), M ∈ Rn×n preconditioner
Output: x̃ candidate approximation.

1 r(0) ← b − Ax(0); /* Arnoldi process */

2 β ← ‖r(0)‖2;
3 v(1)

� r(0)/β;
4 for j � 1, . . . ,m do

5 z(j) ← M−1v(j);
6 w ← Az(j);
7 for i � 1, . . . , j do

8 hi , j ←< w, v(i) >;
9 w ← w − hi , jv

(i);
10 end
11 h j+1, j ← ‖w‖2;
12 v(j+1) ← w/h j+1, j ;
13 end

14 Vm ← [v(1) , . . . , v(m)]; /* Build the Krylov subspace basis */

15 y(m) ← arg miny ‖βe1 − Hmy‖2;
16 x(m) ← x(0) + M−1Vmy(m);

// Convergence check and possibly a restart

17 if <Stopping criteria satisfied> then

18 Return: x̃ � x(m);
19 else

20 x(0) ← x(m); /* Restart */

21 goto 1;
22 end

44 fabio durastante

preconditioned residuals by L (instead of M for the left preconditioned
GMRES) and store them separately from the preconditioned ones.
Alternatively and more computationally reliable, at each step one can

compute and use the true residual r
(j)
true � b − Ax(j), which has the

same cost as the previous approach (one more matrix-vector product

per iteration), and compare it in norm with ε‖r(0)true‖. Observe that if
there is no concern about preserving the SPD property, or starting the
theoretical analysis from a single preconditioner M used in a factored
form, then we can use any two invertible matrices M1 and M2 instead
of L and U in the above discussion.

So what kind of preconditioning (left/right/split) approach is
appropriate? In principle, for a fixed preconditioner M, the spectra of
the eigenvalues of the three associated linear systems (2.1), (2.2) and (2.3)
are exactly the same (but the eigenvectors are different). One should
expect them to behave at least similarly, even if a convergence analysis
based only on the eigenvalues can be misleading for non–Hermitian
problems.

Proposition 2.4 (Saad [244]). The approximate solution obtained by left or
right preconditioned GMRES is of the form

x(m)
�x(0) + sm−1(M

−1A)M−1r(0)

�x(0) + M−1sm−1(M
−1A)r(0)

where sm−1 is a polynomial of degree m − 1 that minimizes the residual
norm ‖b − Ax(m)‖2 in the right preconditioning case (Algorithm 2.8) and the
preconditioned residual norm ‖M1(b − Axm)‖2 in the left preconditioning
case (Algorithm 2.7).

Therefore the two preconditioning approaches differ for only a
multiplication by M−1 in the optimized quantity, while the residuals
are taken in the same affine space. In many practical situations the
difference in the convergence behavior of the two approaches is often
not substantial if M is not ill–conditioned.

2.1.3 Flexible GMRES (FGMRES): GMRES With Variable
Preconditioning

Saad [245] introduced in 1993 the Flexible GMRES (FGMRES), a general-
ization of GMRES that allows changing the preconditioner at each step.
This is exploited to use few iterations of another iterative method as a
preconditioner. The first paper describing a Krylov subspace method

preconditioned fast solvers for some large linear systems 45

with a variable preconditioning strategy was the one by Axelsson and
Vassilevski [10] that introduced the Generalized Conjugate Gradient method
(GCG). FGMRES can be expressed as a particular case of the GCG, but
with an implementation producing a more efficient computational
scheme, e.g., see [284]. In this framework we will see that iterative
solvers such as SOR, SSOR, see, e.g., [87, 223], and multigrid or domain
decomposition methods, e.g., [136], can be used as a preconditioner with a
remarkable parallel potential.

It is natural to consider preconditioners based on iterations of other
iterative methods, possibly of another Krylov subspace method. The
latter case provides an inner–outer Krylov method, that can be viewed as
having a polynomial preconditioner with a polynomial that changes
from one step to the next and is defined implicitly by the polynomial
generated by the (inner) Krylov subspace method.

What we need to do is change the preconditioner at every step of the
standard GMRES algorithm with right preconditioning, i.e., in Line 5
of Algorithm 2.9 we compute

z(j) ← M−1
j v j ,

and store them for updating the x(m) vector in Line 16. This is the simple
modification producing the Flexibile GMRES (FGMRES) described in
Algorithm 2.9. As remarked in [261, 262], the FGMRES is defined not
only by the fact that we use a sequence of preconditioners {M−1

j
} j ,

i.e., we change it from one iteration to the next, but also because the
solution is obtained directly from the new preconditioned basis Zm .
We neglect the basis Vm , that we need to store anyway to perform the
orthogonalization steps inside the Arnoldi process. Thus, the difference
between FGMRES and the usual GMRES algorithm is that the action of
AM−1

j
on a vector v of the Krylov subspace is no longer in the space

generated by the columns of Vm+1. Therefore, the subspace Span(Zm) is
not necessarily a Krylov subspace. Nevertheless, the basis Zm and Vm+1

can be related by an expression similar to the one in equation (2.23):

AZm � Vm+1Hm . (2.29)

Moreover, if we denote, as usual, by Hm the m × m matrix obtained by
Hm by deleting its last row and by ṽ j+1 the (j + 1)th w vector before the
normalization, then we find (see also the similarities with (2.23))

AZm � VmHm + ṽ j+1eT
m . (2.30)

We now have the tools to state and prove an optimality property of
FGMRES as well.

46 fabio durastante

Algorithm 2.9: FGMRES: GMRES with variable preconditioning
Input: A ∈ Rn×n , Maximum number of iterations m, Initial Guess

x(0), {M j ∈ Rn×n} j preconditioners
Output: x̃ candidate approximation.

1 r(0) ← b − Ax(0); /* Arnoldi process */

2 β ← ‖r(0)‖2;
3 v(1)

� r(0)/β;
4 for j � 1, . . . ,m do

5 z(j) ← M−1
j

v(j);

6 w ← Az(j);
7 for i � 1, . . . , j do

8 hi , j ←< w, v(i) >;
9 w ← w − hi , jv

(i);
10 end
11 h j+1, j ← ‖w‖2;
12 v(j+1) ← w/h j+1, j ;
13 end

14 Zm ← [z(1) , . . . , z(m)]; /* Build the Preconditioned subspace

basis */

15 y(m) ← arg miny ‖βe1 − Hmy‖2;
16 x(m) ← x(0) + Zmy(m);

// Convergence check and possibly a restart

17 if <Stopping criteria satisfied> then

18 Return: x̃ � x(m);
19 else

20 x(0) ← x(m); /* Restart */

21 goto 1;
22 end

preconditioned fast solvers for some large linear systems 47

Proposition 2.5 (Saad [245]). The candidate approximate solution x(m)

obtained at step m of Algorithm 2.9 minimizes the residual norm ‖b−Ax(m)‖2

over the affine subspace x(0) + Span(Zm).

Note that, differently from the GMRES and right–preconditioned
GMRES, the nonsingularity of A no longer implies the nonsingularity
of the H j matrices.

Proposition 2.6 (Saad [245]). Assume that β � ‖r(0)‖2 , 0 and that j − 1
steps of FGMRES (Algorithm 2.9) have been successfully performed. In
addition, let H j be nonsingular. Then, x(m) is exact if and only if h j+1, j � 0.

Details on FGMRES using as a variable preconditioner a second
Krylov subspace method can be found in [260].

2.1.4 The Bi–Lanczos Algorithm: BiCG, BiCGstab and BiCGstab(l)

In addition to his famous algorithm, generalized in the algorithm called
bi–Lanczos [179], Lanczos suggested a Krylov projection algorithm
for linear systems Ax � b for nonsymmetric real or non-Hermitian
matrices; see Algorithm 2.10. It produces two sequences of vectors that
are bi-orthogonal, i.e.,

{v j}, {w j}, v j ,w j ∈ R
n ,

such that < vi ,w j >� 0, i , j, < vi ,wi >, 0. v j , w j are determined to
satisfy the three-term recurrence

δ j+1v j+1 � Av j − α jv j − β jv j−1 ,

β j+1w j+1 � ATw j − α jw j − δ jw j−1 , (2.31)

and β j , δ j should be such that < v j ,w j >� 1 for all j; see, e.g., [244] and
Algorithm 2.10. At step j under appropriate conditions, v1 , . . . , vm and
w1 , . . . ,wm form two orthonormal bases, one for each of the Krylov
subspaces

Km(A, v1) � Span{v1 ,A v1 , . . . ,A
m−1v1},

and
Km(A

T ,w1) � Span{w1 ,A
Tw1 , . . . , (A

T)m−1w1}.

Let us summarize some properties that will be used in the sequel;
see [179, 244, 289] for more details.

Theorem 2.10. If δm+1 > 0, then at step m for bi–Lanczos, we have:

48 fabio durastante

Algorithm 2.10: Lanczos Biorthogonalization or Bi–Lanczos
Input: v1, w1 ∈ Rn such that < v1 ,w1 >� 1, A ∈ Rn×n , m ∈ N

such that m ≤ n
Output: V � [v1 , . . . , v j],W � [w1 , . . . ,w j] ∈ Rn× j , j ≤ m,

T j ∈ R j× j

1 β1 ← 0, δ1 ← 0 ;
2 w0 ← (0, . . . , 0)T , v0 ← (0, . . . , 0)T ;
3 for j � 1, . . . ,m do
4 α j ←< Av j ,w j > ;
5 v̂ j+1 ← Av j − α jw j − β jv j−1 ;
6 ŵ j+1 ← ATw j − α jw j − δ jw j−1 ;

7 δ j+1 ←
�
< v̂ j+1 , ŵ j+1 >

�1/2
. ;

8 if δ j+1 � 0 then
9 return

10 end
11 β j+1 ← <v̂ j+1 ,ŵ j+1)>/δ j+1 ;
12 v j+1 ← v̂ j+1/δ j+1 ;
13 w j+1 ← ŵ j+1/β j+1 ;
14 end

i. < v j ,wi >� 0, i , j, i.e., v1 , . . . , v j , w1 , . . . ,w j are a bi-orthogonal set of
vectors;

ii. v1 , . . . , vm is a basis for Km(A, v1) and w1 , . . . ,wm for Km(A
T ,w1);

iii. If Vm � [v1 . . . vm], Wm � [w1 . . . wm], then we have:

WT
mAVm � Tm ,

Tm �

*........,

α1 β2

δ2 α2 β3

. . .
. . .

. . .
. . .

. . . βm

δm αm

+////////-
. (2.32)

If at step m we find δm+1 � 0, then we have the desired basis for the
subspace Km(A, v1). On the other hand, if βm+1 � 0 with δm+1 , 0, then
the basis of Km(A

T ,w1) is determined, bi–Lanczos stops, but we do not
have enough info for Km(A, v1). This event is called serious breakdown
(Wilkinson [289]) and it is a pathology shared by all algorithms derived
from bi–Lanczos. The reader is referred to [57, 58] for algorithmic

preconditioned fast solvers for some large linear systems 49

Algorithm 2.11: Bi–Conjugate Gradients, or BiCG
Input: A ∈ Rn×n , b ∈ Rn , Maximum number of iterations Nmax
Output: x̃ candidate approximation.

1 r(0) ← b − Ax(0) ;
2 choose r(0)∗ such that < r(0) , r(0)∗ >, 0 ;
3 p(0) ← r(0), p(0)∗ ← r(0)∗ ;
4 for j � 1, . . . ,Nmax do
5 α j ← <r(j) ,r(j)∗>/<Ap(j) ,p(j)∗> ;
6 x(j+1) ← x(j)

+ α jp
(j) ;

7 r(j+1) ← r(j) − α jAp(j) ;
8 if <Stopping criteria satisfied> then

9 return x̃ � x(j+1)

10 end

11 r(j+1)∗ ← r(j)∗ − α jA
Tp(j)∗ ;

12 β j ← <r(j+1) ,r(j+1)∗>/<r(j) ,r(j)∗> ;
13 p(j+1) ← r(j+1)

+ β jp
(j) ;

14 p(j+1)∗ ← r(j+1)∗
+ β jp

(j)∗ ;
15 end

way to avoid breakdowns by jumping over the singular denominators
exploiting the block bordering method for orthogonal polynomials.

From the previous proposition we obtain that the operator Tm is
the oblique projection of A on the Krylov subspace Km(A, v1) orthog-
onal to Km(A

T ,w1). Similarly, TT
m represents the projection of AT on

Km(A
T ,w1) orthogonal toKm(A, v1). We stress that bi–Lanczos explicitly

needs the transpose matrix AT .
The vector x(m) generated by bi–Lanczos is searched in the affine sub-

space x(0)+Km(A, v1) and its residual is parallel to vm+1 and orthogonal
to Span{w1 , . . . ,wm}. From Theorem 2.10, we have:

x(j) − x(0) � Vjy
(j) , y(j) ∈ R

j

⇒ AVmy(m)
� b − Ax(0) � r(0) ⇒ WT

mAVmy(m)
� WT

mr(0)

⇒ Tmy(m)
� WT

mr(0) ⇒ y(m)
� T−1

m

(

WT
mr(0)

)

⇒ x(m)
� x(0) + VmT−1

m

(

WT
mr(0)

)

.

Let Lm Um be the LU factorization for Tm . By defining Pm � VmU−1
m

and P∗m � WmL−1
m , p1 , . . . , pm , p∗1 , . . . , p

∗
m column vectors of Pm and of

50 fabio durastante

P∗m , respectively, we can express x(m) as follows:

x(m)
� x(0) + VmT−1

m VT
mr(0)

� x(0) + VmU−1
m L−1

m VT
mr(0)

� x(0) + PmL−1
m VT

mr(0)

� x(m−1)
+ αm−1pm−1.

The sequences p∗j and pi are A-orthogonal, i.e., < p∗
i
,A p j >� 0 for

i , j. Therefore, we derive the Bi-Conjugate Gradient Algorithm 2.11,
or BiCG for short, by the bi–Lanczos simply generalizing the steps
we did for the Lanczos’ algorithm to get CG two times: one for each

directions p j , p∗
j
. Note also that the residual vectors r(j), r

(j)
∗ are parallel

to v j+1, w j+1, respectively, and r(1) , . . . , r(m), r
(1)
∗ , . . . , r

(m)
∗ are such that

< r(i) , r
(j)
∗ >� δi , j , i , j, i , j ≤ m, where δ j, j � 1, δi , j � 0, i , j.

BiCG can become unstable for two reasons:

1. possible breakdown of its bi–Lanczos core;
2. breakdown of the LU factorization (without pivoting) for Tm .

The first issue can occur for a breakdown of bi–Lanczos because r
(m+1)
∗ � 0

but r(m+1) , 0 or ‖wm+1‖ � 0 with ‖vm+1‖ , 0. In practice,
Span{w1 , . . . ,wm} is invariant for AT , but Span{v1 , . . . , vm} it is not
for A.

There exist look-ahead techniques to overcome this issue; see [56,
59, 120], but they are computationally expensive and are more useful
when bi–Lanczos is used for computing (some) eigenvalues of a given
matrix. The look-ahead techniques destroy the tridiagonal structure of

Tm . Therefore, often it is simpler to choose a different r
(0)
∗ and start

again.
The computationally most expensive operations of bi–Lanczos–based

algorithms are the two matrix-vector product per each iteration and
some vector sums and scalar products. For BiCG we need approximately

m(2 nnz(M) + 8n)

flop for m iterations, where nnz(M) are the nonzero entries of A. Note
that, as for all methods in this section and differently from GMRES, the
vectors that must be kept in memory do not depend on the iteration
number m.

BiCGStab and BiCGStab(l), introduced by Van der Vorst [284, 285],
can be considered as transpose-free variants of BiCG. However, BiCGStab
is so popular that it is better to describe it in some detail.

preconditioned fast solvers for some large linear systems 51

In order to use it as an iterative solver for the linear system Ax � b,
the key idea of BiCGStab is expressing the residual and direction vectors
at step m directly as polynomials in the matrix A

r(m)
� pm(A)r(0) , pm � qm(A)r(0) , (2.33)

where pm(z), qm(z) are polynomials of degree m in z that assume value
1 for z � 0. Similarly,

r
(m)
∗ � pm(A

T)r
(0)
∗ , p∗m � qm(A

T)r
(0)
∗ . (2.34)

From BiCG Algorithm 2.11, by using (2.33), (2.34) we find

αm �

< pm(A)r(0) , pm(A
T)r

(0)
∗ >

< Aqm(A)r(0) , qm(AT)r
(0)
∗ >

�

< p2
m(A)r(0) , r(0)∗ >

< Aq2
m(A)r(0) , r(0)∗ >

. (2.35)

The parameter βm is derived similarly. Sonneveld [266] observed that,
by using (2.35), we can directly build, at each step of BiCG, the vectors

r(m)
� p2

m(A)r(0) , pm � Aq2
m(A)r(0). (2.36)

In this way, we can skip the construction of r
(m)
∗ , p∗m , where pm(z), qm(z)

are the same polynomials used for (2.33) and (2.34). The recurrence
relations for the polynomials (2.36) are

pm+1(z) � pm(z) − αm zqm(z),

qm+1(z) � pm(z) − βm qm(z). (2.37)

If we write the vectors r(m) and pm , qm as

r(m)
� p2

m(A)r(0) , pm � q2
m(A)r(0) , qm � pm+1(A)qm(A)r(0) ,

then we can adapt the recurrence relations (2.37) in order to get r(m) and
x(m) as in BiCG’s algorithm and thus we obtain the so–called Conjugate
Gradient Squared, or CGS; see Algorithm 2.12 ([55, 244, 266] for more
details). Here we will not spend much time on CGS because it is less
robust than BiCGstab.

Van der Vorst in [285] observed that vector r(m) can be expressed not
only by squaring pm(z), but also with the product of pm(z) and sm(z),

52 fabio durastante

Algorithm 2.12: Conjugate Gradient Squared Method (CGS)
Input: A ∈ Rn×n , b ∈ Rn , Maximum number of iterations Nmax,

Initial Guess x(0).
Output: x̃ candidate approximation.

1 r(0) ← b − Ax(0);

2 Choose an arbitrary r
(0)
∗ vector;

3 p0 ← u0 ← r(0);
4 for j � 1, . . . ,Nmax do

5 α j ← <r(j) ,r(0)∗ >/<Ap(j) ,r(0)∗ >;
6 q(j) ← u(j) − α jAp(j);
7 x(j+1) ← x(j)

+ α j(u
(j)

+ q(j));
8 r(j+1) ← r(j) − α j(u

(j)
+ q(j));

9 if <Stopping criteria satisfied> then

10 return x̃ � x(j+1)

11 end

12 β j ← <r(j+1) ,r(0)∗ >/<r(j) ,r(0)∗ >;
13 u(j+1) ← r(j+1)

+ β jq
(j);

14 p j+1 ← u(j+1)
+ β j(q

(j)
+ β jp

(j));
15 end

where the latter is a polynomial of degree m, called stabilizing polynomial,
written as m linear factors in z, gm ,1(z) :� (1 − ωm z). Therefore,

r(m)
� sm(A)pm(A)r(0) ,

and sm(z) can be defined recursively as

sm+1(z) � (1 − ωm z)sm(z) � gm ,1(z)sm(z), (2.38)

where ωm is a scalar, determined at each iteration to minimize ‖rm+1‖2.
Therefore

sm+1(z)pm+1(z) � (1 − ωm z)sm(z)pm+1(z)

� (1 − ωm z)(sm(z)pm(z) − αm zsm(z)qm(z)),

sm(z)qm(z) � sm(z)(pm(z) + βm−1qm−1(z))

� sm(z)pm(z) + βm−1(1 − ωm−1z)sm−1(z)qm−1(z),

with pm(z) being the polynomial of the residual of BiCG algorithm.
Then, from (2.37), we find pm+1(z) � pm(z) − αm zqm(z). By writing the

preconditioned fast solvers for some large linear systems 53

Algorithm 2.13: BiCGstab method
Input: A ∈ Rn×n , b ∈ Rn , Maximum number of iterations Nmax,

Initial Guess x(0).
Output: x̃ candidate approximation.

1 r(0) ← b − Ax(0);
2 choose r̂(0) such that < r(0) , r̂(0) >, 0;
3 p0 ← r(0);
4 for j � 1, . . . ,Nmax do
5 α j ← <r(j) ,r̂(0)>/<Ap j ,r̂(0)>;
6 s j ← r(j) − α jAp j ;
7 if <Stopping criteria satisfied> then

8 x(j+1) ← x(j)
+ α jp j ;

9 return x̃ � x(j+1)

10 end
11 ω j ← <As j ,s j>/<As j ,As j> ;
12 x(j+1) ← x(j)

+ α jp j + ω js j ;
13 r(j+1) ← s j − ω jAs j ;
14 if <Stopping criteria satisfied> then

15 return x̃ � x(j+1)

16 end

17 β j ← α j<r(j+1) ,r̂(0)>/ω j<r(j) ,r̂(0)> ;
18 p j+1 ← r(j+1)

+ β j(p j − ω jAp j) ;
19 end

direction vector pm as

pm � qm(A)sm(A)r(0) ,

we obtain the recurrence relations for r(m+1) and pm+1:

r(m+1)
� (I − ω jA)(r(m) − αmApm),

pm+1 � r(m+1)
+ βm(I − ωmA)pm .

The computation of the scalar parameter βm in BiCG requires r
(m)
∗ :

βm �
< r(m+1) , r(m+1)

∗ >

< r(m) , r(m)
∗ >

,

54 fabio durastante

while in BiCGstab the previous expression is obtained by using

ρm �< r(m) , r(0)∗ >�< pm(A)r(0) , sm(A
T)r

(0)
∗ >�< sm(A)pm(A)r(0) , r(0)∗ >,

ρm+1

ρm
�
ωm < r(m+1) , r(m+1)

∗ >

αm < r(m) , r(m)
∗ >

⇒ βm �
αm

ωm

ρm+1

ρm
. (2.39)

The (2.39) is obtained by considering that r(m)
� pm(A)r(0) is orthogonal

to all vectors of the form (AT)ir
(0)
∗ for i < m. From the previous relations

we find:

< r(m) , r(m)
∗ > � < pm(A)r(0) , pm(A

T)r
(0)
∗ >�

� < pm(A)r(0) , pm(A
T)r

(0)
∗ >�

� < pm(A)r(0) ,
δ0

m

τ0
j

sm(A
T)r

(0)
∗ >�

�

δ0
m

τ0
m

ρm ,

where

pm(z) �

m
∑

i�0

τ(m)

m−i
z i , sm(z) �

m
∑

i�0

δ(m)

m−i
z i .

From (2.38) we compute

δ0
m+1 � −ω jδ

0
m , τ0

m+1 � α jτ
m
0 .

Finally,

βm �
αm

ωm

ρm+1

ρm
�
αm

ωm

(r(m+1) , r(0)∗)

(r(m) , r(0)∗)
.

From BiCG algorithm we have

αm �
< r(m) , r(m)

∗ >
< Apm , p∗m >

�

< pm(A)r(0) , pm(A
T)r

(0)
∗ >

< Aqm(A)r(0) , qm(AT)r
(0)
∗ >

�

< pm(A)r(0) , sm(A
T)r

(0)
∗ >

< Aqm(A)r(0) , sm(AT)r
(0)
∗ >

�

< sm(A)pm(A)r(0) , r(0)∗ >

< Asm(A)qm(A)r(0) , r(0)∗ >

�
< r(m) , r(0)∗ >

< A pm , r
(0)
∗ >

�

ρm

< Apm , r
(0)
∗ >

. (2.40)

preconditioned fast solvers for some large linear systems 55

By setting

qm(z) �

m
∑

i�0

γ(m)

m−i
z i ,

we obtain the second line in (2.40) by observing that τ0
m ≡ γ0

m and

considering the orthogonality of pm(A)r(0) and (AT)ir
(0)
∗ , i < m. The

stabilization scalar ωm is chosen for minimizing the residual norm of

r(m+1)
� (I − ωmA)sm(A)pm+1(A)r(0).

By writing
sm � r(m) − αmApm ,

we have
r(m+1)

� (I − ωmA)sm . (2.41)

Therefore, minimizing the norm of (2.41), we find

ωm �
< Asm , sm >
< Asm ,Asm >

.

Moreover, the update of the candidate approximation x(m+1) can be
computed from r(m+1) as

r(m+1)
� sm − ωmAsm � r(m) − αmApm − ωmAsm

� r(m) − αmApm − ωmAsm .

By substituting r(m)
� b − Ax(m) in the previous expression, we finally

obtain

−A
(

x(m+1) − x(m)
)

� r(m+1) − r(m)
� −αmApm − ωmAsm ,

⇒ x(m+1)
� x(m)

+ αmpm + ωmsm .

Note that, ifωm is relatively small or zero, then we can have instability.
In this case, it is better to stop the algorithm because the update of the
vectors is not reliable. Otherwise, if we continue, then we would get a
stagnating convergence; see [285]. A similar behavior can be observed

if | < r(m) , r(0)∗ > | is very small or zero. In this case it is much better to

start again by providing a new r
(0)
∗ such that < r(0) , r(0)∗ >, 0.

We have seen that BiCGstab can break down also for nonsingular
matrices. Fortunately, there are some variants that can help.

• BiCGstab(l): choose a polynomial of degree l greater than one, gm ,l(z),
in (2.38);

56 fabio durastante

• BiCGStab(l)OR: choose a polynomial gm ,l(z) of degree l ≥ 1 in order to

determine implicitly a more stable basis for Km(A
T , r(0)∗).

Here we discuss briefly only the first attempt. The second often brings
less impressive improvements to the convergence; see [264, 265]. More-
over, in our experience, a more effective convergence improvement in
difficult problems is much better faced with preconditioning.

Let us recall the update of the residual vectors in BiCGstab: at step
m, we have r(m+1) from r(m) by the linear term (I − ωmA):

r(m+1)
� (I − ωmA)sm(A)pm+1(A)r(0). (2.42)

The matrices we are interested in here are not Hermitian, thus their
eigenvalues can be complex. The polynomials that minimize the 2
norm of (2.42) can have complex roots; see [284]. Unfortunately, the
polynomial in (2.42) can only have real roots because it is a product
of linear (real) factors. We can overcome this issue by increasing the
degree of the polynomial in the right–hand side of (2.42). By providing
the polynomial in A for r(m+1) (2.42) as a product of quadratic factors,
we obtain BiCGstab(2), Algorithm 2.14. At each iteration, it provides
two BiCG steps instead of one. As in [264, 284], in order to simplify the
notation, the indices of the vectors are not displayed in BiCGstab(2)’s
Algorithm 2.14.

Note that one of the two BiCG’ steps is not used to build the
approximations at the current step, but only to build the second order
polynomial gm ,2(z) in the update for r(m+1). Therefore, in BiCGstab(2),
r(m+1) is updated from r(m) as follows:

r(m+1)
� sm ,2(M)pm ,2(M)r(0) ,

where sm ,2(z), pm ,2(z) are polynomials in z given in the form of the
product of quadratic factors.

Similarly to BiCGstab, BiCGstab(2) becomes unstable when one of

the scalars ω1 , ω2 or |(r(m) , r(0)∗)| is numerically zero.
The use of polynomials made of factors of degree 2 can be easily

generalized giving BiCGstab(l), where, at each iteration, one performs l
steps of BiCG; see [263, 264] for more details. However, we experienced
that l � 2 in BiCGstab(l) usually is enough.

For one iteration of BiCGstab we need 2 matrix-vector products,
4 scalar products and 6 updates of vectors. On the other hand, one
iteration of BiCGstab(2) requires slightly less than approximately twice
the above. On the other hand, often BiCGstab and BiCGstab(2) require

preconditioned fast solvers for some large linear systems 57

Algorithm 2.14: BiCGStab(2)
Input: A ∈ Rn×n , b ∈ Rn , Maximum number of iterations Nmax,

Initial Guess x(0).
Output: x̃ candidate approximation.

1 r(0) � b − A, x(0)

2 choose r
(0)
∗ such that (r(0) , r(0)∗) , 0

3 u0 � 0, ρ0 � 1, α � 0, ω2 � 1
4 for j � 1 : Nmax do

5 ρ1 � (r, r(0)∗), β �
αρ1
−ω2ρ0

, ρ0 � ρ1 ;

6 u � r − βu ;
7 v � Au ;

8 γ � (v, r(0)∗), α � ρ0/γ ;
9 r � r − αv;

10 x � x + αu ;
11 if <Stopping criteria satisfied> then
12 x � x + αu ;
13 return x̃ � x

14 end
15 s � Ar ;

16 ρ1 � (s, r(0)∗), β � αρ1/ρ0, ρ0 � ρ1 ;
17 v � s − βv ;
18 w � Av ;

19 γ � (w, r(0)∗), α � ρ0/γ ;
20 u � r − βu ;
21 r � r − αv ;
22 s � s − αw ;
23 t � As ;
24 ω1 � (r, s), µ � (s, s), ν � (s, t) ;
25 ω2 � (r, t), τ � (t, t) ;
26 τ � τ − ν2/µ, ω2 � (ω2 − νω1/µ)/τ ;
27 ω1 � (ω1 − νω2)/µ ;
28 x � x + ω1r + ω2s + αu;
29 r � r − ω1s − ω2t ;
30 if <Stopping criteria satisfied> then
31 return x̃ � x
32 end
33 u � u − ω1v − ω2w ;
34 end

58 fabio durastante

more or less the same number of matrix–vector products to converge to
a prescribed tolerance.

We cannot give a convergence analysis for BiCG, CGS, BiCGstab and
BiCGstab(l). Nevertheless, some hints can be given. In particular, if:

• the matrix A of the underlying linear system is not very ill-conditioned;
• A can be diagonalized with a matrix of eigenvectors not too ill-

conditioned and the eigenvalues are clustered far away from the origin,

then BiCGstab often requires approximately the same order of matrix–
vector products as BiCG and BiCGStab(2), to converge to a prescribed
tolerance. Otherwise, the convergence behavior of the iterative methods
mentioned can be very different. It is interesting to note that BiCGstab(l),
for l > 1, is often more robust than BiCGstab.

2.1.5 Which Krylov Subspace Method Should We Use?

After this brief review of the main Krylov iterative methods for the
solution of linear systems, we can give some clarifications and comments
on the various methods we decided to use in the subsequent chapters.

For generic real and symmetric or Hermitian definite (positive
or negative) problems, we use PCG (Algorithm 2.3) with suitable
preconditioning, see, e.g., Chapter 4 in which it is employed in the
context of evaluating the matrix–vector product of a matrix function
against a generic vector.

For nonsymmetric–real and non-Hermitian linear systems the choice
is more delicate and problem dependent. If the sequence of matrices has
no special properties to enable fast matrix–vector multiplication, then
GMRES/GMRES(m) (Algorithms 2.5, 2.6, and 2.8) is an appropriate
choice if it converges in few iterations, as is the case of sequences with
clustered spectrum (Definition 2.1). On the other hand, we exploit
it in Chapters 3, 5, 7 and 8 whenever we need to test theorems and
results on the convergence behavior of the preconditioned systems,
since for these methods we possess a clear and profound convergence
analysis; see again Section 2.1.2. On the other hand, when what we
need is a fast and reliable solution, i.e., after we have consolidated
the theoretical results regarding convergence issues, we move towards
the use of the BiCGstab (Algorithm 2.13) for obtaining better timings,
and this happens in all the subsequent chapters. As we have discussed
in Section 2.1.4, there are cases in which the standard BiCGstab can
break down also for nonsingular matrices, under such conditions we
resort to the BiCGstab(2) (Algorithm 2.14); see, e.g., Chapters 5 and 8. In
conclusion, we use FGMRES (Algorithm 2.9) when a preconditioner is

preconditioned fast solvers for some large linear systems 59

available which needs an auxiliary iterative method for its application,
as is the case in Chapter 8, in which we apply it as an inner–outer Krylov
method, in conjunction with GMRES(m) as inner method. In conclusion,
only the methods BiCG (Algorithm 2.11) and CGS (Algorithm 2.12)
are not explicitly employed, since they have been introduced only for
deriving the BiCGstab and to describe its main features.

2.2 Sparsity and Structure

Usually, we will talk about and distinguish between dense and sparse
matrices, since in numerical linear algebra the computations made with
them need to be faced in different ways and present indeed different
costs. A first operative notion of sparse matrix, independent of the kind
of problem, is the one given by Wilkinson by negation in [290]:

“The matrix may be sparse, either with the nonzero elements concentrated on a
narrow band centered on the diagonal or alternatively they may be distributed
in a less systematic manner. We shall refer to a matrix as dense if the percentage
of zero elements or its distribution is such as to make it uneconomic to take
advantage of their presence.”

The above is a heuristic starting point that gives the idea: a sparse matrix
is not dense. If we think about a sequence of matrices An ∈ Rdn×dn ,
where dn is, e.g., a function of a discretization parameter from a PDE
model, then we can give a rigorous definition.

Definition 2.2 (Sparse matrix). A matrix An of a given sequence of matrix
in Rdn×dn is sparse if the number of nonzero entries of A, nnz(A), is O(dn).

A useful tool in sparse matrix computation is graph theory.

Definition 2.3. (struct(An)) Given a sparse matrix An ⊂ Rn×n , consider
the graph G(An), called the structure of An , or G(An) � struct(An), defined
by the vertex set V and edge set E:

V �{i : 1 � 1, . . . , n},

E �{(i , j) : i , j and (An)i , j , 0}.

A graphical representation of both G(An) and the sparsity pattern
of a matrix An , i.e., a 2D plot in which the axes represent the rows
and columns of A and for each nonzero entry of An a point is plotted,
is given in Figure 2.1. Observe that in this discussion the size of the
nonzeros entries of the matrix An does not play a role. This can be a
limitation, as we will see in the following, see, e.g., Section 2.4.1, because
in many cases we need to handle matrices that are indeed dense, but in

60 fabio durastante

0 100 200 300 400 500

nz = 2480

0

50

100

150

200

250

300

350

400

450

500

(a) Sparsity Pattern (b) Matrix Graph

Figure 2.1. Representing sparse matrix: pattern and matrix graph.

which many of the entries are of negligible magnitude. Sometimes these
matrices are called numerically sparse or localized by thresholding, because
by dropping the entries which fall below a threshold magnitude, they
can be approximated by a sparse matrix. Another useful graphical
tool is the city plot, based on adding a 3rd dimension to the sparsity
pattern, either with a color scale or a true zeta axis, on the basis of the
magnitude of the elements, see Figure 2.2. Observe also that both sparse

0

25

0.1

20

0.2

25

0.3

15 20

0.4

1510
10

5
5

0 0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(a) City Plot (b) City Plot Pattern

Figure 2.2. Representing sparse matrix: city plot.

and localized matrices sometimes exhibit a distribution of their entries
in some particular form or have particular properties. We will come
back to this point by considering specialized preconditioners for certain
structured matrices; see Section 2.2.1 and Part II.

preconditioned fast solvers for some large linear systems 61

2.2.1 Toeplitz and Generalized Locally Toeplitz Matrix Sequences

Toeplitz matrices arise in a wide set of contexts. They appear in the
finite difference discretization (with uniform mesh) of differential oper-
ators [186]; in integral equations; in the treatment of queue and related
problems [80], image deconvolution, deblurring and filtering [152]; in the
numerical computation of Padé coefficients [54]; time series treatment [109]
and many other fields.

This topic has attracted great interest in recent years. Analysis of
this linear space of matrices can be performed with tools from functional
analysis and the classical tools of numerical linear algebra [48–50, 141].
A large number of results are available regarding this topic.

References for the related topics in Fourier series can be found in
[107, 173, 295] and will not be covered here.

Definition 2.4 (Toeplitz Matrix). A Toeplitz matrix is a matrix of the form

Tn �



t0 t−1 . . . t2−n t1−n

t1 t0 t−1 . . . t2−n

... t1 t0
. . .

...

tn−2 . . .
. . .

. . . t−1

tn−1 tn−2 . . . t1 t0


, (2.43)

i.e., its entries are constant along the diagonals. A subset of this linear space of
matrices is given by the matrices for which exists an f ∈ L1([−π, π]), such
that

tk �
1

2π

∫ π

−π
f (θ)e−ikθdθ, k � 0,±1,±2, . . . ,

the tk are the Fourier coefficients of f . In this case we write Tn � Tn(f) where
f is the generating function of the matrix Tn(f).

This class of matrices takes their name from Otto Toeplitz (1881–
1940) in light of his early work on bilinear forms related to Laurent
series [276]. Here we focus only on the fundamental properties needed
for the iterative solution of linear systems

Tn(f)x � b, x, b ∈ Rn . (2.44)

As one may suspect, many properties of a Toeplitz matrix generated by
a function f are connected with the properties of f itself.

62 fabio durastante

Proposition 2.7.

1. The operator Tn : L1[−π, π]→ Cn×n defined by equation (2.43) is linear and
positive, i.e., if f ≥ 0 then Tn(f) � Tn(f)H ∀ n and xHTn(f)x ≥ 0 ∀x ∈ Cn .

2. Let f ∈ L1[−π, π] be such that f is real valued, m f � ess inf(f) and
M f � ess sup(f). If m f > −∞ then m f ≤ λ j(Tn(f)) ∀j � 1, . . . , n and if
M f < ∞ then M f ≥ λ j(Tn(f)) ∀j � 1, . . . , n. Moreover, if f is not a real
constant and both the strict inequalities hold, then

m f < λ j(Tn(f)) < M f ∀j � 1, . . . , n.

Let us recall another tool, useful to study the spectrum of the
underlying matrices: the asymptotic distribution of the eigenvalues and
of the singular values of the matrices {Tn(f)}n .

Definition 2.5 (Asymptotic eigenvalue distribution). Given a sequence

of matrices {Xn}n ∈ Cdn×dn with dn � dim Xn
n→+∞−→ ∞ monotonically and

a µ-measurable function f : D → R, with µ(D) ∈ (0,∞), we say that the
sequence {X}n is distributed in the sense of the eigenvalues as the function
f and write {Xn}n ∼λ f if and only if, for any F continuous with bounded
support, we have

lim
n→∞

1

dn

dn
∑

j�0

F(λ j(Xn)) �
1

µ(D)

∫

D

F(f (t))dt ,

where λ j(·) indicates the jth eigenvalue.

Definition 2.6 (Asymptotic singular values distribution). Given a se-

quence of matrices {Xn}n ∈ Cdn×dn with dn � dim Xn
n→+∞−→ ∞ monotoni-

cally and a µ-measurable function f : D → R, with µ(D) ∈ (0,∞), we say
that the sequence {X}n is distributed in the sense of the singular values as the
function f and write {Xn}n ∼σ f if and only if, for any F continuous with
bounded support, we have

lim
n→∞

1

dn

dn
∑

j�0

F(σ j(Xn)) �
1

µ(D)

∫

D

F(| f (t)|)dt ,

where σ j(·) indicates the jth singular value.

The core result of this class is the Grenander and Szegö Theo-
rem [141], with the related results in [8, 222], that prove the relations
in Definitions 2.5 and 2.6 for the matrix sequence {Tn(f)} and f the

preconditioned fast solvers for some large linear systems 63

generating function (the symbol) with restriction on the boundedness
of f . A stronger result is the one obtained by Tyrtyshnikov [278] and
Tyrtyshnikov and Zamarashkin [280].

Theorem 2.11 (Eigenvalue and singular value distribution). Given the
generating function f , {Tn(f)} is distributed in the sense of the eigenvalues
(Definition 2.5) as f , written also as Tn(f) ∼λ f , if one of the following
conditions hold:

1. Grenander and Szegö [141]: f is real valued and f ∈ L∞,
2. Tyrtyshnikov [278] and Tyrtyshnikov and Zamarashkin [280]: f is real valued

and f ∈ L1.

Moreover, Tn(f) is distributed in the sense of the singular values (Definition 2.6)
as f , written also as Tn(f) ∼σ f , if one of the following conditions hold:

1. Avram [8] and Parter [222]: f ∈ L∞,
2. Tyrtyshnikov [278] and Tyrtyshnikov and Zamarashkin [280]: f ∈ L1.

We now discuss briefly the computational complexity of the opera-
tion Tn(f)v for a generic vector v ∈ Cn . In principle, a matrix–vector
product with the matrix Tn(f) that is dense in general, costs O(n2)
flops. However, Tn(f) depends only on 2n − 1 parameters. Therefore,
we expect that the cost of the operation can be sensibly reduced. In the
sequel, we briefly recall that the Toeplitz structure of T allows reducing
the cost of this operation up to O(n log(n)) flops. To obtain this, we
need to introduce another algebra of matrices that we will use also for
preconditioning, the circulant matrices.

Definition 2.7 (Circulant Matrix). A circulant matrix Cn ∈ Cn×n is a
Toeplitz matrix in which each row is a cyclic shift of the row above that is
(Cn)i , j � c(j−i) mod n :

Cn �



c0 c1 c2 cn−1

cn−1 c0 c1
. . .

...

cn−2 cn−1 c0 c1
. . .

...
...

. . .
. . .

. . .
. . . c2

...
. . .

. . . c0 c1

c1 cn−2 cn−1 c0



.

64 fabio durastante

Proposition 2.8 (Characterization of Circulant matrices). The matrices in
of the algebra of circulant matrices Care characterized by being simultaneously
diagonalized by the unitary matrix Fn

(Fn) j,k �
1√
n

e2πi j k/n , j, k � 1, . . . , n.

Therefore,

C�

�
Cn ∈ C

n×n | Cn � FH
n DFn : D � diag(d0 , d1 , . . . , dn−1)

	
. (2.45)

The unitary matrix Fn in Proposition 2.8 is indeed the Fourier matrix
Fn . Therefore, the product Cny can be formed with Algorithm 2.15.
The cost of computing the matrix–vector product is reduced to the cost

Algorithm 2.15: Circulant matrix–vector product
Input: First row of the circulant matrix c � [c0 , c1 , . . . , cn−1], y
Output: x � Cy

1 f ← Fny;
2 λ ← √

nFnc ; // We are computing the eigenvalues of Cn

3 zT ← [f1λ1 , f2λ2 , . . . , fnλn];
4 x ← FH

n z;

of computing matrix–vector products with the Fourier matrix. This
can be achieved by using the implementation of the DFT (Discrete
Fourier Transform) algorithm4 by Cooley and Tukey [83], also known
as Fast Fourier Transform, or FFT, that performs the computation in
O(n log(n)) operations with an accuracy of O(ε log(n)).

We recall that:

Theorem 2.12. Let ω � exp(iθ), −π < θ ≤ π and W be an n × n
{ω}–circulant matrix. Then, the following Schur decomposition for W holds
true:

W � Ω
H FH

n ΛFnΩ, (2.46)

whereΩ � diag(1, ω−1/n , . . . , ω−(n−1)/n), Λ is a diagonal matrix containing
the eigenvalues of W and Fn is the Fourier matrix.

4 There exist many low–cost implementation of the DFT algorithms based on different
approaches, like the one based on divide et impera like the Cooley and Tukey [83], Bruun [67]
and Guo, Sitton, and Burrus [144], the one by Winograd [291] based on the factorization of
the polynomial xn − 1 or the Good–Thomas [135, 274] working on the Chinese remainder
Theorem. For an up–to–date implementation of the DFT refer to the FFTW library [121]
at http://www.fftw.org/.

preconditioned fast solvers for some large linear systems 65

Note that circulant matrices are simply the {1}-circulant matrices
and thus Theorem 2.12 gives also the Schur decomposition in Proposi-
tion 2.8.

We can compute the product Tnv in O(n log(n)) operations simply
by embedding the Tn matrix in a circulant matrix of size 2n in the
following way:

C2n

[
v
0n

]
�

[
Tn En

En Tn

] [
v
0n

]
�

[
Tnv
Env

]
(2.47)

where En is defined to make C2n circulant, and therefore is

En �



0 tn−1 . . . t2 t1

t1−n 0 tn−1 . . . t2

... t1−n 0
. . .

...

t−2 . . .
. . .

. . . tn−1

t−1 t−2 . . . t1−n 0


.

Applying Algorithm 2.15 to C2n , and therefore computing the matrix-
vector product Tnv in this way, requires O(n log(n)) operations.

Remark 2.5. Observe that Algorithm 2.15 is efficient only if we have to
compute a single product with Tn or Cn . If the product has to be computed
repeatedly, as is exactly our case, then we should modify it by using as input
directly the eigenvalues of C2n or Cn and gain an FFT application for each
iteration.

Multilevel operators of this kind appear naturally from multidimen-
sional problems discretized with uniform meshes. Among the most
popular examples we can find discretizations of system of ODEs, see,
e.g., [28, 40], of the system of PDEs, see e.g., [69, 76, 190]; regularization
problems, see, e.g., [44, 151, 167].

Let us start with two particular examples of a multilevel operator:

BTTB the block Toeplitz matrix of size nm with Toeplitz blocks of size
m, i.e., Tn ,m(f) ∈ Cnm×nm ,

Tn ,m(f) �



T
(0)
m T

(−1)
m . . . T

(2−n)
m T

(1−n)
m

T
(1)
m T

(0)
m

.
...

...
. . . T

(0)
m

. . .
...

... . . .
. . .

. . . T
(−1)
m

T
(n−1)
m T

(n−2)
m . . . T

(1)
m T

(0)
m



, (2.48)

66 fabio durastante

that has an overall Toeplitz structure and in which each block T
(j)
m

for j � 1 − n , . . . , 0, . . . , n − 1 is a Toeplitz matrix of size m itself,
BCCB the block Circulant matrix of size nm with Circulant blocks of

size m, i.e., Cn ,m ∈ Cnm×nm ,

Cn ,m �



C
(0)
m C

(1)
m C

(2)
m C

(n−1)
m

C
(n−1)
m C

(0)
m C

(1)
m C

(2)
m

...

C
(n−2)
m C

(n−1)
m C

(0)
m C

(1)
m

. . .
...

...
. . .

. . .
. . .

. . . C
(2)
m

...
. . .

. . . C
(0)
m C

(1)
m

C
(1)
m C

(n−2)
m C

(n−1)
m C

(0)
m



, (2.49)

that has an overall Circulant structure and in which each block
C
(j)
m for j � 0, . . . , n − 1 is a Circulant matrix of size m itself.

In the general case we can give the following definition,

Definition 2.8 (Multilevel Toeplitz and Circulant Matrix). Given a
number of levels m ∈ N we define the set of n–admissible multiindices
k � (k1 , . . . , km) and l � (l1 , . . . , lm) where n � (n1 , . . . , nm) and the
following inequalities hold

0 ≤ k j , l j ≤ n j − 1, j � 1, 2, . . . ,m.

The m–level Toeplitz matrix Tn ∈ CN(n)×N(n), with N(n) �

∏m
j�1 n j is

therefore defined as the matrix

TN � [tk−l],

while the m–level Circulant matrix CN is obtained whenever

tk−l � t(k−l) mod n

where, by definition, we have

k mod n � (k1 mod n1 , . . . , km mod nm).

We can again associate the m–level Toeplitz matrix with a generating
complex–valued function f of m real variables which is 2π–periodic
in each of them.

preconditioned fast solvers for some large linear systems 67

Definition 2.9 (m–level generating function). Given f : Qm → C that is
2π–periodic in each variable on Qm � [−π, π]m and f ∈ L1, we can consider
the multiindices k � (k1 , . . . , km) and associate it to its Fourier series

f (x) ≅
∑

k∈Zm

tk e i·k1x1 · . . . · e i·km xm .

In this way we have the coefficients tk needed for the construction
of the multilevel matrices of Definition 2.8.

We can now formulate the same question about asymptotic distribution
of m–level Toeplitz matrices we answered for the 1–level case with
Theorem 2.11. The case with f ∈ L∞ can be recovered from the original
work of Grenander and Szegö [141], for which a detailed account is in
the work of Sakrison [250]. The case of L2 and L1 generating functions
is obtained in Tyrtyshnikov [278] and Tyrtyshnikov and Zamarashkin
[280].

For the multilevel case no structured decomposition of the inverse
is known, i.e., we do not have any generalization of the Gohberg and
Semencul [130] formula and, in general, we need to resort to iterative
methods. Therefore, from here on we concentrate on some examples
of efficient preconditioners for the iterative methods in Section 2.1 to
solve Toeplitz, multilevel Toeplitz and Toeplitz-like systems.

Note that it is even more important to reduce the computational cost
of matrix-vector products with multilevel Toeplitz matrices. For the
BTTB case we can apply the same embedding strategies we have used for
the Tn(f) matrix, i.e., we embed the Tn ,m(f) into a BCCB matrix C2n ,2m

and extend the vector v we want to multiply to a vector of size 4nm.
We can diagonalize the BCCB matrix C2n ,2m with the multilevel Fourier
matrix F2n ,2m � F2n ⊗ F2m and compute the product. This procedure
has the cost of O(nm log(nm)).

We can now devote our attention to the theory of Generalized Locally
Toeplitz (GLT) sequences. This is an apparatus devised by Garoni and
Serra-Capizzano [124, 125] and Serra-Capizzano [254, 255], stemming
from the seminal work by Tilli [275], for computing the asymptotic
spectral distribution, in the sense of Definitions 2.5 and 2.6, of the
discretization matrices arising from the numerical discretization of
integro–differential continuous problems; e.g., in our case Partial Differ-
ential Equations (Chapter 7) and Fractional Partial Differential Equations
(Chapter 8).

We start by recalling some preliminaries needed to build the def-
inition of GLT matrix sequences [254], and we will introduce them,
as we have anticipated, as a generalization/modification of the no-

68 fabio durastante

tion of Locally Toeplitz matrix sequences taken from [275]; see [254,
Remark 1.1].

Let us start from the definition of approximating class of sequences,
that will be the tool needed for the computation of the asymptotic
spectral/singular value distribution of our matrix sequences.

Definition 2.10 (a.c.s.). Given a sequence of matrices {Xn}n ∈ Cdn×dn

we say that the sequence of matrix sequences {{Bn ,m}n : m ∈ N} is an

approximating class of sequences for {Xn}n , and write {{Bn ,m}n}
a.c.s.−→ {Xn}n

for m → +∞, if and only if there exist functions ω(m), c(m), and nm ,
independent of n, such that

Xn � Bn ,m + Nn ,m + Rn ,m , (2.50)

with ‖Nn ,m‖2 ≤ ω(m) and rank(Rn ,m) ≤ c(m)n, ∀n ≥ nm , with c(m),

ω(m)
m→+∞−→ 0.

The notion of approximating classes of sequences (a.c.s.) was first
introduced in [253]. This notion lays the foundations for all the spectral
approximation results for matrix-sequences we will use in the following.
Definition 2.10 states, roughly speaking, that {{Bn ,m}n : m ∈ N} is
an a.c.s. for {Xn}n if, for large values of m, the sequence {Bn ,m}n

approximates {Xn}n in the sense that Xn is eventually equal to Bn ,m

plus a small–rank matrix, where “small” is weighted with respect to the
matrix size dn , plus a small–norm matrix. It turns out that the notion of
a.c.s. can be interpreted as a notion of convergence in the space of matrix–
sequences E � {{An}n : {An}n is a matrix-sequence}. Therefore, one
can define a topology τa.c.s. on the space E such that {{Bn ,m}n}m is
an a.c.s. for {An}n if and only if {{Bn ,m}n}m converges to {An}n in
(E, τa.c.s.) in topological sense; see [122, 126].

We have already recalled two out of the three important classes of
matrices, namely circulant matrices (Definition 2.7), and Toeplitz matrices
2.4, which are used as building blocks for LT and GLT matrix–sequences.
What is left are the diagonal sampling matrices. Given a function a defined
on [0, 1], the diagonal sampling matrix of size n generated by a is
defined as

Dn(a) � diag

(

a

(

j

n

))n

j�1

.

Definition 2.11 (LT Sequences). A sequence of matrices {An}n , where
An ∈ Cdn×dn , is said to be Locally Toeplitz (LT) with respect to a symbol
k(x , θ) � a(x) f (θ), with a : [0, 1] → C and f : [−π, π] → C, if f is

preconditioned fast solvers for some large linear systems 69

Lebesgue-measurable and the class {{LTm
n (a , f)}n : m ∈ N}, given by

LTm
n (a , f) � Dm(a) ⊗ T⌊n/m⌋(f) ⊕ On mod m ,

with Dm(a) defined above, is an a.c.s. for {An}n . In this case we write
{An}n ∼LT k � a ⊗ f .

It is understood that LTm
n (a , f) � On , being On the n×n zero matrix,

when n < m and that the term On mod m is not present when n is an
integer multiple of m. Moreover, the tensor (Kronecker) product, “⊗”,
is always applied before the direct sum, “⊕”.

We now introduce the formal definition of GLT matrix sequences in
the unilevel setting and we recall their most important features.

Definition 2.12 (GLT sequence). Let {Xn}n ∈ Cdn×dn be a matrix sequence
and k : [0, 1] × [−π, π]→ C a measurable function. We say that {Xn}n is a
Generalized Locally Toeplitz (GLT) sequence with symbol k if the following
condition is met:

∀ ε > 0 ∃{X
(i ,ε)
n }n ∼LT ai ,ε ⊗ fi ,ε , i � 1, . . . ,Nε , (2.51)

such that

•

∑Nε

i�1
ai ,ε ⊗ fi ,ε → k in measure over [0, 1] × [−π, π] when ε → 0,

•

{{
∑Nε

i�1
X

(i ,ε)
n

}
n

}
ε>0

is an a.c.s. of {Xn}n for ε → 0,

and write {Xn}n ∼GLT k where we have adapted the definition of a.c.s. by
using a real parameter ε instead of the integer m.

We recall some properties of the GLT sequences in the following
proposition; see [126] for more details. These properties represent a
formulation equivalent to the original definition.

Proposition 2.9 (GLT sequences properties).

GLT1 {An}n ∼GLT χ⇒ {An}n ∼σ χ. Moreover, if {An}n is a sequence of
Hermitian matrices ⇒ {An}n ∼λ χ;

GLT2 {An}n ∼GLT χ and An � Xn + Yn with each Xn Hermitian, norm
bounded ‖Xn‖2 � O(1), and ‖Yn‖2 → 0 ⇒ {An}n ∼λ χ;

GLT3 {Tn(f)}n ∼GLT f if f ∈ L1[−π, π], {Dn(a)}n ∼GLT a if a : [0, 1]→
C is continuous (also Riemann-integrable) and {Zn}n ∼GLT 0 if and
only if {Zn} ∼σ 0;

GLT4 The set of GLT matrices is a ∗-algebra:
If {An}n ∼GLT κ and {Bn}n ∼GLT ξ then

70 fabio durastante

• {A∗
n}n ∼GLT κ,

• {αAn + βBn}n ∼GLT ακ + βξ for all α, β ∈ C,
• {AnBn}n ∼GLT κξ.

GLT5 {Bn ,m}m ∼GLT χm , {{Bn ,m}n} is an a.c.s. for {An}n , χm → χ in
measure ⇒ {An}n ∼GLT χ.

GLT6 If {An}n ∼GLT κ and κ , 0 a.e. then {A†
n}n ∼GLT κ−1.

GLT7 If {An}n ∼GLT κ and each An is Hermitian, then { f (An)}n ∼GLT

f (κ) for every continuous function f : C→ C.

2.3 Multigrid Preconditioners

Multigrid methods (MGM) are classes of algorithms for solving linear
systems, using a hierarchy of smaller linear systems. They are an
example of a class of techniques called multiresolution methods, very
useful in problems exhibiting multiple scales of behavior. For example,
many basic relaxation methods exhibit different rates of convergence for
short– and long–wavelength components of the errors, suggesting these
different scales be treated differently, as in a Fourier analysis approach
to multigrid. MGM can be used as solvers as well as preconditioners.

The main idea of multigrid is to accelerate the convergence of a basic
iterative method, which generally reduces short–wavelength error when
used for differential operators, by a correction of the fine grid solution
approximation, accomplished by solving a coarse problem. The coarse
problem, while cheaper to solve, is similar to the fine grid problem in
that it also has short– and long–wavelength errors. It can also be solved
by a combination of relaxation and coarser grids. This recursive process
is repeated until a grid is reached where the cost of a direct solution
there is negligible compared to the cost of one relaxation sweep on the
fine grid. This multigrid cycle typically reduces all error components
by a fixed amount bounded well below one, independent of the fine
grid mesh size. The typical application for multigrid is in the numerical
solution of some special classes of PDEs. In particular, the former
has been shown to be effective for elliptic (linear) partial differential
equations in multiple dimensions. Multigrid preconditioners can be
effective and cheap for some combinations of specific problems and
computing architectures.

Here we focus on the analysis of the so–called algebraic multigrid
(AMG) giving the priority first to the algebraic properties of the linear
systems and then to the underlying geometry.

For an extensive treatment of the multigrid solvers we suggest
the books by Briggs, Henson, and McCormick [63], Ruge and Stüben

preconditioned fast solvers for some large linear systems 71

[242], and Trottenberg, Oosterlee, and Schuller [277] and the references
therein.

While in the geometric context grids are easily interpreted in terms
of the discretization of the underlying PDEs, for the AMG grids can be
intended simply as an index set that cannot be explicitly corresponding
to any geometrical grid. Therefore, let us suppose having a sequence of
coarser and coarser grids {Ωk}k

Ωl ⊃ . . . ⊃ Ωk ⊃ Ωk−1 ⊃ . . . ⊃ Ω0 , (2.52)

where the coarsest grid is characterized by the index 0 while l represents
the finest grid, with the agreement that to a coarser grid corresponds a
smaller index set. For each level of the grid, i.e., for each index k, we
have the associated linear operators

1. S
(1)

k
, S(2)

k
: Rnk×nk → Rnk iteration matrices of the smoothers. They can

be either equal or different (one for the restriction phase and one for
the prolongation).

2. Ak : Rnk×nk → Rnk restriction of the matrix of the linear system.
3. Ik−1

k
: Ωk → Ωk−1, restriction operator.

4. Ik
k−1

: Ωk−1 → Ωk , prolongation operator.

nk is the number of unknowns of the system at level k and the original
linear system we want to solve Ax � b reads as Alxl � fl . Moreover, we
can introduce a parameter γ indicating what type of cycle has to be
employed at the coarser level and the number of cycles that needs to be
carried out at the current level. The underlying idea of this parameter
is making the cycle performing more work on the coarser level, thus
exploiting the possibilities of doing more work in reduced dimension.
When γ � 1 the cycle is usually called a V–cycle, while for γ > 1 a
W–cycle. With this notation, we can express the outline on one cycle of
the multigrid Algorithm 2.16.

While in geometric multigrid the restricted matrix could be the
discretization of the underlying differential problem on the coarser
grids, in a general algebraic context this is no more possible, i.e., an
automatic way to restrict the operator is needed. Usually, the Galerkin
condition is selected. This corresponds in defining the sequences of
restricted matrices as

Ik
k−1 � (Ik−1

k)T , Ak−1 � Ik−1
k Ak Ik

k−1 , ∀ k � l − 1, . . . , 0, (2.53)

assuming to have full rank restriction and prolongation operators. These
choices are convenient in many ways, e.g., if the starting matrix A is

72 fabio durastante

Algorithm 2.16: Multigrid cycle (MGM)

Data: Multigrid structure {Ak}
0
k�l

, l, {S
(1)

k
}0

k�l
, {S

(2)

k
}0

k�l
, {Ik−1

k
}0

k�l

and {Ik
k−1

}0
k�l

, bk
0
k�l , initial guess u(j).

Output: Approximation u(j+1) to the solution of xl .

Input: u
(j+1)

k
� MGM(Ak , bk , x

(j)

k
, k , ν1 , ν2 , γ)

// Presmoothing

1 ν1 steps of presmoother S
(1)

k
applied to Ak x̃

(j)

k
� bk ;

// Coarse Grid Correction

2 Compute the residual r
(j)

k
� bk − Ak x̃

(j)

k
;

3 Restrict the residual r
(j)

k−1
� Ik−1

k
r
(j)

k
;

4 if k � 1 then

5 Direct solver for Ak−1e
(j)

k−1
;

6 else
7 for i � 1, . . . , γ do

8 e
(j)

k−1
� MGM(Ak−1 , rk−1 , 0, k − 1, ν1 , ν2 , γ)

9 end

10 end

11 Prolong the error e
(j)

k
� Ik

k−1
e
(j)

k−1
;

12 Update the approximation x
(j)

k
� x̃

(j)

k
+ e

(j)

k
;

// Postsmoothing

13 ν2 steps of postsmoother S
(2)

k
applied to Ak x̃

(j+1)

k
� bk with initial

guess x
(j)

k
;

symmetric and positive definite then all corresponding restrictions are.
Moreover all intermediate coarse grid correction operators,

Πk � I − Ik
k+1A−1

k+1Ik+1
k Ak , (2.54)

become automatically orthogonal projectors.
As it stands, we can express one application of the multigrid cycle

as an iteration with a classical stationary scheme, i.e., we can express
an iteration matrix Ml that fully describes one sweep of multigrid
recursively as

{

M0 � 0, k � 0,

Mk � (S
(1)

k
)ν1

(

Ik − Ik
k−1

(Ik−1 − M
γ
k−1

)A−1
k−1

Ik−1
k

Ak

)

(S
(2)

k
)ν2 k ≥ 1.

preconditioned fast solvers for some large linear systems 73

A multigrid method is simply the fixed point iteration with matrix Ml .
Thus, we can characterize the convergence by imposing ρ(Ml) < 1. We
can start investigating the convergence of this method by selecting an
appropriate smoothing and coarsening strategy.

Theorem 2.13 (Mandel [198] and McCormick [200]). Let A ∈ Rn×n be
symmetric and positive definite. Assume that the prolongation operators Ik

k−1
have full rank and that the Galerkin condition (2.53) holds. Furthermore, given
the orthogonal projector Πk (2.54), if

∀ek ∃ δ1 > 0 : ‖S
(2)

k
ek ‖

2
A ≤ ‖ek ‖

2
A − δ‖Πkek ‖

2
A , (2.55)

independently of ek and k, then the multigrid method based on the cycle in
Algorithm 2.16, with γ � 1 (V–cycle), ν1 � 0 and ν2 ≥ 1 (no presmoother),
has a converge factor bounded above by

√
1 − δ1 with δ1 ≤ 1. Otherwise, if

the following condition holds

∀ek ∃ δ2 > 0 : ‖S
(1)

k
ek ‖

2
A ≤ ‖ek ‖

2
A − δ‖ΠkS

(1)

k
ek ‖

2
A , (2.56)

independently of ek and k, then the multigrid method based on the cycle in
Algorithm 2.16, with γ � 1 (V–cycle), ν1 ≥ 1 and ν2 � 0 (no postsmoother),
has a converge factor bounded above by 1/

√
1−δ2 with δ2 ≤ 1.

Remark 2.6. If we have a multigrid cycle (Algorithm 2.16) with both a pre–
and post–smoother satisfying relations (2.55) and (2.56), then we can give an
estimate of the convergence factor as

√
1−δ1/1−δ2.

Theorem 2.13 states that it is the balance between the smoothing
and the coarsening that makes the convergence possible. In the case of
PDEs, the interplay between these two components can be interpreted
in terms of the frequencies of the error, i.e., condition (2.55) means
that the error ek that cannot be efficiently reduced by the orthogonal

projector Πk needs to be uniformly reduced by S
(1)

k
. On the other hand,

on the components on which Πk is effective, i.e., that are in the range
of Ik

k−1
, the smoothing operator is allowed to be ineffective. Therefore,

while the geometric multigrid usually relies more on the availability of a
smoother that is tuned on the problem, algebraic multigrid is usually more
focused on finding a suitable matrix–dependent coarsening strategy.
More specifically, in geometric solvers, all coarser levels are predefined
and we select the smoothing so that this coupling is effective. On the
other side, for the AMGs, we fix a simple smoothing procedure and
explicitly construct an operator–dependent coarsening strategy. In real
applications the line of demarcation between these two approaches

74 fabio durastante

is indeed blurred, often the two kinds of information tend to be used
jointly. Let us stress that the hypotheses (2.55) and (2.56) are not very
easy to verify, since they mix together properties of the coarsening
strategy, through the orthogonal projector Πk , and of the smoother. We
would like to have some easier to verify sufficient conditions, to imply
hypothesis (2.55). To obtain them we need to define the following scalar
product

< x, y >A2�< D−1Ax, y >, with A,D SPD,

where we will usually assume that D � diag(A). Then, the following
two conditions can be used

∃ α > 0 : ‖S
(2)

k
ek ‖

2
A
≤ ‖ek ‖

2
A
− α‖ek ‖

2
A2 , (smoothing condition)

∃ β > 0 : ‖Πkek ‖
2
A
≤ β‖ek ‖

2
A2 , (approximation property)

having δ1 � α/β. Similarly for hypothesis (2.56) we have, again with
δ2 � α/β, the conditions

∃ α > 0 : ‖S
(1)

k
ek ‖

2
A
≤ ‖S

(1)

k
ek ‖

2
A
− α‖ek ‖

2
A2 , (smoothing condition)

∃ β > 0 : ‖Πkek ‖
2
A
≤ β‖ek ‖

2
A2 . (approximation property)

Smoothing conditions are usually the easiest part to be obtained. On the
other hand, the approximation property can range from trickier to very
hard or impossible. A way to further relax the approximation property
is reducing the requirements of Theorem 2.13 for a proof only for the
convergence of the two–grid method, i.e., the case with l � 2, γ � 1.
Moreover, since the two relations can be obtained in the same way, we
restrict our statement to the case in which smoothing is performed only
after each coarse grid correction step, i.e., we will consider having only

the smoothing matrix S
(2)

k
.

Theorem 2.14 (Brandt [52]). Let Ak be a positive definite matrix and let
us consider a multigrid cycle (Algorithm 2.16) with γ � 1 and l � 2 in

which we identify the two levels with k and K, respectively and S
(1)

k
� 0,

i.e., no pre–smoother is used. If S
(2)

k
satisfies the smoothing property, then the

interpolation operator Ik
K has full rank and for each ek we have

∃ β > 0 : min
ek

‖ek − Ik
KeK‖

2
D ≤ β‖ek ‖

2
A ,

with β independent from ek , then β ≥ α. Moreover, the two–grid method
converges with a convergence factor

√
1 − α/β.

preconditioned fast solvers for some large linear systems 75

Extending these convergence properties to the full V–cycle case
is in practice impossible by using merely algebraic arguments, i.e.,
without recurring when possible to the underlying geometric properties.
Nevertheless, it often turns out that two level convergence can be
extended, at least approximatively, to the V–Cycle in a way independent
of the problem size. Since we are mostly interested in using AMG as a
preconditioner, for us this is enough, even if a further analysis in this
direction would be very desirable, see [242, 269, 277] for discussions
on these issues. There exist several classical proofs of convergence
for multigrid methods applied to a wide number of elliptic partial
differential equations, see, e.g., [7, 11, 51, 102, 147]. We focus the
remaining part of this section on properties for some classes of matrices
working in the widest possible generality. For proving the convergence
of the two–grid methods in the symmetric positive definite case other
ways are indeed possible. One can consider, e.g., [137], in which a
general class of stationary iterative methods is introduced for solving
SPD systems, of which the two–grid is an example. In this respect, we
just mention that for structured matrices, some simplifications of the
theory can be obtained using a function approach, both in a Toeplitz
setting [78, 114, 115] and in a GLT setting [97, 99, 256].

Multigrid preconditioners have been applied mostly in elliptic PDE
settings, with both structured and unstructured grids. We will not focus
explicitly on any of these applications, considering instead the common
ground and making explicit the main points that are used in the various
applications.

From another perspective, the multilevel method we have described
in Algorithm 2.16, provides an approximate inverse of A, by suitably
combining some approximate inverses of the hierarchy of matrices that
represent A in increasingly coarser spaces from (2.52). Therefore, we
can devise two distinct phases of our preconditioning routine, based
on the general multigrid algorithm. They are a setup phase, summarized
in Algorithm 2.17, and an application phase in which the preconditioner
is applied to the residual vectors of our Krylov subspace method as
z � M−1

l
r, see Sections 2.1.1 to 2.1.4.

For this second phase we can identify two basic approaches, i.e., the
additive one and the multiplicative one:

additive case: at each level, the smoother and the coarse–space correction
are applied to the restriction of the vector r to that level, and the
resulting vectors are added;

multiplicative case: at each level, the smoother and the coarse–space
correction are applied in turn, the former on a vector resulting

76 fabio durastante

Algorithm 2.17: Setup phase of MGM preconditioner
Input: A ∈ Rn×n , Set of indices/grid Ω

1 Al ← A, Ωl ← Ω;

2 Set up S
(1)

k
and S

(2)

k
;

3 for k � l , l − 1, . . . , 1 do
4 Generate Ωk−1 from Ωk ;
5 Define Ik−1

k
and put Ik

k−1
� (Ik−1

k
)T ;

6 Compute Ak−1 � Ik−1
k

Ak Ik
k−1

;

7 Set up S
(1)

k−1
and S

(2)

k−1
;

8 end

from the application of the latter and/or vice versa.

An example of multiplicative preconditioner, where the smoother
(or possibly the smoothers) is applied before and after the coarse–space
correction, is the symmetrized multiplicative preconditioner or, more
generally, the V–cycle preconditioner summarized in Algorithm 2.18.

Application of this kind of preconditioners to the PDE setting are,
e.g., in [79, 95, 216, 224, 234, 283] and many others, we refer again to
the review [269] for some other cases where multigrid is a competitive
option.

2.4 Approximate Inverse Preconditioners

The so–called Approximate inverses or Approximate Inverse Preconditioners
are preconditioners approximating directly A−1 and not A, as usual.
They have been intensively studied recently, in particular in the past
twenty years; see the review [19] and, e.g., the more recent [36] and
references therein. They do not require solving a linear system to be
applied and often have very interesting parallel potentialities. On the
other hand, they usually face a computational cost sensibly higher with
respect to, e.g., incomplete LU techniques.

We recall that incomplete LU factorizations (ILU) are derived by
performing Gaussian elimination incompletely on the matrix A of the
system. A dropping strategy for specific entries in predetermined non-
diagonal positions and/or whose moduli are smaller than a prescribed
quantity is implemented; see [244, Sections 10.3 and 10.4] for further
details on the construction, also in Section 2.4.2 few details on how this
dropping strategies work are given in the context of inversion algo-
rithms for the incomplete LU factors. Moreover, existence and stability

preconditioned fast solvers for some large linear systems 77

Algorithm 2.18: V–cycle preconditioner
Input: Vector v ∈ Rn×n , MGM preconditioner from

Algorithm 2.17
Output: Vector w � M−1

l
v

1 vl ← v;
/* Recursively traverse levels downward: smoothing then

residual restriction */

2 for k � l , l − 1, . . . , 2 do

3 yk ← S
(1)

k
vk , (ν1 times);

4 rk ← vk − Akyk ;
5 vk−1 ← Ik−1

k
rk ;

6 end

7 y0 ← S
(1)
0 v0, (ν1 times);

/* Recursively traverse levels upward: residual

prolongation then smoothing */

8 for k � 1, . . . , l do

9 yk ← yk + Ik
k−1

yk−1;
10 rk ← vk − Akyk ;

11 rk ← S
(2)

k
rk , (ν2 times);

12 yk ← yk + rk ;
13 end
14 w ← yl ;

of these algorithms is mostly based on having a matrix A of the linear
system that is either an M–matrix or an H–matrix.

Definition 2.13 (M–matrix). A matrix A ∈ Rn×n is called a non–singular
M–matrix if

1. ai ,i > 0 ∀ i � 1, 2, . . . , n;
2. ai , j ≤ 0 ∀ i , j, i , j � 1, 2, . . . , n;
3. det(A) , 0;
4. the entries of the inverse of A are positive.

Definition 2.14 (H–matrix). Let A � (ai , j) ∈ Rn×n , B such that B �

(bi , j) ∈ Rn×n , bi ,i � ai ,i ∀ i � 1, . . . , n and bi , j � −|ai , j | for i , j. A is an
H–matrix if B is an M–matrix.

However, ILU can have very poor performances for important
applications, where A is not an M– or an H–matrix and/or that require

78 fabio durastante

a parallel implementation, since they require, at each step, the solution
of two triangular systems, that is a recognized serial bottleneck.

One possible remedy is to try to find a preconditioner that does not
require solving a linear system. For example, the original system can be
preconditioned by a matrix M which is a direct approximation to the
inverse of A, thus requiring just matrix-vector multiplications for its
application.

There exist several completely different algorithms for computing
a sparse approximate inverse, with each approach having its own
strengths and limitations.

Usually, two main basic types of approximate inverses exist, depend-
ing on whether the preconditioner M, approximating A−1, is expressed
as a single matrix or as a product of two or more matrices. The latter
type of preconditioners are known as factorized sparse approximate in-
verses and they are of the form M � W D−1 ZT or M � W ZT , where
Z and W are lower triangular matrices and D is diagonal, assuming
that M admits a LU factorization. Within each class, there are several
different techniques, depending on the algorithm used to compute the
approximate inverse or approximate inverse factors. At present, there
are three approaches that are more used:

• Residual norm minimization [163–165],
• inversion and sparsification of an ILU [104], and
• incomplete bi-conjugation [21, 22, 24].

However, before discussing the last two in the way they have been
modified in [36], some results regarding the entries of the inverse of a
given matrix are essential.

2.4.1 On the Decay of the Entries of A−1

At the beginning of the discussion on preconditioners, in Theorem 2.1
it was observed that the inverse A−1 of a sparse matrix A has often sig-
nificantly more entries than A. Nevertheless, under suitable conditions,
the magnitude of the elements of the inverse can play a fundamental
role. Prior to analyzing this problem, consider an example that guides
us.

preconditioned fast solvers for some large linear systems 79

Example 2.1. Consider the tridiagonal symmetric positive definite matrix

A �

*.........,

2 −1 0 . . . 0

−1 2 −1
. . .

...

0
. . .

. . .
. . . 0

...
. . . −1 2 −1

0 . . . 0 −1 2

+/////////-n×n

.

Instead of representing A−1 with its pattern, we observe its cityplot; see
Figure 2.3. Even if the elements of the inverse are all different from zero, note

Figure 2.3. Example 2.1. Cityplots of the A matrix (on the left) and of A−1 on
the right.

the presence of a decay, i.e., a decreasing of their absolute value away from the
main diagonal of the matrix.

Let us start investigating this decay in the inverse matrices in order
to use it, whenever it exists, for preconditioning strategies.

The first result that can help is due to Demko, Moss and Smith.

Theorem 2.15 (Demko, Moss, and Smith [89]). Let A and A−1 be in
B(l2(S)) (that is defined just after the present statement). If A is positive
definite and m-banded then we have:

(|A−1 |)n
i , j�1 � |bi , j | ≤ Cλ |i− j | ,

where:

λ � *,
√

κ(A) − 1
√

κ(A) + 1
+-

2/m

,

80 fabio durastante

and

C � ‖A−1‖ max


1,

(

1 +

√

κ(A)
)2

2κ(A)


.

If A fails to be positive definite but is still m-banded, quasi-centered, bounded,
and boundedly invertible then:

(|A−1 |)n
i , j�1 ≤ C1λ

|i− j |

1 ,

where

λ1 �

(

κ(A) − 1

κ(A) + 1

)
1
m

,

and

C1 � (m + 1)λ−m
1 ‖A−1‖κ(A)max

1,
1

2

[
1 + κ(A)

κ(A)

]2 .
To prove this statement some preliminary work is needed. Let us

start with a general complex, separable, Hilbert space H, and let B(H)
denote the Banach algebra of all linear operators on H that are also
bounded. Now if A ∈ B(H) then A can be represented as a matrix with
respect to any complete orthonormal set. In this way, A can be regarded
as an element of B(l2(S)), where S � {1, 2, . . . ,N}. In this space, the
usual matrix product defines the action A over the space. A can be
considered as a matrix representing a bounded operator in B(l2(S)).
Recall that A is m-banded if there is an index l such that

ai , j � 0, if j < [i − l , i − l + m].

Then A is said to be centered and m-banded if m is even and the l above
can be chosen to be m/2. In this case the zero elements of the centered
and m-banded are:

ai , j � 0, if |i − j | >
m

2
.

Remark 2.7. Selfadjoint matrices are naturally centered, i.e., a tridiagonal
selfadjoint matrix is centered and 2-banded.

Now let Rn denote, as usual, the polynomial of degree less than or
equal to n. If K ⊆ C and f is a fixed complex–valued bounded function
on K, then we define the norm

‖ f ‖K � sup
z∈K

| f (z)|

preconditioned fast solvers for some large linear systems 81

and the relative approximation error for the set of polynomial Rn to an
f over the set K as

en(K) � inf
p∈Rn

‖ f − p‖K .

To proceed, a result due to Tchebychev [271], and Bernstein [26] is
needed; see [202] for a modern presentation.

Lemma 2.1. Let f (x) � 1/x and let 0 < a < b. Set r � b/a and:

q � q(r) �

√
r − 1√
r + 1

then:

en([a , b]) �
(1 +

√
r)2

2ar
qn+1

Proposition 2.10 (Demko, Moss, and Smith [89]). Let A be a positive
definite, m-banded, bounded and boundedly invertible matrix in l2(S). Let
[a , b] be the smallest interval containing σ(A). Set r � b/a, q � q(r) as in
the Lemma 2.1, and set C0 � (1 +

√
r)2/(2ar) and λ � q2/m . Then,

|A−1 | � (|bi , j |)i , j�1n ≤ Cλ |i− j |

where:
C � C(a , r) � max{a−1 , C0}.

Now following the authors of the result above, we report an extension
of the latter for a more generic type of matrix A. Before doing this, the
quasi–centered matrix definition is needed. A is said to be quasi–centered
if the central diagonal is contained within the nonzero bands of the
matrix, i.e., A ∈ B(l2(S)) is invertible only if A is quasi–centered. Note
also that this is not true for A ∈ l2(Z).

Proposition 2.11 (Demko, Moss, and Smith [89]). Let A be m-banded,
bounded and boundedly invertible on l2(S). Let [a , b] be the smallest interval
containing σ(AAH). Then, setting r � b/a, q � q(r) as in Lemma 2.1, and
λ1 � q1/m , there is a constant C1 depending on A so that

(|A−1 |)n
i , j�1 � |bi , j | ≤ C1λ

|i− j |

1 .

If A is quasi–centered, then C1 can be chosen as C1 � (m + 1)‖A‖λ−m
1 C(a , r).

The proof of Theorem 2.15 is given by two previous propositions.
Observe that Theorem 2.15 does not apply to the sequence of matrices
from Example 2.1, since their condition number grows like O(n2), i.e.,

82 fabio durastante

the spectral condition number is unbounded. Being familiar with the
physics of the problem, this has to be expected, since we are trying
to approximate the Green’s function for d2/dx2. Therefore, even if the
matrix satisfies a bound of the kind of Theorem 2.15, it deteriorates
as n → +∞.

In many cases understanding the behavior of the decay is important
not only from the main diagonal but also when more complicated pat-
terns appear. A useful result in this sense is given in Canuto, Simoncini,
and Verani [71] for Kronecker sums of symmetric and positive definite
banded matrices, i.e.,

S � In ⊗ M + M ⊗ In ,

where In is the identity matrix in Rn×n , a structure very frequently en-
countered when dealing with the discretizations of PDEs on a Cartesian
grids, see, e.g., [186], or other tensor product structures.

Theorem 2.16 (Canuto, Simoncini, and Verani [71]). Let M ∈ Rn×n

be a symmetric and positive definite matrix of bandwidth b. For k , t ∈
{1, 2, . . . , n2}, let

j � ⌊t−1/n⌋ + 1, i � t − n⌊t−1/n⌋ ,

and l ,m such that

m � ⌊k−1/n⌋ + 1, l � k − n⌊k−1/n⌋ .

If λmin and λmax are the extreme eigenvalues of M, and λ1 � λmin + ıω, λ2 �

λmax + ıω,R � α +

√
α2 − 1 with α � |λ1 |+|λ2 |/λ2−λ1 and β � |λmax − λmin |,

then the following results hold

1. If i , l and j , m, then

���!S−1
�

k ,t
��� ≤ 1

2π
64

β2

∫

+∞

−∞
*,

R2

(R2 − 1)
2
+-

2
(

1

R

)

|i−l |
b +

| j−m |
b −2

dω;

2. If either i � l or j � m, then

���!S−1
�

k ,t
��� ≤ 1

2π
8

β

∫

+∞

−∞

R2

(R2 − 1)
2
√

λ2
min

+ ω2

(

1

R

)

|i−l |
b +

| j−m |
b −1

dω;

3. If both i � l and j � m, then

���!S−1
�

k ,t
��� ≤ 1

2π

∫

+∞

−∞

1

λ2
min

+ ω2
dω �

1

2λmin
.

preconditioned fast solvers for some large linear systems 83

Another result that is very useful and that is pivotal for several
results in both Chapters 5 and 8 is the following.

Theorem 2.17 (Jaffard [166]). The sets of invertible matrix (A)h ,k ∈
B(l2(K)), K � Z,N, such that either

|ah ,k | ≤ C(1 + |h − k |)−s , (2.57)

or
|ah ,k | ≤ C exp(−γ|h − k |) (2.58)

are algebras, denoted by Qs and Eγ, respectively.

Observe that this result does not require any particular sparsity
pattern for the underlying matrix, and is based only on the values
assumed by the entries.

Remark 2.8. In Theorem 2.17 we used the hypothesis A ∈ B(l2(K)). We
stress that the fact that the single matrix A of finite dimension is invertible does
not ensure that the operator over l2(K) is invertible with a bounded inverse.
This kind of feature is not easily proven in general and require the use of tools
from C∗–algebras.

Decay conditions for general matrices remain an open problem.

Not all of the entries of such inverses, though nonzero, have the
same weight. The same principle adopted for the ILU factorizations
in [244] can be applied when investigating the strategies that generate
the approximate inverses with some degree of dropping.

2.4.2 Inversion and Sparsification or INVS

The inversion and sparsification of an existing ILU decomposition is a
strategy used often to get approximate inverse preconditioners. Three
immediate positive aspects are that the latter is produced in factorized
form: the availability of reliable packages producing ILU factorizations,
and the inherent parallel potentialities after the ILU decomposition; see,
e.g., van Duin [104] and [36].

Let us focus on the approach by van Duin [104] as reconsidered
in [36] and here called INVS (from INVersion and Sparsification) for
brevity. The strategy is based on performing a sparse inversion technique
on the triangular factors of an existing incomplete factorization in the
form M � LDU, where D is a diagonal matrix and L and U are lower
and upper triangular with ones on the main diagonal, respectively. The
latter factorization can be obtained with a slight modification of the
classical ILU techniques, see, e.g., [108, 189, 244, 246]: let M � L U1

84 fabio durastante

be a ILU preconditioner and let D be the main diagonal of U1. D is
nonsingular otherwise M is a singular preconditioner. Then, by posing
U � D−1U1, we deduce the following

M � L D U → M−1
� U−1D−1L−1

� WD−1ZT

are the factorizations for M and for its inverse. However, as proved
in Theorem 2.1, Z and W can be dense lower triangular matrices. In
order to get a sparse incomplete factorization for A−1 and therefore of
M−1, a sparsification process for Z and W can be based on threshold
and position or both, similar to what is seen for ILU decompositions,
generating the sparse lower triangular matrices Z̃ and W̃ . After having
obtained sparse approximations Z̃, W̃T for the matrices L−1 and U−1,
use them to get the explicit preconditioner5 for A−1 of the form

M̃−1
� Ũ−1D−1L̃−1

� W̃D−1Z̃T .

We call it the INVS.
To produce the underlying inversion, start writing U as6

U � I +

n−1
∑

i�1

eiu
T
i .

By observing that ∀ j ≤ k, we find ekuT
k
e ju

T
j
� 0, since the jth entry of

uk is zero ∀ j ≤ k, rewrite U as

U �

1
∏

i�n−1

!
I + eiu

T
i

�
. (2.59)

The inverse of the factors in (2.59) is straightforward7:

!
I + eiu

T
i

�−1
� I − eiu

T
i ,

5 Explicit preconditioner: no linear systems should be solved to apply it but, if used with a
Krylov subspace method, then just matrix-vector multiplications with Z̃, W̃T and D−1

are required.
6 As usual we are using ei notation for the vectors of the canonical basis, while ui is the ith

row of the matrix U with the element ui(j) � 0 for j ≤ i.
7 The inverse of the factors in (2.59) can be computed directly by the fact that U is upper

triangular, and using again that ∀ j ≤ k, we find ekuT
k

e ju
T
j
� 0, which gives the needed

result: (I − eiu
T
i
)(I + eiu

T
i
) � I. Otherwise, it can be computed by a straightforward

application of the Sherman–Morrison formula for the inversion of (A+uvT); see Sherman
and Morrison in [259] for details.

preconditioned fast solvers for some large linear systems 85

and then

U−1
�

n−1
∏

i�1

!
I − eiu

T
i

�
. (2.60)

Now, since U−1 is also an upper triangular matrix, the above expression
can be rewritten as a sum

U−1
� I +

n−1
∑

i�1

eiû
T
i , (2.61)

where ûT
i
, the strict upper triangular part of the ith row of U−1, is

obtained as

ûT
i � −uT

i

n−1
∏

j�i+1

!
I − eiu

T
i

�
. (2.62)

The expression for L−1 can be obtained similarly.

Remark 2.9. From (2.62) we observe that no û j is needed for the calculation
of ûi for i , j, so the whole inversion process can be executed in parallel on a
distributed memory machine, i.e., computer systems with many processors in
which each processor has its own private memory.

Algorithm 2.19: Sparse product algorithm.
Input: U ∈ Rn×n strict upper triangular matrix

1 for i � 1, . . . , n − 1 do

2 ûT
i
← −uT

i
;

3 j ← first nonzero position in ûT
i
;

4 while j < n do

5 α ← −ûT
i
e j ;

6 ûT
i
� ûT

i
+ αuT

j
; // As a sparse operation.

7 j ← next nonzero position in ûT
i
;

8 end

9 end

A straightforward implementation of the formula (2.62) is in the
Algorithm 2.19, that has the flaw of generating dense matrices, recall
Theorem 2.1. To sparsify using some dropping strategy, similarly to
what is done usually for the ILU factorization, see the modifications
needed in Algorithm 2.19.

86 fabio durastante

Pattern drop. A fixed pattern S for the matrix is given, so ûT
i
(k) is only

calculated when (i , k) ∈ S.
Neumann drop. 8 We start from rewriting formula (2.60), namely the

Neumann series expansion for the formula (2.59):

U−1
�I −

n−1
∑

j1�1

e ji u
T
j1
+

n−2
∑

j2�1

*.,e j2u
T
j2

n−1
∑

j1� j2+1

e j1u
T
j,1
+/-+

−
n−3
∑

j3�1

*.,e j3u
T
j3

n−2
∑

j2� j3+1

*.,e j2u
T
j2

n−1
∑

j1� j2+1

e j1u
T
j,1
+/-
+/- + . . .

(2.63)

by truncating this expression at a number of extra term m we
obtain the dropping Ûm . The main issue of this approach is that
the update uT

k
can be computed m times in the worst case for ûT

i
.

Positional fill level. Similarly to ILU(P), define a level of fill initialized
for U as:

levi , j �

{

0 if uT
i
(j) , 0,

+∞ if uT
i
(j) � 0,

and the function to update the levels of fill is

levi ,k � min(levi , j +1, levi ,k).

In this way, Algorithm 2.19 becomes Algorithm 2.20.
Positional fill level II. Instead of using the level of fill of the approximate

inverse matrix, we can choose the level of fill of the original sparse
triangular factor. This choice changes only the initialization step
in Algorithm 2.20:

levi , j �

{

levU
i , j if uT

i
(j) , 0,

+∞ if uT
i
(j) � 0.

Threshold drop. Algorithm 2.19 can be implemented with the same
elementary operators as the incomplete LU factorization with
thresholding from [246], and quoting from [36]:

• in the copy–in phase, Step 2, we initialize the set of nonzero entries
for the current row ûi ;

• in the update phase in Step 7 we also insert the relevant indices
into the set to ensure that the retrieval of the next nonzero at
Step 11 is performed efficiently;

8 Note that the first two terms are available without cost.

preconditioned fast solvers for some large linear systems 87

Algorithm 2.20: Positional fill level inversion of a sparse triangular
matrix or INVK

Input: U ∈ Rn×n strict upper triangular matrix, initial pattern of
the matrix levi , j .

1 for j � 1, . . . , n − 1 do

2 ûT
i
← −uT

i
;

3 j ← first nonzero position in ûT
i
;

4 while j < n do
5 if levi , j ≤ p then

6 α ← −ûT
i
e j ;

7 ûT
i
← ûT

i
+ αûT

j
;

8 levi ,k � min(levi , j +1, levi ,k);
9 else

10 ûT
i
(j)← 0;

11 end

12 j ← next nonzero position in ûT
i
;

13 end

14 end

• at the end of the inner loop, we perform a copy–out operation
bringing the row ûi into its desired final state, copying the largest
entries up to the maximum allowed number of nonzeros.

From the above discussion, in Algorithm 2.21 we are looking
again to implement efficiently the following two operations:

1. select and remove the lowest ranked element from a set;
2. add an element to the set.

As highlighted in [36] this can be achieved efficiently on a set
with an order relation. This item can be implemented by means
of a Partially Ordered Set Abstract Data Type S; see [162]. With this
kind of data structure both the insertion of a new element and the
deletion of the lowest ranked element (where the rank is given
within respect to the chosen order) can be performed with a cost
of O(log(|S|)), where |S| is, as usual, the cardinality of the set S.
Observe that the copy–out operations in both factorization and
inversion can be implemented by making again use of a partially
ordered set, or by keeping the p largest entries in the current row.

A parallel implementation, exploiting the GPU architecture of this
algorithm, is proposed in [36].

88 fabio durastante

Algorithm 2.21: Inversion of triangular matrices with numerical
drop or INVT

Input: U ∈ Rn×n strict upper triangular matrix
1 for j � 1, . . . , n − 1 do

2 ûT
i
← −uT

i
;

3 j location of first nonzero in ûT
i
;

4 while j < n do

5 α ← −ûT
i

e j � −ûT
i
(j);

6 if |α| > ǫ then

7 ûT
i
← ûT

i
+ αuT

j
;

8 else

9 ûT
i
(j)← 0;

10 end

11 j location of next nonzero in ûT
i
;

12 end
13 Drop elements in ûi as necessary to achieve the desired

number of nonzeros.;
14 end

With the appropriate implementation for this data structure, we
are now in a position to report the estimate of the cost of building an
approximate inverse as in Algorithm 2.21 that was obtained in [36].

Theorem 2.18 (Bertaccini and Filippone [36]). Let nnzu be the average
number of nonzeros per row for u, nnzû for û and that the bounds

|S| ≤ γ nnzu , (2.64)

nnzû ≤ β nnzu , (2.65)

hold true, where |S| is the maximum size of the set of the nonzero entries
in any of the ûi before the application of the drop rule at Step 13. Then, the
computational cost of Algorithm 2.21 is given by

O(γβn · nnz2
u(1 + log(γ nnzu))). (2.66)

The above result relies on two crucial assumptions about the size
of both the constant β and γ: we need small constants to achieve
a good asymptotical cost. Assumption (2.65) is the easiest to justify:
from the discussion at the beginning of Section 2.4, we know that we
desire preconditioners with a number of nonzeros of the same order as

preconditioned fast solvers for some large linear systems 89

the coefficient matrix A, hence β ≈ 1. Observe that we can enforce the
number of nonzeros at Step 13, thus the assumption above is reasonable.

On the other hand, assumption (2.64) is a bit more complex: it relies
on the behavior of the profile of u and û. We can consider hypoth-
esis (2.64) plausible whenever we are in presence of the conditions
discussed in Section 2.4.1. Since the latter is indeed equivalent to an
exponential decaying argument for the entries of the inverse of the
Cholesky factor; see also the applications in Sections 4.2 and 5.2.1. We
stress that also enforcing the dropping rules at 6 and 13 in Algorithm 2.21
helps in keeping |S| under control.

The cost of INVK and INVT has also been analyzed in the original
paper [104], obtaining for approximate inversion of the upper factor
the estimate

Cinvrt � O
(

nnzÛ

nnzU

n

)

,

where nnzU is the number of nonzeros above the main diagonal in U
and likewise nnzÛ for the sparsified version Û.

In [36], was noted that the upper bound for the first term nnzÛ
is given by the product nβnnzu while the second term is nnzu. This
estimate is then equivalent to the reported one in (2.66), under the mild
assumption that log(γ nnzu) is bounded by a small constant.

2.4.3 Incomplete Biconjugation: AINV

Let us focus on another approach for preconditioning, based on efficient
approximations to the inverse of the underlying matrix. In particular,
approaches that do not necessitate apriori information on the sparsity
pattern of A−1 are considered here. This kind of procedure have been
developed in different forms in many papers; see, e.g., [22, 60, 61, 170].

Factorized Approximate Inverse preconditioners for general sparse
matrices can be efficiently constructed by means of a generalization of
the Gram–Schmidt process known as biconjugation.

An approximate inverse preconditioner in factorized form (AINV), was
proposed by Benzi et al. in 1996, see [22] and later extended in [24] and
in [21]. The main idea comes from an algorithm first proposed in 1948
in [119], a variation of the root–free Cholesky decomposition of A.

AINV strategy is based on the observation that if a matrix A ∈ Rn×n

is nonsingular, and if two vector sequences {zi , i � 1 . . . n} and {wi , i �
1 . . . n} A–biconjugate are given, i.e., zT

i
Aw j � 0 if and only if i , j,

90 fabio durastante

then we can express a biconjugation relation as follows:

ZTAW � D �

*....,

p1 0 . . . 0
0 p2 . . . 0
...

...
. . .

...
0 0 . . . pn

+////-
(2.67)

where pi � zT
i

Awi , 0. Thus, W and Z must be nonsingular, since D is
nonsingular. Therefore, in matrix form,

A � Z−T DW−1

from which it readily follows that

A−1
� WD−1ZT . (2.68)

If W and Z are triangular, then they are the inverses of the triangular
factors in the familiar LDU decomposition of A (see, e.g., [134]), as can
be easily seen by comparing the two expressions

A � LDU, and A � Z−T DW−1.

Algorithm 2.22: Biconjugation

1 w
(0)
i
← z

(0)
i
← ei 1 ≤ i ≤ n;

2 for i � 1, . . . , n do
3 for j � i , i + 1, . . . , n do

4 p
(i−1)
j

← aT
i ,:w

(i−1)
j

; q
(i−1)
j

← aT
:,iz

(i−1)
j

;

5 end
6 for j � i + 1, . . . , n do

7 w
(i)
j
← z

(i−1)
j

− *.,
p
(i−1)
j

p
(i−1)
i

+/-w
(i−1)
i

;

8 z
(i)
j
← z

(i−1)
j

− *.,
q
(i−1)
j

q
(i−1)
i

+/- z
(i−1)
i

;

9 end

10 end

11 zi ← z
(i−1)
i

, wi ← w
(i−1)
i

, pi ← p
(i−1)
i

, 1 ≤ i ≤ n;

Observe that there are infinitely many biconjugate sequences {w}
and {z} satisfying the above relations. To find one of them, it is enough

preconditioned fast solvers for some large linear systems 91

to apply a biconjugation procedure to an appropriate pair of nonsingular
matrices W (0) , Z(0) ∈ Rn×n . From a computational point of view, one
can start with W (0)

� Z(0)
� I, thus obtaining Algorithm 2.22, where aT

i ,:

is the ith row of A and aT
:,i is the ith column of A, i.e., the ith row of AT .

If the procedure reaches completion without breakdowns, i.e., all the
diagonal entries are nonzero, then the resulting matrices W and Z will
be triangular. Thus, for symmetric positive definite matrices, the process
does not break down. Another interesting feature of Algorithm 2.22 is
that the process for building W can proceed independently of Z.

To turn Algorithm 2.22 into a practical approximation procedure,
and therefore for a possible preconditioner, we need to “sparsify” the
resulting W and Z by dropping elements in the vectors wi and zi . In
principle this could be done at the end of Algorithm 2.22, but this would
mean storing the (dense) matrices W and Z until the end. In practice,
the sparsification is done at each update for the vectors w and z.

Similar to the case of the incomplete factorization of ILU type, it
is possible to prove that the incomplete inverse factorization exists (in
exact arithmetic) when A is an H–matrix; see [22].

Proposition 2.12 (Benzi, Meyer, and Tüma [22]). Let A be an H–matrix
and let Â be the associated M–matrix. If pi and p̂i denote the pivots computed
by the inverse factorization Algorithm 2.22 applied to A and to Â, respectively,
then pi ≥ p̂i . Furthermore, if p̂i denote the pivots computed by the incomplete
inverse factorization algorithm applied to A, then p i ≥ p̂i .

We stress that, despite the many similarities, there is a noticeable
difference with the case of incomplete factorizations. It is well known
that if A is an M-matrix, then the incomplete factorization induces a
regular splitting A � L̂Û − R, i.e., ρ(I − Û−1L̂−1A) < 1, while this is
not necessarily true for the incomplete inverse factors produced by
biconjugation; see [24].

Example 2.2. Consider the symmetric matrix HB/bcsstk07 from the Harwell–
Boeing collection [103]. Producing M−1

� ZD−1ZT with a drop tolerance
of ε � 0.1. The estimated spectral radius for this splitting is ρ(I − M−1A) �
1.44 > 1, and so the splitting is not convergent.

In theory, AINV can suffer of breakdown when the coefficient
matrix is not an H–matrix. But the process as modified in [21] will not
break down for symmetric and positive definite matrices. The modified
method was called Stabilized AINV, or SAINV.

The procedure in Algorithm 2.22 is a right looking variant, i.e., when
a vector zi is finalized, it is used to update all the vectors z j , j > i.

92 fabio durastante

An alternative formulation is the left looking variant as suggested
in [36], i.e., all the updates to zi involving z j , j < i, are performed in
a single iteration of the outer loop. We show the procedure for Z in
Algorithm 2.23, W can be handled in the same way. As usual, in exact
arithmetic, the numerical behavior of the two algorithms is the same.
Nevertheless, the distribution of the computational work in the two
variants is indeed different. We observe that the left–looking variant
groups together all the updates to a given column. We perform more
(sparse) dot products, using the “true” zi , i.e., before sparsification.

As observed in [36], these features can be beneficial from a numerical
point of view, since:

1. The dot products at 5 and 8 in Algorithm 2.23 are computed with the
full vector zi , before the application of the drop tolerance.

2. The dropping rule on zi entries is applied only at the end of the update
loop, whereas in the right-looking version is applied at each update.

From the experiments in [36], the left–looking variant seems to suffer
less from pivot breakdown.

Algorithm 2.23: Left Looking Biconjugation for Z

1 z
(0)
1 ← e1; p

(0)
1 ← a1,1;

2 for i � 2, . . . , n do

3 z
(0)
i
← ei ;

4 for j � 1, . . . , i − 1 do

5 p
(j−1)

i
← aT

j,:z
(j−1)

i
;

6 z
(j)

i
← z

(j−1)

i
− *.,

p
(j−1)

i

p
(j−1)

j

+/- z
(j−1)

j
;

7 end

8 p
(i−1)
i

← aT
i ,:z

(i−1)
i

;
9 end

Recall that even if A is sparse, then there is no guarantee that Z is
sparse too; see again the discussions made in Section 2.4.1 about the
decay of the entries of the inverse of a matrix.

Example 2.3. As an example of the fill–in for the Z matrix in the AINV
Algorithm, we consider the application to the HB/sherman19 matrix (2.4) of
the Harwell-Boeing Collection for various drop tolerances.

9 Information concerning this matrix can be found in [86].

preconditioned fast solvers for some large linear systems 93

nz = 3750

0 200 400 600 800 1000

0

100

200

300

400

500

600

700

800

900

1000

HB/sherman1

nz = 4336

0 200 400 600 800 1000

0

100

200

300

400

500

600

700

800

900

1000

Droptol 1e− 1

nz = 25954

0 200 400 600 800 1000

0

100

200

300

400

500

600

700

800

900

1000

Droptol 1e− 2

nz = 114017

0 200 400 600 800 1000

0

100

200

300

400

500

600

700

800

900

1000

Droptol 1e− 3

Figure 2.4. AINV(A, ε) for the HB/sherman1 matrix at various ε.

Consider again Algorithm 2.23. In an actual implementation, the
vector zi could be stored in full format during the execution of Loop 4,
and there can be two different ways to apply the dropping rule:

1. at Statement 6 the update of zi is only performed for a sufficiently large
value of pi/p j ;

2. after the Statement 8 a dropping rule is applied to zi thereby sparsifying
it for final storage.

Observe that the application of the first dropping rule based on pi/p j

was discouraged in the paper that introduces right–looking AINV
for symmetric systems [22], while in the experiments in [36] with
the left–looking approach, the dropping rule was applied, without
adverse numerical effects. Moreover, it seems to provide a performance
advantage. Observe that in the dropping rule applied to zi , both the
usual threshold comparisons and the limitation on the maximum

94 fabio durastante

number of nonzeros where allowed in [36].
A key observation made in [36] is that the execution of Statement 5

in Algorithm 2.23 computes the dot product between a j,: and zi even if
in most cases this product can be exactly zero because of the (mis)match
between the position of nonzeros in a j,: and zi . Thus, we are performing
quadratic cost operations without any contribution to the result. To
avoid this, in [36], they propose executing Loop 4 only when is necessary.
This is equivalent to letting each step j be the lowest index among those
not processed yet such that row a j,: has at least one nonzero element in

a column corresponding to a nonzero entry in z
(j−1)

i
.

To achieve this goal, an extra copy of the pattern of a in a column–
oriented format is retained, and, quoting again [36], we do the following:

1. at the beginning of the loop 4, zi ← ei . Therefore, the set of indices { j}
is initialized with Ra:, j � {i : ai , j , 0}, the set of row indices of nonzero
entries in column i of matrix A;

2. at each iteration in Loop 4, choose j to be the smallest index in the set
that is greater than the last one visited;

3. at Step 6, whenever an entry zi(k) becomes nonzero, add the row indices
Ra:,k corresponding to the nonzeros of column k in matrix A to the set
of indices to be visited.

Moreover, for easing the implementation, we can keep copies of the
input matrix A both in a row–oriented and column–oriented storage
format. This allows building Z and W at the same time, and within the
same outer loop: we access the rows and columns of AT by accessing
the columns and rows (respectively) of A. On the other hand, the inner
loop results to be separate between Z and W in any case. It runs on
a subset of indices specific to each of the triangular factor. The result
is Algorithm 2.24; see again [36]. The implementation makes use of a
dense work vector z̃ to compute zi and wi . The indices of the nonzero
entries are kept in a heap hp. Another heap rhp is used to hold the
indices of the rows with at least one nonzero in a column matching a
nonzero entry in z̃, thus giving the set of rows for which we have to
compute the scalar products.

The computational cost is estimated in the following result.

Theorem 2.19 (Bertaccini and Filippone [36]). Let nza be the average
number of nonzeros per row in A and nzz for z; let the bounds

|S| ≤ γ nza , (2.69)

nzz ≤ β nza , (2.70)

preconditioned fast solvers for some large linear systems 95

Algorithm 2.24: Practical left-looking biconjugation
/* For a sparse matrix A let Cai ,: � { j : ai , j , 0} the set of

column indices in row i, and similarly let

Ra:, j � {i : ai , j , 0} */

/* For a set S with an order relation ≤, let first(S) be

the operator returning the smallest element in S */

1 z
(0)
1 ← e1; p

(0)
1 ← a1,1;

2 for i � 2, . . . , n do
/* Inner loop over Z j */

3 z̃ ← ei ; S ← Ra:,i ;
4 while S , ∅ do
5 j ← first(S); S ← S − { j};
6 p(i)← a j,:z̃; α ←

!
p(i)/p(j)

�
;

7 if |α| > ǫ (drop rule) then
8 z̃ ← z̃ − αz:, j ;
9 for k ∈ Rz:, j do

10 S ← S ∪ {l ∈ Ra:,k : j < l < i} ;
11 end

12 end

13 end
14 p(i)← ai ,:z̃;
15 Apply a drop rule to z̃;
16 z:,i ← z̃;

/* Inner loop over W j */

17 z̃ ← ei ; S ← Cai ,: ;
18 while S , ∅ do
19 j ← first(S); S ← S − { j};
20 q(i)← aT

:, j z̃; α ←
!
q(i)/q(j)

�
;

21 if |α| > ǫ (drop rule) then
22 z̃ ← z̃ − αw:, j ;
23 for k ∈ Rw:, j do

24 S ← S ∪ {l ∈ Cak ,: : j < l < i} ;
25 end

26 end

27 end

28 q(i)← (a:,i)
T z̃;

29 Apply a drop rule to z̃;
30 w:,i ← z̃;
31 end

96 fabio durastante

hold true, where |S| is the maximum cardinality of the sets of entries in any of
the zi before the application of the drop rule at Line 15. Then the computational
cost of Algorithm 2.24 is

O(γn nz2
a(1 + β(1 + log(γ nza)))). (2.71)

The situation is thus analogous to that of Theorem 2.18. To be more
precise, we observe that the bound given by the constant β in (2.70) refers
to the ratio between the size of the rows of Z and A. When we enforce
that the number of nonzeros in the preconditioner is comparable to that
in the matrix A, we are enforcing for β a value that is approximately
one half of (2.65). We are comparing, in this case, the upper triangle of
the inverse to the upper triangle of the incomplete factorization. Then
we obtain that the ratio of number of nonzeros in the preconditioner
with respect to the number of nonzeros in A is again β, just as it was
in the case of INVT. This is due to the fact that we have applied the
biconjugation process twice, one time for Z and one for W .

Similarly to what we have seen for the INVS algorithms, the applica-
tion of the dropping rules in Statements 7, 15 21 and 29 of Algorithm 2.24
have the effect of enforcing a control over the size of the set S. Again, we
have that improving the factor γ in this way improves the overall timing
needed for the construction of the preconditioner. The key element here
is that with dropping Rules 15 and 29 we limit the number of accepted
nonzeros.

Since original AINV, that was proposed in [22], can suffer from pivot
breakdown when applied to matrices that are not H–matrices, also
the more robust version (SAINV) from [21] should be considered. It
computes the pivots pi as

pi ← zT
i Azi ,

instead of the simplified formula

pi ← ai ,:zi .

Therefore, if A is symmetric and positive definite, then the pivots
cannot be zero since this define a scalar product. For nonsymmetric
matrices, even if we do not necessarily define a scalar product, we can
apply a similar procedure for avoiding breakdowns. Indeed, there are
important cases where pivot breakdown cannot occur for SAINV also
in the nonsymmetric case, consider, in particular, the cases in which
the symmetric part of the matrix is positive definite; see [233].

If we apply the full formula to the left–looking algorithm then we
obtain Algorithm 2.25 from [36]. The product with A is applied at

preconditioned fast solvers for some large linear systems 97

Algorithm 2.25: Practical left-looking biconjugation stabilized
/* For a sparse matrix A let Cai ,: � { j : ai j , 0} the set of

column indices in row i, and similarly let

Ra:, j � {i : ai j , 0} */

/* For a set S with an order relation ≤, let first(S) be

the operator returning the smallest element in S */

1 z
(0)
1 ← e1; p

(0)
1 ← a1,1;

2 for i � 2, . . . , n do
/* Inner loop over Z j */

3 z̃ ← ei ; S ← Ra:,i ;
4 while S , ∅ do
5 j ← first(S); S ← S − { j};
6 p(i)← ((w:, j)

TA)z̃; α ←
!
p(i)/p(j)

�
;

7 if |α| > ǫ (drop rule) then
8 z̃ ← z̃ − αz:, j ;
9 for k ∈ Rz:, j do

10 S ← S ∪ {l ∈ Ra:,k : j < l < i} ;
11 end

12 end

13 end
14 Apply a drop rule to z̃;
15 z:,i ← z̃;

/* Inner loop over W j */

16 z̃ ← ei ; S ← Cai ,: ;
17 while S , ∅ do
18 j ← first(S); S ← S − { j};;
19 q(i)← (AZ j)

T z̃; α ←
!
q(i)/q(j)

�
; ;

20 if |α| > ǫ (drop rule) then
21 z̃ ← z̃ − αw:, j ;
22 for k ∈ Rw:, j do

23 S ← S ∪ {l ∈ Cak ,: : j < l < i} ;
24 end

25 end

26 end
27 Apply a drop rule to z̃;
28 w:,i ← z̃;
29 p(i)← q(i)← (w:,i)

TAz:,i ;
30 end

98 fabio durastante

Steps 6, 19 and 29. Note that the two triangular matrices W and Z are no
longer independent of each other. Indeed, the computation of the pi and
qi must be performed at Step 29 where the relevant elements of both
W and Z are available. On the other hand, stabilization is not always
beneficial. As an example, in all the tests performed in [36], there is no
significant advantage in using Algorithm 2.25 over Algorithm 2.24.

“An “A−1” in a formula almost always
means “solve a linear system” and almost
never means “compute A−1.””

Golub and Van Loan, Matrix Computations

I

Sparse Structure and
Preconditioners

3

Interpolatory Updates of Approximate Inverse
Preconditioners

The solution of sequences of linear systems as

A(k)x(k) � b(k) , k ≥ 0, {A(k)}k ⊂ R
n×n , {x(k)}k , {b(k)}k ⊂ R

n , (3.1)

is an important problem that arises in several contexts in scientific
computing. Note that we use the term sequences of linear systems whenever
all the matrices A(k) share something and/or do not differ much in some
sense. Moreover, we assume always that the sequences {A(k)}k are also

sequences of matrices of growing dimension, i.e., {A(k)}k ≡ {{A
(k)
n }n}k

with A
(k)
n ∈ Rn×n . With an abuse of notation, we do not report explicitly

the dependence on the index n, nonetheless, when we talk about
clustering properties (Definition 2.1) we are always referring to sequences
indexed by n; refer also to Section 1.1.

The most frequent and natural example of this setting is the solution
of time–dependent partial differential equations by implicit methods.

Example 3.1. Time-dependent PDEs. Consider for instance a partial differ-
ential equation of the form

∂u

∂t
� Lu + g , (3.2)

on a region with Dirichlet boundary conditions and an initial condition
u(x , 0) � u0(x). An implicit time discretization with time step τm and a finite
difference/element approach in space for Lwith stepsize h gives a sequence of
linear systems if L� A is, e.g., linear

(I− τm

h2
A)u(m+1)

� um
+τmΦ(h , g

(m+1) , u(m) , u(m−1) , . . .). m ≥ 0. (3.3)

If L is non linear then, by using a quasi-Newton step, we can get again linear
systems as in (3.3). Typically the time step τm will not be constant, but will
change adaptively from time to time.

102 fabio durastante

Example 3.2. Unconstrained optimization.1. Consider the Newton method
for finding a zero x∗ of the function F(x) � 0, F : Rn → Rn at least of class
C

1(Rn). Let us apply a Krylov subspace method for solving the linear systems

J
(

x(k)
)

s(k) � −F
(

x(k)
)

, k � 1, 2, . . . , (3.4)

where x(k) is the current candidate solution, J is the Jacobian matrix, or at least
an approximated version of the operator providing the action of the Jacobian
operator on a vector. Then, a candidate approximation for x∗ can be found in
the sequence {x(k)} generated starting from an initial guess x(0) as usual:

x(k+1)
� x(k) + s(k).

Therefore also in this case (3.4) is a sequence of linear systems. If a Krylov
solver is used to face with these linear systems, then those methods are usually
called Newton–Krylov methods.

More generally, sequences of systems of the form (3.1) occur in
the numerical solution of discretized nonlinear systems of ordinary
and partial differential equations with implicit methods; see, e.g., [28,
186, 282] and the references therein. Sequences of linear systems also
occur in other contexts, such as regularization of ill-posed least squares
problems, see, e.g., [42], trust region methods in nonlinear optimization,
and elsewhere.

The linear systems of the underlying sequences could need a suitable
preconditioner. Reusing the same preconditioner for all linear systems
in the sequence each time often leads to slow convergence, whereas
recomputing a preconditioner each time is both costly and wasteful.
Clearly, there is a broad range of possibilities within these two extremes.
It should be possible to modify an existing preconditioner at a cost
much lower than recomputing a preconditioner from scratch; even if
the resulting preconditioner can be expected to be less effective than a
brand new one in terms of iteration count, the overall cost should be
reduced.

Due to these motivations, there is an intense activity research on
the update of preconditioners, starting from the seminal paper by
Meurant [205]. In the sequel, we will present our approach based
on some fairly general strategies for updating sequences of generic
preconditioners based on incomplete factorizations. Further interesting
approaches can be found in [16–18, 46, 70, 272, 273]. Other strategies,

1 An account for Newton and inexact Newton method can be found in [91], specific
information on the Newton–Krylov methods can be found in [172].

preconditioned fast solvers for some large linear systems 103

mainly based on block Krylov methods and not considered here, can
be devised if the linear systems (3.1) share the same matrix.

In [33, 106] we proposed the update of few preconditioners in
factorized inverse form by interpolating the inverse factors of few de-
compositions. We concentrate on quadratic matrix interpolation and
therefore we start building our preconditioner from three precondition-
ers computed for three appropriately chosen different matrices in the
sequence (3.1) given by

A(i) x(i) � b(i) , i � 0, 1, . . . , s . (3.5)

However, this paradigm is fairly general and can be applied to higher
degree or spline-like interpolation.

We stress that our approach requires that the matrices used for
interpolation should be known in advance while this is not required
in the other above mentioned “non interpolation-based” updating
paradigms. On the other hand, the strategies we proposed in [33, 106]
can use the p matrices of the sequence {A(i)}s

i�0
to build the needed

preconditioners and then use interpolation for the others.
In order to build up the underlying interpolated preconditioners,

we need to provide preconditioners P(i j) for (a few) matrices A(i j),
j � 0, 1, 2, . . . , p, in approximate inverse form, as in Sections 2.4.2
and 2.4.3. Given A(i j), j � 0, 1, 2, . . . , p (p � 2 in our tests in Section 3.2),
we need to generate p + 1 well defined and sparse approximations in
factorized form

P(i j)
� W (i j) D(i j)

−1
Z(i j)

T
(3.6)

for A(i j)
−1

. Here we concentrate on incomplete factorization algorithms
from Section 2.4. Given ǫ the drop tolerance of the algorithm generating
the incomplete factorizations, i.e., the threshold below which the extra–
diagonals elements are set to zero, it is intended that

lim
ǫ→0

‖A(i j)
−1 −W (i j) D(i j)

−1
Z(i j)

T
‖ � 0, j � 0, 1, . . . , p

for any matrix norm || · ||, i.e., that for ǫ � 0 the factorizations for the
inverse matrices are exact.

The algorithms for approximate inverse factorization considered in
the following belong to two classes: inverse ILU from Section 2.4.2 and
approximate inverse preconditioners or AINV from Section 2.4.3.

3.1 Interpolated Preconditioners

Given the underlying sequence of n × n matrices {A(i)}
p

i�0
, let us begin

with the computation of three reference approximate inverse precondi-

104 fabio durastante

tioners for the matrices A(i0), A(i1) and A(i2) chosen appropriately from
the sequence {A(i)}i , i.e.,

{

approx. inverse factor. A(i)−1
}

� W (i) D(i)−1
Z(i)T , i � i0 , i1 , i2. (3.7)

The choice of A(i0), A(i1) and A(i2) is problem-dependent and it is made in
order to maximize the probabilities to get a reasonable approximation
for all the interpolated preconditioners. We will not focus on this
aspect here, leaving more details for some specific case study, see, e.g.,
Section 4.3.4 and Section 5.2.2, related to specific applications.

As we have discussed in Section 2.4 the factorizations (3.7) can
be produced by various algorithms. Here we focus on inversion and
sparsification algorithms and AINV as revisited in [36] and described
in Section 2.4, particularly, see Algorithm 2.25. We build the two
preconditioner factors by mean of two separate quadratic interpolation

of the points (αi , Z(i)T), and (αi ,W (i)), for i � i0 , i1 , i2. Observe that the
coefficients {αi}

s
i�0

are the discretization of a parameter α linked to
the problem and to the i indices, e.g., if we are dealing with variable
time step integrator then it is the variable time step, otherwise it could
be an interpolation or a specific parameter linked to the variable in
time coefficients. The functions for the interpolation are given by the
quadratic polynomial

p2(α; ·) � a + bα + cα2 , (3.8)

where we obtain the expression for the coefficients a, b, c for a generic
triplet of matrices M(1) ,M(2) ,M(3) as

a �

α0 (α0 − α1) α1M(3)
+ α2

!
α1 (α1 − α2) M(1)

+ α0 (α2 − α0) M(2)
�

(α0 − α1) (α0 − α2) (α1 − α2)
,

b �

!
α2

1 − α2
0

�
M(3)

+

!
α2

0 − α2
2

�
M(2)

+

!
α2

2 − α2
1

�
M(1)

(α0 − α1) (α0 − α2) (α1 − α2)
,

c �

(α0 − α1) M(3)
+ (α1 − α2) M(1)

+ (α2 − α0) M(2)

(α0 − α1) (α0 − α2) (α1 − α2)
.

Observe that they can be computed by formally solving the classical
3 × 3 linear system for quadratic interpolation, given by


1 α0 α2

0
1 α1 α2

1
1 α2 α2

2



a
b
c

 �

M0

M1

M2

 .

preconditioned fast solvers for some large linear systems 105

We build the approximations for the Zα and Wα matrices as functions
of the parameter α by using equations (3.8) with the coefficients a , b , c
computed for the {Z(i j)}2

j�0
and {W (i j)}2

j�0
matrices coming from the

factorized approximate inverses of the reference matrices. In this way
we have

Zα � p2(α; {Z(i j)}2
j�0) and Wα � p2(α; {W (i j)}2

j�0). (3.9)

We can take as a preconditioner the approximate inverse of the
generic matrix A(i) of the sequence given by

M−1
i � Wα(D

(i j)
+ [ZT

α ∆Wα]k)
−1ZT

α ,

where D(i j) is the diagonal matrix coming from one of the reference
preconditioner (3.6). The matrix ∆ is given by

∆ � A(i) − A(i j) , (3.10)

and the operator [·]k extracts the k upper and lower diagonals of a
matrix ([·]0 gives the main diagonal).

By exploiting the formalism introduced in [15], instead of the simple
band–extraction function [·]k , in general we could use the function

Ẽ � g(ZT
α ∆Wα). (3.11)

Similarly, the function g serves to generate a sparse matrix from a dense
one. If X is a dense matrix, g(X) � X̃, where X̃ is a sparse matrix made
by selecting only certain entries of X.

Therefore, what we do from the computational point of view is
working with g � [·]k and the k banded approximation of the correction
matrix E. In this way, the matrix Ẽ is not completely computed, in
this regard we can consider also the approximation from Theorem 4.4
in which under the hypothesis of fast decay of the elements for the

{A(i)−1
}i a cheaper approximation can be obtained considering instead

the k banded approximation of Zα and Wα before computing their
product. Then, to choose between the different reference matrices, i.e.,
between the different D(i j), taking into account the value assumed by
the α parameter for each single linear system, we take the index i∗ � i j

as the one that realizes

i∗ � arg min
i j�i0 ,i1 ,i2

‖A(i) − A(i j)‖F , ∆ � A(i) − A(i∗). (3.12)

106 fabio durastante

Observe that this depends on the selection of the original reference
matrices {A(i j)}2

j�0
, that, as we have already discussed at the beginning,

is a problem dependent choice, and on the current matrix A(i) to be
preconditioned; see Section 3.2 for an example of this choice and the
effect on the selection of the i∗ index. When this selection has been made,
the computation of the i∗ amounts only in computing few Frobenius
matrix norm.

Therefore we build a preconditioner update in factorized form

M−1
i ,k � Wα(D

(i∗)
+ Ek)

−1ZT
α , with


Zα � p2(α; {Z(i j)}2

j�0
),

Wα � p2(α; {W (i j)}2
j�0

),

Ek �

�
ZT
α∆Wα

�
k
.

(3.13)

Regarding the memory occupation, we observe that it amounts, at most,
in three times the sum of the nonzero elements of the reference matrices,
assuming a reasonable worst case with a non cancellation rule:

nnz(p2(α,M
(1) ,M(2) ,M(3))) ≤ 3

∑

i

nnz(M(i)),

see, e.g., Figure 3.1, referring to the three experiments in the next section.

(a) Experiment 2 (b) Experiment 4

Figure 3.1. Memory occupation for the ZT
α matrices.

.

Moreover, the asymptotic computational cost for the construction
of the preconditioner M−1

i ,k
and its application is the same as linear

interpolation and as the updates in [15, 31, 106].

preconditioned fast solvers for some large linear systems 107

Using the upper bound for condition numbers of n × n regular
triangular matrices from [183], we can also prove a bound for the
condition number of both the matrices Zα and Wα obtained by the
quadratic interpolation formula (3.8).

Corollary 3.1 (Bertaccini and Durastante [33]; Bound for κ2(·)). Let us
consider the unit upper triangular matrices of order n given by

Zα � p2(α, Z
(i0) , Z(i1) , Z(i2)), Wα � p2(α,W

(i0) ,W (i1) ,W (i2)). (3.14)

If the non–diagonal elements of Zα have absolute values not larger than aZ ,
then we can bound κ2(Z) as

‖Z−1
α ‖2 ≤‖Z−1

α ‖F ≤
√

n
(

2

aZ + 2

)

+

(aZ + 1)2n − 1

(aZ + 2)2
,

‖Zα‖2 ≤‖Zα‖F ≤
√

n +

n(n − 1)

2
a2

Z .

(3.15)

If the non–diagonal elements of Wα have absolute values not larger than aW ,
then we can bound κ2(W) as

‖W−1
α ‖2 ≤‖W−1

α ‖F ≤
√

n
(

2

aW + 2

)

+

(aW + 1)2n − 1

(aW + 2)2
,

‖Wα‖2 ≤‖Wα‖F ≤
√

n +

n(n − 1)

2
a2

W .

(3.16)

Moreover, we can express the values of aZ and aW as

aZ �p2

(

α; max
i , j

|z
(i0)
i , j |,max

i , j
|z
(i1)
i , j |,max

i , j
|z
(i2)
i , j |

)

,

aW �p2

(

α; max
i , j

|w
(i0)
i , j |,max

i , j
|w

(i1)
i , j |,max

i , j
|w

(i2)
i , j |

)

.

(3.17)

The condition number of the interpolated matrices is bounded by
the condition number of the reference matrices. Therefore, reference
preconditioners with a reasonable condition number will potentially
generate interpolated preconditioners with a reasonable condition
number too.

Let us write the difference between the interpolated preconditioner
(computed on the basis of the exact factorizations for the inverses of
A(i)) and its target matrix.

108 fabio durastante

Lemma 3.1 (Bertaccini and Durastante [33]). Let L(i)D(i)U(i) be the exact
factorization of A(i) ∈ Rn×n and consider the quadratic interpolated matrix
Mi ,k � LαDαUα, where

Lα � p2(α, {L(i j)}2
j�0), Uα � p2(α, {U(i j)}2

j�0), Dα � D(i∗)
+ Ek .

We have

Mi ,k − A(i)
� (LαD(i∗)Uα − L(i)D(i)U(i)) + (Z−T

α EkW−1
α − ∆),

where ∆ � A(i) − A(i∗), as in equation (3.12) and

Mi ,k − A(i)
� 0, i � i0 , i1 , i2 , (3.18)

i.e., the interpolated matrix Mi ,k 2 (computed on the basis of the exact factoriza-
tion for the inverses) is exact for interpolation points corresponding to α � αi ,
i � 0, 1, 2.

Proof.

Mi ,k − A(i)
�Lα(D

(i∗)
+ Ek)Uα − (Ai − A(i∗)

+ A(i∗))

�LαD(i∗)Uα + LαEkUα − ∆ − A(i∗)

�

(

LαD(i∗)Uα − A(i∗)
)

+ (LαEkUα − ∆)
�

(

LαD(i∗)Uα − L(i)D(i)U(i)
)

+ (Z−T
α EkW−1

α − ∆). �

We define for later use the matrix

Cα � LαD(i∗)Uα − L(i)D(i)U(i). (3.19)

In the style of [15, 31] we prove that the updated preconditioner

M−1
i ,k

in (3.13) applied to the generic ith matrix of the sequence {A
(i)
n }n

clusters eigenvalues of the preconditioned matrix sequence {M−1
i ,k

A
(i)
n }n

for any i � 0, . . . , s.

Theorem 3.1 (Bertaccini and Durastante [33]). Given the sequence of linear
systems A(i)x � b(i) for i � 0, 1, . . . , s, let us consider the preconditioner
defined in equation (3.13). If there exists δ ≥ 0 and t ≪ n such that

Z−T
α EkW−1

α − ∆ � UΣVT , Σ � diag(σ1 , σ2 , . . . , σn),

2 The matrix Mi ,k is called interpolated preconditioner if the interpolation is performed on
approximate inverse decompositions for A(i).

preconditioned fast solvers for some large linear systems 109

σ1 ≥ σ2 ≥ . . . ≥ σt ≥ δ > σt+1 ≥ . . . ≥ σn , (3.20)

and

max
α∈(α1 ,α2)

‖D(i∗)−1
Ek ‖ ≤

1

2
, (3.21)

then there exist matrices Cα, ∆, F and a scalar constant cα such that

M−1
i ,k A(i)

� I + M−1
α,k Cα + ∆ + F, (3.22)

with Rank(∆) � t ≪ n, independent from α and

‖F‖2 ≤
2δcα
β

√

n
!
(n − 1)a2

W + 2
�√

n
!
(n − 1)a2

Z + 2
�

2 n bW bZ
, (3.23)

where
β � min{ max

r�1,...,n
|dr |

−1 , c}, dr �

(

D(i∗)
)

r,r
, (3.24)

with c constant used to avoid zero pivots in the matrix Dα1 ,

bW � min
i , j�1,2,...,n

|w
(i0)
i , j |

1/2 , bZ � min
i , j�1,2,...,n

|z
(i0)
i , j |

1/2 ,

and

‖M−1
i ,k Cα‖2 ≤ 2cακ2(Lα)κ2(Uα)

maxr |dr |

minr |dr |
+ ‖M−1

i ,k Aα1 ‖2.

Proof. By using the decomposition in Lemma 3.1 we have

M−1
i ,k Aα � I + M−1

i ,k Cα + M−1
i ,k (Z

−T
α EkW−1

α − ∆).

We can use the hypothesis (3.20) on the singular value decomposition
of

Z−T
α EkW−1

α − ∆ � ∆1 + F1 ,

∆1 �U diag(σ1 , . . . , σt , 0, . . . , 0)V
H ,

F1 �U diag(0, . . . , 0, σt+1 , . . . , σn)V
H .

(3.25)

Therefore we obtain

M−1
i ,k A(i)

� I + M−1
i ,k Cα + M−1

i ,k∆1 + M−1
i ,k F1.

110 fabio durastante

To proceed we now need to get an estimate of the norm ‖M−1
α,k

‖2:

‖M−1
i ,k ‖2 �‖Wα(D

(i∗)
+ Ek)

−1Zα‖2 ≤ ‖Wα‖2 ‖Zα‖2‖(D
(i∗)

+ Ek)
−1‖2

≤‖Wα‖2 ‖Zα‖2‖D(i∗)−1
(I + D(i∗)−1

Ek)
−1‖2

by (3.21)
≤ ‖Wα‖2 ‖Zα‖2‖D(i∗)−1

‖2

∑

n≥0

(−1)n(D(i∗)−1
Ek)

n

2

by (3.21)
≤ ‖Wα‖2 ‖Zα‖2 max

r�1,2,...,n
(|dr |

−1)cα

(

1 − ‖D(i∗)−1
Ek ‖2

)

≤2cα‖Wα‖2 ‖Zα‖2 max
r�1,2,...,n

(|dr |
−1).

We now define the matrix F � M−1
i ,k

F1 and, by using the notation and
results of Corollary 3.1,

‖F‖2 ≤||M−1
i ,k ||2‖F1‖2

by (3.20)
≤ δ‖M−1

i ,k ‖2

≤2δcα‖Wα‖2 ‖Zα‖2 max
r�1,2,...,n

(|dr |
−1)

≤2δcα
β

‖Wα‖2 ‖Zα‖2

min
r�1,2,...,n

‖w
(α1)
:,r ‖ min

r�1,2,...,n
‖z

(α1)
:,r ‖

≤2δcα
β

√

n
!
(n − 1)a2

W + 2
�√

n
!
(n − 1)a2

Z + 2
�

2 n bW bZ
.

Let us work on the term M−1
i ,k

Cα, for which we observe that is 0 for
α � αi , i � i0 , i1 , i2.

‖M−1
i ,k Cα‖2 ≤‖M−1

i ,k (LαD(i∗)Uα − L1D(i∗)U1)‖2

≤‖D(i∗)‖2‖M−1
i ,k ‖2‖Lα‖2‖Uα‖2 + ‖M−1

i ,k A(i1)‖2

≤2cακ2(Lα)κ2(Uα)
maxr |dr |

minr |dr |
+ ‖M−1

i ,k A(i1)‖2.

By introducing the low rank matrix ∆ � M−1
i ,k
∆1 we complete the

proof. �

We just proved that our interpolated preconditioners can show a
clustering of the spectra of the underlying matrices under appropriate
conditions. This is a behavior that has to be expected in this kind of
framework, where the updated preconditioner greatly relies on the
reference ones and is consistent with the behavior of the condition
number of the updates in Corollary 3.1.

preconditioned fast solvers for some large linear systems 111

3.2 Numerical Examples

We resume here some of the tests performed on the proposed interpo-
lated preconditioners. We compare the fixed AINV, the updated AINV,
the interpolated AINV, and the interpolated 2 AINV, where the meaning
of these abbreviations is explained below.

• fixed AINV: compute just an approximate inverse preconditioner and
use it for all the other linear systems in the sequence.

• updated AINV: compute the approximate inverse preconditioner for
the first matrix of the sequence and update it for all the others as in [15].

• interpolated AINV: compute two approximate inverse preconditioners,
one for the first matrix of the sequence and another for the last and use
them in the linear matrix interpolation strategy proposed in [106].

• interpolated 2 AINV: the quadratic polynomial matrix interpolated
preconditioner introduced in Section 3.1.

We also tried ILU(0) and ILUT(ǫ) preconditioners with ǫ � 10−1 and
10−2; see [247] for details. However, the results are not reported because
the computed factors are too ill–conditioned for all experiments below.

Note that details of tests using recomputed preconditioners, i.e., iterative
solvers using approximate inverse preconditioners computed from
scratch for each linear system, are omitted. Indeed, we experienced
that their timings were always greater than all the others in the tables,
regardless of the implementations we tried.

The codes are in a prototype stage using Matlab R2016b in order to
simplify changes and porting to more powerful platforms. Our machine
is a laptop running Linux with 8 Gb memory and CPU Intel® Core™i7-
4710HQ CPU with clock 2.50 GHz. GMRES and BiCGstab are considered
with a relative residual stopping criterium of ǫ � 10−9 in order to test
the performances of the preconditioners. A similar behavior is observed
also with ǫ � 10−6 and is not reported here.

The timings do not include the cost of generating the approximate
inverse factorizations, because these are not computed in Matlab but
use the implementation proposed in [36].

We stress again that for computing one interpolation preconditioner
the triplet of matrices described in Section 3.1 should be known in
advance.

112 fabio durastante

Unsteady State Case

We consider the finite element approximation of the convex combination
(α ∈ [0, 1]) of the following equations for (x , y) ∈ Ω,

{

ut + a1(x , y)ux + b1(x , y)uy − ∇ · (k1(x , y)∇u) � f1(x , y),
ut + a2(x , y)ux + b2(x , y)uy − ∇ · (k2(x , y)∇u) � f2(x , y).

,

and ki(x , y), ai(x , y)bi(x , y) > 0 ∀(x , y) ∈ Ω i � 1, 2, with the same
boundary conditions on the borders of the domain.

Experiment 1. We start considering the boundary given in figure
3.2(a) parametrized by the equations C1 \ C2, where

(a) Mesh for the Experiment 1. (b) Mesh for the steady state experiments.

Figure 3.2. Finite element mesh for the experiments.

C1 �

{

x � b cos
!
t
!

a
b − 1

��
+ t cos(a − b), a � 7, b � 1,

y � t sin(a − b) − b sin
!
t
!

a
b − 1

��
, t ∈ [0, 2π]

C2 �

{

x � 0.3 cos(t),
y � 0.3 sin(t).

The discretization is obtained by applying the backward Euler method
for the time derivative and taking the test functions in the space of the
piecewise linear continuous polynomials

P1h �

�
v ∈ H1(Ω) |∀K ∈ Th , v |K ∈ R1[x]

	
.

preconditioned fast solvers for some large linear systems 113

The coefficient function are chosen as

a1(x) � 50(1 + 0.9 sin(100πx)), b1(y) � 50(1 + 0.3 sin(100πy)),

k1(x , y) � 1 + x2 y2 exp(−x2 − y2),

a2(x , y) � cos2(2x + y), b2(x , y) � cos2(x + 2y), k2(x , y) � 1 + x4
+ y4 ,

f1(x , y) � f2(x , y) � π2(sin(x) + cos(y))

and boundary condition as

u(x , y , t) � x , (x , y) ∈ C1 , u(x , y , t) � y , (x , y) ∈ C2 , ∀t ≥ 0.

The initial condition is the zero function over the entire domain.
FreeFem++ software [156] is used.

The results of the preconditioning strategies for this problem are
reported in Table 3.1 with GMRES. The reference AINV preconditioners
are computed with a drop tolerance δ � 10−2, and only the main
diagonal of matrix ∆ is used, i.e., we are using [∆]k with k � 1. The
values of α used for reference are α � 0, 0.5, 1, respectively.

AINV fixed AINV updated AINV interpolated AINV interpolated 2

IT T(s) IT T(s) IT T(s) IT T(s)

24 0.069517 24 0.045601 24 0.060492 24 0.048347
28 0.057633 27 0.050633 27 0.055109 25 0.062979
32 0.074485 31 0.058652 31 0.060355 26 0.060886
37 0.078756 35 0.067780 35 0.068347 28 0.064882
42 0.096048 40 0.079990 40 0.082364 29 0.067872
47 0.118547 44 0.095973 44 0.094332 29 0.062821
51 0.122968 48 0.104468 48 0.107474 29 0.067773
55 0.127817 53 0.118813 53 0.117902 29 0.067542
59 0.142804 58 0.136582 58 0.140420 29 0.063895
63 0.156484 63 0.155178 63 0.150704 29 0.063404
66 0.166710 69 0.188811 69 0.179450 30 0.062864

Table 3.1. Experiment 1, α � 0 : 1e − 1 : 1, size of the matrix n � 10765, GMRES
algorithm. The columns IT and T(s) contains respectively the average number
of iterations and the average time needed to perform them for solving the αth
linear system.

From these experiments the performance of the fixed ILU precondi-
tioner are omitted because, even if convergent, the related matrices are
close to singular or badly scaled. Also the results with the unprecondi-
tioned GMRES are omitted because they never reach convergence, due
to stagnation or to the fact that they reach the maximum number of

114 fabio durastante

iteration. These results are obtained by choosing the following indices
i∗ in equation (3.12), i∗ �

!
1 1 1 2 2 2 2 2 3 3 3

�
, that

fit well with the expected behavior of the interpolation, and that will
be the same for all the other experiments.

Experiment 2. We consider the same settings as the previous
experiment, just changing the coefficients functions as

a1(x) � 50(1 + 0.9 sin(100πx)), b1(y) � 50(1 + 0.3 sin(15πy)),

k1(x , y) � x2 y2 exp(−x2 − y2),

a2(x) � 1 + 0.6 sin(100πx), b2(y) � 1 + 0.6 sin(100πy),

k2(x , y) � x2
+ y2 ,

f1(x , y) � f2(x , y) � π2(sin(x) + cos(y))

and the boundary conditions as

u(x , y , t) � 0, (x , y) ∈ C1 ∪ C2 , ∀t ≥ 0.

The result of the experiments are collected in Table 3.2. Again we

AINV fixed AINV updated AINV interpolated AINV interpolated 2

IT T(s) IT T(s) IT T(s) IT T(s)

14 0.021906 14 0.022726 14 0.021684 14 0.023445
22 0.035538 22 0.037535 22 0.035833 15 0.033629
32 0.055325 33 0.064074 33 0.060134 17 0.037763
42 0.081190 43 0.093787 43 0.084896 18 0.041768
52 0.110713 53 0.119737 53 0.121316 19 0.044107
61 0.130961 64 0.152890 64 0.172717 20 0.037859
71 0.165355 75 0.213161 75 0.222384 20 0.046074
80 0.204361 85 0.243111 85 0.264776 20 0.047538
89 0.253234 95 0.291630 95 0.308552 21 0.048328
97 0.313632 104 0.341767 104 0.349776 21 0.048535
105 0.359167 114 0.401225 114 0.439643 21 0.051557

Table 3.2. Experiment 2, α � 0 : 1e − 1 : 1, size of the matrix n � 10765, GMRES
algorithm. The columns IT and T(s) contains respectively the average number
of iterations and the average time needed to perform them for solving the αth
linear system.

exclude the results with the unpreconditioned GMRES in Table 3.2
because it never reached convergence due to stagnation.

For this case we also consider the solution with restarted GMRES,
i.e., GMRES(50), with the same settings used for the reference AINV
preconditioners. Result for this case are collected in Table 3.3.

preconditioned fast solvers for some large linear systems 115

AINV fixed AINV updated AINV interpolated AINV interpolated 2

IT T(s) IT T(s) IT T(s) IT T(s)

1 14 0.026153 1 14 0.023149 1 14 0.022158 1 14 0.021390
1 22 0.035022 1 22 0.039135 1 22 0.034276 1 15 0.031460
1 32 0.055942 1 33 0.056661 1 33 0.056447 1 17 0.038575
1 42 0.080134 1 43 0.081664 1 43 0.081475 1 18 0.039210
2 2 0.109333 2 4 0.108720 2 4 0.107498 1 19 0.048113
2 12 0.114464 2 15 0.122823 2 15 0.121662 1 20 0.037171
2 22 0.127012 2 27 0.150389 2 27 0.142716 1 20 0.044717
2 32 0.146543 2 39 0.211334 2 39 0.170653 1 20 0.043358
2 42 0.170200 2 50 0.236887 2 50 0.200712 1 21 0.045948
2 50 0.191966 3 11 0.230883 3 11 0.214339 1 21 0.046141
3 9 0.212033 3 22 0.232350 3 22 0.253504 1 21 0.046807

Table 3.3. Experiment 2, α � 0 : 1e − 1 : 1, size of the matrix n � 10765,
GMRES(50). The columns IT and T(s) contains respectively the average number
of iterations and the average time needed to perform them for solving the αth
linear system.

Again, the results with the unpreconditioned algorithm are omitted,
because it never reaches convergence within the maximum number of
allowed iterations.

As a last test for this set of parameters we consider same settings but
BiCGstab instead of GMRES; see Table 3.4. The use of BiCGstab without

AINV fixed AINV updated AINV interpolated AINV interpolated 2

IT T(s) IT T(s) IT T(s) IT T(s)

11.5 0.117478 11.5 0.027163 11.5 0.027324 11.5 0.025539
20.0 0.052809 20.5 0.045016 20.5 0.043589 12.5 0.048411
32.5 0.068980 36.5 0.078104 37.0 0.077960 15.0 0.056692
67.5 0.138580 71.5 0.148651 70.5 0.141385 16.0 0.061397
103.0 0.215669 113.0 0.235227 119.5 0.235002 17.5 0.065243
154.0 0.311725 185.5 0.387039 185.5 0.373679 17.5 0.051079
231.5 0.474620 288.5 0.587745 291.0 0.594474 18.5 0.069581
115.0 0.229996 357.5 0.731463 369.5 0.753368 18.5 0.069533
363.5 0.756622 486.0 0.988916 478.5 0.971904 18.5 0.070102
218.0 0.574992 308.0 0.630262 660.0 1.302695 19.5 0.072888
152.0 0.312507 250.0 0.492896 250.0 0.501580 18.5 0.064389

Table 3.4. Experiment 2, α � 0 : 1e − 1 : 1, size of the matrix n � 10765, BiCGstab.
The columns IT and T(s) contains respectively the average number of iterations
and the average time needed to perform them for solving the αth linear system.

preconditioners is not reported because it never converges.The fixed
ILU preconditioners are again numerically singular.

116 fabio durastante

Steady State Case

We consider now finite element approximation for the steady state
equation
{

−∇ · (a(x , y)∇u) + b(x , y) · ∇u + c(x , y)u � f (x , y), (x , y) ∈ Ω,
u � 0, (x , y) ∈ ∂Ω.

where Ω is the domain whose boundary is parametrized by the curve
{

x � cos(t),
y � sin(t) sinm(t/2).

∪
{

x � 0.01 cos(t),
y � 0.01 sin(t).

t ∈ [0, 2π].

An example of the mesh is reported in figure 3.2(b).
As a test functions for the FEM method we use the elements in

P2h �

�
v ∈ H1(Ω) |∀K ∈ Th , v |K ∈ R2[x]

	
.

We generate a couple of problems {A(0) , b(0)} and {A(1) , b(1)} for differ-
ent coefficients functions. The generic matrix of the sequence {A(α)}1

α�0
is given by the convex combination of parameter α ∈ [0, 1] of the
{A(0) ,A(1)} matrices. The right hand sides are obtained in the same way.
As for the previous set of experiments, the matrices are generated with
the FreeFem++ software [156].

Experiment 3. We consider as a first experiment for the steady
state case the following pair of coefficient functions

a1(x , y) � x2
+ y2 , b1(x , y) � (1/2x ,−1/2 sin(2πy)),

c1(x , y) � x + y , f1(x) � cos(x);

a2(x , y) � x4
+ y4 , b2(x , y) � (1/2x2 sin(4πx),−1/2y2),

c2(x , y) � cos(x) + sin(y), f2(x , y) � exp(−x − y).

We use GMRES without restart. The reference AINV preconditioners
are computed with a drop tolerance of δ � 1e − 2. For what concerns
the correction matrix ∆, we stress that again only the main diagonal
is considered. The result of the experiment are reported in Table 3.5.
Similarly to the other experiments, the behavior of the fixed ILU precon-
ditioner is not reported due to factors numerically singular. Moreover,
the GMRES algorithm without preconditioning stagnates in all cases.

As for the PDE experiment we test the strategy also with GM-
RES(50). The results for this experiment are collected in Table 3.6. As
expected, also unpreconditioned GMRES(50) does not converge and
ILU preconditioners do not work.

preconditioned fast solvers for some large linear systems 117

AINV fixed AINV updated AINV interpolated AINV interpolated 2

30 0.060449 30 0.065464 30 0.064820 30 0.099999
631 14.214685 146 0.737450 146 0.716860 84 0.383758

796 20.459523† 166 0.891988 166 0.926938 70 0.292455

900 28.008585† 176 0.992743 176 1.092765 64 0.193377

965 31.440721† 184 1.074857 184 1.209516 57 0.150901

1000 34.477231† 190 1.063854 190 1.616214 56 0.152377

1000 34.813366† 193 1.188407 193 2.748226 58 0.162440

1000 33.785674† 195 1.316548 195 2.296641 59 0.173655

1000 32.593510† 197 2.153401 197 1.846188 59 0.169026

1000 36.562952† 199 1.725839 199 1.411787 59 0.170680

1000 32.182831† 200 1.333837 200 1.387623 59 0.167210

Table 3.5. Experiment 3, α � 0 : 1e − 1 : 1, size of the matrix n � 10054,
GMRES algorithm. The columns IT and T(s) contains respectively the number
of iterations and the time needed to perform them for solving the αth linear
system.

AINV fixed AINV updated AINV interpolated AINV interpolated 2

IT T(s) IT T(s) IT T(s) IT T(s)

1 30 0.080122 1 30 0.078660 1 30 0.070380 1 30 0.064500
24 47 2.803143 4 14 0.399624 4 14 0.605011 2 39 0.243955
37 38 6.054049 4 47 0.407366 4 47 0.882234 2 26 0.185375
46 35 7.011219 5 10 0.423589 5 10 1.007688 2 18 0.177025
60 26 6.506396 5 16 0.459732 5 16 0.940276 2 9 0.131443
58 10 10.064129 5 22 0.504838 5 22 0.816400 2 9 0.137760
59 13 6.901644 5 25 0.487150 5 25 0.815360 2 12 0.136431
63 18 8.833342 5 28 0.486202 5 28 0.865197 2 14 0.148239
83 3 10.995113 5 31 0.492352 5 31 0.688509 2 15 0.244746
70 15 10.177334 5 35 0.819401 5 35 0.573916 2 14 0.167503
100 16 14.269126 5 37 0.905483 5 37 0.568182 2 12 0.184751

Table 3.6. Experiment 3, α � 0 : 1e − 1 : 1, size of the matrix n � 10054,
GMRES(50). The columns IT and T(s) contains respectively the number of
iterations and the time needed to perform them for solving the αth linear
system.

118 fabio durastante

AINV fixed AINV updated AINV interpolated AINV interpolated 2

IT T(s) IT T(s) IT T(s) IT T(s)

19.5 0.067411 19.5 0.051467 19.5 0.040739 19.5 0.038550
493.5 0.891831 74.5 0.184125 75.5 0.143949 43.5 0.104094
641.0 1.155428† 83.5 0.144690 83.5 0.158401 38.5 0.089504

845.5 1.491812† 98.0 0.181133 97.5 0.184459 35.0 0.092599

992.5 1.752002† 101.5 0.182306 97.5 0.173160 30.5 0.070884

891.5 1.566276† 107.0 0.193929 107.0 0.180993 30.5 0.073284

979.5 1.639698† 113.5 0.203736 114.0 0.215719 31.0 0.080443

999.0 1.730491† 103.5 0.172221 100.5 0.182073 35.0 0.085624

969.0 1.725403† 100.5 0.177965 100.5 0.179372 35.0 0.090680

985.0 1.728930† 115.0 0.199124 103.5 0.188824 37.0 0.097700

956.0 1.693190† 100.0 0.219341 100.0 0.167194 32.5 0.079203

Table 3.7. Experiment 3, α � 0 : 1e − 1 : 1, size of the matrix n � 10054, BiCGstab.
The columns IT and T(s) contains respectively the number of iterations and the
time needed to perform them for solving the αth linear system.

Finally, we test our preconditioning strategy by using BiCGstab. The
results are collected in Table 3.7. Also nonpreconditioned BiCGstab
stagnates in all the instances. Moreover, ILU preconditioners are again
numerically singular.

Experiment 4. We consider the following coefficients function for
the generation of the A0 and A1 matrices

a1(x , y) � exp(−x2 − y2), b1(x , y) � (1/2x2 , 1/2y2),

c1(x , y) � exp(x + y) sin(x + y), f1(x) � x2
+ y2;

a2(x , y) � x4
+ y4 , b2(x , y) � (1/2x2 ,−y sin(y)),

c2(x , y) � exp(−x − y) cos(x + y), f2(x , y) � exp(−x − y).

The results of this experiment, obtained with the same settings of the
preconditioner as in the previous experiment, are collected in Table 3.8.
Also in this case results relative to ILU preconditioning are omitted
for the same reason as the other cases, the same is obtained with the
unpreconditioned GMRES algorithm, i.e., stagnation.

We tested also the underlying preconditioners with the same settings
with GMRES(50) and collected the results in Table 3.9. As for all the other
cases, there is no convergence both with the fixed ILU preconditioner
or GMRES(50) without preconditioning.

As a final test, we consider the application of interpolated precon-
ditioners with BiCGstab. The results are reported in Table 3.10. Also
in this case BiCGstab without preconditioning reaches the maximum

preconditioned fast solvers for some large linear systems 119

AINV fixed AINV updated AINV interpolated AINV interpolated 2

IT T(s) IT T(s) IT T(s) IT T(s)

1 29 0.055336 1 29 0.055269 1 29 0.068000 1 29 0.054568
1 1000 33.387865† 1 265 2.114993 1 265 2.061204 1 160 0.878736
1 1000 35.783919† 1 269 2.333016 1 269 2.285620 1 117 0.556560

1 1000 34.168806† 1 271 4.119048 1 271 2.717876 1 94 0.429240

1 1000 34.281963† 1 271 3.353541 1 271 4.158225 1 80 0.307191

1 1000 32.349127† 1 270 2.317685 1 270 3.172648 1 78 0.246143

1 1000 34.388641† 1 269 2.571918 1 269 2.277063 1 79 0.266362

1 1000 34.698645† 1 268 3.364838 1 268 2.908988 1 79 0.286741

1 1000 34.584848† 1 267 2.268857 1 267 2.739444 1 79 0.283751

1 1000 33.514831† 1 266 2.838103 1 266 2.229427 1 78 0.250284

1 1000 33.350699† 1 263 2.787934 1 263 2.105237 1 77 0.266518

Table 3.8. Experiment 4, α � 0 : 1e − 1 : 1, size of the matrix n � 10054, GMRES.
The columns IT and T(s) contains respectively the number of iterations and the
time needed to perform them for solving the αth linear system.

AINV fixed AINV updated AINV interpolated AINV interpolated 2

IT T(s) IT T(s) IT T(s) IT T(s)

1 29 0.060891 1 29 0.065797 1 29 0.055385 1 29 0.066218
1000 50† 140.582902 10 43 1.160647 10 43 1.072561 6 21 0.495410

1000 50† 139.655607 10 22 1.085158 10 22 1.031818 4 1 0.716037

1000 50† 144.163840 10 12 1.053174 10 12 1.083582 3 29 0.355628

1000 50† 141.416805 10 23 1.211638 10 23 1.155820 2 38 0.252275

1000 50† 142.241942 10 24 1.142104 10 24 1.132278 2 45 0.241513

1000 50† 140.596667 9 43 1.063141 9 43 1.566531 2 46 0.242411

1000 50† 142.573760 9 47 2.073712 9 47 2.220387 2 45 0.244345

1000 50† 147.190427 9 10 1.774650 9 10 1.661911 2 45 0.252679

1000 50† 147.823975 10 37 1.844827 10 37 1.847715 2 47 0.281788

1000 50† 142.734801 10 45 1.742876 10 45 1.338020 2 44 0.239700

Table 3.9. Experiment 4, α � 0 : 1e − 1 : 1, size of the matrix n � 10054,
GMRES(50). The columns IT and T(s) contains respectively the number of
iterations and the time needed to perform them for solving the αth linear
system.

120 fabio durastante

AINV fixed AINV updated AINV interpolated AINV interpolated 2

IT T(s) IT T(s) IT T(s) IT T(s)

19.0 0.036232 19.0 0.045473 19.0 0.039100 19.0 0.038763
† † 212.5 0.394025 205.0 0.371115 112.5 0.313655
† † 206.5 0.396116 204.0 0.387600 74.0 0.195428
† † 213.5 0.393649 200.0 0.376831 59.5 0.173430
† † 193.0 0.356738 205.0 0.370740 50.0 0.131997
† † 218.0 0.384271 218.0 0.397479 51.0 0.147157
† † 195.5 0.373446 195.5 0.407083 52.0 0.136462
† † 202.5 0.357391 200.5 0.640379 58.5 0.160359
† † 200.0 0.358550 221.5 0.698809 53.0 0.153582
† † 201.5 0.365729 202.5 0.650513 55.0 0.144541
† † 207.5 0.403811 207.5 0.666290 52.5 0.141122

Table 3.10. Experiment 4, α � 0 : 1e−1 : 1, size of the matrix n � 10054, BiCGstab.
The columns IT and T(s) contains respectively the number of iterations and the
time needed to perform them for solving the αth linear system.

number of iterations without converging, while the application of the
fixed ILU preconditioners presents the same issues as the fixed AINV
preconditioner.

4

Approximation of Functions of Large Matrices

Another task in which the use of both approximate inverse precondi-
tioners and their update is effective is the numerical evaluation of a
functionΨ(A) ∈ Cn×n of a matrix A ∈ Cn×n : this is ubiquitous in models
for applied sciences. Functions of matrices are involved in the solution
of ordinary, partial and fractional differential equations, systems of
coupled differential equations, hybrid differential–algebraic problems,
equilibrium problems, measures of complex networks and several other
applications. Motivated by the variety of the involved problems, impor-
tant advances in the development of numerical algorithms for matrix
function evaluations have been presented over the years and a rich
literature is devoted to this subject; see, e.g., [149, 158, 206, 243].

In [41] we considered the case of large matrices A. This is a challeng-
ing situation and, for the computation ofΨ(A), the available literature
offers few strategies.

The existing numerical methods for computing matrix functions can
be broadly divided into three classes: those employing approximations
ofΨ, those based on similarity transformations of A and matrix itera-
tions. When the size n of the matrix argument A is very large, as for
example when it stems from a fine grid discretization of a differential
operator, similarity transformations and matrix iterations can be not
feasible since their computational cost can be of the order of n3 flops in
general. We focus on approximations ofΨ(A) of the form

f (A) �

N
∑

j�1

c j(A + ξ j I)
−1 (4.1)

where scalars c j and ξ j can be complex and I is the n×n identity matrix.
The above approach has been proven to be effective for a wide set of
functionsΨ.

In general, computing (4.1) requires inverting several complex–
valued matrices and, with the exception of lucky or trivial cases, if n

122 fabio durastante

is large, then this can be computationally expensive. We propose to
overcome this difficulty by approximating directly each term (A+ξ j I)

−1

by the efficient updates of an inexact sparse factorization. We take
inspiration by the preconditioners update discussed in Chapter 3
and Section 3.1, and we specialize them also for the complex cases as
proposed in [31, Section 3].

Moreover, such strategy can be extended to the computation of the
action of the matrix function on vectors, that is, to computeΨ(A)v for
a given vector v. Vectors of this form often represent the solution of
important problems. The simplest example is the vector exp(t1A)y0

which represents the solution at a time t1 of the differential equation
y′(t) � Ay(t) subject to the initial condition y(t0) � y0.

If the interest is just in obtaining the vector Ψ(A)v and not Ψ(A),
then ad hoc strategies can be applied as, for example, well known Krylov
subspace methods [3, 111, 128, 161, 171, 208–210, 231, 243].

4.1 Computing Function of Matrices

Many different definitions have been proposed over the years for matrix
functions. We refer to the book by Higham [158] for an authoritative
introduction and references.

Here we make use of a definition based on the Cauchy integral: given
a closed contour Γ lying in the region of analyticity ofΨ and containing
the spectrum of A,Ψ(A) is defined as

Ψ(A) �
1

2πi

∫

Γ

Ψ(z)(zI − A)−1dz. (4.2)

Thus, any analytic functionΨ admits an approximation of the form (4.1).
Indeed, the application of any quadrature rule with N points on the
contour Γ, or a suitable parametrization of it, leads to an approximation
as in (4.1).

In [149] the authors address the choice of the conformal maps for
dealing with the contour Γ in case of special functions like Aα and log(A).
In this setting A is a real symmetric matrix, whose eigenvalues lie in
the interval [m ,M] ⊂ (0,∞). The basic idea therein is to approximate
the integral in (4.2) by means of the trapezoidal rule applied to a circle
in the right half–plane surrounding [m ,M]. Thus,

Ψ(A) ≈ f (A) � γA Im

N
∑

j�1

c j(ξ j I − A)−1 (4.3)

preconditioned fast solvers for some large linear systems 123

where γ depends on m ,M and a complete elliptic integral, while the ξ j

and c j involve Jacobi elliptic functions evaluated in N equally spaced
quadrature nodes. We refer to [149] for the implementation details
and we stress that we make use of their results for our numerical tests.
In particular, an error analysis is presented, whose main results are
reported below.

Theorem 4.1 (Hale, Higham, and Trefethen [149]). Let A be a real matrix
with eigenvalues in [m ,M] , 0 < m < M, let Ψ be a function analytic in
C\(−∞, 0] and let f (A) be the approximation of the form reported in (4.3).
Then

‖Ψ(A) − f (A)‖ � O(e−π
2N/(log(M/m)+3)).

The analysis in [149] also applies to matrices with complex eigenval-
ues, provided that they lie near to the real axis.

An approximation like (4.1) can also derive from a rational approx-
imation RN to Ψ, given by the ratio of two polynomials of degree N,
with the denominator having simple poles. A popular example is the
Chebyshev rational approximation for the exponential function on the
real line. This has been largely used over the years and it is still a widely
used approach, since it guarantees accurate results even for low degree
N , say N � 16. Its poles and residues are listed in [82], while in [73] the
approximation error is analyzed and the following useful estimate is
given

sup
x≥0

| exp(−x) − RN (x)| ≈ 10−N .

Another example is the diagonal Padé approximation to the logarithm,
namely

log(I + A) ≈ f (A) � A

N
∑

j�1

α j(I + β jA)−1. (4.4)

This is the core of the logm_pade_pf code in the package by Higham [158]
and we will use it in our numerical tests in Section 4.3. Unfortunately, as
for every Padé approximant, formula (4.4) works accurately only when
‖A‖ is relatively small, otherwise scaling-and-squaring techniques or
similar need to be applied. The error analysis for the matrix case reduces
to the scalar one, according to the following result.

Theorem 4.2 (Kenney and Laub [169]). If ‖A‖ < 1 and f (A) is defined
as (4.4) then

‖ log(I + A) − f (A)‖ ≤ | f (−‖A‖) − log(1 − ‖A‖)|.

124 fabio durastante

In some important applications, the approximation of the matrix
Ψ(A) is not required and it is enough to compute the vectorΨ(A)v for
a given vector v. In this case, by using (4.1), we formally obtain the
approximation

f (A)v �

N
∑

j�1

c j(A + ξ j I)
−1v, (4.5)

which requires to evaluate (A + ξ j I)
−1 or (A + ξ j I)

−1v for several values
of ξ j , j � 1, . . . ,N. Usually, if A is large and sparse or structured,
then the matrix inversions in (4.5) should be avoided since each term
w j ≡ (A + ξ j I)

−1v is mathematically equivalent to the solution of the
algebraic linear system

(A + ξ j I) w j � v. (4.6)

4.2 The Updating Technique

Following the approach in Chapter 3, we consider here an incomplete
factorization for A−1, also called seed preconditioner P0, in order to build
up an approximate factorization (or, better saying, to approximate an
incomplete factorization) for each factor (A + ξI)−1, as ξ varies. Thus,
given

P0 � W̃ D̃−1 Z̃H , (4.7)

we use the information included in the component matrices of P0,
W̃ , D̃, Z̃. Choosing to use a single reference preconditioner (4.7) we
build a sequence of approximate factorization candidates with Ẽ, a
sparsification of the nonsymmetric real valued matrix E given by E �

ZHW , as in (3.11). Observe that in this case ∆ in (3.10) is given simply
by ∆ � I, since we are dealing with shifted linear systems. Then the
approximation of A−1

ξ given by Pξ is defined as

Pξ � W̃
!
D̃ + ξẼ

�−1
Z̃H , (4.8)

where we use the approximate inverse (4.8) both as a preconditioner for
Krylov solvers and for approximating directly (A+ ξ j I)−1. In particular,
f (A) is approximated by

f̃ (A) �

N
∑

j�1

c jPξ j . (4.9)

On the other hand, if the entries of A−1 decay fast away from the main
diagonal, then we can consider again the matrix function g � [·]m ,

[·]m : Cn×n → C
n×n ,

preconditioned fast solvers for some large linear systems 125

extracting m upper and lower bands (with respect to the main diagonal,
which is the 0-diagonal) of its matrix argument generating an (m ,m)–
banded matrix. As we have hinted in Section 3.1, a substantial saving can
be made by approximating

[Z̃H W̃]m with [Z̃H]m[W̃]m , m > 0,

with a reasonable quality of the approximation indeed, under suitable
conditions and provided m > 0, the relative error

‖[Z̃H W̃]m − [Z̃H]m[W̃]m‖

‖Z̃H W̃‖

can be moderate in a way that will be detailed in the result below.
Let us state a pair of results that can be derived as corollaries of

Theorem 2.15 from [89],

Theorem 4.3 (Bertaccini, Popolizio, and Durastante [41]). Let A ∈ Cn×n

be a nonsingular (m ,m)–banded matrix, with A ∈ B(l2(S)) and condition
number κ2(A) ≥ 2. Then, by denoting with bi , j the i , j−entry of A−1 and
with

β �

(

κ2(A) − 1

κ2(A) + 1

) 1/2m

,

for all β̃ > β, β̃ < 1, there exists a constant c � c(β̃,A) > 0 such that

|bi , j | ≤ c β̃ |i− j | ,

with

c ≤ (2m + 1)
κ2(A) + 1

κ2(A) − 1
‖A−1‖κ2(A) ≤ 3(2m + 1)‖A−1‖κ2(A).

Proof. The desired result follows by Theorem 2.15 [89, Theorem 2.4]
for a finite dimensional Hilbert space, using a (m ,m)-banded matrix
A ∈ B(l2(S)), i.e., a 2m–banded matrix, and κ2(A) ≥ 2. Indeed, by
direct application of the second part of Theorem 2.15 we obtain:

|bi , j | ≤(2m + 1)λ−2m
1 ‖A−1‖κ2(A)·

·max
1,

1

2

[
1 + κ2(A)

κ2(A)

]2
(

κ2(A) − 1

κ2(A) + 1

)

|i− j |
2m

.

126 fabio durastante

Since λ1 �

(

κ2(A)−1
κ2(A)+1

)
1

2m , and κ2(A) ≥ 2, the maximum assumes the value

1, i.e., max
{

1, 1
2

[
1+κ2(A)

κ2(A)

]2
}

� 1, and therefore:

|bi , j | ≤(2m + 1)
κ2(A) + 1

κ2(A) − 1
‖A−1‖κ2(A)

(

κ2(A) − 1

κ2(A) + 1

)

|i− j |
2m

≤3(2m + 1)‖A−1‖κ2(A)

(

κ2(A) − 1

κ2(A) + 1

)

|i− j |
2m

≤c β̃ |i− j | . �

The assumption on the condition number is very reasonable because
there is no need at all to use preconditioning for the approximation
of f (A)v for matrices with condition numbers below 2 and similar
reasonings can be used for the approximation of f (A).

We can note immediately that the results in Theorem 4.3, without
suitable further assumptions, can be of very limited use because:

• the decay of the extradiagonal entries can be very slow, in principle
arbitrarily slow;

• the constant c in front of the bound depends on the condition number
of A and we are usually interested in approximations of A−1 such that
their condition numbers can range from moderate to high;

• the bound is far to be tight in general. A trivial example is given by
a diagonal matrix with entries a j, j � j, j � 1, . . . , n. We have bi , j � 0,
i , j but of course κ2(A) � an ,n/a1,1 � n.

• If we take m � n and n is very large, then β̃ must be chosen very near 1
and it is very likely that no decay can be perceptible with the bound in
Theorem 4.3.

However, the issues presented here are more properly connected with
the decay properties of the matrices Z, W (and therefore Z̃, W̃); see
again the general discussion in Section 2.4.1. Using similar arguments
as in Theorem 4.1 in [25], it is possible to state the following result.

Corollary 4.1 (Bertaccini, Popolizio, and Durastante [41]). Let A ∈ Cn×n

be invertible, A ∈ B(l2(S)), and with its symmetric part positive definite.
Then for all i, j with j > i, the entries zi , j in Z � L−H and wi , j in W � U−1

satisfy the following upper bound:

|zi , j | ≤ c1 β̃
j−i

1 , |wi , j | ≤ c2 β̃
j−i

2 , j > i

preconditioned fast solvers for some large linear systems 127

(note that zi , j , wi , j � 0 for j ≤ i), where

0 < β̃1 , β̃2 ≤ β̃ < 1

and c1, c2 are positive constants, c1 , c2 ≤ c3 · κ2(A).

Proof. The desired result follows by Theorem 4.3 and [25, Theorem
4.1]. Since ZD−1/2

� L−T
� A−1L and the fact that li , j � 0 for i < j and

i − j > m we find that zi , j �

∑ j+m−1

k� j
bi ,k lk , j for each i ≤ j. By using

Theorem 2.15 we easily get that:

|zi , j | ≤
j+m−1
∑

k�1

|bi ,k ||lk , j | ≤ c

j+m−1
∑

k�1

βi− j |lk , j |.

Without loss of generality, we can assume that maxi�1,...,n ai ,i � 1 and
thus |li , j | ≤ 1 (otherwise, to enforce such condition, it is sufficient to
divide A by its largest diagonal entry: β remains unchanged and c
is replaced by another constant c̃). Therefore, we obtain, by a direct
application of Theorem 4.3,

|zi , j | ≤ c̃

m
∑

k�0

β̃ j−i+k
� c̃ β̃

j−i

1

m
∑

k�0

β̃k
1 ≤ c1 β̃

j−i

1 .

In conclusion the existence of c3 and the bound for the β̃2 follows by
applying the same procedure to the matrix W . �

If the seed matrix A is, e.g., diagonally dominant, then the decay
of the entries of A−1 and therefore of W , Z (W̃ , Z̃) is faster and more
evident. This can be very useful for at least two reasons:

• the factors W̃ , Z̃ of the underlying approximate inverse in factorized
form can have a narrow band for drop tolerances even just slightly more
than zero;

• banded approximations can be used not only for post–sparsifying W̃ ,
Z̃ in order to get more sparse factors, but also the update process can
benefit from the fast decay.

We use the above properties in the following result in order to obtain
an a–priori estimate of the error produced using a cheap estimate of the
correction factors. Clearly, this is very important for the implementation
of our strategy.

128 fabio durastante

Theorem 4.4 (Bertaccini, Popolizio, and Durastante [41]). Let A ∈ Cn×n

be invertible, A ∈ B(l2(S)), and with its symmetric part positive definite. Let
gm � [·]m be a matrix function extracting the m upper and lower bands of its
argument. Then, given the matrices from Corollary 4.1, we have

[Z̃H W̃]m � [Z̃H]m[W̃]m + E(A,m), |(E(A,m))i , j | ≤ c4 β̃
|i− j |

where c4 � c1c2.

Proof. For a fixed value of the size n, let m be the selected bandwidth,
then we have:

([Z̃H]m[W̃]m)i , j �

min{n ,max{i+m , j+m}}
∑

k�max{1,max{i−m , j−m}}

(Z̃H)i ,k(W̃)k , j

([Z̃HW̃]m)i , j �

{

∑n
k�1(Z̃

H)i ,k(W̃)k , j , |i − j | ≤ k ,
0, otherwise.

Let us assume that m � 1 (tridiagonal matrix), in this case the difference
E(A,m) can be expressed, by direct inspection, as:

([Z̃HW̃]1 − [Z̃H]1[W̃]1)i , j � − χmax(1,i−1)≤1≤ j+1(Z̃
H)i ,k(W̃)k , j

− χmax(1,i−1)≤2≤ j+1(Z̃
H)i ,k(W̃)k , j

+ nχi≤ j+1(Z̃
H)i ,k(W̃)k , j ,

where χ is a function on the i , j–indices that takes value 1 when i and
j satisfy the condition written at its subscript and 0 otherwise. In the
same way, if m � 2 (pentadiagonal matrix), then we find:

([Z̃HW̃]2 − [Z̃H]2[W̃]2)i , j � − χmax(1,i−2)≤1≤ j+2(Z̃
H)i ,k(W̃)k , j

− χmax(1,i−2)≤2≤ j+2(Z̃
H)i ,k(W̃)k , j

− χmax(1,i−2)≤3≤ j+2(Z̃
H)i ,k(W̃)k , j

+ nχi≤ j+2(Z̃
H)i ,k(W̃)k , j .

Thus we assume, as inductive hypothesis, that for m < n/2 we have:

(E(A,m))i , j � −
m+1
∑

l�1

χmax(1,i−m)≤l≤ j+m(Z̃
H)i ,k(W̃)k , j

+ nχi≤ j+m(Z̃
H)i ,k(W̃)k , j .

(4.10)

The conclusion follows by induction over n (since the admissible values
of m are bounded by n/2) and again direct inspection. In conclusion, the
bound on the correction term is given by the triangle inequality and an
application of Corollary 4.1 to (4.10). �

preconditioned fast solvers for some large linear systems 129

As a matter of fact, we see that a fast decay of entries of A−1

guarantees that the essential component of the proposed update matrix,
i.e., Ẽ � Z̃H · W̃ , can be cheaply, easily and accurately approximated
by the product [Z̃H]m[W̃]m , without performing the possibly time and
memory consuming matrix–matrix product Z̃H W̃ .

On the other hand, if the decay of the entries of A−1 is fast, then a
diagonal approximation of Z̃H W̃ can be accurate enough. In this case,
there is no need of applying the approximation in Theorem 4.4. The
update matrix Ẽ can be produced explicitly by the exact expression of
diag(Z̃H W̃), as given in the following corollary.

Corollary 4.2 (Bertaccini, Popolizio, and Durastante [41]). Let A ∈ Cn×n

be invertible, A ∈ B(l2(S)), and with its symmetric part (m ,m)–banded and
positive definite, 1 ≤ m ≤ n. Then, the diagonal approximation for Ẽ generated
by the main diagonal of Z̃H W̃ is given by

Ẽ � diag(Z̃H W̃) � (di ,i),

where

di ,i � 1 +

i−1
∑

j�1, i− j≤m

z j,i w j,i , 1 ≤ i ≤ n.

Proof. The claimed thesis follows by induction on i and by the definition
of banded matrix, the same technique as the proof of Theorem 4.4 is
used, while observing that both Z̃H and W̃ have ones on the main
diagonals. �

In all our numerical experiments we use the approximations pro-
posed in Theorem 4.4 and in Corollary 4.2 without perceptible loss of
accuracy; see Section 4.3.

4.3 Numerical Examples

The codes are in a prototype stage using Matlab R2016a in order
to simplify changes and portability to more powerful platforms, so
timings of our strategies can be surely improved, in particular in a
parallel environment. The machine used is a laptop running Linux
with 8 Gb memory and CPU Intel® Core™ i7-4710HQ CPU with clock
2.50 GHz.

The sparse inversion algorithm selected for each numerical test
(those used here are described in Section 4.2) takes into account the
choice made for the computation of the reference (or seed for short)
preconditioners. If the matrix used to compute the seed preconditioner

130 fabio durastante

is real, then we use the AINV. Otherwise, the inversion and sparsification of
the ILUT algorithm (INVT), requiring a dual threshold strategy, see [36] for
details and a revisitation of AINV and INVT techniques. In Section 4.3.4
we give some details on the selection of the seed preconditioners. In
the following, the symbols τ denotes drop tolerance for AINV while
τL̃, τZ̃ the threshold parameter for ILU decomposition and for post–
sparsification of the inverted factors of INVT; again see Section 2.4.2
and Section 2.4.3 for details and discussions about the implementation
of these procedures [36]. At last, εrel denotes the standard relative (to a
reference solution) error.

Other details on the parameters and strategies used are given in the
description of each experiment.

4.3.1 Role of g and τ

For clarifying the role of the function g introduced in (3.11) and the drop
tolerance τ for AINV, we compare the results of our Update approach
to compute exp(A) with the built–in Matlab function expm. We use the
expression in (4.1) for the Chebyshev rational approximation of degree
N � 16 so that we can consider the approximation error negligible.

We consider the test matrix A � (A)i , j in [23] with entries

(A)i , j � e−α(i− j) , i ≥ j, (A)i , j � e−β(j−i) i < j, α, β > 0. (4.11)

This is an example of the so–called pseudo-sparse matrix, that is, a
completely dense matrix with rapidly decaying entries. These matrices
are usually replaced with banded matrices obtained by considering
just few bands or by dropping entries which are smaller than a certain
threshold. We sparsify this matrix by keeping only 15 off–diagonals on
either side of its main diagonal. We consider α � β � 0.5 and α � β � 1.2
for a small example, namely 50 × 50, to make the presentation more
clear. The approximation we refer to is (4.9), in which we let τ and g
change, with effects on the factors Z̃, W̃ and Ẽ in (3.11), respectively.
The continuous curves in Figure 4.1 refer to the “exact” approach, that
is, for τ � 0 leading to dense factors W and Z. In the abscissa we report
the number of extra-diagonals selected by g. Notice that both τ and
g � [·]m are important because even for τ � 0 more extra-diagonals
are necessary to reach a high accuracy. From the plots in Figure 4.1,
we note that the loss of information in discarding entries smaller than
τ cannot be recovered even if g extracts a dense matrix. In the left
plot, for a moderate decay in the off-diagonals entries, a conservative
τ is necessary to keep the most important information. On the other
hand, when the decay is more evident, as in the right plot, a large τ is

preconditioned fast solvers for some large linear systems 131

Figure 4.1. Behavior of the error for exp(A) as τ and g vary. The 50 × 50 matrix
argument A has the expression in (4.11) with α � β � 0.5 (left), α � β � 1.2
(right). The x–axis reports the number of diagonals the function g selects while
the y–axis reports the error with respect to the Matlab’s expm(A). AINV is used
with the tolerance τ given in the legend.

enough, as a consequence, the choice of g keeping just two diagonals
gives already a reasonable accuracy. We find similar results also for the
logarithm, as well as for other input matrices.

4.3.2 ApproximatingΨ(A)

Let us focus on the approximation of exp(A) and log(A). In the following
tables, the columns Update refers to the approximation (4.9). Columns
Direct are based on the direct inversion of the matrices (A + ξ j I)

−1

in (4.1).
The fill–in for computing the incomplete factors for approximating

the underlying matrices is computed as

fill–in �

nnz(Z̃) + nnz(W̃) − n

n2
, (4.12)

where n denotes the size of the underlying matrix and nnz(·) the
number of its nonzero entries.

We consider the evaluation of log(A) where the entries of A are
as in (4.11), with α � 0.2 and β � 0.5 and n varies from 500 to 8000.
For this matrix we use a drop tolerance τ � 0.1 to compute a sparse
approximate inverse factorization of A with AINV. The resulting factors
Z̃ and W̃ are bidiagonal and thus we take g(X) � X. The inversion
of the tridiagonal factors is the more demanding part of the Update

132 fabio durastante

technique. For this test, we compare the Update and Direct methods,
based on the approximation (4.3), with the Matlab function logm and
the logm_pade_pf code in the package by N. Higham [158].

Numerical tests on scalar problems show that the degree N � 5 for
the Padé approximation (4.4) and N � 7 for the approximant in (4.3)
allow to reach a similar accuracy with respect to the reference solution.
Thus, we use these values for N in our tests. Results in Table 4.1 show

n Update Direct logm logm_pade_pf fill–in

500 1.53 1.33 13.05 0.67 6e-3
1000 4.90 4.69 44.40 3.31 3e-3
2000 12.23 13.86 407.28 38.67 1e-3
4000 37.04 56.23 6720.36 522.25 7e-4
8000 168.41 412.30 70244.41 6076.00 7e-4

Table 4.1. Execution time in seconds for log(A) for A as in (4.11) with α � 0.2
and β � 0.5 as the dimension n varies, AINV with τ � 1e − 1 is used.

that, for small examples, the Update and the logm_pade_pf approaches
require a similar execution time, while the efficiency of the former
becomes more striking with respect to all the others as the problem
dimension increases.

We now consider the error for the matrix exponential. The test
matrix is symmetric as in (4.11) for three choices of the parameter α.
We analyze the error of the approximations provided by the Update and
Direct methods, for the Chebychev rational approximation of degree
N � 8, with respect to the results obtained by the expmMatlab command.
We consider α � β � 1, α � β � 1.5, α � β � 6. For the first two cases,
the drop tolerance for the AINV is τ � 0.1 and g extracts just the
main diagonal and one superdiagonal. For the third case, AINV with
τ � 10−3 is used and Z̃, W̃ are both diagonal. No matrix inversion is thus
performed. Results from Table 4.2 show the good accuracy reached by
using the Update approach. Indeed, although are present sparsification
errors (see the action of τ and g), the error is comparable to the one of
the Direct method, which does not suffer from truncation. For the case
α � β � 6, the difference between the two errors is more noticeable,
but it has to be balanced with great savings in timings. Indeed, in this
case the decay of the off–diagonal entries of the inverse of A is very fast
and we exploit this feature by combining the effect of the small drop
tolerance τ � 10−3 and a function g extracting just the main diagonal.
Then, the computational cost is much smaller for the Update approach,

preconditioned fast solvers for some large linear systems 133

n Update Direct

500 1.1e-7 2.3e-8
1000 1.1e-7 2.3e-8
2000 1.1e-7 2.3e-8
4000 1.1e-7 2.3e-8

n Update Direct

500 2.3e-08 2.3e-08
1000 2.3e-08 2.3e-08
2000 2.3e-08 2.3e-08
4000 2.3e-08 2.3e-08

n Update Direct

500 4.5e-06 1.8e-08
1000 4.5e-06 1.8e-08
2000 4.5e-06 1.8e-08
4000 4.5e-06 1.8e-08

Table 4.2. Errors for the Update and Direct methods compared to the Matlab’s
expm(A). The parameters are τ � 0.1, Z̃ and W̃ bidiagonal, for α � β � 1 (left)
and α � β � 1.5 (right); α � β � 6, τ � 10−3 and Z̃ and W̃ are diagonal (bottom).
AINV is used.

since no matrix inversion is explicitly performed and we experienced
an overall linear cost in n, as in the other experiments. Thus, when a
moderate accuracy is needed, the Update approach is preferable, since
it is faster; see Table 4.3. We test our approach in the context of the

n Update Direct expm fill–in

500 0.01 0.06 1.97 2.0e-3
1000 0.00 0.01 6.19 1.0e-3
2000 0.00 0.01 30.52 5.0e-4
4000 0.00 0.06 172.89 2.5e-4
8000 0.01 0.10 910.16 1.3e-4

Table 4.3. Timings in seconds for exp(A) with A as in (4.11) with α � β � 6, τ �

10−3 and g extracting just the main diagonal. The fill–in column refers to the
fill–in occurred for computing the factors W̃ and Z̃ measured as in (4.12).

numerical solution of reaction–diffusion partial differential equations
of the form

∂t u(x , y , z , t) � −k∇2u(x , y , z , t) + γ(x , y , z)u(x , y , z , t). (4.13)

Discretizing (4.13) with the space variables by second order centered
differences, the reference solution can be computed by means of the
matrix exp(A). We take k � 1e − 8, and the action of γ(x , y , z) is given
by the matrix–vector product on the semidiscrete equation between

134 fabio durastante

G � sparsify(rand(n3 , n3)), where n is the number of mesh points
along one direction of the domain Ω � [0, 1]3. Sparsify gives a sparse
version of G with 0.1% of fill–in. The Laplacian is discretized with the
standard 7-points stencil with homogeneous Dirichlet conditions, i.e.,
the semidiscrete equation reads as

ut(t) � (A + G)u(t).

The results of this experiment are reported in Table 4.4. The reference
matrix is computed by using the incomplete inverse LDU factorization
(INVT) that needs two drop tolerances, τL � 1e − 6 and τ � τZ � 1e − 8.
The former is the drop tolerance for the ILU process and the latter for
the post-sparsification of the inversion of LU factors respectively. A
tridiagonal approximation of the correction matrix E � ZTW is used.

Direct Update expm(A)

n3 T(s) εrel T(s) εrel T(s) fill-in

512 0.15 2.85e-07 0.07 2.82e-07 0.92 100.00 %
1000 0.83 2.85e-07 0.35 2.83e-07 8.19 100.00 %
1728 4.28 2.85e-07 0.94 2.83e-07 46.23 92.40 %
4096 118.39 2.85e-07 3.72 2.84e-07 669.39 51.77 %
8000 834.15 2.85e-07 9.69 2.82e-07 4943.73 28.84 %

Table 4.4. Execution time in seconds for exp(A) and relative errors (εrel) with
respect to expm(A) for A the discretization matrix of (4.13) (the time needed for
building the reference matrix is not considered). INVT with τL � 1e − 6 and
τ � τZ � 1e − 8 is used.

4.3.3 ApproximatingΨ(A)v

To apply our approximation for Ψ(A)v, where A is large and sparse
(and/or possibly structured), we use a Krylov iterative solver for the
systems (A + ξ j I)x � v in (4.5) with and without preconditioning (the
corresponding columns will be labeled as Prec and Not prec). The iterative
solvers considered are BiCGstab and CG (the latter for symmetric
matrices). The preconditioner is based on the matrix W̃(D̃ + ξ jẼ)

−1Z̃H

as in (4.8). The entries of A are those reported in (4.11), while v is the
normalized unit vector. The average of the iterates in Table 4.5 is much
smaller when the preconditioner is used. Moreover, preconditioned
iterations are independent on the size of the problem.

In Table 4.6 we report the error, with respect to the Matlab’s expm(A)v,
of the approximations given by the Prec and Not prec options. The entries

preconditioned fast solvers for some large linear systems 135

Prec Not prec
n iters T(s) iters T(s)

500 2 0.05 21 0.11
1000 2 0.05 19 0.18
2000 2 0.08 18 0.33
4000 2 0.95 17 2.96

Table 4.5. Iterates average and execution time in seconds for log(A)v for A as
in (4.11) with α � 0.2, β � 0.5. The linear systems are solved with the Matlab’s
implementation of BiCGstab with and without preconditioning. INVT with
τ � τL � τZ � 1e − 1 is used.

in the test matrix have so a fast decay, since α � β � 6, that the term Ẽ can
be chosen diagonal. In this case we do not need to solve nontrivial linear
systems. Interestingly, a good accuracy is reached with respect to the
true solution. Moreover, the timings for the Prec approach is negligible
with respect to that for the Not prec. Let us consider a series of tests

n Prec Not prec
εrel εrel

500 4.5e-06 1.8e-08
1000 4.5e-06 1.8e-08
2000 4.5e-06 1.8e-08
4000 4.5e-06 1.8e-08

Table 4.6. Error for exp(A)v for A as in (4.11) with α � β � 6. Prec: our technique
with Ẽ diagonal. Not prec.: (4.5) when the linear systems are solved with the
Matlab’s PCG used without preconditioning. INVT with τ � τL � τZ � 1e − 1
is used.

matrices of a different nature: infinitesimal generators, i.e., transition rate
matrices from the MARCA package by Stewart [268]. They are based on
large non–symmetric ill–conditioned matrices whose condition number
ranges from 1017 to 1021 and their eigenvalues are in the square in the
complex plane given by [−90, 5.17e − 15] × i[−3.081, 3.081]. As a first
example, we consider the NCD model. It consists of a set of terminals
from which the same number of users issue commands to a system made
by a central processing unit, a secondary memory device and a filling
device. In Table 4.7 we report results for various n, obtained by changing
the number of terminals/users. The considered matrices A are used

136 fabio durastante

to compute exp(A)v, v � [1, 2, . . . , n]/n. We compare the performance
of BiCGstab for solving the linear systems in (4.5) without updated
preconditioner and with our updating strategy, where g extracts only
the main diagonal and the INVT algorithm with τZ � 1e − 4 and
τL � 1e−2 is used. The comparison is made in terms of the time needed
for solving each linear system, i.e., the global time needed to compute
exp(A)v. Both methods are set to achieve a relative residual of 10−9

and the degree of the Chebyshev rational approximation is N � 9. The
column εrel contains the relative error between our approximation and
expm(A)v over the norm of the value computed by Matlab’s built-in
routine. For the case with the highest dimension, expm gives out of
memory error.

Not prec Update
n iters T (s) iters T (s) εrel

286 7.50 7.62e-03 7.50 7.60e-03 8.73e-09
1771 17.60 2.95e-02 17.60 3.00e-02 3.46e-07
5456 29.00 1.15e-01 29.00 1.18e-01 5.23e-06
8436 34.50 2.44e-01 28.00 1.67e-01 1.50e-05
12341 43.10 3.39e-01 33.20 2.68e-01 3.87e-05
23426 64.30 9.66e-01 42.30 6.26e-01 †

Table 4.7. Approximation of exp(A)v, A from NCD queuing network example.
BiCGstab, N � 9, tol� 1e − 9, INVT algorithm with τZ � 1e − 4 and τL � 1e − 2
is used. A † is reported on the εrel when the expm gives out of memory error
and no reference solution is available.

We consider computing exp(A)v for the matrix TSOPF_FS_b9_c6 of
dimension 14454 coming from [86], results are reported in Table 4.8 and
Figure 4.2. For this case we do not have a reference for the error because
Matlab’s expm gives out of memory error. Instead, we consider the norm
2 of the difference of the solutions obtained for consecutive values of N
for N � 6, . . . , 30. The other settings for the solver remain unchanged
in order to evaluate the efficiency of the algorithm for the same level of
accuracy, i.e., we are using again the INVT algorithm with τZ � 1e − 4
and τL � 1e − 2. We observe two different effects for higher degree of
approximations in Table 4.8. On one hand, from Figure 4.2, the relative
error is reduced, as expected from the theoretical analysis, while, on the
other, it makes the shifted linear system more well–conditioned. Note
that the gain obtained using our preconditioning strategy is noticeable
even for large matrices.

preconditioned fast solvers for some large linear systems 137

Figure 4.2. Accuracy for various values of N for the TSOPF_FS_b9_c6 matrix

Let us take the following A from [195]:

ai , j �
1

2 + (i − j)2
, (4.14)

in order to approximate log(A)v, v � (1, 1, . . . , 1)T . A is symmetric
positive definite with a minimum eigenvalue of the order of 10−2 and
its entries decay polynomially. We approximate log(A)v with (4.5);
BiCGstab is used with the update strategy and without it (Not prec),
the seed is computed with INVT with τZ � 1e − 1 and τL � 1e − 2, we
also include the results with Matlab’s logm(A)v. In particular, we use
N � 30 for the approximation of the logarithm function. Results are
collected in Table 4.9.

Finally, we consider some matrices from The University of Florida
Sparse Matrix Collection (see [86]), focusing on INVT with a seed precon-
ditioner with τZ � 1e − 1 and τL � 1e − 2. The results are collected in
Table 4.10, and they confirm what we observed in the other tests.

4.3.4 Choosing the Reference Preconditioner(s)

To generate a viable update (4.8), we need to compute an appropriate
seed preconditioner (4.7). Note that the poles ξ j in the partial fraction
expansions (4.5) for the Chebyshev approximation of the exponential
have a modulus that grows with the number of points; see, e.g., Fig-
ure 4.3. For this example the matrices from the mutual exclusion model
in [268] are used. This is a model of M distinguishable processes or
users that share a resource, but only M′, with 1 ≤ M′ ≤ M that could
use it at the same time. The legend is thus reported as “mutex matxM

138 fabio durastante

Matrix TSOPF_FS_b9_c6
Size: 14454, κ2(A) �3.1029e+12

Not prec Prec
iters T(s) iters T(s) N

171.33 1.22e+00 15.00 2.62e-01 6
145.20 1.38e+00 36.50 1.05e+00 9
99.58 1.44e+00 8.75 2.33e-01 12
77.93 1.32e+00 7.64 2.29e-01 14
70.38 1.25e+00 7.06 2.44e-01 16
71.00 1.45e+00 6.61 2.65e-01 18
59.70 1.34e+00 6.15 2.80e-01 20
53.32 1.32e+00 5.95 2.93e-01 22
51.67 1.38e+00 5.75 3.14e-01 24
46.65 1.37e+00 5.58 3.30e-01 26
44.86 1.44e+00 5.39 3.49e-01 28
43.30 1.47e+00 5.20 3.66e-01 30

Table 4.8. Approximation of exp(A)v as the degree N of the Chebyshev approxi-
mation varies. Timings and accuracy for TSOPF_FS_b9_c6 [86]. INVT algorithm
with τZ � 1e − 4 and τL � 1e − 2 is used.

M′”. Therefore, we need to take into account the possibility that the
resolvent matrices

(ξ j I − A)−1

become diagonally dominant or very close to the identity matrix, up
to a scalar factor, or in general with a spectrum that is far from the
one of −A. Sometimes the underlying matrices related to the resolvent
above can be so well conditioned that the iterative solver does not
need any preconditioner anymore. In this case, any choice of the seed
preconditioner as an approximate inverse of the −A matrix is almost
always a poor choice, and thus also the quality of the updates; see [20,
31]. In Figure 4.3 (right) we report the mean iterations required when
the Pseed corresponding to ξ j is used for j � 1, . . . ,N, while j � 0
refers to the seed preconditioner for −A, all obtained with INVT for
τL � 1e − 5 and τZ � 1e − 2. The plot clearly confirms that working
with −A is always the most expensive choice, while better results are
obtained for whatever pole and sometimes the pole with the largest
modulus is slightly better than the others.

Observe also that in this way complex arithmetic should be used
to build the approximate inverse of the matrix (ξ1I − A), whose main
diagonal has complex–valued entries.

p
r

e
c

o
n

d
it

io
n

e
d

f
a

s
t

s
o

lv
e
r

s
f
o

r
s
o

m
e

l
a

r
g

e
l
in

e
a

r
s
y

s
t
e
m

s
1

3
9

BiCGstab Not prec Update logm(A)v
n iters T(s) iters T(s) fill–in T (s) εrel

1000 11.88 2.4621e+00 5.07 1.2596e+00 3.16 % 1.6922e-01 1.91e-06
4000 11.05 3.4215e+01 4.73 1.6885e+01 0.80 % 1.4778e+01 1.54e-06
8000 10.58 1.3378e+02 4.53 6.5783e+01 0.40 % 1.1698e+02 1.66e-06
12000 10.32 2.9698e+02 4.38 1.4577e+02 0.27 % 4.2827e+02 1.74e-06

Table 4.9. Computation of log(A)v with A as in equation (4.14). Note the moderate decay and a spectrum that ranges in the
interval [6e − 2, 3]. For INVT τZ � 1e − 1 and τL � 1e − 2 are used.

BiCGstab Not prec Update logm(A)v
Name n iters T(s) iters T(s) fill–in T(s) εrel

1138_bus 1138 198.93 1.36e+00 31.18 4.01e-01 0.84 % 2.27e-01 4.41e-07
Chem97ZtZ 2541 27.98 3.44e-01 6.43 1.23e-01 0.10 % 3.54e+00 1.87e-07

bcsstk21 3600 157.85 4.76e+00 76.43 3.16e+00 1.36 % 1.00e+01 3.10e-07
t2dal_e 4257 232.00 4.21e+00 98.90 1.78e+00 0.02 % 2.58e+00 6.82e-04

crystm01 4875 23.35 1.03e+00 11.48 5.64e-01 0.17 % 2.53e+01 3.16e-07

Table 4.10. Approximation of log(A)v with A SPD from The University of Florida Sparse Matrix Collection. The real parts of the
eigenvalues are all in the interval [2.324e − 14, 1.273e + 08]. For INVT τZ � 1e − 1 and τL � 1e − 2 are used.

140 fabio durastante

Figure 4.3. Position of the poles of Chebyshev approximation of exp (left) and a
sample of mean number of iterations for different choice of Pseed for the mutual
exclusion model from [268].

4.3.5 Ψ(A)v With Updates and With Krylov Subspace Methods

A popular class of effective algorithms for approximatingΨ(A)v for a
given matrix A relies on Krylov subspace methods. The basic idea is to
project the problem into a smaller space and then to make its solution
potentially cheaper. The favorable computational and approximation
properties have made the Krylov subspace methods extensively used;
see, among the others, [161, 194, 208, 243].

Over the years some tricks have been added to these techniques
to make them more effective, both in terms of computational cost and
memory requirements, see, e.g., [3, 111, 171, 209, 210, 231]. In particular,
as shown by Hochbruck and Lubich [161], the convergence depends on
the spectrum of A. For our test matrices the spectrum has a moderate
extension in the complex plane. Thus, the underlying Krylov subspace
techniques for approximatingΨ(A)v can be appropriate.

The approximation spaces for these techniques are defined as
in (2.9) as

Km(A, v) � span{v,Av, . . . ,Am−1v}.

Since, as we have seen in Section 2.1, the basis given by the vectors
v,Av, . . . ,Am−1v can be very ill–conditioned, one usually applies the
modified Gram-Schmidt method (Algorithm 2.4) to compute an or-
thonormal basis with starting vector v1 � v/‖v‖. Thus, if these vectors
v1 , . . . , vm are the columns of a matrix Vm and the upper Hessenberg
matrix Hm collects the coefficients hi , j of the orthonormalization process,
then the following Arnoldi formula holds

AVm � VmHm + hm+1,mvm+1eT
m ,

preconditioned fast solvers for some large linear systems 141

with em denoting the mth column of the identity matrix. An approxi-
mation toΨ(A)v can be obtained as

ym � ‖v‖VmΨ(Hm)e1.

The procedure reduces to the three-term Lanczos recurrence when A is
symmetric, which results in a tridiagonal matrix Hm . One has still to
face with the issue of evaluating a matrix function. If m ≪ n, for the
much smaller matrix argument size Hm , which is m × m then several
approaches can be tried, for example the built–in function funm in
Matlab, based on the Schur decomposition of the matrix argument, and
the Schur–Parlett algorithm to evaluate the function of the triangular
factor [158].

We consider the application of our strategy for the computation
of exp(A)v, with a matrix A generated from the discretization of the
following 2D advection-diffusion problem



ut �
∂
∂x

k1
∂u

∂x
+
∂
∂y

k2(y)
∂u

∂y
+ . . .

. . . + t1(x)
∂u
∂x + t2(y), x ∈ [0, 1]2 ,

∂u
∂y u(x , y , t) � 0, x ∈ ∂[0, 1]2 ,
u(x , y , 0) � u0(x , y),

(4.15)

where the coefficients are k1 � 1e − 2, k2(x) � 2 + 1e − 5 cos(5πx),
t1(x) � 1 + 0.15 sin(10πx) and t2(x) � 1 + 0.45 sin(20πx), while second
order centered differences and first order upwind are used to discretize
the Laplacian and the convection, respectively. The purpose of this
experiment, whose results are reported in Table 4.11, is comparing our
updating approach, using INVT with τL � 1e − 5 and τZ � 1e − 2, with
a Krylov subspace method. For the latter we use the classical stopping
criterion based on monitoring

γ � hm+1,m |e
T
m exp(Hm)e1 |.

We stop the iteration when γ becomes smaller than 10−6. The threshold
γ was tuned to the accuracy expected by the Update approach.

From these experiences, we can conclude that our techniques, under
appropriate hypotheses of sparsity or locality of the matrices, seem to
be of comparable performances to solve theΨ(A)v problem.

Moreover, we can expect even more interesting performances when
simultaneous computations of vectors such as {Ψ(A)w j}

K
j�1

are required.
The latter induces another level of parallelism beyond the one that can be
exploited in the simultaneous computation of the term of equation (4.5).

142 fabio durastante

n Update Arnoldi
εrel T(s) εrel T(s)

100 2.64e-06 6.74e-02 3.51e-06 2.91e-02
196 3.81e-06 7.80e-02 1.20e-06 1.09e-01
484 1.22e-08 2.97e-01 1.60e-08 5.23e-01
961 7.68e-07 1.27e+00 1.68e-07 2.70e+00

Table 4.11. Errors and execution time for exp(A)v for A obtained as the finite
difference discretization of (4.15). INVT with τL � 1e − 5 and τZ � 1e − 2 is
used.

In particular, this can be true when K is large and each vector w j does
depend on the previous values wi and Ψ(A)wi . In the above setting
we can construct the factors once in order to reduce the impact of the
initial cost of computing the approximate inverse factors. A building
cost that can be greatly reduced by using appropriate algorithms and
architectures; see [36] and the discussion in Section 2.4.

5

Sparse Preconditioner for Mixed Classical and Fractional
PDEs

Partial differential equations provide tools for modelling phenomena
in many areas of science. Nonetheless there exist phenomena for which
this kind of modelling is not as effective. For example, the processes
of anomalous diffusion, the dynamics of viscoelastic and polymeric
materials; see [225, 267] for details and a list of further applications.
Indeed, most of the processes associated with these have non–local
dynamics, for which the use of fractional partial derivatives seems to be
much more effective. For physical interpretation see, e.g., [227] and the
discussion in Chapter 6 and Appendix A.

To deal with the simulation of these models, we use the matrix
approach framework as suggested in [226, 228, 229] and briefly recol-
lected in Appendix A.3. The goal consists in transferring computational
techniques developed for ordinary partial differential equations to
differential equations with fractional partial derivative, called also frac-
tional differential equations or FDEs for brevity. In recent years there have
been contributions in this field; see, e.g., [75, 187, 188, 196, 201, 292].

In [35] we proposed the use of a structural property of the fractional
derivative known as the short–memory principle and that describes
the memory properties of the fractional derivatives, i.e., it measures
their non–locality; see the discussion in Section 5.1.1. Specifically, we
are dealing with non–local operators, but their structure permits to
observe a decay of correlations towards the extremes of the interval
of integration. As observed in [188, Chap. 2.6], “Up to now, the short
memory principal has not been thoroughly studied so is seldom used
in the real applications”. As an example, we can consider the predictor–
corrector approach in [90] and the work in [230]. For the solution
with Krylov subspace methods, strategies with approximate inverse
preconditioners have been developed. The latter builds structured
approximations of the inverse of the discretization matrix in the fashion

144 fabio durastante

of an inverse circulant–plus–diagonal preconditioner, see the work
in [212, 221], or Toeplitz–plus–diagonal multigrid and preconditioning
in [213, 214].

The novelty of our proposal is mainly in the use of short–memory
principle as a mean to generate sequences of approximations for the
inverse of the discretization matrix with a low computational effort.
With the support of this precious property, we can solve the underlying
discrete problems effectively by the preconditioned Krylov iterative
methods of Section 2.1. In this way, there is no loss of accuracy in the
discretization of the differential model, because the decay properties of
the operators are used to approximate their inverses. Use of this solution
framework also allows to exploit strategies for updating approximate
inverses from Section 4.2 to treat problems with coefficients varying
over time, or to apply methods of integration with variable time step;
see also [15, 20, 31, 33, 106]. Finally, we note that from the computational
point of view this also allows the use of GPUs, for which these techniques
have been recently specialized; see again the introduction to this issues
in Section 2.4.3 and [36, 84, 85, 113] for the implementation details. In
Section 5.3 we will discuss how to specialize this for our case.

5.1 Matrix approach

We are going to briefly recall the approximation of the fractional integral
and differential operator in matrix form. To focus our analysis on the
numerical linear algebra issues we have collected all the results and the
discussion relative to Fractional Calculus in Appendix A.

According to [225], we start recalling the notation for the fractional
operators we are interested in. From now on with the notation Γ(·) we
mean the Euler gamma function, the usual analytic continuation to all
complex numbers (except the non–positive integers) of the convergent
improper integral function

Γ(t) �

∫

+∞

0

xt−1e−x dx. (5.1)

Definition 5.1 (Fractional Operators). Given a function y(t) we define

Fractional Integral. Given α > 0 and a < b ∈ R ∪ {±∞},

Jαa ,x y(x) �
1

Γ(α)

∫ x

a

(x − ξ)α−1 y(ξ)dξ. (5.2)

Riemann–Liouville. Given α > 0 and m ∈ Z+ such that m − 1 < α ≤ m

preconditioned fast solvers for some large linear systems 145

the left-side Riemann–Liouville fractional derivative reads as

RLDα
a ,x y(x) �

1

Γ(m − α)

(

d

dx

)m ∫ x

a

y(ξ)dξ

(x − ξ)α−m+1
, (5.3)

while the right-side Riemann–Liouville fractional derivative

RLDα
x ,b y(x) �

1

Γ(m − α)

(

− d

dx

)m ∫ b

x

y(ξ)dξ

(ξ − x)α−m+1
. (5.4)

Symmetric Riesz. Given α > 0 and m ∈ Z+ such that m − 1 < α ≤ m the
symmetric Riesz derivative reads as

dα y(x)

d |x |α
�

1

2

(

RLDα
a ,x + RLDα

x ,b

)

. (5.5)

Caputo. Given α > 0 and m ∈ Z+ such that m − 1 < α ≤ m the left-side
Caputo fractional derivative reads as

CDα
a ,x y(x) �

1

Γ(m − α)

∫ x

a

y(m)(ξ)dξ

(x − ξ)α−m+1
, (5.6)

while the right-side

CDα
x ,b y(x) �

(−1)m

Γ(m − α)

∫ b

x

y(m)(ξ)dξ

(ξ − x)α−m+1
. (5.7)

Grünwald–Letnikov. Given α > 0 and m ∈ Z+ such that m − 1 < α ≤ m
the left-side Grünwald–Letnikov fractional derivative reads as

GLDα
a ,x y(x) � lim

h→0
Nh�t−a

1

hα

N
∑

j�0

(−1) j

(

α
j

)

y(x − jh), (5.8)

while the right-side

GLDα
x ,b y(x) � lim

h→0
Nh�b−t

1

hα

N
∑

j�0

(−1) j

(

α
j

)

y(x + jh). (5.9)

Generally speaking, the definitions given above are equivalent only
for functions that are suitably smooth. Nevertheless, in some cases,
relationships can be established between the fractional derivatives
written in the above forms, see Appendix A.1 and [225] for a complete
account.

146 fabio durastante

To treat fractional differential equations, i.e., dealing with equations
written in terms of the operators in Definition 5.1, we recall some
matrix-based approaches. We can consider the one introduced in [226]
and further generalized in [228, 229]. This method is based on a suitable
matrix representation of discretized fractional operators in a way that
is alike to the numerical differentiation for standard integer order
differential equations.

Let us fix an interval [a , b] ⊆ R, an order of fractional derivative α
and consider the equidistant nodes of step size h � (b − a)/N, {xk �

a+kh}N
k�0

, with x0 � a and xN � b. Then, for functions y(x) ∈ C
r([a , b])

with r � ⌈α⌉ and such that y(x) ≡ 0 for x < a, we have

RLDα
a ,x y(x) � GLDα

a ,x y(x), RLDα
x ,b y(x) � GLDα

x ,b y(x). (5.10)

Therefore, we can approximate both the left and right sided Riemann–
Liouville derivatives with the truncated Grünwald–Letnikov expansion

RLDα
a ,xk

y(x) ≈ 1
hα

∑k
j�0(−1) j

!α
j

�
y((k − j)x), k � 0, . . . ,N, (5.11)

RLDα

xk ,b
y(x) ≈ 1

hα
∑k

j�0(−1) j
!α

j

�
y((k + j)x), k � 0, . . . ,N. (5.12)

In this way we can define the lower and upper Toeplitz triangular
matrices, respectively

B
(α)
L �

1

hα



ω(α)
0 0 0 . . . 0

ω(α)
1

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0

ω(α)
N ω(α)

N−1 · · · ω(α)
1 ω(α)

0



, B
(α)
U �

(

B
(α)
L

)T
, (5.13)

where the coefficients ω(α)
j

are defined as

ω(α)
j

� (−1) j

(

α
j

)

, j � 0, 1, . . . ,N. (5.14)

To satisfy the semi–group property of the left-right Riemann–Liouville
fractional derivatives, it is also needed that y(k)(a) � 0 for the left,
respectively y(k)(b) � 0 for the right, for each k � 1, 2, . . . , r − 1. It is
crucial to observe that there is a decay of the coefficients along the
diagonals of the discretization matrices.

preconditioned fast solvers for some large linear systems 147

Proposition 5.1. Given the discretization formula in equation (5.13), the
following decay rate for the coefficients holds

1 < α < 2, |ω(α)
j
| � O(1/| j |α+1), j → +∞. (5.15)

This is a well know consequence of the asymptotic relation for the
Gamma function in [286]:

lim
x→+∞

Γ(x + α)

xαΓ(x)
� 1, ∀α ∈ R. (5.16)

If we are interested in obtaining an even sharper bound for the constant,
then the estimate for the sequence of real binomial coefficients in [177,
Theorem 4.2] can be applied. The strategy we have described is a
numerical scheme with accuracy O(h).

With the same strategy, a further discretization is obtained, show-
ing the same decaying property for the Symmetric Riesz fractional
derivative.

Schemes with higher accuracy can also be derived by observing that

(1 − z)α �

+∞
∑

j�0

ω(α)
j

z j , z ∈ C. (5.17)

Therefore, as have been done in [196], by substituting the generating
function of the 1st order one-side differences with the one of the desired
order and posing

z � exp(−ıθ),
we obtain the coefficients for the scheme of higher accuracy. We stress
that all the procedure can be done automatically by using Fornberg
algorithm [117] and FFTs; see Appendix A.3.1. What we need to observe
is that also in this case we can state the following proposition.

Proposition 5.2. Given a one-side finite difference discretization formula
represented by the polynomial pq(z) of degree q, with an associated Fourier
symbol f (θ) , pq(exp(−iθ)), and α ∈ (0, 1)∪ (1, 2). The coefficients for the

discretization formula of RLDα
x ,a are given by the Fourier coefficients {ω(α,q)

j
} j

of the function f (θ)α and

0 < α < 1, ω
(α,q)
j

� O(1/| j |α), j → +∞,

1 < α < 2, ω
(α,q)
j

� O(1/| j |1+α), j → +∞.

148 fabio durastante

Proof. The results follow by standard relations between Hölder conti-
nuity, regularity and Fourier coefficients. See [100, 225, Section 7.6], and
Appendix A.3.1 for details. �

For our purposes it is enough to observe that also in this case the
matrix shows a polynomial decay of the coefficients, as can be seen in
Figure 5.1.

Figure 5.1. Decay of the Fourier coefficients as in Propositions 5.1 and 5.2

Another strategy to obtain methods with higher order of accuracy
is using the shifted Grünwald–Letnikov approximation from [201]. For
our purpose, it is enough to say that it consists in building matrices
that are no more lower triangular, but with coefficients on the other
diagonals obtained with the same approximations; see Definition A.13.
Therefore, the decay of the entries is preserved with the same behavior
displayed in Propositions 5.1 and 5.2.

To discretize symmetric Riesz fractional derivatives, other ap-
proaches can be also taken into account. We recall here only the so-called

preconditioned fast solvers for some large linear systems 149

central–fractional–difference approach from [220], with its further gen-
eralizations in [75]. By observing that for α ∈ (1, 2] the Riesz fractional
derivative operator of Definition 6.1 can be rewritten as

∂αu(x)

∂|x |α
� − 1

2 cos(α π2)Γ(2 − α)
d2

dx2

∫

R

u(ξ)dξ

|x − ξ |α−1
, (5.18)

the following O(h2) scheme, given by [220], can be obtained

∂αu(x)

∂|x |α
� − 1

hα

x−a
h

∑

k�− b−x
h

gk u(x − kh) + O(h2),

with

gk �

(−1)k
Γ(α + 1)

Γ(α/2 − k + 1)Γ(α/2 + k + 1)
. (5.19)

The decay of the coefficients of the scheme from [220] have been
proved with the same techniques as in Proposition 5.1; see also Propo-
sition A.11.

Corollary 5.1. For large values of k for the coefficients gk of equation (5.19)
we have

gk � O(1/|k |α+1), j → +∞.

Again, by Corollary 5.1 we infer the decay property we need for
the following arguments. Indeed, discretizing the differential operator
over the same uniform grid over [a , b] ⊆ R it is possible to restate the
problem in symmetric Toeplitz matrix form:

O
(α)
N � − 1

hα



ς0 ς1 · · · ςN

ς1
. . .

. . .
...

...
. . .

. . . ς1

ςN · · · ς1 ς0


,
∂αu(x)

∂|x |α
� O

(α)
N u(xk) + O(h2),

showing again the decay property we need.
We remark also that discretizations of higher order for the symmetric

Riesz derivative were introduced and effectively applied in [94]. For
our purposes, it is enough to note that the entries of the matrix form are
weighted sums of the coefficients gk of equation (5.19). Therefore, they
show the same decay properties, although with coefficients of different
magnitude.

150 fabio durastante

The matrices generated by the Grünwald–Letnikov approximation
and the central–fractional-differences share the same decay property
along the diagonals. This feature depends on a structural property of the
fractional derivatives. While the classical derivatives are local operators,
the fractional derivatives and integral operator of Definition 5.1 are
non–local. Again, as we have just observed, the role of the history of
the behavior of the y(x) function, when we go near to the starting or
ending point has less importance: the short–memory principle.

5.1.1 The Short–Memory Principle

To introduce the short–memory principle we can follow the approach
in [225, Section 7.3] defining a memory length L and then imposing the
approximation

RLDα
a ,x y(x) ≈ RLDα

x−L,x y(x), x > a + L.

Therefore the error produced by zeroing out the entries of the matrix
representing the operator is given by

E(x) �| RLDα
a ,x y(x) − RLDα

x−L,x y(x)|

≤
sup

x∈[a ,b]
y(x)

Lα |Γ(1 − α)| , a + L ≤ x ≤ b.

Thus, fixed an admissible error ε, we obtain that

L ≥
*..,

sup
x∈[a ,b]

f (x)

ε|Γ(1 − α)|
+//-

1
α

⇒ E(x) ≤ ε,
a + L ≤ x ≤ b.

The underlying properties can be used for building a predictor–corrector
approach for FDEs as in [90], or for applying truncation to reduce the
computational cost for the exponential of the discretization matrix as
in [230].

Differently from these approaches, we want to preserve all the
information obtained by the discretization and use the short–memory
principle, i.e., the decaying of the entries, for gaining information on
the inverse of the discretization matrix.

As we have hinted in Section 2.4.1, classical results on the decays of
the inverse of a matrix A, as in [89], have been proven to be useful in
different frameworks. They have been generalized also to other matrix
function than the simple f (z) � z−1; see again Chapter 4 and references

preconditioned fast solvers for some large linear systems 151

therein. For our needs, we are going use the results in [166] that require
that A is not sparse or banded, but having entries that show polynomial
or exponential decay. This is exactly the case of our discretizations; see
Figure 5.1 for the coefficients and Figure 5.2 for the decay of the inverse.

Figure 5.2. Decay of the inverse matrix relative to the various discretizations,
n � 300 and α � 1.7

We can now recall the result we have given in Theorem 2.17 from
[166, 174] to check that the decay really exists.

Proposition 5.3. Given the discretizations in Proposition 5.1, 5.2 or in
Corollary 5.1, if α ∈ (1, 2) then the following relation holds

∃C > 0 : |(A−1)h ,k | � |θh ,k | ≤ C(1 + |h − k |)−α−1 , (5.20)

while for α ∈ (0, 1) we deduce that

∃C > 0 : |(A−1)h ,k | � |θh ,k | ≤ C(1 + |h − k |)−α . (5.21)

Proof. To prove the results, it is enough to observe that by equation (5.15)
of Proposition (5.1), we infer that

∃C > 0 : |(A)h ,k | � |ah ,k | � |ω(α)
|h−k |

| ≤ C(1 + |h − k |)−α−1. (5.22)

152 fabio durastante

Therefore, by Theorem 2.17, the results hold. The bounds for the other
discretizations are obtained in the same way. �

Observe that this result applies with a constant C that is not indepen-
dent from h in the cases in which combinations of both left– and right–
derivatives are used or in the Riesz setting. As Figure 5.2 clearly shows,
where there is only one–sided derivative this is not the case. The crucial
point is the invertibility in l2 of the underlying infinite dimensional
operator; see also Remark 2.8.

5.1.2 Multidimensional FPDEs

The other case we consider is the one of the multidimensional FPDEs. In
the linear constant coefficients case over a Cartesian mesh the matrices
of discretization can be written as a sum of Kronecker products of
matrices that discretize the equation in one dimension.

Given two matrices A, B ∈ Rn×n , their Kronecker product (Cα,β)α,β ,
(Ai , j)i , j ⊗ (Bk ,l)k ,l is defined elementwise as

cα,β � ai , j bk ,l , α � n(i−1)+k , β � n(j−1)+l , 1 ≤ i , j, k , l ≤ n. (5.23)

As a corollary of the previous, we can state the following result.

Proposition 5.4. Given A, B ∈ Rn×n , A � (ai , j), B � (bi , j),

|ai , j | ≤ C1(1 + |i − j |)−s1 , |bi , j | ≤ C2(1 + |i − j |)−s2 , (5.24)

and I the identity matrix of order n, we have

A ⊕ B , A ⊗ I + I ⊗ B, (5.25)

and there exist C > 0 such s � min{s1 , s2} > 0 and

|(A ⊕ B)α,β | ≤ C(1 + |α − β|)−s . (5.26)

Proof. By Theorem 2.17 we know that the set of matrices whose entries
show a polynomial decay is an algebra. Therefore, we only need to prove
that A ⊗ I and I ⊗ B show the decaying property too. For (I ⊗ B)α,β we
find simply that (I ⊗ B)α,β � δi , j bk ,l , where δi , j is the usual Kronecker
delta. Then, we obtain the block matrix with n copies of the B matrix
on the main diagonal. This implies that we have preserved the same
decay property as the B matrix having added only zeros entries. On
the other hand, for (A ⊗ I) we have

(A ⊗ I)α,β � ai , jδk ,l ,

preconditioned fast solvers for some large linear systems 153

that is the following block matrix

A ⊗ I �



A1,1 A1,2 . . . A1,n

A2,1 A2,2 . . . A2,n
...

...
. . .

...
An ,1 An ,2 . . . An ,n


, Ai , j � ai , j I . (5.27)

Again, we can use the same decay bound for the matrix A, even if it is
no more sharp because the values are now interspersed by diagonals of
zero. �

Sharper bounds for this kind of structures have been obtained in [71].
Nevertheless, they refer to the case of banded matrices A, B and can
become of interest when we consider equations with both fractional
and classical derivatives.

Remark 5.1. The decay of the entries and the strategy of dropping entries
of prescribed small modulus in the inverse matrices can be applied also when
specific forms of the short–memory principle have been used for approximating
directly the system matrix.

5.2 Solution Strategies

The observed decay of the entries for the inverse of the matrices that
discretize the FPDEs allows us to devise an effective algorithm. The
whole strategy is based on the possibility of discarding elements of
prescribed small modulus in the calculation of an approximate inverse
of the matrix of interest as discussed in Section 2.4.

On this basis, our proposal is to solve the discretized differential
equations in matrix form, written in terms of the operators we in-
troduced in Section 5.1. To this end, we use an appropriate Krylov
subspace method, see, e.g., Section 2.1, with an approximate inverse
preconditioner in factorized form discussed in Section 5.2.1. Experiments
1,2 and 3 in Section 5.3 illustrate the application of our approach to few
test problems.

On the other hand, if we have a good approximation of the inverse
of the discretization matrix, then we can use it as a direct method for
the solution of the given FPDE. In this way the solution procedure is
reduced to compute an appropriate approximate inverse and to perform
matrix–vector products.

For the second approach, we consider the solution of a pure frac-
tional partial differential equation, i.e., without derivatives of integer
order. Having discretized it in terms of the formulas in Section 5.1,

154 fabio durastante

we find sequences of matrices, which, together with their inverses,
share the decay property called short–memory principle. In practice, we
approximate the underlying inverses with the approximate inverses in
Section 5.2.1.

Similarly to the approach in [230], we are going to trade off accuracy
and performance. Nevertheless, instead of discarding elements of the
discretized operator and then solving the associated linear systems, we
are going to act directly on the inverse of the operator, building a sort
of direct method, see Experiment 4 in Section 5.3.

Before trying both strategies on our test problems, we stress that
we will focus only on the class of algorithms from [61] to compute the
approximate inverse through the use of a biorthogonalization procedure
(conjugation for the Hermitian case); see Section 2.4.3. Moreover, we
will consider again the strategy from Section 4.2 for updating these
approximations, in the case where the discretization of the equation
depends on the time step, giving rise to a sequence of algebraic linear
systems with variable coefficient matrices.

We stress that also other strategies, based on the use of approximate
inverses architecture, have been used in literature. The one considering
the solutions of Hermitian positive definite Toeplitz-plus-diagonal sys-
tems from [212], which is based on the exponential decay of the entries
of the matrix combined with the use of approximate inverse circulant-
plus-diagonal preconditioners. A similar idea, although specialized for
the case of discretization of fractional diffusion equations, has been
developed in [221]. In the latter the construction of an approximate
inverse preconditioner is obtained by the circulant approximation of
the inverses of a scaled Toeplitz matrix that is then combined together
in a row-by-row fashion.

5.2.1 Approximate Inverse Preconditioners

Given a matrix A symmetric and positive definite, we are interested in
the appropriate sparse approximation of the inverse of A in factored
form as introduced in Section 2.4, thus:

A−1 ≈ ZD−1ZT , (5.28)

where the matrix Z is lower triangular. out without dropping and in
exact arithmetic, we find Z � L−T , where L the unit Cholesky factor of A.
In general, we consider the sparse approximations for unsymmetric
matrices as in (2.68).

We recall that there exist stabilized algorithms for computing ap-
proximate inverses for nonsymmetric matrices that are less prone to

preconditioned fast solvers for some large linear systems 155

breakdowns than others; see the discussion in Section 2.4 and [19] for
a broad discussion on applications. Indeed, we recall that in general
incomplete factorizations (ILUs; see [247]) are not guaranteed to be
nonsingular, also for positive definite matrices. This issue holds also for
efficient inverse ILU techniques from Section 2.4.2. In particular, as we
hinted in Section 5.2, we will not use inverse ILU techniques for our test
problems in Section 5.3, because of the frequent breakdowns and poor
performances. In fact ILU factorizations do not preserve, in general, the
decay observed in the discretization matrices.

To show that the decay allows to build approximate inverses signifi-
cantly more sparse, we report in Table 5.1 the fill–in percentage of the
approximate factorization for the test problem


ut � d+(x) RLDα

a ,x u + d−(x) RLDα
x ,b

u + f . x ∈ (a , b),
u(a , t) � u(b , t) � 0, t ∈ [0, T],
u(x , 0) � u0(x), x ∈ [a , b],

(5.29)

where the fractional derivative order is α ∈ (1, 2), f ≡ f (x , t) is the
forcing term and d±(x) are two non–negative functions representing
the variable diffusion coefficients.

The convergence properties of this approach will be discussed in
the numerical experiment section.

Tolerance nnz(W) nnz(Z) fill–in

5.00e-01 4094 4095 0.20%
1.00e-01 52253 51867 2.48%
1.00e-02 117294 116453 5.57%
1.00e-03 214242 208970 10.09%
1.00e-04 332837 319870 15.56%
1.00e-05 466732 443718 21.71%
1.00e-06 630214 594081 29.19%

Table 5.1. Ratio of fill–in for various drop tolerance for the Problem (5.29) with
matrix size n � 2048 and α � 1.8

5.2.2 Updating Factorizations for the Approximate Inverses

The discretization of time–dependent FPDEs produces a sequence of
linear systems whose matrices are dependent on the time step as in
Example 3.1. As we have discussed in Section 4.2, usually facing a
sequence of linear systems with different matrices makes expensive to

156 fabio durastante

rebuild a new preconditioner each time. On the other hand, reusing
the same preconditioner can be not appropriate.

The update strategy we can consider in here is either the one
developed in [20, 31] and further in [15] or the one we introduced in
Section 4.2.

In this case we have a sequence of nonsymmetric matrices {A(k)}t
k�0

,
and we use A(0) as the reference matrix; see again Sections 3.1 and 4.2.
Therefore, by mimicking the construction in Section 4.2, we consider
again an initial approximation of the form given in (2.68) for the inverse
of A(0) in factored form:

P(0)−1
� WD−1ZT .

By writing each A(k), for k ≥ 1, as

A(k)
� A(k) − A(0)

+ A(0)
� A(0)

+ ∆k , ∆k , A(k) − A(0) ,

we build the updated preconditioner

A(k)−1 ≈ P(k)−1
� W(D + E)−1ZT , E , g(ZT

∆kW), (5.30)

where g is the generic sparsification function from Section 3.1. We chose
again the function g � [·]m extracting a m–banded submatrix of its
argument. With this choice, the formula (5.30) becomes

A(k)−1 ≈ P(k)−1
� W(D + E)−1ZT , E , [ZT

∆kW]m . (5.31)

In order to use the approximate inverses in a direct manner, rather than
as a preconditioner for an iterative method, we consider exploiting
them as the true inverses of the matrices of the previous steps, i.e., we
approximate the solution of the linear system with just a matrix–vector
product with them.

5.3 Numerical Examples

The numerical experiments are performed on a laptop running Linux
with 8 Gb memory and CPU Intel® Core™ i7-4710HQ CPU with clock
2.50 GHz, while the GPU is an NVIDIA GeForce GTX 860M. The scalar
code is written and executed in Matlab R2015a, while for the GPU we
use C++ with Cuda compilation tools, release 6.5, V6.5.12 and the CUSP
library [84].

We build our approximate inverses with the CUSP library [84] that
implements the standard scaled Bridson algorithm for approximate

preconditioned fast solvers for some large linear systems 157

inverses in factorized form. This choice was made to exploit highly
parallel computer architectures such as GPUs. We recall that in this
kind of setting it is possible to implement efficiently matrix–vector
multiplications, that are the numerical kernel of both iterative Krylov
subspace and approximate inverse preconditioners considered here.
Moreover, the implementation of the underlying approximate inverses
relies on a left–looking variant of the biorthogonalization procedure in
Algorithm 2.25 that, as observed in [36] and in Section 2.4.3, sometimes
suffers less from pivot breakdown. In the proposed experiments, we
use GPU only to build the preconditioners in order to emphasize the
related performances. However, it is possible to implement also the
solving phase on GPUs, i.e., the iterative methods for the underlying
algebraic linear systems.

The proposed strategies are scalable also on architectures that use
more than one degree of parallelism, i.e., using more than one GPU to
further improve the speedups.

We start considering the following problem containing both integer
and fractional derivatives



∂u(x , y , t)

∂t
� ∇ · (< t,∇u >) (x , y) ∈ Ω, t > 0,

+L
(α,β)u ,

u(x , y , 0) � u0(x , y),
u(x , y , t) � 0, (x , y) ∈ ∂Ω, t > 0,

(5.32)

where the fractional operator is given by

L
(α,β)· , d

(α)
+

(x , y) RLDα
a ,x · +d(α)

− (x , y) RLDα
x ,b ·

+ d
(β)
+
(x , y) RLD

β
a ,y · +d

(β)
− (x , y) RLD

β
y ,b
.

(5.33)

and t � ((a(x), b(y)). To discretize the problem, we consider the five
points discretization of the Laplace operator combined with the shifted
Grünwald–Letnikov approximation for the fractional one. As a time
integrator, we choose the Backward–Euler method, by taking into
account the behavior of the error of approximation and the overall
stability of the method; see [201].

158 fabio durastante

Experiment 1. As a first choice for the solution of problem (5.32),
we consider the coefficients

a(x) �1 + 0.5 sin(3πx), b(y) � 1 + 0.7 sin(4πy)

dα
+
(x , y , t) �dα−(x , y , t) � e4t x4α y4β ,

d
β
+
(x , y , t) �d

β
−(x , y , t) � e4t(2 − x)4α(2 − y)4β

u0(x , y) �x2 y2(2 − x)2(2 − y)2 ,

(5.34)

over the domain [0, 2]2 and the time interval t ∈ [0, 2]. In Table 5.2
we consider the use of the GMRES(50) algorithm with a tolerance of
ε � 1e − 6 and a maximum number of admissible iterations MAXIT �

1000. The approximate inverses are computed with a drop tolerance
δ � 0.1. The update formula (5.31) for the preconditioner is used
with only a diagonal update, i.e., the function g(·) � [·]0 extracts only
the main diagonal and only one reference preconditioner is used; see
Section 3.1. In Table 5.2 we report the average timings and the number
of external/internal iterations. When a “†” is reported, at least one of
the iterative solvers does not reach the prescribed tolerance in MAXIT

iterations.

GMRES(50) FIXED PREC. UPDATED PREC.
α β fill-in IT T(s) IT T(s) IT T(s)

1.6 1.2 5.38 % † † 4.45 26.24 7.68e-01 2.04 26.08 2.95e-01
1.3 1.8 6.51 % † † 4.55 27.57 7.79e-01 2.20 23.71 3.09e-01
1.5 1.5 4.41 % † † 4.43 28.04 7.61e-01 2.04 26.08 2.93e-01

Table 5.2. Test problem in (5.32). Nx � N y � 80, Nt � 50

We report in Figure 5.3 the solution obtained at different time steps.
We consider the solution of this problem also with BiCGstab and GMRES
algorithms with the same settings. The results for this case are reported
in Table 5.3 and Table 5.4, respectively.

BiCGstab FIXED PREC. UPDATED PREC.
α β fill-in IT T(s) IT T(s) IT T(s)

1.6 1.2 5.38 % † † 134.78 5.74e-01 69.08 2.94e-01
1.3 1.8 6.51 % † † 127.18 5.38e-01 75.05 3.21e-01
1.5 1.5 4.41 % † † 123.46 5.08e-01 74.43 3.09e-01

Table 5.3. Test problem in (5.32). Nx � N y � 80, Nt � 50

preconditioned fast solvers for some large linear systems 159

(a) T � 0 (b) T � 0.081

(c) T � 0.327 (d) T � 1.632

Figure 5.3. Plot of the solution of the problem (5.32) for α � 1.6, β � 1.2. For a
physical interpretation of this kind of problem refer to Appendix A.1.1.

Experiment 2. We now consider a slightly different model in which
the coefficient function is used in divergence form



∂u(x , y , t)

∂t
� ∇ ·

!
a(x , y)∇u

�
(x , y) ∈ Ω, t > 0,

+L
(α,β)u ,

u(x , y , 0) � u0(x , y),
u(x , y , t) � 0, (x , y) ∈ ∂Ω, t > 0.

(5.35)

The fractional operator L(α,β) is defined as in equation (5.33). We set
Nx � Ny � 80 and Nt � 70 over the domain Ω � [0, 2]2 and T � [0, 2].
The same choice of the previous example have been done for the
fractional diffusion coefficients, while various function have been tested
for variable diffusion. We start with the GMRES(50) algorithm with a
tolerance of ε � 1e − 6. The drop tolerance for the approximate inverse
preconditioners is set again to δ � 0.1. Results for this case are collected

160 fabio durastante

GMRES FIXED PREC. UPDATED PREC.
α β fill-in IT T(s) IT T(s) IT T(s)

1.6 1.2 5.38 % † † 159.55 1.89e+00 70.12 3.30e-01
1.3 1.8 6.51 % † † 159.86 1.85e+00 71.12 3.37e-01
1.5 1.5 4.41 % † † 161.12 1.91e+00 70.08 3.28e-01

Table 5.4. Test problem in (5.32). Nx � N y � 80, Nt � 50

in Table 5.5.

GMRES(50) FIXED PREC. UPDATED PREC.
α β fill-in IT T(s) IT T(s) IT T(s)

1.2 1.8 5.96 % † † 2.93 31.77 4.89e-01 1.52 27.48 1.94e-01
1.5 1.5 2.74 % † † 2.90 30.36 4.55e-01 1.55 24.33 1.88e-01
1.8 1.8 4.27 % † † 3.65 23.93 5.82e-01 2.19 20.54 2.90e-01
1.8 1.3 5.21 % † † 3.10 30.87 5.05e-01 1.67 28.26 2.25e-01

Table 5.5. Test problem in (5.35). Nx � N y � 80, Nt � 70 and a(x , y) �

exp(−x3 − y3)

GMRES FIXED PREC. UPDATED PREC.
α β fill-in IT T(s) IT T(s) IT T(s)

1.8 1.8 4.27 % † † 130.94 1.18e+00 69.14 3.16e-01
1.8 1.3 5.21 % † † 114.45 9.56e-01 59.19 2.55e-01
1.5 1.5 2.74 % † † 107.43 9.30e-01 51.35 2.24e-01
1.2 1.8 5.96 % † † 111.30 9.95e-01 52.01 2.22e-01

Table 5.6. Test problem in (5.35). Nx � N y � 80, Nt � 70 and a(x , y) �

exp(−x3 − y3)

Experiment 3. We now consider a different but related model
problem: a time–dependent 2D mixed fractional convection–diffusion
equation, where fractional diffusion is combined with classical transport.
By using the same notation as the previous cases we write


ut(x , y , t) � L

(α,β)u+ < t,∇u >, (x , y) ∈ [0, 2]2 , t ≥ 0,
u(x , y , 0) � u0(x , y),
u(x , y , t) � 0, (x , y) ∈ ∂[0, 2]2 ∀t ≥ 0,

(5.36)

where t(x , y) � (t1(x , y), t2(x , y)). Regarding the space variables, we
discretize the fractional operator with shifted Grünwald–Letnikov

preconditioned fast solvers for some large linear systems 161

BiCGstab) FIXED PREC. UPDATED PREC.
α β fill-in IT T(s) IT T(s) IT T(s)

1.8 1.8 4.27 % † † † † 77.67 3.34e-01
1.8 1.3 5.21 % † † 116.08 4.97e-01 60.93 2.63e-01
1.5 1.5 2.74 % † † 117.43 4.96e-01 55.17 2.32e-01
1.2 1.8 5.96 % † † 107.55 4.65e-01 54.17 2.36e-01

Table 5.7. Test problem in (5.35). Nx � N y � 80, Nt � 70 and a(x , y) �

exp(−x3 − y3).

approximation and the transport term with standard first order centered
finite differences. For the time approximation we use backward Euler
method to be consistent with the approximation error and for the
dominant diffusion behavior of the equation.

For this experiment, we chose the following variable (in space)
coefficients for the fractional operator L(α,β)

dα
+
(x , y , t) �dα−(x , y , t) � x4α y4β ,

d
β
+
(x , y , t) �d

β
−(x , y , t) � (2 − x)4α(2 − y)4β ,

(5.37)

while for the transport part we choose

t1(x , y) �
y + β

x + y + α
, t2(x , y) �

x + α
x + y + β

, (5.38)

with the usual initial condition u0(x , y) � x2 y2(2 − x)2(2 − y)2. The
GMRES(50) algorithm is used with a fixed approximate inverse pre-
conditioner with drop tolerance δ � 0.1. The results are reported in
Table 5.8.

A similar behavior is obtained also with the GMRES algorithm,
with the same overall settings and the same drop tolerance for the
approximate inverse preconditioner. Results are reported in Table 5.9.

Finally, we consider the solution with the BiCGstab(2) algorithm [146],
instead of the classical BiCGstab, to deal with the possibility of having a
discretization matrix with non–real eigenvalues, eigenvalues that are
not approximated well by the first order factors of the polynomials built
by the standard BiCGstab. Tolerance for the method and drop-tolerance
for the approximate inverse preconditioner are set to be the same as
those for the other algorithms. Results are collected in Table 5.10.

162 fabio durastante

GMRES(50) PRECONDITIONED
α β fill-in IT T(s) IT T(s)

1.2 1.2 5.54 % 18.39 25.53 3.24e+00 2.37 24.39 3.59e-01
1.2 1.3 5.89 % 26.34 27.49 4.70e+00 2.34 25.95 3.47e-01
1.2 1.5 6.38 % 47.61 28.58 8.54e+00 2.34 22.10 3.44e-01
1.2 1.8 9.33 % 256.00 25.78 4.68e+01 2.00 18.20 2.60e-01

1.3 1.2 6.07 % 25.93 29.05 4.69e+00 2.00 22.27 2.79e-01
1.3 1.3 5.51 % 31.63 28.86 5.62e+00 2.47 27.49 3.86e-01
1.3 1.5 6.14 % 56.44 24.20 1.04e+01 2.39 31.37 3.95e-01
1.3 1.8 8.53 % 387.71 23.53 7.04e+01 2.22 21.69 3.15e-01

1.8 1.2 8.05 % 294.10 29.90 5.34e+01 1.56 26.95 2.14e-01
1.8 1.3 7.39 % 477.75 28.00 8.80e+01 1.61 29.17 2.32e-01
1.8 1.5 7.05 % † † 2.25 21.75 3.20e-01
1.8 1.8 7.18 % † † 3.71 28.61 6.33e-01

Table 5.8. Test problem in (5.36). Nx � N y � 80, Nt � 60.

Experiment 4. We consider the following constant coefficients
fractional diffusion equation from [292]


ut(x , t) � K ∂α

∂|x |α u(x , t), t ∈ [0, T], x ∈ [0, π],

u(x , 0) � x2(π − x), α ∈ (1, 2),
u(0, t) � u(π, t) � 0,

(5.39)

whose analytical solution, on an infinite domain, is given by

u(x , t) �
+∞
∑

n�1

(

8

n3
(−1)n+1 − 4

n3

)

sin(nx) exp (−nαKt) . (5.40)

To solve numerically problem (5.39) we consider both a direct ap-
plication of the short–memory principle, i.e., we extract a banded
approximation of the discretization matrix, and the use of approximate
inverses instead of the true inverses. Both the results will be compared
with the solution(s) obtained by solving the underlying sequence of
linear systems.

As a first test, we consider the discretization of the symmetric Riesz
FDE as a half-sum of left and right-sided Caputo derivatives, using the
backward Euler scheme for advancing in time. We set the number of
diagonals to be extracted as d � 150, and, to obtain a similar bandwidth
in the inverse, drop-tolerances of δ � 5e−7 and δ � 1e−7. The averages
of 2-norm of the errors are reported in Table 5.11. For the choice of

preconditioned fast solvers for some large linear systems 163

GMRES PRECONDITIONED
α β fill-in IT T(s) IT T(s)

1.2 1.2 5.54 % 1.00 365.86 5.51e+00 1.00 79.22 4.00e-01
1.2 1.3 5.89 % 1.00 443.95 7.97e+00 1.00 79.92 4.07e-01
1.2 1.5 6.38 % 1.00 660.56 1.69e+01 1.00 78.15 4.06e-01
1.2 1.8 9.33 % † † 1.00 64.12 2.87e-01

1.3 1.2 6.07 % 1.00 436.73 7.72e+00 1.00 66.49 3.08e-01
1.3 1.3 5.51 % 1.00 514.36 1.06e+01 1.00 83.31 4.37e-01
1.3 1.5 6.14 % † † 1.00 82.80 4.28e-01
1.3 1.8 8.53 % † † 1.00 74.12 3.64e-01

1.5 1.2 6.06 % 1.00 637.86 1.58e+01 1.00 59.08 2.59e-01
1.5 1.3 6.16 % † † 1.00 66.36 3.03e-01
1.5 1.5 5.78 % † † 1.00 95.56 5.45e-01
1.5 1.8 7.35 % † † 1.00 92.97 5.06e-01

1.8 1.2 8.05 % † † 1.00 53.88 2.34e-01
1.8 1.3 7.39 % † † 1.00 57.36 2.52e-01
1.8 1.5 7.05 % † † 1.00 73.69 3.67e-01
1.8 1.8 7.18 % † † 1.00 115.46 7.25e-01

Table 5.9. Test problem in (5.36). Nx � N y � 80, Nt � 60.

δ � 5e − 7 the bandwidth of the approximate inverse is 334 (instead
of 300 given by the direct application of the short–memory principle)
and an error that is of comparable modulus. The time needed for the
solution is T � 0.93s with the band-approximation, while we observe
T � 0.08s by using the approximate inverses. On the other hand, if
we decrease the drop tolerances, then we obtain a solution with also a
smaller error than the one obtained by solving the sequence of linear
system with Gaussian elimination implemented in Matlab, i.e. the well
known \, because the good information is already completely included
in the underlying reduced model.

We also consider discretizing the symmetric Riesz derivatives with
Ortigueira’s centered fractional differences scheme, again by using
backward Euler for advancing in time. The averages of the 2-norm of
the errors are reported in Table 5.11. In this case, we obtain a bandwidth
of 330 for the approximate inverses that can be compared with 300 of
the direct approximation. The timings are T � 0.77s with the direct
application of the short–memory principle and T � 0.09s, by using the
approximate inverses. The profile of the relative error has the same
behavior as the former discretization.

164 fabio durastante

BiCGstab(2) PRECONDITIONED
α β fill–in IT T(s) IT T(s)

1.2 1.2 5.54 % 220.75 1.43e+00 44.88 3.45e-01
1.2 1.3 5.89 % 303.59 1.95e+00 44.69 3.43e-01
1.2 1.5 6.38 % † † 46.27 3.48e-01
1.2 1.8 9.33 % † † 39.61 3.07e-01

1.3 1.2 6.07 % 297.31 1.94e+00 36.27 2.73e-01
1.3 1.3 5.51 % 384.61 2.49e+00 49.42 3.70e-01
1.3 1.5 6.14 % † † 52.27 3.93e-01
1.3 1.8 8.53 % † † 46.22 3.67e-01

1.5 1.2 6.06 % † † 32.20 2.42e-01
1.5 1.3 6.16 % † † 37.92 2.86e-01
1.5 1.5 5.78 % † † 60.53 4.54e-01
1.5 1.8 7.35 % † † 64.41 4.91e-01

1.8 1.2 8.05 % † † 31.63 2.42e-01
1.8 1.3 7.39 % † † 34.68 2.67e-01
1.8 1.5 7.05 % † † 46.03 3.50e-01
1.8 1.8 7.18 % † † 80.80 6.14e-01

Table 5.10. Test problem in (5.36). Nx � N y � 80, Nt � 60.

We experimented also the possibility outlined in Remark 5.1, i.e.,
the use of a banded approximation of the discretization matrix and
of the approximate inverse as the true inverses. We observe that in
these cases the effect of the terms of small norm is adding noise, i.e., ill-
conditioning of the matrices, that reduces the overall accuracy obtained
by the discretization methods.

preconditioned fast solvers for some large linear systems 165

Complete Banded Direct

Type α K T(s) err. T(s) err. T(s) err.

C 1.8 0.25 9.39 2.42e-02 0.93 4.29e-02 0.08 4.24e-02
0.16 1.64e-02

O 1.8 0.25 9.27 3.03e-02 0.77 4.29e-02 0.09 4.43e-02
0.11 3.33e-02

O* 1.5 0.75 8.64 7.43e-02 0.58 2.62e-01 0.10 7.66e-02
O* 1.2 1.25 9.43 5.27e-01 0.63 2.78e-01 0.06 2.73e-01
C* 1.8 1.50 8.66 1.15e-01 1.05 1.53e-01 0.16 1.83e-01

Table 5.11. Test problem in (5.39). Timings and averages of the 2-norm of
the errors over all time steps. C: discretization using the half-sum of Caputo
derivatives, O: Ortigueira discretization, while C∗ and O∗: our method applied to
the banded approximation of the discretization matrix, see Remark 5.1. Column
Complete: the reference solution is used with the standard discretization matrix.
Column Banded: the Short–memory principle is applied to the discretization of
the operator. Column Direct: our approach using the approximate inverses. All
the discretizations use N � 210.

6

Fractional PDEs Constrained Optimization

Among the key ingredients for the success of PDE constrained optimiza-
tion, there is surely the wide set of possible applications, from fluid
dynamic to control of heat–transfer processes, e.g, see [160, 185, 237]. To
further extend the set of possible applications, in [81] we considered the
numerical treatment of a nonstandard class of PDE constrained prob-
lems. By taking into account the use of quadratic objective functionals in
the so–called class of tracking type costs functionals (see equation (6.1) be-
low), we used as constraint a fractional partial differential equation (FPDE).
In this framework, the appealing purpose of extending the existing
strategies for classical PDE constrained optimization to the fractional
case was already explored in a number of directions, see, e.g., [5], where
the authors analyze a matrix transfer approach for fractional powers
of elliptic operators or [96] and the use of the discretize–then–optimize
approach is considered for the same class of problems. In this chapter,
the FPDE constrained optimization problem is tackled instead by using
the optimize–then–discretize technique, that has also been applied for
the control of the fractional Fokker–Planck equation; see [4]. We start
dealing with quadratic functionals with linear FDEs as constraints –
for which the KKT formulation is also possible (see [96]) – in order to
perform the analysis in a clearer way. Then, we move to the setting of
semilinear FDEs for which only the optimize–then–discretize approach is
viable; see Section 6.1.3.

The general formulation of the problem we analyze can be stated as
follows, given a desired state zd

find y , u such that


min J(y , u) �
1

2
‖y − zd‖

2
2 +

λ
2
‖u‖2

2 ,

subject to e(y , u) � 0,
(6.1)

where J and e are two continuously Fréchet differentiable functionals
such that

J : Y ×U → R, e : Y ×U → W,

168 fabio durastante

with Y,U and W reflexive Banach spaces. If we suppose that ey(y , u) ∈
B(Y,W) is a bĳection (where B(Y,W) is the set of bounded linear
operators), then using the Implicit Function Theorem, we can deduce
the existence of a (locally) unique solution y(u) to the state equation
e(y , u) � 0. We can then reformulate the problem in the form

min
u∈U

f (u) � min
u∈U

J(y(u), u), (6.2)

where J(y(u), u) is the reduced cost functional. Moreover, because f (u)
is continuous, convex and radially unbounded (see [237]), Problem (6.1)
admits an optimal solution. We report here Theorem 3.3 in [237] which
characterizes the optimal solution of (6.2) through necessary first order
conditions:

Theorem 6.1. Let u ∈ U be a local solution of (6.2) and y(u) its associated
state, then there exists p ∈ W′ such that the following system of equations is
satisfied: 

e(y(u), u) � 0,
ey(y(u), u)∗p � Jy(y(u), u),
eu(y(u), u)∗p � Ju(y(u), u),

(6.3)

being W′ the topological dual.

If p ∈ W′ satisfies the second equation in (6.3) then we call it adjoint
state.

Observe that using the Lagrangian formulation of the problem

L(y , u , p) � J(y , u)− < p , e(y , u) >W′ ,W ,

where L : Y × U × W′ → R, the optimality conditions in (6.3) are
equivalent to the following conditions on L (see [237]):


e(y(u), u) � 0,
Ly(y , u , p) � 0,
Lu(y , u , p) � 0.

(6.4)

The discussion is divided in this chapter as follows: in Section 6.1
we discuss the construction of the optimize–then–discretize approach for
our problem from equation (6.1). In Section 6.2 we then discuss both
the optimization routine and the application of the preconditioners
from Section 6.2.2 for accelerating the computation of both the function
f (u) and the gradient ∇ f (u) that are needed inside the optimization
algorithm. As it will be clearer later, such computations represent the
main computationally expensive part of the underlying strategy. At last,

preconditioned fast solvers for some large linear systems 169

in Section 6.3 we perform few numerical tests showing and comparing
the computational performances of the proposed strategy.

The numerical tests contained in Section 6.3 highlight how the use
of the preconditioning techniques we proposed in Section 6.2.2 for the
acceleration in the computations turn out to be crucial in order to make
the optimize-then-discretize technique effective.

We would like to stress that one of the objectives we followed in [81]
was to obtain a fully reproducible and portable approach. Therefore, we
illustrate the work by using preexisting and benchmarked software. In
particular, we are going to use the Poblano Optimization Toolbox [105]
and the CUSP library v0.5.1 [84] for the computation of the approximate
inverse preconditioners; see also Section 5.3. Moreover, we point out
that the technique presented here can be applied to general radially
unbounded functionals J(y , u) with nonlinear FDE constraints e(y , u).

6.1 Theoretical Results

This section is devoted to the analysis of the Lagrangian conditions
(6.4) for two FPDE constrained optimization problems of the form (6.1).
We will obtain them for both the Fractional Advection Dispersion Equation
(FADE) from [110, 201] and the two–dimensional Riesz Space Fractional
Diffusion equation, e.g., see [225]. To the best of the author knowledge,
the results from [81], even if formally similar to the elliptic case, have
not been previously stated for the FPDEs in the existing literature.

6.1.1 The 1D Case

Let us consider the following Fractional Advection Dispersion Equation
(FADE) [201]; see Appendix A.2 and Definition 5.1.


−a

(

l RLD2α
0,x + r RLD2α

x ,1

)

y(x) + . . . x ∈ Ω � (0, 1),
. . . + b(x)y′(x) + c(x)y(x) � u(x),

y(0) � y(1) � 0,
(6.5)

for α ∈ (1/2, 1), a , l , r > 0 and l + r � 1, b(x) ∈ C
1(Ω), c(x) ∈ C(Ω) and

such that c(x) − 1/2b′(x) ≥ 0.
Problem (6.1) rewrites for the FADE (6.5) as



min J(y , u) � 1
2 ‖y − zd‖

2
2 +

λ
2 ‖u‖2

2 ,

subject to −a
(

l RLD2α
0,x + r RLD2α

x ,1

)

y(x)+

+b(x)y′(x) + c(x)y(x) − u(x) � 0,
y(0) � y(1) � 0.

(6.6)

170 fabio durastante

Let us define H
µ
0 (Ω) for µ > 0 the closure of C∞0 (Ω) in the norm,

‖u‖µ �

(

‖u‖2
2 + ‖ RLD

µ
0,x u‖2

2

) 1/2
. (6.7)

Remark 6.1. We could have defined the norm ‖ · ‖µ equivalently for the
right–side Riemann–Liouville fractional derivatives or the Symmetric Riesz
derivative, because for every µ > 0 all the various definitions of these spaces
are equal, moreover for µ , n − 1/2 also all their norm are equivalent, see [110,
Section 2]. This is indeed an example of a fractional Sobolev space, either
of proper Besov space, see [92] for more details. Finally observe that, using
standard arguments, it is easy to prove that the Fractional Sobolev Spaces
employed in this section are reflexive; for further details on these issues see
Appendix A.2.1 and references therein.

In the following discussion < ·, · > will indicate the standard L2

inner product. Duality pairing, when needed, is explicitly indicated.

Proposition 6.1 (Cipolla and Durastante [81]; Lagrange Conditions
for the FADE). Using the notation of Chapter 6 let us define U � L2(Ω),
Y � Hα

0 (Ω) and W � Y′. The Lagrangian conditions (6.4) for Problem (6.6)
are expressed in weak form as


B(y , v) � F(v), ∀ v ∈ Y,
B̃(p , w) �< y − zd , w >, ∀w ∈ Y,
< p , h >� −λ < u , h >, ∀ h ∈ Y,

(6.8)

where u ∈ U, y ∈ Y and

B(y , v) � − al < RLDα
0,x y(x), RLDα

x ,1v(x) > +

− ar < RLDα
x ,1 y(x), RLDα

0,x v(x) > +

+ < b(x)y′(x) + c(x)y(x), v(x) >,

B̃(p , w) � − al < RLDα
0,x w(x), RLDα

x ,1p(x) > +

− ar < RLDα
x ,1w(x), RLDα

0,x p(x) > +

− < (b(x)p(x))′, w > + < c p , w >,

F(v) � < u , v > .

(6.9)

Proof. The variational formulation of (6.5) can be easily obtained
from [293, Theorem 1]. Taking an arbitrary v ∈ Y, the weak formulation
of e(y , u) � 0 can be interpreted as

e(y , u)v , B(y , v) − F(v) : Y → Y′. (6.10)

preconditioned fast solvers for some large linear systems 171

The FPDE admits a weak solution through the Lax–Milgram Theorem
because B is bilinear, continuous and coercive and F is continuous
(see [293, Theorem 1]). Therefore, we can express the Lagrangian for
this problem as

L(y , u , p) � J(y , u)− < p , e(y , u) >W′ ,W : Y × L
2(Ω) ×W′ → R.

We can now compute the Gâteaux derivative of L for any function
w ∈ Y (see [160, 237])

Ly(y , u , p)w �Jy(y , u)w− < p , ey(y , u)w >W′ ,W

� < y − zd , w > +al < RLDα
x ,1p , RLDα

0,x w >Y′ ,Y +

+ar < RLDα
0,x p , RLDα

x ,1w >Y′ ,Y + < (b(x)p(x))′,w >Y′ ,Y +

− < c p , w >�< y − zd , w > −B̃(p , w) � 0,

and thus we obtain,

Ly(y , u , p)w � 0 ⇔ B̃(p , w) �< y − zd , w > ∀w ∈ Y,

that again has a unique solution by the Lax–Milgram Theorem and [110,
Theorem 3.5]. At last we have to compute the Gâteaux derivative of L
respect to the variable u

Lu(y , u , p)h �λ < u , h > + < p , h >, ∀ h ∈ Y.

This completes the proof. �

Corollary 6.1 (Cipolla and Durastante [81]). The gradient for the objective
function f (u) from equation (6.2) for the Problem (6.6) reads as

∇ f (u) � Lu(y(u), u , p(u)) � p + λu , (6.11)

where p is the solution of the adjoint equation:


−a

(

r RLD2α
0,x + l RLD2α

x ,1

)

p(x) + . . .

. . . − d
dx (b(x)p(x)) + c(x)p(x) � y(x) − zd(x),

p(0) � p(1) � 0.

(6.12)

Proof. The characterization of the gradient of f (u) is straightforward,
see [160, p. 63]. Furthermore we have exchanged the fractional operators
in the bilinear part of (6.12), since the adjoint property for fractional
operators in L2 holds, see [251]. �

172 fabio durastante

6.1.2 The 2D Case: Riesz Space Fractional Diffusion

We treat now, in a similar way, the case of the two–dimensional Riesz
space fractional diffusion equation [225], that reads as


−Kx1

∂2α y

∂|x1 |2α
− Kx2

∂2β y

∂|x1 |2β
+ b · ∇y + c y � u , (x1 , x2) ∈ Ω,

y ≡ 0, (x1 , x2) ∈ ∂Ω,
(6.13)

where b ∈ C
1(Ω,R2), c ∈ C(Ω), u ∈ L2(Ω), Kx1 , Kx2 ≥ 0 and Kx1+Kx2 >

0, α, β ∈ (1/2, 1), Ω � [a , b] × [c , d]. Here the symmetric Riesz fractional
operator is defined as follows.

Definition 6.1. Given a function u(x1 , x2) and given 1/2 < µ ≤ 1 and
n − 1 < 2µ ≤ n, we define the symmetric Riesz derivative as,

∂2µu(x1 , x2)

∂|x1 |2µ
� −c2µ

(

RLD
2µ
a ,x1

+ RLD
2µ
x1 ,b

)

u(x1 , x2), c2µ �
1

2 cos(µπ)

and

RLD
2µ
a ,x u(x1 , x2) �

1

Γ(n − 2µ)

(

∂
∂x1

)n ∫ x1

a

u(ξ, x2)dξ

(x1 − ξ)2µ−n+1
,

RLD
µ
x ,b

u(x1 , x2) �
1

Γ(n − 2µ)

(

− ∂
∂x1

)n ∫ b

x1

u(ξ, x2)dξ

(ξ − x1)2µ−n+1
.

And analogously we can operate in the x2 direction.

Thus Problem (6.1) rewrites in this case as


min J(y , u) �

1

2
‖y − zd‖

2
2 +

λ
2
‖u‖2

2 ,

subject to − Kx1

∂2α y

∂|x1 |2α
− Kx2

∂2β y

∂|x2 |2β
+ b · ∇y + c y � u ,

y ≡ 0, (x1 , x2) ∈ ∂Ω.
(6.14)

Proposition 6.2 (Cipolla and Durastante [81]; Lagrange Conditions for
the Riesz space fractional diffusion). Using the notation of Chapter 6 let

us define U � L2(Ω), Y � Hα
0 (Ω) ∩ H

β
0 (Ω) and W � Y′. The Lagrangian

conditions (6.4) for Problem (6.14) are expressed in weak form as


B(y , v) � F(v), ∀ v ∈ Y,
B̃(p , w) �< y − zd , w >, ∀w ∈ Y,
< p , h >� −λ < u , h >, ∀ h ∈ Y,

(6.15)

preconditioned fast solvers for some large linear systems 173

where u ∈ U, y ∈ Y and setting Cx � Kx1 c2α and Cx2 � Kx2 c2β,

B(y , v) �Cx1

(

< RLDα
a ,x1

y , RLDα
x1 ,b

v > + < RLDα
x1 ,b

y , RLDα
a ,x1

v >
)

+ Cx2

(

< RLD
β
c ,x2

y , RLD
β
x2 ,d

v > + < RLD
β
x2 ,d

y , RLD
β
c ,x2

v >
)

+ < b · ∇y , v > + < c y , v >,

B̃(p , w) �Cx1

(

< RLDα
a ,x1

p , RLDα
x1 ,b

w > + < RLDα
x1 ,b

p , RLDα
a ,x1

w >
)

+ Cx2

(

< RLD
β
c ,x2

p , RLD
β
x2 ,d

w > + < RLD
β
x2 ,d

p , RLD
β
c ,x2

w >
)

− < ∇ · (bp), w > + < cp , w >,

F(v) � < u , v > .

Proof. Taking an arbitrary v ∈ Y the weak formulation [68] of (6.13) can
be interpreted as

e(y , u)v , B(y , v) − F(v) : Y → Y′.

The FPDE admits a weak solution through the Lax–Milgram Theorem
because B is bilinear, continuous and coercive (whenever c− 1/2∇ ·b ≥ 0
a.e. on Ω, see, e.g., [232]) and F is continuous in Ω, see [68, Theorem 2].
The Lagrangian for this problem is

L(y , u , p) � J(y , u)− < p , e(y , u) >W′ ,W : Y × L
2(Ω) × Y′ → R.

We can compute conditions (6.15) directly, using the fact that left and
right Riemann–Liouville fractional derivatives are one the adjoint of
the other ([68, Lemma 5]). More specifically we have

Ly(y , u , p)w �Jy(y , u)w− < p , ey(y , u)w >W′ ,W

� < y − zd , w > −Cx1

(

< RLDα
a ,x1

p , RLDα
x1 ,b

w >Y′ ,Y +

+ < RLDα
x1 ,b

p , RLDα
a ,x1

w >Y′ ,Y

)

+

− Cx2

(

< RLD
β
c ,x2

p , RLD
β
x2 ,d

w >Y′ ,Y +

+ < RLD
β
x2 ,d

p , RLD
β
c ,x2

w >Y′ ,Y

)

+

+ < ∇ · (bp), w >Y′ ,Y − < cp , w >

� < y − zd , w > −B̃(p , w) � 0,

and thus we obtain,

Ly(y , u , p)w � 0 ⇔ B̃(p , w) �< y − zd , w > ∀w ∈ Y,

174 fabio durastante

that again has a unique solution by the Lax–Milgram Theorem and [68,
Theorem 2] with c − 1/2∇ · b ≥ 0 a.e. on Ω. We obtain again the same
result as for the FADE case by considering the Gâteaux derivative of L
with respect to the variable u

Lu(y , u , p)h �λ < u , h > + < p , h >, ∀ h ∈ Y. �

Corollary 6.2 (Cipolla and Durastante [81]). The gradient for the objective
function f (u) from equation (6.2) for the Problem (6.14) reads as

∇ f (u) � Lu(y(u), u , p(u)) � p + λu , (6.16)

where p is the solution of the adjoint equation for x ∈ Ω

−Kx1

∂2αp

∂|x1 |2α
− Kx2

∂2βp

∂|x2 |2β
+ . . . (x1 , x2) ∈ Ω

. . . − ∇ · (pb) + cp � y − zd ,
p ≡ 0, (x1 , x2) ∈ ∂Ω.

(6.17)

Remark 6.2. Proposition 6.2 could have also been written for the nonsym-
metric case, i.e., for terms that are convex combination of Riemann–Liouville
fractional derivatives; analogous results to those in Proposition 6.1 could be
stated in this case.

6.1.3 The Semilinear Case

As a simple extension of the considered framework, we can focus on
the semilinear generalization of Problem (6.14)


min J(y , u) �

1

2
‖y − zd‖

2
2 +

λ
2
‖u‖2

2 ,

subject to − Kx1

∂2α y

∂|x1 |2α
− Kx2

∂2β y

∂|x2 |2β
+ b · ∇y + c yζ � u ,

y ≡ 0, (x1 , x2) ∈ ∂Ω.
(6.18)

where ζ ∈ N, b ∈ C
1(Ω,R2), c ∈ C(Ω), u ∈ L2(Ω), Kx1 , Kx2 ≥ 0 and

Kx1 + Kx2 > 0, α, β ∈ (1/2, 1), Ω � [a , b] × [c , d]. Observe that also the
semilinear generalization of the 1D case (6.6) could be recovered easily
by employing the subsequent results.

Proposition 6.3 (Cipolla and Durastante [81]; Lagrange Conditions for
the Riesz space semilinear fractional diffusion). Under the notation in

Chapter 6, let us define U � L2(Ω), Y � Hα
0 (Ω) ∩ H

β
0 (Ω) and W � Y′. The

Lagrangian conditions (6.4) for Problem (6.14) are expressed in weak form as


B(y , v) � F(v), ∀ v ∈ Y,
B̃(p , w) �< y − zd , w >, ∀w ∈ Y,
< p , h >� −λ < u , h >, ∀ h ∈ Y,

(6.19)

preconditioned fast solvers for some large linear systems 175

where u ∈ U, y ∈ Y and setting Cx � Kx1 c2α and Cx2 � Kx2 c2β,

B(y , v) �Cx1

(

< RLDα
a ,x1

y , RLDα
x1 ,b

v > + < RLDα
x1 ,b

y , RLDα
a ,x1

v >
)

+ Cx2

(

< RLD
β
c ,x2

y , RLD
β
x2 ,d

v > + < RLD
β
x2 ,d

y , RLD
β
c ,x2

v >
)

+ < b · ∇y , v > + < c yζ , v >,

B̃(p , w) �Cx1

(

< RLDα
a ,x1

p , RLDα
x1 ,b

w > + < RLDα
x1 ,b

p , RLDα
a ,x1

w >
)

+ Cx2

(

< RLD
β
c ,x2

p , RLD
β
x2 ,d

w > + < RLD
β
x2 ,d

p , RLD
β
c ,x2

w >
)

− < ∇ · (bp), w > + < ζc yζ−1p , w >,

F(v) � < u , v > .

Proof. The proof is obtained using the same techniques as in Proposi-
tion 6.2. For proving the existence of the solution of (6.18), it suffices
to consider the Browder–Minty Theorem [64, 237] instead of the Lax–
Milgram Theorem; moreover, we used the fact that fractional Sobolev
spaces are continuously embedded into L2ζ(Ω) spaces; see [92]. �

Corollary 6.3. The gradient for the objective function f (u) from equation (6.2)
for the Problem (6.18) reads as

∇ f (u) � Lu(y(u), u , p(u)) � p + λu , (6.20)

where p is the solution of the adjoint equation for x ∈ Ω


−Kx1

∂2αp

∂|x1 |2α
− Kx2

∂2βp

∂|x2 |2β
− ∇ · (pb) + ζc yζ−1p � y − zd ,

p ≡ 0.
(6.21)

Therefore, in Problem (6.19) we need to face a nonlinear state
equation while, by Corollary 6.3, we still need the solution of a linear
fractional differential adjoint equation, that now depends on the current
value of y.

6.2 Algorithms

In this section we discuss the finite difference discretization of both the
FADE (6.5) and the Riesz Fractional Diffusion equation (6.13) in conjunc-
tion with the optimization algorithms for the solution of the constrained
problem of equation (6.1). We will also treat the acceleration of the
solution routines of the FPDE inside the optimization algorithm, since
this determines substantially the cost of one step of the optimization
algorithm and of one step of the Line–Search routine. Indeed, this

176 fabio durastante

corresponds in reducing the cost needed for computing both f (xk) and
∇ f (xk), which represents the main cost per iteration of the considered
optimization algorithm; see Section 6.2.3. We stress that we are going
to use the finite difference discretization to use the standard Euclidean
scalar product in the optimization routine; see [237] for more details.

6.2.1 Discretization of the FPDEs

We are dealing with the finite difference discretization of fractional
Riemann–Liouville operators in space, therefore we are going to use
again the the right p–shifted Grünwald–Letnikov formula Definitions 5.11
and 5.12; see Appendix A.3.1 and [201].

Therefore, whenever a grid {xk}k � {a + kh}k is set on the domain
Ω � [a , b] with stepsize h � b−a/n, we can approximate any Riemann–
Liouville derivative of a suitably smooth function y(x). The parameter
p can be chosen again as p � 1 to optimize the performance as the
minimizer of |α − p/2| for 1 < α ≤ 2. Combining formulas (5.12)–(5.11)
with the standard finite difference schemes for ordinary equations,
we obtain the discretization of the full FADE (equation (6.5)). Let us
focus on the discretization of the fractional operator with homogeneous
Dirichlet boundary conditions, i.e., y(a) � y(b) � 0,

− 1

hα



ω1 ω0 0 . . . 0

ω2 ω1 ω0
. . .

...
...

. . .
. . .

. . . 0
...

. . . ω1 ω0

ωn−1 ω2 ω1





y1

y2

...

...
yn−1


�



u1

u2

...

...
un−1


,

which can be expressed in compact form as the Toeplitz matrix (Defini-
tion 2.4),

T(α)y � u. (6.22)

While for the right Riemann–Liouville derivative we have

− 1

hα



ω1 ω2 ωn−1

ω0 ω1
. . .

...

0
. . .

. . .
. . .

...
...

. . . ω0 ω1 ω2

0 . . . 0 ω0 ω1





y1

y2

...

...
yn−1


�



u1

u2

...

...
un−1


.

preconditioned fast solvers for some large linear systems 177

The latter can be expressed in compact form, using the same convention
as equation (6.22), as the Toeplitz matrix

TT
(α)y � u. (6.23)

For the ordinary part we obtain



c1
b1

2h

− b2

2h

. . .
. . .

. . . c3
bn−2

2h

− bn−1

2h cn−1





y1

y2

...
yn−1


�



u1

u2

...
un−1


,

that in matrix form reads as,

Ony � u. (6.24)

We can now assemble the full discretization for the FADE equation
assembling the relationships (6.22), (6.23) and (6.24) as,

Ay � f, with

A � a(lT(α) + rTT
(α)) + On ,

f � u.

Observe that from equations (6.22)–(6.23), we can also obtain the
building blocks for the discretization of the adjoint equation (6.12), we
only need to modify the part relative to the ordinary derivatives as,



c1 − b2

2h

b1

2h c2
. . .

. . .
. . . − bn−1

2h
bn−2

2h cn−1





y1

y2

...
yn−1


�



u1

u2

...
un−1


,

that in matrix form can be expressed as

O′
ny � u. (6.25)

As a last step, putting together relationships (6.22),(6.23) and (6.25), we
obtain the following expression for Problem (6.12) as

A′p � f′, with

A′
� a(rT(α) + lTT

(α)) + O′
n ,

f′ � y − zd .

178 fabio durastante

It is possible to treat the discretization of the Riesz space–fractional
differential equation (6.13) in complete analogy to the one dimensional
case, that is using the discretization of the Riemann–Liouville deriva-
tives and their relation with the Riesz derivative (see Definition 6.1
and the discussion in Appendix A.3.2). Otherwise, it is possible to use
the second order accurate fractional centered derivative scheme for Riesz
derivative from [220]; see again Appendix A.3.2 for the details. Coupling
the selected method with the usual finite difference scheme for the
convective and reactive terms, we obtain in both cases the discretiza-
tion of the state and adjoint equation (respectively equation (6.13) and
(6.17)) for the two–dimensional Riesz Space Fractional Diffusion equation.
In more details, such discretization is linked to the one dimensional
discretization through Kronecker sums, i.e.,

A � Kx1 (R
(α)
x1

⊗ Ix2) + Kx2 (Ix1 ⊗ R
(β)
x2

) + Bx1 (Tx1 ⊗ Ix2) + Bx2 (Ix1 ⊗ Tx2) + C,

where Ixi , for i � 1, 2, are the identity matrix relative to the grid on the xi

direction, R
(α)
x1

and R
(β)
x2

are the dense Toeplitz matrices associated with
the one dimensional fractional order derivatives in the two directions,
the Txi i � 1, 2, are the finite difference matrices for the convective terms
obtained with centered differences, {Bxi }i�1,2 and C are respectively the
evaluation of the functions b � (b(1) , b(2)) and c on the relative nodes of
the (i , j)–finite difference grid with Nx1 , Nx2 nodes and amplitude h , k
respectively. The discretization matrix A′ of the adjoint equation is then
obtained in this case simply by substituting the matrix related to the
convective terms B � Bx1(Tx1 ⊗ Ix2) + Bx2(Ix1 ⊗ Tx2), with the following
block matrix

B′ �



B1 J2

−J1 B2
. . .

. . .
. . . JNx1

−JNx1
−1 BNx1


,

where

B j �



0
b

(2)
j,2

2k

−
b

(2)
j,1

2k

. . .
. . .

. . .
. . .

b
(2)
j,Nx2

2k

−
b

(2)
j,Nx2−1

2k 0


, Jj �



b
(1)
j,1

2h 0 0 0

0
b

(1)
j,2

2h 0 0

0 0
. . . 0

0 0 0
b

(1)
j,Nx2

2h


.

Lastly, for facing the solution of the state equation in the semilinear
case, see Proposition 6.3, we need to solve a nonlinear equation each time.

preconditioned fast solvers for some large linear systems 179

The Jacobian can be computed easily, since the problem is semilinear, and
thus the Newton method appears to be a natural tool. Indeed, finding
the solution of the discrete semilinear state equation is equivalent to
solving

H(y) ≡
[
Kx1(R

(α)
x1
⊗ Ix2) + Kx2(Ix1 ⊗ R

(β)
x2
) + B

]
y + Cyζ − u � 0,

where the power of vectors is computed elementwise. Then, the Jacobian
is given by:

JH(y) � Kx1(R
(α)
x1
⊗ Ix2) + Kx2(Ix1 ⊗ R

(β)
x2
) + B + ζC diag(yζ−1). (6.26)

Finally, we also observe that the discretization matrix of the adjoint
equation varies at each step of the minimization process since it depends
on the current values of y. Thus, we have the following parametric
family of matrices

A′(y) � Kx1(R
(α)
x1
⊗ Ix2) + Kx2(Ix1 ⊗ R

(β)
x2
) + B′ + ζC diag(yζ−1) (6.27)

discretizing the adjoint equation.

6.2.2 Preconditioners for FPDEs

As we have discussed in Sections 5.1 and 5.1.1 the matrices generated
by the shifted Grünwald–Letnikov discretization and the fractional centered
derivative scheme for Riesz derivative share the same decay property
along the diagonals; see [35, 225].

Therefore, we are going to use the preconditioners from Section 5.2.1
which exploit the short–memory principle, i.e., the decaying of the en-
tries, in order to gain information on the inverse of the discretization
matrix. In this case, the procedure is used for discarding elements of
prescribed small modulus in the calculation of an approximate inverse
of the matrices A and A′. This technique will produce explicit precon-
ditioners for Krylov subspace methods called the approximate inverse
preconditioners; see, e.g., [15, 20, 31, 36].

Also in this case, we have set the focus on the incomplete biconjuga-
tion process from [36] since its left–looking/outer product formulation
permits to obtain sparser factors under suitable conditions. For algo-
rithmic issues regarding these computations we refer again to [19, 36,
61, 62] and to the discussion in Section 2.4, since we use again the
implementation in [84] based on Bridson’s outer product formulation.

Clearly, there exist many preconditioners developed for the solution
of linear FPDEs. Hence, in general, different valid choices could be used

180 fabio durastante

for different formulation of the FPDE constraints, e.g., in the case of
constant coefficient linear FPDEs with only fractional derivatives, one
can consider the proposals in [182], while for more general variable
coefficients linear FPDEs with only fractional derivatives one can
consider the proposals in [100, 221].

Observe that in our case we need to face both linear and semilinear
FPDEs with mixed type of derivatives, both fractional and classic so
we will use again the approximate inverse preconditioners (2.68) for the
solution of the linear systems with matrix A and A′ from Section 6.2.1,
i.e., for the numerical solution of the state and adjoint equations for our
Problem (6.1).

In the semilinear case instead, as seen at the end of Section 6.2.1,
we need to face two sequences of linear systems with varying matrices,
i.e., we have a sequence of matrices { JH(y

(k))}k≥0 from (6.26). The
latter sequence is generated for the solution of the state equation (6.18)
using the Newton method, and the sequence of matrices {A′(y(k))}k≥1

from (6.27), i.e., we are in the case depicted in Example 3.2. It is usually
expensive to rebuild a new preconditioner for each new matrix, while on
the other hand, reusing the same preconditioner cannot be appropriate
if the matrices in the sequences are very different. The update techniques
from Section 4.2 with its specialization from Section 5.2.2 (for updating
sequences of matrices coming from discretization of FPDEs) can be
applied also in this case; see also [15, 20, 31, 33]. In addition, the
techniques introduced in [15] can be applied in the case at hand for
adapting the updates for Newton–Krylov methods.

6.2.3 Optimization Routine: the L–BFGS Algorithm

The L–BFGS method, originally introduced in [193], continuously
updates the quasi–Newton matrix, approximation of the Hessian of
Problem (6.2), using a fixed limited amount of storage. At every step, the
oldest information contained in the matrix is discarded and replaced
by a new one with the aim of producing an up to date model of the
objective function, see [105, 193, 215] for further details.

It can be easily observed that the computational cost of the L–
BFGS algorithm can be divided into two parts, the O(Mn) flops of the
optimization procedure plus the cost required for the evaluation of
the function and the gradient. It is worth noticing that the Line-Search
step, performed with the More-Thuente cubic interpolation ([207]) and
satisfying the strong Wolfe conditions, could require more than one
evaluation of the function and the gradient. As it is clear from (6.11)
or (6.16), each of such evaluations requires the solution of two FPDEs,

preconditioned fast solvers for some large linear systems 181

and hence this turns out to be the dominating computational cost per
step for the L–BFGS. In our case this is done through the definition of
the following Matlab routine (in the non preconditioned case) for the
evaluation of f (xk) and ∇ f (xk):

function [f,g] = F(A,Aadj ,u,zd,lambda)

y = A\u; % Solution of the state equation

p = Aadj\(y-zd) % Solution of the adjoint equation

f = 0.5*(y-zd) '*(y-zd) + lambda /2*(u'*u);

g = lambda*u+p;

end

where for the variables we have used the same name employed in the
theoretical analysis.

The above observation fully justifies the approach adopted in [81]:
thus we are going to consider the speedup obtained by exploiting the
particular structure of systems (6.22) and (6.23). More specifically we
introduce a preconditioned Krylov iterative method instead of the direct
solver for the linear system, as discussed in Sections 6.2.2 and 6.3.2
and Chapter 5.

6.3 Numerical examples

We will divide this section into two different parts. The first one is
devoted to showing that the strategy described in Section 6.2 produces
a feasible solution for Problem (6.1), while the other will be focused on
showing the acceleration obtained with the proposed preconditioning
strategy for the linear systems, see Section 6.2.2.

The results have been obtained on a laptop running Linux with 8 Gb
memory and CPU Intel® Core™ i7-4710HQ CPU with clock 2.50 GHz,
while the GPU is an NVIDIA GeForce GTX 860M. The scalar code is
written and executed in Matlab R2016b, while for the GPU we use C++
with Cuda compilation tools, release 7.5, V7.5.17 and the CUSP library
v0.5.1 [84].

6.3.1 Constrained Optimization Results

Throughout this set of experiments, the discretization parameter N
will be set to N � 103. The L–BFGS algorithm options are set as in the
default Poblano settings, see [105, Table 1,2 and 4], and the limited
memory parameter is either M � 5, for the one dimensional case, either
M � 10, for the two dimensional one, see also the discussion on L–BFGS
algorithm from Section 6.2.3.

182 fabio durastante

Let us start from the solution of the Problem (6.6) with the following
choice of coefficients and desired state

a � 3, l � 0.8, r � 0.2, b(x) � 0, c(x) � 0, 2α � 1.3,

zd(x) � −x2(x − 1)2 sin(20πx).
(6.28)

In Figure 6.1 we compare the solution obtained with different values of
the regularization parameter λ. The error decreases sensibly with the
three values of λ � 10−3 , 10−5 , 10−9 and the retrieved solution becomes
closer to the desired state zd(x).

As second test, we consider the following choice of coefficients and
a non continuous desired state

a � 1, l � 0.2, r � 0.8, b(x) � 1 + 0.3 sin(20πx),

c(x) � 35 exp(−x2/2), 2α � 1.1,

zd(x) � H(x − 1/3) − H(x − 2/3),

(6.29)

where H(x) is the Heaviside step function [2]. In Figure 6.1 we com-
pare the solution obtained with different values of the regularization
parameter λ. The decrease in the error is smaller than the one of the
previous experiment with the three values of λ � 10−3 , 10−5 , 10−9, but
the latter has to be expected because the desired state zd(x) is indeed
discontinuous being the sum of the two Heaviside functions.

Finally, we consider a constrained problem with the Riesz space–
fractional diffusion equation (6.14), i.e., the following choice of coeffi-
cients for the equation (6.13)

Kx1 � Kx2 � 3, c(x1 , x2) � 0.5,

b � (2 + cos(π/3) cos(x1) sin(x2), 2 − sin(π/3) sin(x1) cos(x2)),
(6.30)

as values of the fractional order of differentiation 2α � 2β � 1.8 and
regularization parameter λ � 1e − 6 on the domain Ω � [0, 1]2. The
desired state is the two–dimensional version of the state (6.29), i.e.,

zd(x , y) � (H(x − 1/3) − H(x − 2/3))(H(y − 1/3) − H(y − 2/3)). (6.31)

A depiction of the obtained result is given in Figure 6.2.

6.3.2 Accelerating Convergence

The 1D Case: FADE. Let us consider a problem similar to the one
in equation (6.28), given the following choice of coefficients and desired
state:

a � 3, l � 0.8, r � 0.2, b(x) � 1/2x2
+ sin(x),

c(x) � 2 + exp(−x), 2α � 1.8, zd(x) � sin(10πx),
(6.32)

preconditioned fast solvers for some large linear systems 183

(a) λ � 10−3, ‖y − zd ‖2 � 8.87e − 04 (b) λ � 10−3, ‖y − zd ‖2 � 1.05e − 02

(c) λ � 10−5, ‖y − zd ‖2 � 6.07e − 04 (d) λ � 10−5, ‖y − zd ‖2 � 2.17e − 03

(e) λ � 10−9, ‖y − zd ‖2 � 4.97e − 07 (f) λ � 10−9, ‖y − zd ‖2 � 1.77e − 03

Figure 6.1. Left column: coefficients and desired state from equation (6.28).
Right column: coefficients and desired state from equation (6.29).

184 fabio durastante

Figure 6.2. Desired state (on the left) and result of the optimization procedure (on
the right) for Problem (6.14) with coefficients from equation (6.30), 2α � 2β � 1.8
and regularization parameter λ � 1e − 6.

setting the regularization parameter λ to λ � 1e − 9. As a solution
method for the linear systems, we use the BiCGstab method with a
tolerance on the residual of ε � 1e − 6 and a maximum number of
iteration MAXIT � 1000. We test both the solution with the unprecondi-
tioned method and the one preconditioned with the strategy described
in Section 6.2.2, that is the approximate inverse preconditioner with a
drop–tolerance of δ � 1e − 1 and δ � 1e − 2. The obtained results are
given in Table 6.1. We have reported both the mean number of BiCGstab
iterations needed for the solution of the linear systems associated to the
state and adjoint equation together with the total time needed for the
complete optimization routine. Both the number of iterations and the
execution time are sensibly reduced by this preconditioning approach.
Moreover, when the size of the matrices increases the unpreconditioned
BiCGstab does not reach convergence within the permitted maximum
number of iteration, so the symbol † is reported. If we do the comparison
with the solution with a direct method, namely the \ operator in Matlab,
we observe that the iterative method becomes more convenient as the
dimension increases.

The 2D Case: Riesz Space Fractional Diffusion. Let us start from the
same choice of coefficients from equation (6.30), with 2α � 2β � 1.8
and regularization parameter λ � 1e − 6, see also Figure 6.2. We test
again the acceleration obtained by applying the AINV preconditioner
from Section 6.2.2 in conjunction with the BiCGstab algorithm inside
the routine for the computation of f (u) and ∇ f (u). In both cases the

preconditioned fast solvers for some large linear systems 185

BiCGstab

n ♯Av ♯A′v Func. Eval. ‖∇ f ‖2 IT T(s)

100 10109 10770 59 9.25E-05 21 1.047
500 38997 40422 48 4.52E-04 16 9.0983
1000 † † † † † †
2500 † † † † † †
5000 † † † † † †

BiCGstab+ AINV(1e-1)

n ♯Av ♯A′v Func. Eval. ‖∇ f ‖2 IT T(s)

100 2220 2124 98 8.46E-05 34 0.2979
500 4221 4202 50 4.57E-04 16 1.2036
1000 4727 5047 34 9.15E-04 11 2.3365
2500 8676 10084 28 2.39E-03 8 6.4128
5000 † † † † † †

BiCGstab+ AINV(1e-2)

n ♯Av ♯A′v Func. Eval. ‖∇ f ‖2 IT T(s)

100 1161 1126 99 8.97E-05 35 0.2003
500 2339 2413 62 4.82E-04 22 0.8124
1000 2448 2442 35 9.30E-04 11 1.4517
2500 3699 4148 27 2.47E-03 8 4.0436
5000 7115 7678 27 3.434E-03 8 31.4463

Direct

n Func. Eval. ‖∇ f ‖2 IT T(s)

100 89 9.40E-05 31 0.0423
500 60 2.30E-04 20 0.2932
1000 35 9.24E-04 11 1.2968
2500 27 2.41E-03 8 22.5293
5000 27 3.42E-03 8 62.6766

Table 6.1. Solution of test problem with coefficient from equation (6.32). A †
is reported when BiCGstab iterated MAXIT times but did not converge. The
number of matrix vector products ♯Av and ♯A′v needed for solving, respectively,
the state and adjoint equations is given together with the overall solution time
for the procedure. In boldface we have reported the best time.

186 fabio durastante

method is set to achieve a tolerance on the residual of ε � 1e − 6, while
the threshold for the AINV is set either to 1e − 1 or to 1e − 2. Results are
given in Table 6.2. Both the number of matrix–vector product and the
time needed for the solving all the problems are reduced by the two
preconditioning routines. Moreover, as expected, the iterative approach
outperforms the direct solver.

As a last example, we consider the following choice of coefficients
for the equation (6.13)

Kx1 � 2, Kx2 � 1.5, c(x , y) � 1 + 0.5 cos(x1x2),

b � (β + 0.5 sin(4πx1) cos(5πx2), . . .

. . . α + 0.7 sin(7πx2) cos(4πx1)),

(6.33)

again on the domainΩ � [0, 1]2. The results are obtained for the desired
state

zd(x1 , x2) � sin(5πx1) sin(5πx2). (6.34)

The order of the fractional derivatives 2α, 2β, and the regularization
parameter λ are given in Tables 6.3 and 6.4, together with the perfor-
mances of the method. We can observe that the problem becomes more
difficult, both for the solution of the FPDEs and from the optimization
point of view, for the lower values of the order α and β, in accordance
with what observed in [35], since for lower orders decay in the matrices
becomes weaker. Nevertheless, the effect of the preconditioner still gives
good performances in reducing the number of matrix vector products
and thus the time needed for the solution of the problem.

The Semilinear Case. We consider the same choice of coefficients
of the linear case in (6.33), while selecting ζ � 3 for the semilinear
exponent in (6.18). We consider again the oscillating desired state
from Equation (6.34). The results are collected in Table 6.5 and are
indeed consistent with the ones from the other cases. The solution of
the semilinear equation is computed with the classic Newton–Krylov
method [168] with no line–search and preconditioned BiCGstab as
solver. We observe that the convergence of the Newton iteration does
not need any particular care for this case: it reaches a norm accuracy
of the residual of 1e − 6 with a number of iterations, which ranges
between 2 and 6, being initialized with the constant function y(0) ≡ 1.
For this reason we ruled out both the necessity of using an update of
the preconditioners, and the necessity of using a line–search.

Clearly, in the case of more complex nonlinearities, for which the
Newton method could require more than the few iterations needed
in this case, the possibility of updating the preconditioners gives a

p
r

e
c

o
n

d
it

io
n

e
d

f
a

s
t

s
o

lv
e
r

s
f
o

r
s
o

m
e

l
a

r
g

e
l
in

e
a

r
s
y

s
t
e
m

s
1

8
7

Preconditioner BiCGstab, 2α � 2β � 1.8, λ � 1e − 6 Direct

I ♯Av ♯A′v Func. Eval. ‖∇ f ‖2 IT T(s) IT T(s)

N

20 5001 5064 94 2.10e-04 24 0.4636 24 0.8023
40 8191 8740 76 1.27e-03 19 2.1135 19 10.62
60 11770 12626 78 2.15e-03 19 11.1975 19 96.41
80 14424 15449 74 4.91e-03 18 48.7579 18 409.24

AINV(1e-1) ♯Av ♯A′v Func. Eval. ‖∇ f ‖2 T(s) T(s)

N

20 2625 2792 94 2.04e-04 24 0.3013 24 0.8023
40 4185 4554 76 1.26e-03 19 1.2978 19 10.62
60 6825 6747 78 2.14e-03 19 7.9346 19 96.41
80 8222 7954 74 4.915e-03 18 28.6939 18 409.24

AINV(1e-2) ♯Av ♯A′v Func. Eval. ‖∇ f ‖2 T(s) T(s)

N

20 1138 1198 94 2.14e-04 24 0.1931 24 0.8023
40 1753 1849 76 1.27e-03 19 0.7884 19 10.62
60 2617 2701 78 2.15e-03 19 5.6228 19 96.41
80 3201 3292 74 4.91e-03 18 14.9991 18 409.24

Table 6.2. Results for the solution of Problem (6.14) with coefficients (6.30) and desired state (6.31). The number of matrix vector
products ♯Av and ♯A′v needed for solving, respectively, the state and adjoint equations is given together with the overall solution
time for the procedure. In boldface we have reported the best time.

1
8

8
f
a

b
io

d
u

r
a

s
t
a

n
t
e

Preconditioner BiCGstab, 2α � 1.3, 2β � 1.2, λ � 1e − 6 Direct

I ♯Av ♯A′v Func. Eval. ‖∇ f ‖2 IT T(s) IT T(s)

N

20 46476 73524 976 2.71e-04 26 4.9912 28 6.23
40 80834 130061 899 1.15e-03 27 25.4829 27 146.40
60 92609 158198 745 3.19e-03 24 116.5496 24 1669.18
80 108270 197247 710 5.49e-03 21 488.6336 21 6029.44

AINV(1e-1) ♯Av ♯A′v Func. Eval. ‖∇ f ‖2 IT T(s) IT T(s)

N

20 20832 41173 1155 2.99e-04 28 3.2712 28 6.23
40 36156 73400 976 1.21-03 27 16.1750 27 146.40
60 51793 109713 958 3.35e-03 24 89.8328 24 1669.18
80 66275 140296 933 5.70e-03 21 385.6470 21 6029.44

AINV(1e-2) ♯Av ♯A′v Func. Eval. ‖∇ f ‖2 IT T(s) IT T(s)

N

20 10216 12361 947 3.22e-04 28 1.7162 28 6.23
40 24771 38206 1497 1.40e-03 27 14.2141 27 146.40
60 20346 34563 836 2.99e-03 24 46.0631 24 1669.18
80 33924 59922 1079 4.37e-03 21 207.9970 21 6029.44

Table 6.3. Results for the solution of Problem (6.14) with coefficients (6.33) and desired state (6.34). The number of matrix vector
products ♯Av and ♯A′v needed for solving, respectively, the state and adjoint equations is given together with the overall solution
time for the procedure; IT denotes the number of iterations needed by the L–BFGS algorithm. In boldface we have reported the
best time.

p
r

e
c

o
n

d
it

io
n

e
d

f
a

s
t

s
o

lv
e
r

s
f
o

r
s
o

m
e

l
a

r
g

e
l
in

e
a

r
s
y

s
t
e
m

s
1

8
9

Preconditioner BiCGstab, 2α � 1.1, 2β � 1.8, λ � 1e − 9 Direct

I ♯Av ♯A′v Func. Eval. ‖∇ f ‖2 IT T(s) IT T(s)

N

20 34008 40346 380 3.02e-04 50 3.1414 52 2.67
40 49603 58500 245 1.22e-03 42 13.0047 44 32.82
60 81056 94216 237 3.02e-03 37 81.4658 36 335.74
80 121244 140609 233 5.21e-03 32 421.9529 32 1432.13

AINV(1e-1) ♯Av ♯A′v Func. Eval. ‖∇ f ‖2 IT T(s) IT T(s)

N

20 13098 12349 388 3.11e-04 52 1.3566 52 2.67
40 15854 14694 218 1.20e-03 44 4.8374 44 32.82
60 23496 24406 237 3.15e-03 37 30.9931 36 335.74
80 29293 29717 215 5.18e-03 32 112.3551 32 1432.13

AINV(1e-2) ♯Av ♯A′v Func. Eval. ‖∇ f ‖2 IT T(s) IT T(s)

N

20 5715 6036 382 3.03e-04 50 0.8399 52 2.67
40 7682 7841 228 1.15e-03 39 3.3400 44 32.82
60 13626 13914 238 3.18e-03 36 25.2802 36 335.74
80 18825 20112 219 5.21e-03 32 90.6548 32 1432.13

Table 6.4. Results for the solution of Problem (6.14) with coefficients (6.33) and desired state (6.34). The number of matrix vector
products ♯Av and ♯A′v needed for solving, respectively, the state and adjoint equations is given together with the overall solution
time for the procedure; IT denotes the number of iterations needed by the L–BFGS algorithm. In boldface we have reported the
best time.

1
9

0
f
a

b
io

d
u

r
a

s
t
a

n
t
e

Preconditioner BiCGstab, 2α � 1.8, 2β � 1.1, λ � 1e − 9 Direct

I ♯Av ♯A′v Func. Eval. ‖∇ f ‖2 IT T(s) IT T(s)

N

20 104556 124313 850 3.01E-04 71 22.8574 72 16.5558
40 311377 391300 1028 1.36E-03 91 208.1587 91 391.5316
60 407443 614429 846 2.63E-03 69 1484.9491 69 2933.0407
80 † † † † † † † > 6 h

AINV(1e-1) ♯Av ♯A′v Func. Eval. ‖∇ f ‖2 IT T(s) IT T(s)

N

20 25332 35125 863 3.03E-04 71 10.4899 72 16.5558
40 67634 131694 1021 1.36E-03 91 103.6186 91 391.5316
60 96839 230940 866 2.63E-03 69 620.5231 69 2933.0407
80 95508 247277 623 5.08E-03 58 1511.2287 † > 6 h

AINV(1e-2) ♯Av ♯A′v Func. Eval. ‖∇ f ‖2 IT T(s) IT T(s)

N

20 9571 13331 870 3.04E-04 71 6.1979 72 16.5558
40 23730 32888 1042 1.35E-03 91 54.4773 91 391.5316
60 29274 52081 862 2.63E-03 69 291.2442 69 2933.0407
80 30957 56806 623 5.08E-03 58 633.7291 † > 6 h

Table 6.5. Results for the solution of Problem (6.18) with coefficients (6.33), with ζ � 3 and desired state (6.34). The number of
matrix vector products ♯Av and ♯A′v needed for solving, respectively, the state and adjoint equations is given together with the
overall solution time for the procedure; IT denotes the number of iterations needed by the L–BFGS algorithm. In boldface we
have reported the best time.

preconditioned fast solvers for some large linear systems 191

further acceleration to the overall solution time; see, e.g., the numerical
examples in [15, 33, 35].

Remark 6.3. We also observe that the number of L–BFGS iterations decreases
within respect to the refinement of the grid, i.e., finer grids correspond to fewer
iterations and fewer function evaluations, see Tables 6.1, 6.2, 6.3 and 6.5.
This has to be expected, since to finer grids correspond higher accuracy in
the computation of both f and ∇ f . On the other hand, when λ decreases the
number of L–BFGS iterations grows accordingly.

“If there is one thing in mathematics that
fascinates me more than anything else (and
doubtless always has), it is neither number
nor size, but always form. And among
the thousand-and-one faces whereby form
chooses to reveal itself to us, the one that
fascinates me more than any other and
continues to fascinate me, is the structure
hidden in mathematical things”
A. Grothendieck, Recoltes et semailles, réflexions et

témoignage sur un passé de mathématicien

II

Toeplitz–Like
Structure and

Preconditioners

7

Optimizing a Multigrid Runge–Kutta Smoother

The solution of unsteady viscous flow problems is of crucial importance
in fluid dynamics. In [32] we studied the numerical solution of an
unsteady flow problem, following the approach by Birken [45]. The
latter uses a multigrid strategy with a special type of smoother of Runge–
Kutta type, which is designed to be parallel and adapted to the problem.
We recall that such problems have gained increasing attention in the last
fifteen years due, probably, to achievements regarding the steady state
case. We refer to the work by Caughey and Jameson [74], where it is
shown that a steady two dimensional flow around airfoils can be treated
in a few seconds on a PC, by using a very limited number (at most
five) multigrid steps. The unsteady case is substantially more difficult
and the multigrid strategy tuned on the steady state case deteriorates
dramatically when moving to the unsteady state setting. To this end, see
the papers [217, 218], in which a coarsening that “follows” the flow is
used, thus producing flow related aggregates, or the proposals [43, 145,
294], in which multigrid solvers for the convection–diffusion equation
are investigated, both on the smoothing and on the coarsening sides.

As already mentioned, in the constant coefficient case this issue is
considered in [45], with the use of a specific class of smoothers based on
explicit Runge-Kutta methods, which show a low storage requirement
and scale well in parallel. The tuning of a small number of parameters
makes the whole strategy very fast and efficient.

Inspired by the strategies in [45, 281], where the solution of PDEs
with constant coefficients is considered, in this chapter, we propose
a generalization useful for variable coefficient convection-diffusion
linear PDEs. This generalization requires different strategies than in, e.g,
[47], while we take inspiration from the approach in [37]. In particular,
the theory of Generalized Locally Toeplitz matrix sequences (GLT)
from Section 2.2.1 is used, which can be viewed as a generalization of the
Local Fourier Analysis in which variable coefficients, irregular domains,

196 fabio durastante

nonconstant time or space stepping can be taken into account [254, 255].
In particular, for matrix sequences coming from the approximation
by local methods (finite differences, finite elements, discontinuous
Galerkin, isogeometric analysis etc.), there exists a function, often called
symbol, constructed by using the approximation method and the data of
the problem (variable coefficients, domain, geometry), which describes
the global behavior of the singular values of the resulting matrices
and also the standard eigenvalues, under additional assumptions. We
refer the reader to [14, 98, 101, 123, 254] and references therein for the
application of the GLT theory to approximation methods for PDEs
using finite differences, finite elements, discontinuous Galerkin and
isogeometric analysis. We need such tools both for performing a spectral
analysis of the matrices of the underlying problem and for building
our acceleration technique, generalizing the results in [45]. In addition,
as an expected but new byproduct, this contribution represents the
first application, to the best of our knowledge, of the GLT theory to a
discretization of PDEs by using finite volumes.

The remaining part of this chapter is organized as follows. In Sec-
tion 7.1 a spectral analysis of the underlying sequence of matrices is
performed, by using tools taken from the theory of GLT sequences;
see Section 2.2.1. In Section 7.2 the proposed multigrid accelerator is
introduced, by employing a Runge–Kutta smoother with coefficients
optimized over the matrix spectrum, asymptotically described in Sec-
tion 7.1. The setting of the classical geometric multigrid is used here.
Nevertheless, a great part of the analysis can be extended directly to be
applied to the algebraic multigrid case as well.

The optimized algorithms we propose are tested on a linear variable
coefficient 2D convection–diffusion initial-boundary value problem.
The aim is to show that the framework of GLT matrix sequences permits
to extend the results obtained in [45, 148] for variable coefficients.

7.1 The Model Problems and the GLT Spectral Analysis

The section is divided into four interconnected parts stemming from Sec-
tion 2.2.1 in which we defined Toeplitz and circulant matrices, and we
introduced the GLT matrix sequences and their main features. In Sec-
tion 7.1.1 we introduce the 1D model problem, its basic finite volume
approximation, and we study the spectral properties of the resulting
matrix sequence in the GLT setting. In Section 7.1.2 we consider 2D
problems. In Section 7.1.3 we study other discretizations. Finally, in
Section 7.1.4 we include a convection term in the convection–diffusion
model considered in Section 7.1.1.

preconditioned fast solvers for some large linear systems 197

7.1.1 The 1D Model Problem

We start by considering the solution of the one dimensional in space lin-
ear transport equation, with variable coefficients and periodic boundary
conditions, given by

{

ut + (q(x)u(x , t))′ � 0, x ∈ (α, β), q(x) > 0∀ x ∈ [α, β],
u(α, t) � u(β, t), ∀ t ≥ 0.

(7.1)

Since we want to make use of the GLT theory introduced in Section 2.2.1
and, in particular, of Definition 2.11, we define the following change of
variables

a(x) � q(y(x)), y(x) � α + (β − α)x ,
if we set the grid for the discretization over the domain [α, β] with n
grid points, i.e., ∆x � (β − α)/(n − 1), then we obtain the following
discretization matrix for the finite volume scheme


u1 − un � 0,
a j+1/2u j+1/2 − a j−1/2u j−1/2

∆x
� 0, j � 2, . . . , n.

⇒

⇒ Bn �



a1/2 0 . . . −a1/2

−a3/2 a5/2

. . .
. . .

−an−1/2 an+1/2


.

Observe that in matrix form we obtain the entries related to the boundary
values multiplied by a1/2. In this way we have the same solution for the
problem and the following semi–discrete formulation,

ut +
1

∆x
Bnu � 0, (7.2)

and, by discretizing it by implicit Euler method with time step ∆t, we
obtain the fully discretized system

Anu(k+1)
� u(k) , where An � I +

∆t

∆x
Bn , k � 0, 1, (7.3)

If a(x) � 1 ∀ x ∈ [0, 1], then the matrix Bn is the circulant matrix
formed as Tn(1−exp(−iθ))+e1eT

n , e j being the jth vector of the canonical
basis ofRn , and with Bn having as eigenvalues the function 1−exp(−iθ)
evaluated at

2π j

n
, j � 0, . . . , n − 1.

198 fabio durastante

As a consequence the eigenvalues of An are given by

λn

(

2π j

n

)

,

with λn(θ) � 1 +
∆t
∆x (1 − exp(−iθ)).

In the variable coefficient case this is not true anymore, see for
example Figure 7.1, and the theory of GLT sequences can help, at least
for the singular values, since the matrices are highly non–Hermitian.

0 2 4 6 8 10 12 14 16 18 20
−10

−8

−6

−4

−2

0

2

4

6

8

10

Eigevanlues of the Problem

Variable Coefficient
Constant Coefficient

Figure 7.1. Distribution of the eigenvalues of A for the cases a(x) � 1 and a
generic a(x).

Our aim is to prove that the sequence of matrices {Bn}n obeys
the diagram below, where n − 1 is the number of discretization cells.
Therefore, we set n grid points, and get the function g, the measurable
function that represents the distribution of the singular values for the
generic matrix of the sequence {Bn}n . See Definition 2.6 and property
GLT5 from Proposition 2.9. Then, ∼σ means “having as asymptotic
singular value distribution like”(Definition 2.6).

{{Bn ,m}n}m {Bn}n

gm g

m → +∞

m → +∞, a.e.

∼
σ

∼
σ (7.4)

preconditioned fast solvers for some large linear systems 199

Proposition 7.1 (Bertaccini, Donatelli, Durastante, and Serra-Capizzano
[32]). {Bn}n is an LT sequence in the sense of Definition 2.11 for the kernel

κ(x , θ) � a(x)(1 − exp(−iθ))

if a(x) is continuous. Moreover the functions c(m), nm , and ω(m) can be
chosen as

c(m) �
1

m
, nm � m2

+ m , and ω(m) � 2ωa(1/m),

where ωa(·) is the modulus of continuity of the function a.

Proof. We start building the matrices Rn ,m for our case. Without loss of
generality we suppose that we are working with an m such that m |n.
Then, we split the generic matrix Bn ∈ Rn×n into m blocks of size n

m × n
m ,

Bn �



S1

∗

∗
S2

∗
. . .

∗
Sm



� Bn ,m + Rn ,m + Nn ,m , (7.5)

we set the matrix Rn ,m as the matrix built from the entries of the previous
step of the decomposition, denoted by a “∗” in (7.5). In this way we find

Rank(Rn ,m) � m + 1 ≤ n

m
� c(m)n , ∀n ≥ nm � m2

+ m , (7.6)

and thus, c(m) � 1
m → 0.

Let us observe that the generic block S j for j ≥ 1 is made up from the

evaluation of the function a(x)over the points
{
zi �

i+1/2
n :

j−1
m < zi <

j
m

}
.

Thus, we can write

S j � a(j/m)T n−1
m
(1 − exp(−iθ)) + E

(j)
n ,m , ∀j ≥ 1,

where E
(j)
n ,m �


α
(j)

1

α
(j)

2 α
(j)

3
. . .

. . .


.

(7.7)

200 fabio durastante

By the continuity of the function a(x), we can bound each entry of the

block E
(j)
n ,m as

|α
(j)

i
| ≤ sup

t≤1/m

|a(t) − a(i)| � ωa(1/m)
m→∞−→ 0.

In this way we write the two sequences of matrices {Bn ,m} and
{Nn ,m} as

Bn ,m � blockdiag
(

a(1/m)T n−1
m
(1 − exp(−iθ)), . . .

. . . , a(1)T n−1
m
(1 − exp(−iθ))

)

,

Nn ,m � blockdiag(E
(1)
n ,m , . . . , E

(m)
n ,m).

(7.8)

Moreover we have

‖Nn ,m‖ ≤ ‖Nn ,m‖1 ≤ 2ωa(1/m)
m→∞−→ 0,

and the sequence of matrices {Bn}n is a LT sequence (Definition 2.11).
�

Proposition 7.2 (Bertaccini, Donatelli, Durastante, and Serra-Capizzano
[32]). For any m, the matrix sequence {{Bn ,m}n}m in (7.8) is distributed in
the sense of the singular values as the function

gm(x , θ) �am(x)
!
1 − exp(−iθ)

�
,

where am(x) �

m
∑

j�1

a(j/m)χ[j/m ,(j+1)/m](x),

where D � [0, 1] × [−π, π] (see Definition 2.6) and χ[j/m ,(j+1)/m](x) is the
characteristic function of the set [j/m , (j + 1)/m].

Proof. Let F be a generic Cc(R
+

0). We have

lim
n→+∞

m
∑

j�1

F(σ j(Bn ,m))

n
� lim

n→+∞
1

m

m
∑

j�1

n/m
∑

k�1

F
(����a

(

j
m

)

(

1 − exp
(

−i kπ
n/m+1

)) ����
)

n/m

(

ν �
n

m

)

99K� lim
ν→+∞

m
∑

j�1

1

m

ν
∑

k�1

F
(����a

(

j
m

)

(

1 − exp
(

−i kπ
ν+1

)) ����
)

ν
.

preconditioned fast solvers for some large linear systems 201

Then, by using the singular values distribution results for the product of
diagonal and Toeplitz matrices and the overall block-diagonal structure
of the matrix, we obtain that the latter displayed quantity coincides
with

1

m

m
∑

j�1

1

2π

∫ π

−π
F

(�����a
(

j

m

)

(1 − exp(−iθ))
�����
)

dθ

�
1

2π

∫ π

−π

∫ 1

0

F
!�

am(x)(1 − exp(−iθ))
��

dθ dx. �

Proposition 7.3 (Bertaccini, Donatelli, Durastante, and Serra-Capizzano
[32]). Given Bn as in Proposition 7.1, given Bn ,m as in (7.8), considered

g(x , θ) � am(x)
!
1 − exp(−iθ)

�
as in Proposition 7.2 and g(x , θ) � a(x)

!
1 − exp(−iθ)

�
, the commuting

diagram in (7.4) holds true.

Proof. The lower horizontal relation in (7.4) is clear since

gm(x , θ) � am(x)
!
1 − exp(−iθ)

� m→+∞−→
m→+∞−→ g(x , θ) � a(x)

!
1 − exp(−iθ)

�
a.e. .

(7.9)

The upper horizontal relation in (7.4) amounts in claiming that
{{Bn ,m}n}m is an approximating class of sequences for {Bn}n , the
latter being proved in Proposition 7.1. Finally, the left vertical relation
is proven in Proposition 7.2, while the right one follows from Proposi-
tion 7.1, because, by definition, any LT matrix sequence is a GLT matrix
sequence with the same symbol and, by item GLT1, the GLT symbol is
also the singular value distribution function. �

In the previous proposition we have proved the commuting diagram
described in (7.4) and in particular the relation {Bn}n ∼σ g. Now we
show as the machinery contained in items GLT1-GLT5 can be used for
computing the singular value distribution for {An}n .

We first assume that the ratio between the step sizes∆t,∆x coincides
with the constant c, or it tends to c. Hence by item GLT3, {In}n and
{ ∆t
∆x In}n are GLT sequences with constant symbols 1 and c, respectively.

Then using item GLT4 (that is the ∗-algebra structure of the GLT
sequences), we deduce that { ∆t

∆x Bn}n is a GLT sequence with symbol
c g and finally, again by item GLT4 and since An � In +

∆t
∆x Bn , we infer

that {An}n is a new GLT sequence with symbol

202 fabio durastante

λ(x , θ) � 1 + c g(x , θ) � 1 + ca(x)
!
1 − exp(−iθ)

�
. (7.10)

In the style of [45], to proceed with the analysis of the model problem
and define the smoother, we use a dual time stepping approach to solve
the equation (7.3). In this way we obtain a hyperbolic equation with the
addition of the pseudo time t∗

{

ut∗ � u(k) − An u(t∗),
u(t∗0) � u(k).

(7.11)

Therefore, we have two different discretizations of the model problem.
If we are interested in the steady state solutions, then we work with the
discretization (7.3). On the other hand, for unsteady problems, we need
to work with the dual time stepping approach in equation (7.11).

7.1.2 The 2D model problem

Let us consider the 2D version of equation (7.1) with periodic boundary
conditions on Ω � Q × T � [xmin , xmax] × [ymin , ymax] × [tmin , tmax],



∂u(x , y , t)

∂t
+

∂a(x)u(x , y , t)

∂x
+ . . . (x , y) ∈ Q ,

. . . +
∂b(y)u(x ,y ,t)

∂y � 0, t ∈ T ,

u(xmin , y , t) � u(xmax , y , t), y ∈ ∂Ω,
u(x , ymin , t) � u(x , ymax , t), x ∈ ∂Ω,
u(x , y , 0) � u0(x , y).

(7.12)

The aim is to use it as a step to get the advection-diffusion equation.
We discretize (7.12) over a grid of n1 elements on the x direction and
n2 elements over the y direction, respectively, using backward differences
of order 1. We prefer to introduce numerical diffusion errors instead
of the numerical dispersion we would have with centered schemes1.
As a consequence, in semi-discrete form for i � 2, . . . , n1 − 1, and
j � 1, . . . , n2 − 1, we find

ut +
ai ui , j − ai−1ui−1, j

∆x
+

b j ui , j − b j−1ui , j−1

∆y
� 0. (7.13)

1 Note, however, that the spectral analysis, with appropriate modifications with respect to
the Fourier symbol of the underlying schemes, remains valid even if we decide to use
centered differences. See [240] for diffusive/dispersive behaviour of these schemes.

preconditioned fast solvers for some large linear systems 203

By using a lexicographic ordering, we take advantage of the Kronecker
product representation to write the matrix of the semidiscretized
problem, without boundary conditions for n � (n1 , n2), that is

Bn � Ta
n1
(1 − exp(−iθ)) ⊗ In2 + In1 ⊗ Tb

n2
(1 − exp(−iθ)). (7.14)

In this way, after we have imposed periodic boundary conditions, we
get the semidiscrete equation

ut � −Bnu(t). (7.15)

To fully discretize this equation we consider the Crank–Nicolson method
with time step ∆t at time tk+1:

(2In1n2 +∆tBn)u
(k+1)

� (2In1n2 −∆tBn)u
(k) , An � 2In1n2 +∆tBn . (7.16)

Note that in order to advance in time, we need to solve a sequence
of linear systems with matrices An . By using the characterization
for the eigenvalues of the Kronecker sum of two matrices (see, e.g.,
[181, Theorem 13.16]) and the results for GLT sequences of matrices,
illustrated in (7.4), we derive the {An}n distribution in the sense of the
singular values by writing the quantity to optimize as

λ(x , y , θ1 , θ2) �2 +
∆t

∆x
a(x)(1 − exp(−iθ1)) + . . .

. . . +
∆t

∆y
b(y)(1 − exp(−iθ2)).

(7.17)

To proceed with the analysis of the 2D model problem, as for the 1D
case, we use again dual–time stepping procedure for equation (7.16), with
a fictitious time step ∆t∗.

7.1.3 Further Discretizations

By means of Propositions 7.1 and 7.2 we can obtain information on the
spectrum of the matrix Bn ,m for the various finite difference stencils.
We use the finite difference scheme for

∂a(x)u

∂x

given by
a j u j − a j−1u j−1

∆x
,

or
3a j u j − 4a j−1u j−1 + u j−2

2∆x
,

or
2a j+1u j+1 + 3a j u j − 6a j−1u j−1 + u j−2

6∆x
.

(7.18)

204 fabio durastante

By denoting with f (θ) their symbol we have

f (θ) �
1 − exp(−iθ)

∆x
,

or f (θ) �
3 − 4 exp(−iθ) + exp(−2iθ)

2∆x

or f (θ) �
3 + 2 exp(iθ) − 6 exp(−iθ) + exp(−2iθ)

6∆x
.

We restate Proposition 7.3 as

Proposition 7.4. The sequence of matrices {Bn}n related to one of the
discretizations proposed in (7.18) is a GLT sequence in the sense of Defini-
tion 2.12 for the kernel κ(x , θ) � a(x) f (θ), if a(x) is continuous and f (θ) is
the related Fourier symbol. Moreover, the function c(m) and ω(m) are such
that c(m) � m + 1 and ω(m) � 2ωa(1/m), where ωa(·) is the modulus of
continuity of the function a.

By using the latter statements, we can give distribution results, also
in dimensions greater than one as for the 2D case in the previous
section.

7.1.4 The Convection-Diffusion Equation

Let us consider a second order centered finite difference discretization
for the complete convection–diffusion equation model problem

∂u(x , y , t)

∂t
+

∂a(x)u(x , y , t)

∂x
+

∂b(y)u(x , y , t)

∂y
�

∂
∂x

(

κ1(x)
∂u(x , y , t)

∂x

)

+
∂
∂y

(

κ2(y)
∂u(x , y , t)

∂y

)

,

(7.19)

where (x , y) ∈ [xmin , xmax] × [ymin , ymax] with initial and boundary
conditions. By using Proposition 7.4 we deduce that {Bn}n is a GLT
sequence. Since it shows a negligible non–Hermitian part, by using item
GLT2, we infer that the GLT symbol represents not only the singular
value distribution but also the eigenvalue distribution. Hence, for the
sequence associated to the discretization matrix in equation (7.19), we
have

{Bn}n ∼λ k2(x , y , θ1 , θ2), with

k2(x , y , θ1 , θ2) �κ1(x) f2(θ1) + κ2(y) f2(θ2),

where f1(·) and f2(·) are the Fourier symbols of the scheme used for
the discretization of the diffusive terms. By using the standard 5 point

preconditioned fast solvers for some large linear systems 205

stencil we have f1(θ) � f2(θ) � 2 − 2 cos(θ). We observe that we are
showing the asymptotic behavior and hence the terms related to the
first order derivatives are not present: this explains the reason why the
symbol k2(x , y , θ1 , θ2) does not contain the weight functions a(x) and
b(y) (see also the following remark).

Remark 7.1. We stress that here the asymptotic behavior of the spectra of the
matrices is potentially less interesting for us than the spectral information
computed for large or very large but viable values of the discretization parame-
ters. In view of this, we prefer to avoid normalization of the symbol as in [132,
Theorem 3.4] or in [127, Theorem 3.3]. Otherwise, important information
about the advection term can be not visible anymore. Note that in the above
mentioned references the focus was on the asymptotic properties of the spectra
and in view of this, the symbol is observed to be asymptotically influenced only
by the higher order derivative, i.e., κ1(x , y , θ1 , θ2) ≈ 0, or, more precisely,
Z ∼λ κ1(x , θ) � 0 because ‖Z‖2 ≤ C/n as n → +∞. See also [126].

As a consequence of the remark above and of the use of a multigrid
algorithm (and therefore using discretizations coarser than the starting
one), we need to consider also lower order terms and step sizes in the
sequel.

7.2 The Optimized Multigrid Preconditioner

Let us build a multigrid preconditioner to deal with the numerical
solution of the linear systems generated by the discretizations described
in previous sections.

In particular we focus on applying our multigrid preconditioners for
Krylov subspace methods like GMRES(m) [249] and for BiCGstab [285],
as described in Section 2.3.

To focus on the building of the various step of our multigrid pre-
conditioner, we remind the construction of the standard multigrid in
Algorithm 2.16, with V–cycle.

7.2.1 Runge-Kutta Smoothers

The main target of our new optimized multigrid algorithm, in the spirit
of [45], is the construction of a smoother with an amplification factor
that, at each level, is tuned on the spectral properties of the underlying
matrices. To this end, we focus on the use of an explicit Runge–Kutta
method. The final goal is the efficient solution of 2D variable coefficients
convection-diffusion problems (7.19). Moreover, to make our results
comparable with the one in [45], we also consider the 1D case.

206 fabio durastante

There exist different formulations of the s-stage explicit Runge-Kutta
methods that can be used as smoothers for multigrid algorithms.

As a first choice we start following [12, 45, 270, 281]. We select as
a smoother an explicit multistage Runge-Kutta method written for the
generic IVP in the form ut � G(u), un � u(tn):


u(0)

� un ,
u(j)

� un + α j∆t∗G(u(j−1)), j � 1, . . . , s − 1,
un+1 � un + ∆t∗G(u(s−1)),

(7.20)

where ∆t∗ ∈ R is a free parameter, a sort of pseudo time step used to
control the smoothing and α j ∈ [0, 1]. In our case we deal with a linear
problem for which the dynamic G(·) of the IVP is given by G(u) � Au.
The application of one step of the explicit s-stage Runge-Kutta method
can be represented by using the following expression using the stability
polynomial Ps(z)

un+1 � Ps(−∆t∗A)un .

We use the Runge–Kutta scheme as a smoother. Thus we need an
effective damping of the components of the error. Let us suppose that
us is the solution to the IVP ut � G(u) computed with the Runge–Kutta
method with s-stages (7.20) after some step, and let us also suppose that
u(t) is the true solution to ut � G(u) � Au + b. We define the error at
time t as e(t) � u(t)−us . By subtracting the two equations us ,t � G(us)
and ut � G(u), we deducet that the error satisfies the error equation

de

dt
� Ae, ⇒e(n+1)

� Pe(n) ,

⇒P � (I + α1∆tA(1 + α2∆tA(1 + . . .))).

If we consider the spectral decomposition of A, or in the non symmetric
case, its singular values, then we obtain that the amplification of the
jth mode of the error is given by |Ps(−∆t∗λ(x , θ))|. To have an effective
damping of the error we need to optimize the quantity

����Ps

(

−∆t∗ − ∆t∗∆t

∆x
a(x)

!
1 − exp(−iθ)

�) ���� �����Ps

(

−∆t∗ − ∆t∗∆t

∆x
a(x) +

∆t∗∆t

∆x
a(x) exp(−iθ)

) ���� .
(7.21)

By defining

c �
∆t∗∆t

∆x
, r �

∆t

∆x
,

preconditioned fast solvers for some large linear systems 207

we obtain that (7.21) is given by

����Ps

(

− c

r
− c a(x) + c a(x) exp(−iθ)

) ���� .
In view of this, we define

z(θ, c , x; r) � − c

r
− c a(x)(1 − exp(−iθ))

where |Ps(z)| is a function that can be optimized only for the values of
θ, c and x, with θ ∈ [π/2, 3π/2]. Given the standard interpolation rules
from Section 7.2.2, since on the coarse grid we can represent functions
with θ ∈ [−π/2, π/2], we optimize the smoother in the complementary
set in the reference interval, c ∈ [0, 1] and x ∈ [xmin , xmax].

In general, for a generic symbol f (θ) we can write

z(θ, c , x; r) � − c

r
− c a(x) f (θ),

that in 2D becomes

z(θ1 , θ2 , c , x , y; r) � − c

r
− c a(x) f (θ1) − c b(y) f (θ2).

We can now consider the polynomials P2(z), P3(z) and P4(z) for the
Runge–Kutta methods with stages 2,3 and 4, that are

P2(z) � 1 + z + α1z2 ,

P3(z) � 1 + z + α2z2
+ α1α2z3 ,

P4(z) � 1 + z + α3z2
+ α3α2z3

+ α1α2α3z4 ,

and minimize the amplification factor by working on

min
c ,Ps

max
(|θ|,x)∈[π/2,3π/2]×[xmin ,xmax]

|Ps(z(θ, c , x; r)))|2 . (7.22)

In our multigrid framework, the quantity a(x)/∆x changes at each
coarser discretization level, while ∆t is fixed. Then, our optimization
procedure for the pseudo time step ∆t∗ on each grid level depends both
on the ratio c �

∆t∗∆t
∆x and on the values of the function a on its grid. In

this way, the link between the pseudo time step and the CFL condition
is exploited at each discretization level of the multigrid algorithm, i.e.,
we are optimizing the smoother at each level of the algorithm.

Remark 7.2. We are using a small number of steps for the Runge–Kutta
algorithm, thus we do not expect a zero coefficient from the optimization

208 fabio durastante

procedure. Nevertheless, this negative event is possible as it can be seen from
the definition of the stability polynomial Ps(z)

Ps(z) � 1 +

s
∑

l�1

*,
s

∏

i�s−l+1

αi
+- z l

� 1 +

s
∑

l�1

βl z
l . (7.23)

If ∃l < s such that βl � 0 then ∀ k ∈ {l + 1, . . . ,m} we would find βk � 0.

In light of the previous Remark 7.2, we want to stress that this kind
of procedure is feasible also for other formulations of the Runge–Kutta
algorithms.

Among them, following the proposal in [148], we consider the
periodic and non stationary formulation and the split formulation.

We begin with the periodic and non stationary case. Let us consider
the following s-stage algorithm



u(0)
� un ,

v(0)
� ∆t∗rn � ∆t∗(Aun − b),

u(1)
� u(0) − α0v(0) ,

v(l)
� −∆t∗Av(l−1) ,

u(l+1)
� u(l) − αl+1v(l) , l � 1, . . . , s − 1,

un+1 � u(s) ,

(7.24)

for ∆t∗ ∈ R, from which we obtain the stability polynomial given by

P′s(z) � 1 +

s
∑

l�1

αl z
l . (7.25)

Observe that if we work with the same auxiliary time step as the other
formulation, then the αis in (7.25) have the same values as the βis in
equation (7.23).

Then, we consider the formulation based on a splitting of the
matrix of the linear system. We consider the splitting of the matrix
An � B + C imposing that B and C have the same eigenvectors basis as
A. In this way, we can split the eigenvalues λi of the matrix A in the
sum of λi ,B and λi ,C , being, respectively, the eigenvalues of the matrices
B and C, for i � 1, . . . , n.

preconditioned fast solvers for some large linear systems 209

Assuming this, we can formulate the algorithm as



u(0)
� un ,

v(0)
� ∆t∗rn � ∆t∗(Aun − b),

u(1)
� u(0) − α1v(0) ,

v(B,l)
� −∆t∗Bv(0) ,

v(C,l)
� −∆t∗Cv(0) ,

u(l+1)
� u(l) − αB,l+1v(B,l) − αC,l+1v(C,l) , l � 1, . . . , s − 1,

un+1 � u(s) ,

(7.26)

for ∆t∗ ∈ R, which leads to a stability polynomial of the form

P′′s (z1 , z2) � 1 + *,α1 +

s
∑

l�2

(

αB,l z
l−1
1 + αC,l z

l−1
2

)+- (z1 + z2). (7.27)

The damping relation on the error is given by

en+1 � P′′s (−∆t∗B,−∆t∗C)en , ⇒ ‖en+1‖ ≤ |P′′s (−∆t∗λB,i ,−∆t∗λC,i)|‖en‖.

For the splitting we consider

An �
1

2
(An + AT

n) +
1

2
(An − AT

n) � B + C,

which satisfies our assumptions on the eigenvectors and permits to split
the real and imaginary part of the spectrum of the matrix A.

Let us now focus on the stability region

Rs � {|Ps(z)| ≤ 1, z ∈ C}

of the method obtained by optimizing the coefficients; see Section 7.2.3.
In Figure 7.2 we report the stability region that has been computed for
s � 2, 3, 4 related to the three formulations of the algorithm. The figures
are plotted with the same scale, so we can observe immediately that, at
least for this choice of coefficients function, the standard formulation
achieves the largest stability regions. Moreover, when we use the splitted
formulation, we do not improve the information gained through the
optimization algorithm, even if we have added another coefficient; see
Table 7.1. From what we see from this example and from the results
in Section 7.3, we tend to recommend the standard formulation that,
moreover, has also the lowest number of parameters to optimize for.
Before taking into account the effect of the prolongation and restriction
steps, we report also explicitly the way to apply the same strategy in

2
1

0
f
a

b
io

d
u

r
a

s
t
a

n
t
e

(a) 2 Stages

α ∆t∗ |Ps(z)|

α1 � 0.262114 0.520098 0.135796

α1 � 0.886808 α2 � 0.206134 0.586482 0.135796

α1 � 1 αB,1 � 0.185471 αC,1 � 0.210629 0.666667 0.167326

(b) 3 Stages

α ∆t∗
�
P′s(z)

�
α1 � 0.114598 α2 � 0.334990 0.779855 0.049302

α1 � 1 α2 � 0.310642 α3 � 0.032709 0.666667 0.077337

α1 � 1 αB,1 � 0.185471 αB,2 � 0
αC,1 � 0.210629 αC,2 � 0 0.666667 0.167326

(c) 4 Stages

α ∆t∗
�
P′′s (z)

�
α1 � 0.061469 α2 � 0.161492 α3 � 0.361230 1.075903 0.015710

α1 � 2.743347 α2 � 2.718669 α3 � 1.204485 α4 � 0.203123 0.392181 0.015710

α1 � 1 αB,1 � 0.163546 αB,2 � 0 αB,3 � 0.002193
αC,1 � 0.207943 αC,2 � 0.014026 αC,3 � 0.001084 0.666667 0.155560

Table 7.1. Example of optimized parameters referring to the stability regions in Figure 7.2, i.e., to the (1D) convection problem
with a(x) � 1 + 0.6 sin(40πx). Each rows correspond to the standard, periodic and splitted formulation respectively

preconditioned fast solvers for some large linear systems 211

(a) Standard Formulation (b) Periodic Non Stationary
Formulation

(c) Splitted Formulation

Figure 7.2. Stability region for the three formulation of the Runge-Kutta
algorithm for the (1D) model problem with coefficient function a(x) �

1 + 0.6 sin(40πx).

the 2D case. We need to restart from the evaluation of the stability
polynomial Ps(z) over the matrix −∆t∗ An ,m . Suppose that ∆x � ∆y,
i.e., the same discretization step in both the directions. Then define the
function

z2(θ1 , θ2 , c , x , y; r) � − 2
c

r
− c(a(x) + b(y)) + . . .

. . . + c(a(x) exp(−iθ1) + b(y) exp(−iθ2)),

which can be optimized only for the values of θ, c , x and y, with
θ1,2 ∈ [−π/2, π/2], c ∈ [0, 1] and (x , y) ∈ [xmin , xmax] × [ymin , ymax].

To optimize the amplification factor |Ps(z2)| we need to solve the
following min–max problem

(αopt , copt) � arg min
α,c

max
(x ,y),(θ1 ,θ2)

|Ps(z2(θ1 , θ2 , c , x , y; r))|, (7.28)

where Ps can be the polynomial associated with one of the three
formulations of the considered Runge–Kutta smoothers.

7.2.2 Projection and Restriction Operators

Having decided the smoother of the multigrid algorithm we can now
focus on the grid-transfer operators. We are working with both 1D and
2D model problems, so we are going to choose two slightly different
strategies for the two cases.

In the case of the 1D equation, as a restriction operator, we can
choose to join two contiguous discretization cells into one, using the
fact that we have discretized the equation with the values in the middle
of the cell, and apply full–weighting, as in [45].

212 fabio durastante

This is equivalent to set the restriction operation R and the projection
operation P, respectively as

R �
1

2



1 1
1 1

. . .
. . .
1 1


, P � 2RT

� 2



1
1

1
1

. . .
1
1



. (7.29)

Then, instead of using Galerkin conditions, we rebuild the operator at
each coarser level of the V-cycle.

In the case of the 2D equations, we choose the full–weighting transfer
grid operator with mask

p �

�������
1/16 1/8 1/16

1/8 1/4 1/8
1/16 1/8 1/16

������� . (7.30)

Therefore, the projector and the restriction operator with full–weighting
are selected as

P � 2Tn(p)Kn , R �
1

2
PT .

As observed in [148], the choice of the objective function using only the
spectral information of Section 7.1 for the optimization process does
not take into account the effects of aliasing and attenuation phenomena
caused by the choice of the coarsening strategy, i.e., we are not optimiz-
ing the full multigrid algorithm. From the GLT perspective, the latter
can be seen as an effect of property GLT4, that is from the structure of
∗–algebra of the GLT sequences. In view of this, we can try to take into
account the strategy in [148] for considering the attenuation by modify-
ing the objective functions as explained below. Define the transmittance
function µr(θ) and µp(θ) for the restriction and projection operations
respectively, as the Fourier symbol of the Toeplitz matrix representing
the operator, before the cut via the matrix Kn . For our 1D case this
amounts to set

µr �
1

2
(1 + exp(iθ)), µp � (1 + exp(iθ)),

which leads to the optimization problem

(αopt , copt) � arg min
α,c

max
(x ,θ)

�
(1 − µp(θ)µr(θ)Ps(z(θ, c , x , y; r))

�
. (7.31)

preconditioned fast solvers for some large linear systems 213

By this modification, we can now expect to have always a stable smoother,
and also optimized performances all over the V-cycle iteration of the
algorithm. A plot of the correction factor for the linear interpolation
and cell joining is reported in Figure 7.3.

Figure 7.3. Amplification factor for different coarsening strategies.

By considering the standard formulation, we report the results in
Table 7.2 from the optimization process. If we compare the results in

Order α1 α2 α3 ∆t∗
�
(1 − µpµr)Ps(z)

�
2 0.266857 0.526085 0.188208
3 0.114987 0.333856 0.787074 0.067405
4 0.061619 0.161517 0.360965 1.084765 0.021554

Table 7.2. Optimization parameters for the standard Runge-Kutta formulation
with correction given by taking into account the coarsening strategy. This refers
to the same (1D) case treated in Table 7.1.

Table 7.2 with those where the correction suggested by the coarsening
strategy is not considered (Table 7.1), then we see a limited impact in
the variable coefficient case.

7.2.3 Few Observations on the Optimization Procedure

Let us focus on the optimization procedure needed to obtain the
coefficients for the Runge-Kutta smoothers.

For solving the nonlinear minmax problem we use the sequential
quadratic programming method (SQP) from [53]. This approach requires
a continuous objective function, and the function (7.28) satisfies this
requirement.

Let us focus on this issues looking at the plot of the level sets of the
function

f (α, c) � log10

(

max
(|θ|,x)∈[π/2,3π/2]×[xmin ,xmax]

|P2(z(θ, c , x; r))|2
)

,

214 fabio durastante

for various choices of the coefficient function; see Figure 7.4. We consider
only the two–stage method in standard formulation. Trying to locate

(a) a(x) � 1 + 0.6 sin(40πx) (b) a(x) � 1
2 x2 (c) a(x) � 20x2 exp(−x2)

Figure 7.4. Isoline of the function f (α, c) � log10(max(θ,x) |P2(z(θ, c , x; r))|2)
for various a(x).

the true optimum values is a problem that can be addressed in many
ways. For instance we can replace the deterministic optimization with
a fully probabilistic optimization or an hybrid genetic algorithm. This
comes at a price: the time needed to locate the absolute minimum, if
is it possible, is usually higher. To satisfy our needs we can avoid of
finding the absolute minimum by accepting the first local minimum,
that satisfies the stability constraint

|Ps(z(θ
∗ , c∗ , x∗; r))| < 1.

In this way we accept the possibility of having not the true optimal
smoothing parameters, but others which still guarantee the stability of
the smoothing method.

Nevertheless, if more than one dimension is considered, then the
possibility of having multiple local minima increases. To face this
problem, we can put together some mixed optimization strategies,
i.e., use both a genetic algorithm or a particle swarm optimization,
together with a strategy for finding local minima of a function. By
using Matlab’s optimization toolbox, we can try the GA solver or the
particleswarm solver together with the fmincon algorithm. To make the
optimization procedure compatible with the order of time needed for
the solution of the linear systems, we should turn to more efficient and
specialized implementations of these algorithms.

We conclude this subsection by comparing the optimization pro-
cedure from [45], for which the computation is performed, with the

preconditioned fast solvers for some large linear systems 215

code attached to the same article, and the procedure with the fmini-
max algorithm from Matlab’s optimization toolbox. We consider the (1D)
pure transport case with periodic boundary conditions over the space
domain Ω � [0, 2] and t ∈ [0, 3]. The grid points are, respectively,
n � 212

+ 1 and 26
+ 1. For the CFL, needed for the procedure in [45] to

work, we consider using CFL � â∆t/∆x where â is either

â � max
Ω

a(x), â � min
Ω

a(x), â �

maxΩ a(x) + minΩ a(x)

2
. (7.32)

The percentage ratio between our running time, and that obtained for
the fixed CFL is shown in Table 7.3.

RK3 RK4
a(x) Max Min Med Max Min Med

1 + 0.6 sin(4πx) 1.12% 1.13% 1.12% 0.11 % 0.12% 0.12 %

0.1 + x2/2 1.12% 1.22% 1.21% 0.10% 0.11% 0.11%

Table 7.3. Comparison of the optimization procedure with the case of variable
and constant coefficients.

We observe that the performances of the optimization algorithm are
not affected by the variation of the value of the CFL condition. This is
due to the way in which the optimization in [45] is done, i.e., the values
are affected only by the number of parameters. Therefore we observed
that the performances of this phase do depend only on the choice of an
effective optimization strategy. The convergence performance for the
various constant approximations of a(x) are considered in detail in the
numerical experiments section.

7.2.4 Optimizing the Spectral Radius

Since the multigrid algorithm is a stationary method, its convergence
rate is determined by the spectral radius of its iteration matrix. Therefore,
as in [45], we may try to determine the coefficients of the Runge-Kutta
smoothers to optimize this quantity. Clearly, this is a procedure that is
more computationally expensive than the one needed for optimizing the
smoothing of the error. In particular, we need to compute an expression
for the spectral radius of the iteration matrix M, and then optimize the
quantity ρ(M) as a function of the parameters {α, c}. Moreover, with a
growing dimension of the problem at hand, i.e., for growing values of n,
the number of levels of the multigrid algorithm will grow accordingly.

216 fabio durastante

The optimization procedure changes also with the dimension of the
system as well as for the variation of the coefficient function.

As a strategy to keep low the computational effort we can think,
as in [45], to stop the refining of the matrix M at a fixed number of
levels, i.e., 2 or 3, without considering that the number of actual levels
is greater.

As this procedure seems less effective from the point of view of the
computing times and of the requirement of a closed formula for the
spectral distribution of the iteration matrix, we choose not to follow this
path.

7.3 Numerical Examples

Here we test the methods with optimized parameters for solving the
linear systems arising from the model problems in Section 7.1. To
compare the results with those in [45], that treat only the 1D cases with
constant coefficients using the multigrid as a solver, we focus on the same
kind of framework while introducing our optimization technique on the
spectral symbol for the variable coefficient case. Therefore, we check the
performances of the multigrid algorithm with optimized Runge-Kutta
smoother used as a solver and not as a preconditioner in the 1D case,
with the various possibilities described in Section 7.2. Moreover, we
test the underlying multigrid algorithm used as a preconditioner for
Krylov method in the 2D formulations.

We build the multigrid algorithm with:

Pre-smoother ν sweeps of one of the Runge-Kutta algorithms;
Grid-transfer operator join and split of the cells in equation (7.29). The

matrix of the problem is recomputed at each level,
Post-Smoother ν sweeps with a Runge-Kutta algorithm (same as pre-

smoother),
Low level solver one sweep with a Runge-Kutta algorithm (same as

pre-smoother).

We start with the pure transport problem in equation (7.3), for which we
set ν � 2, a tolerance of ε � 1e − 6, the spatial domain isΩ � [0, 2] with
n � 211

+ 1 space steps and m � 26
+ 1 time steps over the time interval

T � [0, 3]. As a coefficient function we choose a(x) � x2 exp(−x2).
In Figure 7.5 we report the experiments for these settings. Note that

using the optimization problem (7.31) does not alter the results with
respect to the optimization problem in the form (7.28). We also see that
we have a very rapid decay of the error within the first few iterations.

preconditioned fast solvers for some large linear systems 217

(a) Standard objective function (b) Weighted objective function

Figure 7.5. Convergence for (1D) transport with standard Runge-Kutta formula-
tion using the standard and the weighted objective function.

This suggests trying few iterations of this algorithm as a preconditioner
for a Krylov subspace method. Obviously, this can be useful only for
problems in more than one dimension, because in the 1D case it is well
known that banded Gaussian elimination is optimal.

Before moving further from this case we compare it with the algo-
rithm by Birken [45]. In view of this, we need to select the optimized
coefficients from that settings. We are in presence of variable coeffi-
cients and then we can choose to approximate the function a(x) as
in equation (7.32). We can refer either to the tabulated values of CFL
in [45] or to

CFL �
â∆t

∆x

and then using the optimization algorithm from [45], i.e., for the
optimized coefficients obtained for the constant a(x) ≡ â. Let us consider
as a first example the same settings as the previous experiment, for
which we obtain a maximum CFL value of CFLmax � 17.658213, and
an average CFL value of CFLavg � 8.829107. We observe that for this
choice of the coefficient taking the minimum has no sense. Then,
by applying the optimization procedure for the constant coefficient
case, we find the set of optimized coefficients reported in Table 7.6(b)
alongside Figure 7.6(a). From the comparison of the Figure 7.5 with
the figures 7.6(a), 7.6(c), we can observe that the performances of the
algorithm optimized taking into account only the maximum of the
function a(x) are far worse than those which take into account the

218 fabio durastante

(a) Convergence history,CFLmax

Order α1 α2 α3 ∆t∗ |Ps (z)|

2 0.325966 0.056054 0.099252
3 0.145038 0.394377 0.083891 0.067405
4 0.080000 0.200000 0.420000 0.111600 0.004485

(b) Optimized Coefficients, CFLmax

(c) Convergence history, CFLmed

Order α1 α2 α3 ∆t∗ |Ps (z)|

2 0.319437 0.110824 0.088783
3 0.145 0.39 0.1648 0.0146485
4 0.08 0.2 0.415 0.2061 0.00269064

(d) Optimized Coefficients, CFLmed

Figure 7.6. Multigrid algorithm in the form illustrated in [45] for the CFLmax �

17.658213 and CFLmed � 8.829107, applied to a nonconstant coefficient problem
like the one in equation (7.3).

preconditioned fast solvers for some large linear systems 219

spectral information added by using GLT tools. Moreover, regarding
the time needed for the optimization procedure, the strategy illustrated
in Section 7.2.3, instead of the one in [45] is such that for the 3-stage
scheme the time needed for our strategy is the 1.69%, while for the
4-stage the time needed is the 0.17% of the time required by the code in
[45].

We can also check the application of the two strategies for a different
coefficient function. To this end, we use the oscillating function a(x) �
10(1+ 0.6 sin(50πx)) keeping all the other discretization parameters the
same. We find â � 16 and fixed CFL condition of CFL � 1536.

(a) Using GLT information (b) Fixed CFL

Figure 7.7. Convergence for (1D) transport with standard Runge–Kutta formu-
lation, objective functions for both variable and fixed coefficients.

A comparison of the two solution strategies is reported in Figure 7.7.
We have already seen a gain in the speed of convergence obtained by
using all the spectral information from Section 7.1, instead of using
some simple estimates to drive us back to the constant coefficient case.

7.3.1 The 2D Case

We now devote our analysis to the solution of equations in 2D (7.19).
By choosing (x , y) ∈ [0, 2] × [0, 2] and the coefficients

a(x) � 5(1 + 0.6 sin(10πx)), b(y) � 5(1 + 0.6 sin(10πy)),

κ1(x) �
x2

2
, κ2(y) �

y2

2
,

considering the time interval [0, 5], we generate the discrete problem
using a grid of 127× 127 elements in space and 80 elements in time. For

220 fabio durastante

advancing in time we choose the Crank-Nicolson scheme. The multigrid
algorithm is as follows:

Pre-smoother ν � 5 sweeps of Runge-Kutta methods with optimized
coefficients;

Grid-transfer operator the operator is generated from the mask (7.30)
with full–weighting, while the matrix is the discretization at each
coarser grid of the operator;

Low level solver ν � 5 sweeps of Runge-Kutta methods with optimized
coefficients.

In this way, the algorithm mimics the flow of the solution, i.e., without
a further smoothing phase after the performance of the new time step.
We start testing the multigrid accelerator with the GMRES Algorithm
stopped when the norm of the relative residual is less than ε � 1e − 6.
We use 6 multigrid iterations for each preconditioning step. The number
of Runge-Kutta iterations within the multigrid accelerator is set to ν � 5.
We compare results with the other two formulations of the Runge-
Kutta algorithm, the periodic and the nonstationary, which is used
to perform only 6 iterations of the preconditioner (see (7.24)) and the
formulation with matrix splitting, which is used to do only 1 iteration
of the preconditioner (see (7.26)). We label the three smoothers, i.e.,
standard, periodic and split formulation, respectively with the labels
std, per and spl. The results are reported in Table 7.4.

GMRES MGM,RK2 MGM,RK MGM,RK4 I
IT IT IT IT

std. 39 32 31 186
per. 41 40 53
spl. 73 77 88

Table 7.4. Multigrid preconditioner coupled with the GMRES algorithm. The
row labels indicate the different formulation of the Runge–Kutta smoother as
in Section 7.2.1. Therefore std., per. and spl. stands, respectively, for the standard,
periodic and split formulation, while I stands for the unpreconditioned GMRES

From these results we observe that usually a lower number of
parameters is preferable for the timings of both the optimization and
the solution of the linear systems.

We can now consider the results of this preconditioner with a set
of 2D grids of increasing size. We consider again a mixed case, i.e.,

preconditioned fast solvers for some large linear systems 221

equation (7.19) with coefficients

a(x) �
1

2
x2 , b(y) �

1

2
y2 ,

κ1(x) � exp(−(x−1)2/2), κ2(y) � exp(−(y−1)2/2).
(7.33)

The discretization is obtained by using the 9 point stencil for the diffusion
term and the four point scheme for the transport part; see equation (7.18).
We choose as Krylov accelerators the Matlab built-in implementations
of GMRES(50) and BiCGstab with a tolerance of ε � 1e − 6 and again 3
iterations of our multigrid algorithm as preconditioner with a maximum
number of allowed iterations equal to the number of grid points in
one direction, i.e., MAXIT � 2k − 1 for the various k. The choice of
the GMRES restarted version and of the BiCGstab algorithm has been
made to have a feasible usage of the memory. The smoother for the
preconditioner is used only in the standard formulation in order to
reduce the time needed for the optimization step; see Section 7.2.3.
To illustrate better the results, we collect them in Figure 7.8(a) for the
GMRES(50) and in Figure 7.8(b) for the BiCGstab algorithm.

Experiments in Figures 7.8(a) and 7.8(b) confirm the analysis made
in Section 7.2. The number of iterations is always less than for the
unpreconditioned methods. Even if optimality is not reached, i.e., the
number of iterations for convergence is not independent of the grid size,
it increases slowly with respect to the schemes without preconditioning.

222 fabio durastante

(a) GMRES(50)

(b) BiCGstab

Figure 7.8. Behaviour with finer and finer grids for the GMRES(50) and BiCGstab
algorithms. Coefficients in equation (7.33). The size of the discretization grid
is given by (2k − 1) × (2k − 1) over the [0, 2]2 × [0, 5] with 80 time steps. The
unpreconditioned version is used as comparison.

8

Structured Preconditioners for Fast Solution of FDEs

In [34] we considered few equations from the two classes of initial value
problems (IVPs) with fractional derivatives in space, discussed both
in Chapter 5 and Appendix A. Here we resume the underlying main
results. In particular, we focus on the fractional diffusion equation



∂
∂t y(x , t) � d+(x , t) RLDα

xL ,x y(x , t) + . . .
. . . + d−(x , t) RLDα

x ,xR
y(x , t) + g(x , t), (x , t) ∈ Q ,

y(xL , t) � y(xR , t) � 0, 0 ≤ t ≤ T,
y(x , t0) � y0(x), x ∈ [xL , xR],

(8.1)

for Q � (xL , xR) × (t0 , T], α ∈ (1, 2), f (x , t) the source (or sink) term
and the diffusion coefficients d±(x , t) ≥ 0 with d+(x , t) + d−(x , t) > 0
∀ x , t, and more in general on the fractional advection dispersion equation



∂
∂t y(x , t) � d+(x , t) RLDα

xL ,x y(x , t) + . . .
. . . + d−(x , t) RLDα

x ,xR
y(x , t) + . . .

. . . + b(x)yx(x , t) + c(x)y(x , t) + g(x , t),
x ∈ (xL , xR), t ∈ (t0 , T],

y(xL , t) � y(xR , t) � 0, 0 ≤ t ≤ T,
y(x , t0) � y0(x), x ∈ [xL , xR],

(8.2)

where b(x) ≥ 0 ∈ C
1 and c(x) ≥ 0 ∈ C

0. Similarly, one can take into
account the 2D symmetric (Riesz) version of the fractional diffusion
equation, given by



∂u

∂t
− Kx

∂2αu

∂|x |2α
− Ky

∂2βu

∂|x |2β
+ . . . (x , y) ∈ Q ,

. . . + b · ∇u + cu � g ,
u(x , y , t) � 0, (x , y) ∈ ∂Q ,
u(x , y , 0) � u0(x , y), (x , y) ∈ Ω,

(8.3)

where Q � Ω × [0, T], b ∈ C
1(Ω,R2), c ∈ C(Ω), u ∈ L2(Ω), Kx , Ky ≥ 0

and Kx + Ky > 0, α, β ∈ (1/2, 1).

224 fabio durastante

We consider again the Definition 5.1 for Riemann–Liouville frac-
tional derivatives. Then to discretize equations (8.1) and (8.2), we
use the p–shifted Grünwald–Letnikov discretization for the fractional
Riemann–Liouville operators; see Chapter 5 and Appendix A.3.1. In a
completely analogous way, we can obtain a discretization of the equa-
tion (8.3) by means of the fractional centered discretization from Ap-
pendix A.3.2 [220], which shares a similar decay property for the
coefficients of the p–shifted Grünwald–Letnikov discretization, as ob-
served in Section 5.1. By means of the above discretization, together
with the centered finite difference scheme for the b(x)ux(x , t) and for
the b · ∇u, we find a semidiscretization for both equations (8.1) and
(8.2) that is

d

dt
y(t) � Jmy(t) + g(t), t ∈ (t0 , T], y(t) � [y(1)(t), . . . , y(m)(t)]T . (8.4)

The initial condition is

y(t0) � [y0(x1), . . . , y0(xm)]
T
� y0 ,

the Jacobian matrix and forcing term are Jm ∈ Rm×m , g(t) ∈ Rm ,
respectively.

Two properties of Jm are crucial for us:

• the decay along the diagonal in absolute values of its coefficients we
used in Sections 5.1 and 5.1.1;

• the behavior of the eigenvalues of the matrices { Jm}, i.e., their spectral
distribution.

Another ingredient we use here isω–circulant matrices. In Section 8.2 we
propose an hybrid preconditioner based on block ω–circulant matrices
and on the latter property of the Jacobian matrix.

In the following we use the GLT theory (briefly described in Sec-
tion 2.2.1) to determine the distribution of singular values and of the
eigenvalues of the matrix sequences related to { Jm}, in a way that is
similar to what we have done in Chapter 7.

Proposition 8.1 (Donatelli, Mazza, and Serra-Capizzano [100]). Let
us fix a time tm and assume that the functions d+(x) � d+(x , tm) and
d−(x) � d−(x , tm) are both Riemann integrable over [xL , xR]. Then, the
matrix sequence {hα Jm}m is a GLT sequence with symbol

f̂ (x̂ , θ) � f (xL + (xR − xL)x̂ , θ),

preconditioned fast solvers for some large linear systems 225

where

f (x , θ) � −d+(x)e
−iθ(1 − eiθ)α − d−(x)eiθ(1 − e−iθ)α ,

(x̂ , θ) ∈ [0, 1] × [−π, π], (x , θ) ∈ [xL , xR] × [−π, π].

In particular, since {hα Jm}m is a GLT sequence for f , with f from
[0, 1]×[−π, π], then { Jm} ∼σ f , with f from [0, 1]×[−π, π]. Moreover, if
Jm is Hermitian, then this holds also in the sense of the eigenvalues. This
gives that the eigenvalues of Jm have negative real part, i.e., ℜ(λi) < 0.
Note that there is a zero of order α in 0 for the GLT symbol of { Jm},
see [100, Proposition 6]. Therefore, any circulant preconditioner that
produces a clustering at the unity in the case of constant d+ and d−
coefficients, is no more effective in the general variable coefficient case,
for the underlying theory regarding multilevel circulant preconditioning
see [219, 257, 258].

In the following Section 8.1 we recall some notions on linear mul-
tistep formulas in boundary value form. Section 8.2 includes our
proposals from [34] to precondition the large, sparse and structured lin-
ear systems generated by the discretization of linear multistep formulas
in boundary value form. Convergence and spectral results are provided.
Finally, in Section 8.3 some numerical examples and comparisons with
some of the most recent solving strategies are proposed.

8.1 Linear Multistep Formulas in Boundary Value Form

After discretization with respect to space variables, FDEs (8.2) and
(8.1), but also a time-dependent PDE, can be reduced to the solution of
the IVP

{

y′(t) � Jmy(t) + g(t), t ∈ (t0 , T],
y(t0) � y0 ,

(8.5)

where y(t), g(t) : R → Rm , y0 ∈ Rm , and Jm ∈ Rm×m . We apply
to (8.5) fully implicit methods for differential equations based on Linear
Multistep Formulas (LMFs) in boundary value form; see [9, 66] and
references therein. These methods approximate the solution of the
IVP (8.5) by means of a discrete boundary value problem. Consider the
application to (8.5) of the following µ-step LMF over a uniform mesh
t j � t0 + jh, for j � 0, . . . , s, h � (T − t0)/s, namely

µ−ν
∑

i�−ν
αi+νyn+i � h

µ−ν
∑

i�−ν
βi+νfn+i , n � ν, . . . , s − µ + ν. (8.6)

226 fabio durastante

Here, yn is the discrete approximation to y(tn), fn � Jmyn + gn and
gn � g(tn). The method in (8.6) should be used with ν initial conditions
and µ − ν final conditions. Therefore, we need the values y0 , . . . , yν−1

and the values ys−µ+ν+1 , . . . , ys . The initial condition in (8.5) provides
only one value, i.e., y0. In order to get the other initial and final values,

we have to provide additional (µ−1) equations. The coefficients α(j)

i
and

β
(j)

i
of these equations can be chosen such that the truncation errors for

these initial and final conditions are of the same order as the one in (8.6);
see [66, p. 132] for details. We stress that all the methods considered
here are consistent, i.e., their characteristic polynomials

ρ(z) � zν
k−ν
∑

j−ν
α j+νz j , σ(z) � zν

k−ν
∑

j�−ν
β j+νz j ,

are such that
ρ(1) � 0, ρ′(1) � σ(1).

By combining (8.6) with the above mentioned additional methods, we
obtain a discrete Boundary Value Problem (BVM); see [66]. These equations
can be restated to give the following linear system of algebraic equations

My ≡ (A ⊗ Im − hB ⊗ Jm)y � e1 ⊗ y0 + h(B ⊗ Im)g ≡ b, (8.7)

where

e1 � [1, 0, . . . , 0]T ∈ R
s+1 , y � [yT

0 , . . . , y
T
s]

T ∈ R
(s+1)m ,

g � [gT
0 , . . . , g

T
s]

T ∈ R
(s+1)m , A, B ∈ R

(s+1)×(s+1).

The matrices A and B are obtained from the coefficients of the for-
mula (8.6) and from the coefficients of the auxiliary linear multistep
formulas as

A �



1 . . . 0

α
(1)
0

. . . α
(1)
k
,

...
...

α
(ν−1)
0

. . . α
(ν−1)
k

α0 . . . αk
α0 . . . αk

. . .
. . .

. . .
α0 . . . αk

α
(s−k+ν+1)
0

. . . α
(s−k+ν+1)
k

,
...

...

α
(s)
0

. . . α
(s)
k



,

preconditioned fast solvers for some large linear systems 227

and

B �



0 . . . 0

β
(1)
0

. . . β
(1)
k
,

...
...

β
(ν−1)
0

. . . β
(ν−1)
k

β0 . . . βk
β0 . . . βk

. . .
. . .

. . .
β0 . . . βk

β
(s−k+ν+1)
0

. . . β
(s−k+ν+1)
k

,
...

...

β
(s)
0

. . . β
(s)
k



.

We recall that auxiliary methods cannot have the same coefficients
as (8.6). Further details on the matrices A and B, M and their entries
can be found in [66, p. 132]. Some properties and information on their
eigenvalues can be found in [28] and in [30].

The size of the matrix M can be very large when s or m are large.
If a direct method is used to solve the system (8.7), e.g., for a multi-
dimensional FDE, then the operation count can be much higher, see
also the comparisons sparse direct/iterative methods for a PDEs in [28].
Therefore, we concentrate again on Kyrlov iterative solvers. Note that
in general it is not necessary to assemble explicitly the matrix M from
equation (8.7), since to apply Krylov iterative solvers we need only
to form the matrix vector products My. Thus, by the properties of
Kronecker products, we have

x � My � vec(ImYAT − h JmYBT) � vec(YAT − h JmYBT),

where the operator vec(·) stacks the columns of a matrix and Y is
obtained by simply reshaping y as an m × s matrix.

Differently to PDEs discretized by finite differences or using finite
elements, in case of FDEs, also Krylov iterative solvers with the block
circulant preconditioners introduced in [28] can be not so effective
because Jm is a dense matrix. The same conclusions are derived for all
(block or not) preconditioners for the linear systems of other time-step
integrators based, e.g., on linear multistep formulas or on Runge-Kutta
methods; see [28].

The discretizations considered here for fractional differential equa-
tions produce Jacobian matrices Jm whose eigenvalues have negative
real part. Therefore, it is natural to use the L–stable generalization of

228 fabio durastante

BDF formulas proposed in [66], instead of the generalization of Adams-
Moulton formulas used in [143]. The GBDF formula for a problem of
the form (8.5) with k steps are obtained from the expression of the
classical BDF formulas

k
∑

i�0

αiyn+i � hβkfn+k . (8.8)

Note that for (8.8) the second stability polynomial is σ(z) � βk zk . It is
well known that the BDF formulas from order 7 onwards are 0–unstable
and they are also not A–stable for any k > 2. On the other hand, if
we use the underlying generalization of linear multistep formulas,
we can build methods of both maximal order k and with potentially
better stability properties. Specifically, we obtain formulas that are both
0ν,k−ν–stable and Aν,k−ν–stable for all k ≥ 1 by selecting the second
stability polynomial σ(z) � β j z

j with j � ν and

ν �

{

k+1/2, k odd,
k/2 + 1, k even,

instead of the classical choice j � k. The stability region of these methods
lies outside the curve

Γk � {q ∈ C : |π(z , q)| ≡ |ρ(z) − qzν | � 1, ∀z ∈ C}.

Thus, by normalizing the coefficients, the GBDF with k steps, ν initial
and k − ν final conditions can be written as

k−ν
∑

i�−ν
αi+νyi+ν � hfn , n � ν, . . . , s − k + ν. (8.9)

The latter is clearly an instance of the general formula in (8.6); see
again [65] for the complete derivation. We stress that also Lν,k−ν–
stability matters in this case. Indeed the use of L–stable (and thus
Lν,k−ν–stable) methods permit to use sensibly larger time steps without
compromising the qualitative behavior of the approximation when
rapid decaying transients occurs in the solution. Here we use low order
linear multistep formulas (maximum order 3) because the discretization
of the fractional differential operator shows a order at most linear in
our equispaced mesh. Note also that a higher order formula requires a
higher computational effort to solve the related linear systems; see next
sections. Moreover, a higher order formula (in both time and space)

preconditioned fast solvers for some large linear systems 229

requires a higher regularity of the solution, that is not guaranteed
to hold for a fractional equation, even when the coefficients of the
underlying FPDE are arbitrarily regular.

Theorem 8.1 (Brugnano and Trigiante [65]). In exact arithmetic, a BVM
with (ν, k − ν)–boundary conditions is convergent if it is consistent and
0ν,k−ν–stable.

Therefore, we state our main convergence result as follows.

Proposition 8.2. The GBDF formula (8.9) with k � 2 applied to Problem (8.1)
discretized by the 1–shifted Grünwald–Letnikov formulas is convergent when-
ever y ∈ C

α+1.

Proof. We wish to apply Theorem 8.1. Therefore, we only need to
prove that the resulting method is consistent, since, as we have seen,
GBDF formulas are 0ν,k−ν–stable. Let u(x , t) be the true solution of (8.1).
Then, the local truncation error τ(x , t) is consistent of order O(h2

+∆x)
by [201, Theorem 2.7]. Similar arguments can be used in several spatial
dimensions. �

In our opinion, using a discretization in time of order five as in [143]
is expensive and the global accuracy does not increase in general: the
low order approximation in space dominates the global error.

8.2 Structured Preconditioners

To solve linear systems (8.7), let us focus on the application of efficient
iterative Krylov methods from Section 2.1, namely the BiCGstab(2) [284],
GMRES(20) and FGMRES [245], coupled with block preconditioners
taking into account their block structure. In the style of [28, 29, 40], we
propose a preconditioner of the form

P � Ă ⊗ I − hB̆ ⊗ J̃m , (8.10)

where Ă and B̆ are circulant–like approximations of the Toeplitz ma-
trices A and B, respectively, containing the coefficients of the LMF
formulas (8.6) and of the additional LMFs, while J̃m is a suitable ap-
proximation of the Jacobian matrix detailed below.

By the properties of the Kronecker product, the eigenvalues of the
preconditioner P are given by

φi − hψiλ j , i � 1, . . . , s , j � 1, . . . ,m ,

230 fabio durastante

where {φi} and {ψi} are the eigenvalues of the circulant–like approx-
imations Ă and B̆, respectively, and {λ j} are the eigenvalues of the
selected approximation of Jm .

In [143] the authors proposed the following block–preconditioner
based on the Strang circulant approximation (see [211] for further details)
for the FDEs semidiscretized in space with the p–shifted Grünwald–
Letnikov formula

Ps � s(A) ⊗ Im − hs(B) ⊗ Jm , (8.11)

where

s(A) �



αν · · · αµ α0 · · · αν−1

...
. . .

. . .
. . .

...

α0
. . .

. . . α0

. . .
. . .

. . . 0
. . .

. . .
. . .

0
. . .

. . .
. . .

αµ
. . .

. . . αµ
...

. . .
. . .

. . .
...

αν+1 · · · αµ α0 · · · αν



,

and s(B) can be defined similarly. The preconditioner (8.11) for a generic
LMF in boundary value form was first introduced in 1998 in [27] and
in [28] using also other circulant approximations, and later studied also
in in [77]. In particular, (8.11) was introduced for LMF in boundary
value form for solving a generic differential problem and thus also
for an initial value problem generated by semidiscretization in space
of the underlying FDE problem. In this framework, the following
preconditioner, based on the modified Strang circulant introduced
in [29] can be a better approach

Ps̃ � s̃(A) ⊗ Im − hs̃(B) ⊗ Jm . (8.12)

The above, discussed in [29], is able to treat problems with severe ill-
conditioning or also singularity of the block preconditioners based on
Strang circulant approximation of a LMF. In particular s̃(·) is obtained
simply as a rank–one correction of the natural Strang preconditioner
s(·), i.e., s̃(A) � s(A)+E where E is a rank–one circulant matrix given by

E � FH diag(φ̂0-φ0 , 0, . . . , 0) F,

preconditioned fast solvers for some large linear systems 231

with φ̂0 that, as suggested in [29], can be φ̂0 � 1/s+1 or φ̂0 �ℜ(φs); see
[27, 29, 30]. Surprisingly, none of the above mentioned researches on
block circulant preconditioners for LMF in boundary value form has
been mentioned in Gu et al. [143].

Differently from PDEs, Jm can be a dense matrix for FDEs. Hence,
in order to reduce the computational complexity, the following two
block–circulant with circulant blocks versions

P′s � s(A) ⊗ Im − hs(B) ⊗ s(Jm), (8.13)

and

P′s̃ � s̃(A) ⊗ Im − hs̃(B) ⊗ s̃(Jm), (8.14)

based on the application of the same circulant preconditioner to the
Jacobian matrix were also considered in [143].

The eigenvalues of the circulant approximation s(·) and s̃(·) can be
read on the main diagonal of the matrixΛ; applying Theorem 2.12 with
ω � 1 and thus Ω � I is sufficient.

Remark 8.1. We do not recommend the choice of the Strang circulant ap-
proximation for the Jacobian matrix Jm or for A in (8.7). As clearly remarked
in [27] and in [29], the Strang approximation for the matrix A in equation (8.7)
is singular for every number of step k ≥ 1, independently from the value of
s, simply by the consistency requirements of the linear multistep formulas.
Moreover, given the analysis of the spectral distribution of the matrix sequence
{hα Jm}m we discussed at the beginning of the chapter, we do not recommend
the use of the Strang preconditioner for the Jacobian matrix Jm as well.

To overcome these serious issues of the Strang circulant approxi-
mations, in Gu, Huang, Zhao, Li, and Li [143] the strategy introduced
by Bertaccini [29] for PDEs was used. The latter relies in shifting away
from zero the eigenvalue of smallest modulus.

Here we focus on other preconditioners that do not need the correc-
tion mentioned in Remark 8.1. In particular, we consider the ω–circulant
approximation ω(·) introduced for LMF in boundary value form to
integrate PDEs in [38, 40]

Pω � ω(A) ⊗ Im − hω(B) ⊗ Jm , (8.15)

232 fabio durastante

where

ω(A) �



αν · · · αµ ωα0 · · · ωαν−1

...
. . .

. . .
. . .

...

α0
. . .

. . . ωα0

. . .
. . .

. . . 0
. . .

. . .
. . .

0
. . .

. . .
. . .

ωαµ
. . .

. . . αµ
...

. . .
. . .

. . .
...

ωαν+1 · · · ωαµ α0 · · · αν



,

and ω(B) is defined similarly.
Since for FPDEs Jm is a dense matrix, for reducing the computational

cost of matrix–vector multiplications using preconditioner (8.15) we
firstly propose to use ω(Jm) instead of Jm in (8.15), i.e., an ω–circulant
approximation also for Jm that is

P′ω � ω(A) ⊗ Im − hω(B) ⊗ ω(Jm).

Our second proposal is based on exploiting the short–memory principle
from Section 5.1.1. This means using a banded approximation of the
Jacobian matrix Jm instead of a circulant or an ω–circulant one (for Jm).
We apply the short–memory principle by the function gk(Jm) � [Jm]k

that just extracts the k lower and upper main diagonals of Jm producing
the following limited memory block ω-circulant preconditioner

Pω,k � ω(A) ⊗ Im − hω(B) ⊗ gk(Jm). (8.16)

To further reduce the computational effort needed to apply Pω,k–
circulant preconditioner at each iteration, instead of a direct method
for sparse systems, we can consider the use of nested iterative methods,
e.g., the GMRES(m) method. In particular, to solve the s auxiliary linear
systems of the form

T j,k , φ j I − hψ j gk(Jm), j � 1, . . . , s ,

required to apply all block circulant or block Pω,k–circulant precondi-
tioners described above; see, e.g., [28] and [40] for technical details. In
this way we are moving into the framework of preconditioners changing

preconditioned fast solvers for some large linear systems 233

during the iterations and then we need to use Flexible GMRES method
or its restarted version; see Saad in [244, 245] and Section 2.1.3. In some
cases, to ensure a fast convergence of the outer method (FGMRES), we
need to use a preconditioner for the inner method (GMRES(m)). To this
end, we propose the use of an approximate inverse Toeplitz precondi-
tioner for T j,k based on the ω–circulant preconditioner from [116, 150].
Thus, we consider the ω–circulant extension W j,n+k of T j,k , obtained as

W j,n+k �

[
T̃ j,k TH

2,1
T2,1 T2,2

]
,

with T2,1 �


ωtk 0 . . . 0 tk . . . t1

...
. . .

...
. . .

...
. . .

...
ωt1 . . . ωtk 0 . . . 0 tk


,

where T̃ j,k is the Toeplitz matrix obtained with the first column and
row of T j,k and ω � exp(iθ) with θ ∈ [−π, π]. In this way, the diagonal
matrix Λ j,n+k containing the eigenvalues of W j,n+k is given by

Λ j,n+k � Fn+kΩn+kW j,n+kΩ
H
n+k FH

n+k .

Once the eigenvalues have been computed, the inverse of theω–circulant
matrix is

W−1
j,n+k �

[
P P1,2

P1,2 P2,2

]
� Ω

H
n+k FH

n+kΛ
−1
j,n+k Fn+kΩn+k , (8.17)

taking care of the positions of the non–positive entries of Λ j,n+k and
putting a zero in the corresponding positions of Λ−1

j,n+k
. Then, the

preconditioner P � T̃−1
j,k

in (8.17) is used for the inner GMRES(m)
method.

Lemma 8.1 (Bertaccini and Durastante [34]). Let us consider the approx-
imation gk(Jm) for Jm . Then, for ε > 0 and m > 0 integer, there exists a
bandwidth parameter k̃ � k̃(ε,m , α) > 0 such that gk(Jm)

−1 Jm � I + N with
‖N‖ ≤ ε ∀k ≥ k̃.

Proof. Fix ε > 0 and assume that y(x) is such that y(x) ≤ M for
x ∈ Ω � [xL , xR]. Then, for each L ∈ Ω we can write the error as
(see Section 5.1.1),

E(x) � | RLDα
a ,x y(x) − RLDα

x−L,x y(x)| ≤ ML−α

|Γ(1 − α)| .

234 fabio durastante

We can find the required values of L by solving

|E(x)| ≤ ε, (xL + L ≤ x ≤ xR), ⇒ L ≥
(

M

ε|Γ(1 − α)|

) 1/α

.

Therefore, after repeating exactly the same argument for the other side
fractional derivative, fixed a discretization step and a value of ε, we
can choose a bandwidth k giving the wanted residual and such that its
norm is less the ε. Otherwise, we can look at it from the spectral point
of view. From Proposition 8.1 we find that { Jm} ∼GLT f , with f defined
on [0, 1] × [−π, π]), thus we can consider, at the same way, the spectral
distribution fk̃ of g k̃(Jm)). This is obtained by replacing e−iθ(1 − eiθ)α

and eiθ(1−eiθ)−α in f by the first k̃ term of their real binomial expansion.
Thus, g k̃(Jm)

−1 Jm ∼GLT f/ fk̃ , but this can be expressed as

f

fk̃

� 1 + n k̃ ,

where n k̃ is again the function f in which we have replaced e−iθ(1−eiθ)α

and eiθ(1− eiθ)−α by the first m− k̃ term of their real binomial expansion.
We conclude referring to the decay property in (5.15) and recalling that

the coefficients of n k̃ are exactly the ω(α)
j

for j > k̃, thus finding the

minimum integer k̃ such that the bound ‖n k̃ ‖ < ε holds. Therefore, we
immediately get also ‖nk ‖ < ε ∀k ≥ k̃. �

Remark 8.2. Observe that Lemma 8.1 is quite independent from the dis-
cretization adopted, since the first way of proving it depends only a structural
properties of the fractional operators, namely the short–memory principle,
which, as extensively discussed in Section 5.1.1, is inherited by different
discretizations of the operators. Therefore, with a little additional effort, also the
spectral part of the proof can be extended to other discretizations. A depiction
of the result of Lemma 8.1 is given in Figure 8.1. We stress again that this
property is lost if we use any circulant approximation for a variable coefficient
case in both Problem (8.1) and (8.2). See the discussion at the end of Chapter 8.

Theorem 8.2 (Bertaccini and Durastante [34]). Let us consider the limited
memory blockω-circulant preconditioner (8.16) such thatω � exp(iωθ), θ �

π and k ≥ k̃, k̃ as in Lemma 8.1. Then, the eigenvalues of the preconditioned
matrix P−1

ω,k
M are equal to 1 ∈ C except for at most 2mµ outliers.

Proof. The claimed thesis follows by applying Lemma 8.1 and by the

preconditioned fast solvers for some large linear systems 235

0.7 0.8 0.9 1

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

10
0

10
1

10
2

10
3

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Figure 8.1. Lemma 8.1. Clustering on the eigenvalues (on the left) and on the
singular values (on the right) for the preconditioner gk(Jm)−1 Jm for Jm from
Problem (8.1) and k � ⌈m/5⌉.

same argument of [40, Theorem 4]. Let E � M − Pω,k , then

E � ((A − ω(A)) ⊗ Im) − h(B − ω(B)) ⊗ Jm − hω(B) ⊗ (Jm − gk(Jm))

� LA ⊗ Im − hLB ⊗ Jm − hω(B) ⊗ N.

It is easy to check that both LA and LB are (s + 1)× (s + 1) matrices with
nonzero entries at most in the following four corners: a ν × (µ+ 1) block
in the upper left; a ν× ν block in the upper right; a (µ− ν)× (µ+1) block
in the lower right; and a (µ − ν) × (µ − ν) block in the lower left. Since
µ > ν, rank(LA) ≤ µ and rank(LB) ≤ µ. Then, by Lemma 8.1 we have
that exists k ≥ k̃ such that ‖N‖ < ε, thus we have that E is decomposed
into a matrix of rank 2mµ plus a matrix with norm lower than ε, this
concludes the proof. �

As a direct consequence, we have the convergence result.

Corollary 8.1. If the matrix P−1
ω,k

M is diagonalizable, GMRES converges in
at most 2mµ + 1 iterations, independently of s, where µ is the number of the
steps of the LMF formula.

Proof. This is an immediate consequence of Theorem 8.2 and Theo-
rem 2.7. �

We stress that the above result shows a number of iteration pro-
portional to m. However, in practice, we experience convergence of
iterations for GMRES, GMRES(r), r > 1, and BiCGstab, preconditioned
by the limited memory block ω–circulant preconditioner, much less de-
pendent on the mesh than what Corollary 8.1 suggests; see the tables
in Section 8.3. On the other hand, if we choose, e.g., k � ⌈m/5⌉ for Pω,k

236 fabio durastante

in (8.16), then the underlying Krylov iterative solvers converge in a
number of iterations more or less constant with the mesh parameters.
Unfortunately, by taking k � ⌈m/5⌉ we keep (almost) constant the
iterations, but we increase the computational cost with m, suggesting
that a choice of a constant k, can be a good (but of course somewhat
problem–dependent) compromise.

Convergence results similar to Theorem 8.2 can be derived for other
values of θ different from π. However, as observed in [40, Section 2.2]
and confirmed by our numerical experiments, the {ω}–circulant block
preconditioners which give slightly “best” results have ω � −1, i.e.,
θ � π, and then are based on skew–circulant matrices.

8.3 Numerical Examples

We summarize in Table 8.1 the preconditioning strategies that are tested
in our experiments.

The results have been obtained on a laptop running Linux with 8Gb
memory and CPU Intel® Core™ i7–4710HQ CPU with clock 2.50 GHz
and Matlab version R2016b.

We use here our implementation of FGMRES, based on the algo-
rithms and suggestions discussed in Section 2.1.3 from [245], while
we use GMRES(20) and BiCGstab provided by Matlab. BiCGstab(2)
is implemented as in Section 2.1.4 so similarly to [284]. We report
the number of matrix–vector operations performed by the solvers in
the tables. Moreover, the main stopping criteria require the relative
residuals less than ε � 10−8. Here all the {ω}-circulant approximations
have ω � −1, i.e., θ � π, and then they are based on skew-circulant
matrices. Motivations for this choice are detailed in [40, Section 2.2].

Experiment 1. As a first test case we consider the fractional diffu-
sion equation (8.1) with coefficients

xL � 0, xR � 2, t0 � 0, T � 1,

g(x , t) � −32e−t
{

x2
+

1

8
(2 − x)2(8 + x2) + . . .

. . . − 3

3 − α
�
x3

+ (2 − x)3
�
+ . . .

. . . +
3

(4 − α)(3 − α)
�
x4

+ (2 − x)4
�}
,

d+(x , t) � Γ(3 − α)xα , d−(x , t) � Γ(3 − α)(2 − x)α ,

u0(x) � 4x2(2 − x)2 ,

(8.18)

p
r

e
c

o
n

d
it

io
n

e
d

f
a

s
t

s
o

lv
e
r

s
f
o

r
s
o

m
e

l
a

r
g

e
l
in

e
a

r
s
y

s
t
e
m

s
2

3
7

Preconditioner for: Computational
A B Jm cost

I None None None –
Ps Strang Strang None O(ms log(s) + sm2)

Ps̃ Modified Strang Modified Strang None O(ms log(s) + sm2)

P′s Strang Strang Strang O(ms log(ms))

Pω ω–Circulant ω–Circulant None O(ms log(s) + sm2)

P′ω ω–Circulant ω–Circulant ω–Circulant O(ms log(ms))

Pω,k ω–Circulant ω–Circulant gk(Jm) O(ms log(s) + sk2m)

PFGMRES
ω,k

ω–Circulant ω–Circulant gk(Jm) O(ms log(s) + s(2k − 1)m)

GMRES

Table 8.1. Preconditioners tested in the numerical examples, details in Section 8.2.

238 fabio durastante

where the order of the fractional derivatives is α � 1.5 and α � 1.8,
respectively. For this choice of the coefficients we have the exact solution
of the FPDEs that is ue(x , t) � 4e−t2

x2(2− x)2 for any value of α ∈ (1, 2).
In Table 8.2 we show the results obtained with various preconditioning
strategies. For this case, we use the GBDF formula with two step, that
gives a more reasonable behavior of the error when mixed with the
first order approximation used for the discretization in space, with
GMRES(20), FGMRES and BiCGstab(2) iterative methods. Moreover,
in Figure 8.2, we give both the spectrum of the unpreconditioned
matrix M and of the preconditioned matrix M for all the proposed
preconditioners. Consistently with the results in Table 8.2 and the

0 2 4 6 8 10 12 14 16 18 20

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(a) Eigenvalues of the block matrix
M in (8.7)

(b) Eigenvalues of (P′s)
−1M

(c) Eigenvalues of (P′ω)
−1M (d) Eigenvalues of (Pω,⌈m/10⌉)

−1M

Figure 8.2. Experiment 1. Spectra of both the matrix of the system and of the
preconditioned matrices with α � 2 and 2 step GBDF formula with m � 97 and
s � 128.

preconditioned fast solvers for some large linear systems 239

analysis in Section 8.2, the preconditioner based on the short–memory
principle achieves the better clustering among the others. Observe
also that, with BiCGstab(2), timings are greater than those obtained
with FGMRES, even if the limited memory preconditioners Pω,⌈m/10⌉ are
always better than their competitors. We have omitted the numerical
results for this case.

Experiment 2. We consider the fractional partial differential equa-
tion in two dimensions in (8.3) with the following choice of the coeffi-
cients

Kx � 2, Ky � 1.5, c(x , y) � 1 + 0.5 cos(x y),

b � (β + 0.5 sin(4πx) cos(5πy), . . .

. . . α + 0.7 sin(7πy) cos(4πx)),

g(x , y , t) � sin(5πx) sin(5πy) exp(−t),

u0(x , y) � x y(x − 1)(y − 1).

(8.19)

The domain isΩ× [0, T] � [0, 1]2× [0, 1]. In Table 8.3 we give the results
for the solution of the semidiscrete problem with the GBDF formula
with 2 steps and GMRES(20)/FGMRES(20) iterative methods with the
various proposed preconditioners. Similarly to the other experiments,
we observe that all the limited memory preconditioners, i.e., based on
the short–memory principle, are optimal: the number of iterations to
reach a prescribed tolerance is fixed, independent from the dimension.
Moreover, as before, the approach with FGMRES turns out to be the
fastest one. In this 2D case, we do not present the results with the
circulant approximation of the Jacobian matrix, since it does not lead to
a reasonable spectral approximation of the underlying block–matrix.

240 fabio durastante

GMRES(20) I Ps
m s Mv T(s) Mv T(s) Mv T(s)

25 32 359 0.498077 28 0.162611 28 0.026580
64 417 0.065541 28 0.042177 29 0.043950
128 618 0.230025 29 0.084474 29 0.075497
256 1004 0.556410 28 0.129884 29 0.144670
512 1700 1.367553 27 0.229644 28 0.254450

49 32 511 0.061850 28 0.074696 28 0.044302
64 582 0.213668 28 0.079720 29 0.088193
128 874 0.474627 29 0.164856 30 0.184416
256 1361 1.110566 28 0.289902 30 0.355965
512 2140 2.639608 28 0.579192 29 0.651599

97 32 803 0.300108 28 0.175620 28 0.131053
64 1004 0.554717 28 0.254270 29 0.278705
128 1479 1.108901 29 0.518899 30 0.588185
256 2048 2.361870 28 0.896838 30 1.153711
512 3066 6.686213 28 1.838700 29 2.046596

193 32 1633 0.928106 28 0.312824 28 0.328000
64 2216 1.758452 28 0.845711 29 0.839759
128 2833 3.458109 29 1.701079 30 1.625637
256 3636 8.624317 28 2.893450 30 3.241947
512 5192 25.985645 28 5.410698 29 5.354344

385 32 4483 3.821502 28 1.335643 28 1.265713
64 4046 7.132265 28 2.835499 29 3.091758
128 6815 21.917207 29 5.495737 30 8.458964
256 8692 48.467187 28 13.032433 30 13.832191
512 10024 114.332704 28 27.187875 29 25.970556

769 32 17445 34.674128 28 10.607206 28 9.517020
64 16028 56.537935 28 19.210925 29 20.501788
128 † † 29 44.872253 30 49.015992
256 † † 28 81.530878 30 98.281073
512 † † 28 159.517824 29 181.350848

1537 32 † † 28 72.905661 28 77.110471
64 † † 28 150.587943 29 168.761350
128 † † 29 335.425009 30 369.889844
256 † † 28 613.583401 30 743.860882
512 † † 28 1234.166093 29 1377.924956

continued on the next page

preconditioned fast solvers for some large linear systems 241

continued from previous page

Pω P′s P′ω
m s Mv T(s) Mv T(s) Mv T(s)

25 32 105 0.086074 106 0.064794 30 0.063938
64 114 0.155477 108 0.091509 31 0.035493
128 114 0.229144 115 0.179190 32 0.048669
256 116 0.350810 116 0.345380 32 0.141315
512 119 0.578919 118 0.562342 32 0.165098

49 32 160 0.147374 158 0.146482 31 0.024588
64 174 0.228514 179 0.289489 31 0.043588
128 184 0.380261 189 0.456471 32 0.080920
256 192 0.678054 194 0.795719 32 0.151359
512 195 1.302407 197 1.433853 32 0.293215

97 32 242 0.345816 253 0.440888 31 0.057435
64 275 0.569038 290 0.712328 31 0.098882
128 296 0.958323 312 1.192231 32 0.192708
256 311 1.818854 324 2.246043 32 0.374582
512 320 3.518119 335 4.218966 32 0.747920

193 32 359 0.907019 371 1.182327 31 0.174783
64 437 1.579116 454 2.007617 32 0.318097
128 502 3.061141 516 3.689773 32 0.652213
256 538 5.941900 558 7.393889 32 1.311898
512 567 11.399223 591 14.493837 32 2.580167

385 32 512 2.577256 517 3.118356 31 0.565555
64 655 4.619358 671 5.792371 32 1.131976
128 810 9.476015 826 11.498704 32 2.122971
256 944 19.470493 963 24.454555 32 4.353830
512 1035 45.186098 1057 53.588831 32 8.243228

769 32 722 6.652855 734 9.026140 31 3.160935
64 1010 13.752854 1025 17.565095 32 6.743467
128 1305 29.568440 1339 36.218418 32 14.076085
256 1573 70.327472 1621 92.542980 32 28.237991
512 1817 199.941485 1852 239.047024 32 57.684876

1537 32 978 20.342664 978 25.780316 31 15.895901
64 1385 42.090657 1396 51.705245 32 33.590205
128 1902 102.604220 1923 121.577188 32 67.754216
256 2483 307.027933 2503 362.077657 32 135.465453
512 2968 859.863198 2970 931.043836 32 278.942161

continued on the next page

242 fabio durastante

continued from previous page

PFGMRES
ω,10

m s Mv T(s)

25 32 12 0.390941
64 3 0.130120
128 3 0.249523
256 12 1.929159
512 12 3.750084

49 32 4 0.111798
64 3 0.153173
128 12 1.139513
256 12 2.129826
512 12 4.170408

97 32 3 0.099084
64 12 0.719274
128 12 1.351855
256 12 2.551376
512 12 4.802997

193 32 12 0.564502
64 12 1.026921
128 12 1.870541
256 12 3.556693
512 13 7.276354

385 32 12 0.926664
64 12 1.678028
128 12 3.047989
256 12 5.621248
512 13 11.728037

769 32 12 1.543622
64 12 2.712531
128 13 5.460369
256 13 10.281042
512 12 18.724137

1537 32 12 2.313077
64 13 4.522511
128 13 8.845778
256 13 17.389843
512 13 33.900990

Table 8.2. Experiment 1. Coefficients from equation (8.18), fractional order
of differentiation α � 1.8. The method used is the GMRES(20) for all the
preconditioners except for PFGMRES

ω,10
, using the approach with the FGMRES

discussed in Section 8.2.

p
r

e
c

o
n

d
it

io
n

e
d

f
a

s
t

s
o

lv
e
r

s
f
o

r
s
o

m
e

l
a

r
g

e
l
in

e
a

r
s
y

s
t
e
m

s
2

4
3

GMRES(20) I P′s Pω,⌈m/10⌉ PFGMRES
ω,10

PFGMRES
ω,5

m s Mv T(s) Mv T(s) Mv T(s) Mv T(s) Mv T(s)

25 × 25 32 266 0.340921 114 1.709925 34 2.509950 3 0.687541 3 0.220345
64 354 0.737725 126 2.498359 33 4.031727 12 1.641349 11 1.411272
128 520 2.310232 135 4.906858 33 8.018807 12 2.991839 12 2.874120
256 838 7.673421 137 9.559409 32 14.279442 13 6.076410 13 5.953192
512 1471 33.862683 138 18.976753 31 26.585789 13 12.048800 13 11.433036

49 × 49 32 512 3.470923 537 51.713398 34 26.305325 12 2.383546 12 2.216880
64 633 8.502515 1214 228.157016 34 51.005210 12 4.383754 12 3.791248
128 861 26.832703 1261 430.258106 33 100.230792 13 9.349177 13 8.199694
256 1269 120.173661 1606 1192.707353 32 192.221346 13 19.039451 13 17.025160
512 1985 443.243425 2391 3661.130769 32 433.940684 13 37.788963 13 34.709295

97 × 97 32 1209 77.714770 1919 1531.313896 34 1208.996561 13 10.958864 13 9.126362
64 1362 220.144413 8051 12804.937808 34 2535.711822 13 20.057837 13 17.836464
128 1622 577.350800 – > 4h 34 5216.717315 13 38.867441 6 15.510864
256 2275 1649.682022 – > 4h 32 9198.798614 13 75.631715 13 69.373086
512 3257 4636.613558 – > 4h 31 16705.028289 14 160.233433 14 147.280593

Table 8.3. Experiment 2. Coefficients from equation (8.19), fractional order of differentiation 2α � 1.1, 2β � 1.8. We use GMRES(20)
for all the proposed preconditioners with the exception of PFGMRES

ω,· , used with FGMRES. See also the discussion in Section 8.2 for
more details.

9

Future Perspectives

“The Road goes ever on and on
Down from the door where it began.
Now far ahead the Road has gone,
And I must follow, if I can,
Pursuing it with eager feet,
Until it joins some larger way
Where many paths and errands meet.
And whither then? I cannot say”

J.R.R. Tolkien, The Fellowship of the Ring

In this thesis we have addressed the numerical solution of some par-
tial, fractional partial differential equations and optimization problems
mainly by using preconditioners for sequences of sparse matrices and
specific tools for quasi–Toeplitz structures.

The efforts for the problems discussed in the previous pages and
resumed briefly below are prone to be extended in several directions,
partly mentioned in the following items.

• In Chapter 3 we discussed the following update strategy for precondi-
tioners in factorized form:

M−1
k � Wk(D + Ek)

−1ZT
k ,

where the update is obtained by working on the triangular matrices Wk

and Zk ; see (3.13). The other substantial component of this strategy is
represented by the updating matrix Ek and by an efficient computation
of (D + Ek)

−1r for a given vector r. We saw that often an m–banded
approximation of Ek (with m both m ≪ n and independent from n)
permits to generate an updated preconditioner, that needs only the
solution of a m–banded linear system and two matrix–vector product
per application. Numerical tests show that in some specific cases the
correction factors D + Ek have a sparsity that can be exploited for the
solution of the system with matrix D + Ek . One of the directions we

246 fabio durastante

are already exploring consists in finding which data locality structures
can help in designing faster and cheaper updates for some specific
problems.

• In Chapter 5 we applied our update strategy from Chapter 3 to achieve
a fast solution of linear and time dependent FPDEs (Fractional Partial
Differential Equations), where only the derivatives in space can be
fractional. We are working on a generalization of these techniques for
nonlinear equations, with either fractional derivatives in space and
possibly in time. This can lead to the solution of sequences of nonlin-
ear algebraic equations that, when treated by quasi–Newton methods,
require the solution of sequences of linear systems as discussed in Ex-
ample 3.2. This task can be ultimately faced by exploiting the techniques
in Chapters 3 and 5; see also the discussion at the end of Section 6.2.2.

• In Chapter 6 we considered an efficient algorithm for PDE constrained
optimization. For this topic we are planning an extension of the tech-
niques and instruments developed in Chapter 6 to face more challenging
constrained optimization problems, both for the preconditioning update
techniques for sequences of linear systems, and for the optimization
routine. We emphasize that the latter can be extended to treat stronger
nonlinearities, time–dependent constraints and also for considering
cases in which the controls are multiplied by the state variable instead
of being applied to the boundary condition or as a source, as it was,
e.g., in (6.6).

• In Chapter 8 we proposed some hybrid-structured preconditioners for
fast solution of FDEs. We plan to focus on a different approach for the
application of the preconditioners proposed in Chapter 8. It is easy to
observe that from the expression in (8.10) it is possible to recast the
application of the underlying hybrid preconditioner to a vector r, i.e.,
the solution of the linear system x � P−1r, as the solution of a suitable
matrix equation. Exploiting the spectral information obtained for P and
its constituting blocks in the context of matrix equation solvers, we
expect an advantage over the results in Chapter 8, both for storage and
for timings.

A

A Brief Introduction to Fractional Calculus

“Natura non facit saltus”

G. W. Leibniz, Nouveaux essais (1704) IV, 16, 12

The origins of fractional calculus date back to the same years as
calculus [88, 203, 241, 288]. When Leibniz developed his version of
calculus and invented the notations

dn f

dxn
and

(

d

dx

)n

f ,

the question concerning the necessity of n being a natural number had
been asked. In a letter by Leibniz to de L’Hospital, dated September 30,
16951, we read

“John Bernoulli seems to have told you of my having mentioned to him a
marvelous analogy which makes it possible to say in a way that successive differ-
entials are in geometric progression. One can ask what would be a differential
having as its exponent a fraction. You see that the result can be expressed by an
infinite series. Although this seems removed from Geometry, which does not
yet know of such fractional exponents, it appears that one day these paradoxes
will yield useful consequences, since there is hardly a paradox without utility.
Thoughts that mattered little in themselves may give occasion to more beautiful
ones.”

Some years later Euler [112] came back to the subject, observing that
the choice of a fractional exponent can be seen as a suitable interpolation
between some series expansion2

“To round off this discussion, let me add something which certainly is more
curious than useful. It is known that dn x denotes the differential of x of order n,
and if p denotes any function of x and dx is taken to be constant, then dn p is
homogeneous with dxn ; but whenever n is a positive whole number, the ratio of
dn p to dxn can be expressed algebraically; for example, if n � 2 and p � x3, then
d2(x3) is to dx2 as 6x to 1. We now ask, if n is a fractional number, what the value

1 Leibniz 1849-, II, XXIV, 197ff, translation by Mandelbrot [199, Chp. 41, Historical Sketches]
2 Translation from the Latin original by Stacy Langton.

248 fabio durastante

of that ratio should be. It is easy to understand the difficulty in this case; for if n
is a positive whole number, dn can be found by continued differentiation; such
an approach is not available if n is a fractional number. But it will nevertheless be
possible to disentangle the matter by using interpolation in progressions, which
I have discussed in this essay.”

The target is an extension of the ordinary calculus that is analogous to
the extension of the Euler’s Γ(n) function on non–natural numbers.

In an early stage, contributions to the solution of this paradox were
made successively by Lagrange [176], Laplace [180], Lacroix [175],
Fourier [118], Abel [1] – who found the first application of fractional
calculus for solving an integral equation coming from the tautochronous
problem – Liouville [192], Riemann [238], Heaviside [155], Bateman [13],
Hardy [153, 154], Weyl [287], Riesz [239] and many others, even if the
applications that made it popular are indeed more recent.

The first attempts in giving a general definitions are by Lacroix
[175] in which, from the formula for the nth derivative of y � xm for
n ,m ∈ N, the formula

(

d

dx

)α

xβ �
Γ(β + 1)

Γ(β − α + 1)
xβ−α , α, β ∈ Q, (A.1)

was obtained. In particular, the 1/2th derivative of y � x from the
Leibniz’s letter was recovered. Nevertheless, all the procedure is made
accordingly with the formalistic approach of the time: no general or
rigorous definition of the operation is given. Always based on formal
manipulations are the Liouville’s formulas [191], that extended the set
of functions for which a fractional derivative could be computed to for
exponential and rational functions. From the latter formula, another
expression of Lacroix’s formula (A.1) for the derivative of constants can
be obtained and this led to a discrepancy between the two fractional
derivatives. While (A.1) implies that the derivative of a constant is not
zero, the Liouville’s gives zero, as expected. As we will see, this is a
feature that the subsequent progress on fractional calculus did not
resolve; see [88]. We need to wait until the contribution of Fourier [118]
for an integral representation of a fractional derivative, i.e.,

f (x) �
1

2π

∫

+∞

−∞
f (ξ)dξ

∫ ∞

−∞
cos t(x − ξ)dt ,

and thus, for α ∈ R, this representation yields (at least formally)

dα f (x)

dxα
�

1

2π

∫

+∞

−∞
f (ξ)dξ

∫ ∞

−∞
cos

[
tα(x − ξ) + πα

2

]
dt .

preconditioned fast solvers for some large linear systems 249

A.1 Definition of Some Fractional Operators

We focus on two contributions, the one by Riemann [238] and Liouville
[191] extending the definition to obtain the fractional integral for a
given α > 0 and a < b ∈ R ∪ {±∞},

Jαa ,x y(x) �
1

Γ(α)

∫ x

a

(x − ξ)α−1 y(ξ)dξ, (A.2)

where Γ(·) is the Euler gamma function [2], i.e., the usual analytic contin-
uation to all complex numbers (except the non–positive integers) of the
convergent improper integral function

Γ(t) �

∫

+∞

0

xt−1e−x dx. (A.3)

Definition A.2 arises naturally if one considers the solution of the ordi-
nary linear differential non–homogeneous equation (Abel’s equation),


dn y(x)

dxn
� f (x), x ∈ [b , c], f ∈ C

(0)([b , c]),

y(k)(a) � 0, a ∈ (b , c), k � 0, 1, . . . , n − 1.

Since a fundamental set of solutions of the corresponding homogeneous
equation dn y(x)/dxn is represented by {1, x , . . . , xn−1}, we obtain that, for
any a ∈ (b , c), the solution can be expressed as

y(x) �
1

(n − 1)!

∫ x

a

(x − ξ)n−1 f (ξ)dξ �
1

Γ(n)

∫ x

a

(x − ξ)n−1 f (ξ)dξ,

from which (A.2) arises by substituting n by the real number α with
ℜ(α) > 0. Thus, this fractional–order integral formula can be interpreted
as a natural extension of an iterated integral; see again [88] for other
possible derivation through complex analysis or Laplace transform. As a
final step we summarize the discussion above in the following definition.

Definition A.1 (Riemann–Liouville Integral). Given f (x) ∈ L1([a , b])
and R ∋ α > 0, then (A.2) is called left–sided fractional integral, while

Jαa ,x y(x) �
1

Γ(α)

∫ b

x

(ξ − x)α−1 y(ξ)dξ,

is called right–sided fractional integral.

Theorem A.1 (Fractional integral properties). Given a , b ∈ R with b > a,

250 fabio durastante

1. Let Q be the reflection operator Q f (x) � f (a + b − x), then

Q Jαa ,x � Jα
x ,bQ , Q Jα

x ,b � Jαa ,xQ ,

2. Given f , g ∈ L1(a , b) then the following formula for fractional integration by
parts holds

∫ b

a

f (x)Jαa ,x g(x)dx �

∫ b

a

g(x)Jα
x ,b f (x)dx ,

3. Given R ∋ α, β > 0 and f ∈ L1(a , b), then the semigroup property of
fractional integration reads as

Jαa ,x J
β
a ,x f � J

α+β
a ,x f , Jα

x ,b J
β
x ,b

f � J
α+β
x ,b

f , a.e.,

moreover, if f ∈ C([a , b]) or α + β > 1 then the relation is satisfied in every
point.

Moving forward in this direction, the introduction of a fractional
derivative of order α, with ℜ(α) > 0, becomes the next step. Let us
observe that the standard derivative of order n ∈ N is only a left inverse
of the n–fold integral Jn

a ,x y(x), since, in general, if used on the right can
differ from the original function by a polynomial of degree n − 1, i.e.,

Jn
a ,x

(

dn y(x)

dxn

)

� y(x) −
n−1
∑

k�0

y(k)(a+)
(x − a)k

k!
, x > a.

Therefore, what is reasonable to ask for a fractional derivative is only to
be a left inverse of the Riemann–Liouville fractional integral and this
induces the following definition.

Definition A.2 (Riemann-Liouville Derivative). For a given a function
y(x) with absolutely continuous first derivative, a given α > 0 and m ∈ Z+

such that m − 1 < α ≤ m, we define the left-side Riemann-Liouville fractional
derivative as

RLDα
a ,x y(x) �

1

Γ(m − α)

(

d

dx

)m ∫ x

a

y(ξ)dξ

(x − ξ)α−m+1
, (A.4)

and the right-side Riemann-Liouville fractional derivative as

RLDα
x ,b y(x) �

1

Γ(m − α)

(

− d

dx

)m ∫ b

x

y(ξ)dξ

(ξ − x)α−m+1
. (A.5)

Moreover, the two functions belong to space Lp([a , b]) for 1 ≤ p < 1/α.

preconditioned fast solvers for some large linear systems 251

Observe that, in general, the left– and right–hand side derivatives
are not equal unless α is an even integer, a case in which the derivatives
become localized and equal. On the other hand, if α is an odd integer,
then these derivatives become again localized but opposite in sign, see
also Proposition A.6. In general, the left–hand fractional derivative of
the function y computed at a point x ∈ (a , b) depends on all function
values to the left of the point x, thus it is not localized! Similarly with
the right–handed derivative and the point on the right; see Figure A.1.

RL
Dα

x,by(x)RL
Dα

a,xy(x)

x

Figure A.1. Non locality for left– and right–sided Riemann–Liouville fractional
derivative.

Let us consider now the semigroup properties also for the Riemann-
Liouville fractional derivatives, as we have done in Theorem A.1.

Proposition A.1. Assume that α, β ≥ 0, moreover let y be a function such

that there exists φ ∈ L1([a , b]) with y � J
α+β
a ,x φ, then

RLDα
a ,x RLD

β
a ,x y � RLD

α+β
a ,x y.

The regularity conditions imposed in the proposition above, that
implies a certain convergence to zero of the fractional integrals, are not
there only for technical reasons, i.e., there exist some cases where such
a φ does not exists; see, e.g., [93]. Thus, no unconditional semigroup
property of Riemann–Liouville fractional derivative exists. Nevertheless,
this definition suffices for obtaining the features we requested at the
beginning, i.e., the Riemann–Liouville derivative is indeed a left inverse
of the Riemann–Liouville fractional integral.

Proposition A.2. Let α > 0. Then, for every y ∈ L1([a , b]) we have

RLDα
a ,x Jαa ,x y � y almost everywhere.

Proposition A.3. Let α > 0 and m ∈ N such that m − 1 < α ≤ m. Assume
that y is such that Jm−α

a ,x y has an absolutely continuous (m − 1)th derivative.
Then,

Jαa ,x RLDα
a ,x y(x) � y(x) −

m−1
∑

k�0

(x − a)α−k−1

Γ(α − k)
lim

z→a+

dm−k−1

dzm−k−1
Jm−α
a ,z f (z).

Moreover, if there exists a φ ∈ L(1)([a , b]) such that y � Jαa ,xφ(x) then
Jαa ,x RLDα

a ,x y(x) � y(x) almost everywhere.

252 fabio durastante

Note that with this definition we recover also the Lacroix [175]
expression for the fractional derivative of a power function (A.1). Thus,
for α < N the fractional derivative of y(x) ≡ 1 is not zero. Indeed,

RLDα
0,x1 �

x−α

Γ(1 − α) , α ≥ 0, α < N, x > 0. (A.6)

A way to overcome this difficulty is by interchanging the process of
differentiation and integration in Definition A.2, see [72]. Observe that
this requires the mth derivative of y(x) absolutely integrable.

Definition A.3 (Caputo Derivative). Given α > 0 and m ∈ Z+ such that
m − 1 < α ≤ m, the left-side Caputo fractional derivative of a function y(x)
such that y(m) is absolute integrable reads as

CDα
a ,x y(x) �

1

Γ(m − α)

∫ x

a

y(m)(ξ)dξ

(x − ξ)α−m+1
, (A.7)

while the right-side

CDα
x ,b y(x) �

(−1)m

Γ(m − α)

∫ b

x

y(m)(ξ)dξ

(ξ − x)α−m+1
. (A.8)

It is easy to recognize that in general

RLDα
a ,x y(x) �

dm

dxm
Jm−α
a ,x y(x) , Jm−α

a ,x
dm

dxm
� CDα

a ,x y(x),

unless the function y(x) is such that y(k)(a+) � 0 for k � 0, . . . ,m − 1.
In fact, assuming that we can exchange the derivative with the integral
in Definition A.3, e.g., by a dominated convergence result, we have

CDα
a ,t y(x) � RLDα

a ,t y(x) −
m−1
∑

k�0

f (k)(a+)
xk−α

Γ(k − α + 1)

� RLDα
a ,t

y(x) −
m−1
∑

k�0

f (k)(a+)
xk

k!

 .
(A.9)

It is obviously possible to investigate the composition of Riemann–
Liouville integrals and Caputo Derivatives. What ones can find is that
even the latter are a left inverse of the Riemann–Liouville integrals.

Proposition A.4. If y is continuous and α ≥ 0, then CDα
a ,x Jαa ,x y(x) � y(x).

preconditioned fast solvers for some large linear systems 253

Again, we find that in general the Caputo derivative is not the right
inverse of the Riemann–Liouville integral.

Proposition A.5. Assuming that α ≥ 0, m ∈ N such that m − 1 < α ≤ m
and y has an absolutely continuous (m − 1)th derivative. Then:

Jαa ,x CDα
a ,x y(x) � y(x) −

m−1
∑

k�0

y(k)(a+)

k!
(x − a)k .

We have started our exploration having in mind the objective of
“interpolating” between derivatives of integer orders, like the Euler
Gamma function (A.3) interpolates the factorial over R. In this sense
we expect that the construction of fractional derivatives, either in the
Riemann–Liouville or Caputo form, is such that if α is an integer, then
the classical derivative is recovered. This is true only on one side as the
following Proposition shows.

Proposition A.6 (Continuity w.r.t. α). Given a function y(x), α > 0 and
m ∈ N such that m − 1 < α ≤ m. We have

lim
α→m− RLDα

a ,x y(x) � lim
α→m− CDα

a ,x y(x) �
dm

dxm
y(x),

on the other hand,

lim
α→(m−1)+

RLDα
a ,x y(x) � y(m−1)(x),

and
lim

α→(m−1)+
CDα

a ,x y(x) � y(m−1)(x) − y(m−1)(a+).

The other approach we want to investigate is the Grünwald–Letnikov,
based on the limit of a sum, filling both the gap between the usual
definition of the derivative, through the limit of the incremental ratio
of function, and the formulation as integral operators.

Definition A.4 (Grünwald [142]–Letnikov [184] fractional derivatives).
Given α > 0 and m ∈ Z+ such that m − 1 < α ≤ m, the left-side Grünwald–
Letnikov fractional derivative of a function y(x) is defined as

GLDα
a ,x y(x) � lim

h→0
Nh�x−a

1

hα

N
∑

j�0

(−1) j

(

α
j

)

y(x − jh), (A.10)

while the right-side

GLDα
x ,b y(x) � lim

h→0
Nh�b−x

1

hα

N
∑

j�0

(−1) j

(

α
j

)

y(x + jh). (A.11)

254 fabio durastante

Observe that if α goes to an integer m, (A.10) reduces to the derivative
of integer order m, where

!
m
j

�
is now the usual binomial coefficient. Gen-

erally speaking, the Definition A.4 of the Grünwald–Letnikov derivative,
the Riemann–Liouville derivative, and thus the Caputo derivative are
not equivalent. Only under suitable smoothness conditions for the
function an equivalence can be recovered.

Proposition A.7. Given α > 0 and m ∈ Z+ such that m − 1 < α ≤ m if
y ∈ C

m([a , b]), then for x ∈ (a , b] and x ∈ [a , b), we have:

RLDα
a ,x y(x) � GLDα

a ,x y(x), RLDα
x ,b y(x) � GLDα

x ,b y(x),

respectively.

Another natural question that is raised by Definition A.4 is: what
happens if we replace the fractional order of α by −α? We recover
the original formulation of the fractional integral by Grünwald [142]
and Letnikov [184], thus allowing for a formal unification of the two
concepts of fractional derivatives and integrals.

The last type of fractional derivative that we are going to discuss is
the Riesz fractional derivative:

Definition A.5 (Riesz Derivative). Given α > 0 and α < {2k + 1}k≥0 and
m ∈ Z+ such that m − 1 < α ≤ m, the symmetric Riesz derivative is given by

dα y(x)

d |x |α
�

1

2 cos(απ/2)

(

RLDα
a ,x + RLDα

x ,b

)

. (A.12)

A.1.1 Physical meaning of the fractional operators

As we have seen there exist many definitions of both fractional integrals
and derivatives. On the other hand, for the classical calculus the situation
is unambiguous. We have only one derivative and only one integral that
are tight together by the Fundamental Theorem of Calculus and assume

a well defined physical meaning: the integral
∫ b

a
y(t)dt implies the

displacement from a to b of a point moving at velocity y(t). Similarly,
if s(t) is the displacement at time t, then s′(t) stands for the velocity
at time t while s′′(t) stands for the acceleration. On the other hand,
as we have seen with Proposition A.6, neither the Riemann–Liouville
fractional derivative (Definition A.2) nor the Caputo fractional derivative
(Definition A.3) can be considered the mathematical generalization
of the typical derivative. Also thinking at the Γ(·) function example
we used at the beginning, we observe that the condition of being an

preconditioned fast solvers for some large linear systems 255

holomorphic function in the right half plane C+ satisfying f (z + 1) �
z f (z) for each z ∈ C+ is not sufficient to have a true generalization
of the factorial function. To select the proper extension making it
unique, i.e., to prove the Wielandt’s Theorem, an auxiliary conditions
on boundedness is needed; see, e.g., [236]. The classical interpretation
can be partially recovered through the interpretation of both fractional
integrals (Definition A.1) and fractional derivatives (Definitions A.2,
A.3 and A.5) in terms of Stieltjes integral with the opportune singular
kernels, e.g.,

Kα(ξ, x) �

− (x − ξ)
Γ(α + 1)

, ξ ∈ [a , x],

0, ξ < a ,

for the left sided fractional integral with order α. In this way the
fractional integral is reduced to the generalized displacement in the
sense of Kα(ξ, x) if y(t) is the velocity at time t. The fractional order of
integration α controls the singularity of the integral, i.e., the smaller the
index the stronger the singularity. The situation is completely similar,
using the correct kernels, for the physical meaning of the fractional
derivatives.

Another way to investigate the physical meaning of fractional opera-
tors is through the link between “random walk” processes and fractional
dynamics [204]. One could be interested in diffusion processes that no
longer follows Gaussian statistic, i.e., the classic Wiener process with
Markov property tight to the standard Brownian motion. Therefore, we
may want to consider deviations from the linear time dependence, Kt,
of the mean squared displacement, < χ2(t) >. For example, this is the
case of anomalous diffusion related to a non–linear growth in time of
the mean squared displacement, i.e., < χ2(t) >∼ Kα tα, where α is our
fractional exponent manifesting in a power–law pattern.

A.2 Fractional Partial Differential Equations

Why should one bother, from the point of view of the applications,
with the use of fractional calculus? The first answer in this direction
can be hinted by thinking at the link between second order elliptic
operators and Gaussian diffusion. The diffusion modeled with fractional
operators, on the other hand, is non–universal, i.e., involves a parameter
α, and non–local. As one could expect, there are in nature several
phenomena that often violate universality and locality mirrored in the
Gaussian models. Fractional diffusion equations have been developed
to account for this anomalous features; see, e.g., [159, 197, 204, 235].

256 fabio durastante

To proceed with our treatment we need now to introduce a substan-
tial difference. In general, one can consider

• differential equations with fractional derivatives in space,
• differential equations with fractional derivatives in time,
• differential equations with fractional derivatives in both space and time.

For the problems whose numerical treatment is considered in this thesis,
we will focus mostly on the fractional derivatives in space case; see [225].
This class of problems contains already several models of interests,
e.g., the space fractional diffusion equation, the fractional advection–
dispersion equation, the fractional advection–diffusion equation, the
space fractional Fokker–Planck equation and the fractional partial
differential equations with Riesz space fractional derivatives and many
others.

Let us start by recalling two simple one-dimensional linear partial
differential equations, the parabolic equation

∂u(x , t)

∂t
� κ(x , t)

∂2u(x , t)

∂x2
+ f (x , t), (x , t) ∈ Q � (L, R) × (0, T]

and the hyperbolic equation

∂u(x , t)

∂t
� ν(x , t)

∂u(x , t)

∂x
+ f (x , t), (x , t) ∈ Q � (L, R) × (0, T].

We are interested in looking at their fractional generalization, i.e., we
substitute the derivatives in space with fractional derivatives discussed in
Appendix A.1. In this way we obtain the fractional–diffusion equation
given by



∂u

∂t
� d−(x , t) RLDα

L,x u + d+(x , t) RLDα
x ,Ru + f , (x , t) ∈ Q

u(x , 0) � u0(x), x ∈ (L, R),
u(L, t) � u(R, t) � 0, t ∈ (0, T],

where d+ , d− , f ∈ C
0([L, R]), and the transport coefficients d+ , d−

are such that d+ , d− ≥ 0, α ∈ [1, 2], the function f (x , t) is again a
source/sink term. In particular, we can consider the additional ad-
vective term −ν(x , t)∂u(x ,t)/∂x on the right–hand side in the case in
which α ∈ (1, 2] transforming the fractional diffusion into a fractional
advection–diffusion equation; see, e.g., [252]. In some cases a differ-
ence is made between this form, called two–sided fractional diffusion
equation, and the case in which only one of the left– and right–sided

preconditioned fast solvers for some large linear systems 257

derivatives appears. The case in which left– and right–sided fractional
derivatives appear with the same coefficients is usually modeled as a
Riesz space-fractional diffusion equation, i.e.,



∂u

∂t
� d(x , t)

dαu

d |x |α
+ f , (x , t) ∈ Q ,

u(x , 0) � u0(x), x ∈ (L, R),
u(L, t) � u(R, t) � 0, t ∈ (0, T].

Where α ∈ (1, 2], d(x , t) > 0.
Another generalization of the classical PDE is represented by the

fractional advection–dispersion equation in flux form for Q � (−L, L)×
(0, T]



∂u

∂t
� −ν ∂u

∂x
+ D

∂
∂x

(

1 + η

2
J1−α
−L,x u +

1 − η
2

J1+α
x ,L u

)

, (x , t) ∈ Q

u(0, t) � g(t), t ∈ [0, T],
ut(0, t) � h(t), t ∈ [0, T],
u(x , 0) � u0(x), x ∈ [−L, L].

,

for the skewness of the transport process η ∈ [−1, 1), controlling the
bias in the dispersion, where α ∈ (0, 1] is the order of the fractional
derivatives and ν and D are macroscopic parameters; see, e.g., [131].

A.2.1 Sobolev spaces of fractional order

Sobolev spaces represent a tool for the analysis of the solutions of
partial differential equations and, from the numerical point of view,
the instrument needed to investigate the weak formulations, i.e., the
Galerkin approximation in finite dimensional subspaces, together with
the associated error analysis for the FPDEs.

The two main differences/difficulties, as reported in Appendix A.1,
are that the fractional operators are non local and, moreover, their adjoint
is not, in general, the negative of itself. Nevertheless, the tools that
are needed for performing this analysis exist and have been already
developed in another context: Sobolev spaces of fractional order or,
briefly, fractional Sobolev spaces; see, e.g., the review in [92].

As in the standard case, there exist at least two equivalent ways for
defining Sobolev spaces of, both integer and real (fractional) order, that
are, namely, the so–called W– and H–definition. The first one arises
with the introduction of weak derivatives through which an opportune
norm is built. Let us work in Rd and consider the multi–index α �

(α1 , . . . , αd) ∈ Nd such that its length is given by |α| �
∑d

i�1 αi , then for

258 fabio durastante

any function y that is an m–differentiable function and any α such that
|α| ≤ m the αth derivative can be expressed as

Dα y(x) �
∂|α|y(x)

∂xα1

1 · · · ∂x
αd

d

.

Thus we can obtain the weak–derivatives, extending the concept of
derivative for function that are not in C

m .

Definition A.6 (Weak derivative). Given y , w ∈ L1(Ω) for an open set
Ω ⊆ Rd , a multi–index α, w is called a weak αth derivative of y if and only
if

∫

Ω

v(x)Dαφ(x) dx � (−1)|α|
∫

Ω

w(x)φ(x) dx, ∀φ ∈ C
∞
0 (Ω).

At last to introduce Sobolev spaces we need to require some regu-
larity of the boundary of the domain Ω.

Definition A.7 (Regular Domains). Let Ω ∈ Rd be open and bounded, let
V denote a function space on Rd−1. We say that the boundary ofΩ, i.e., ∂Ω, is
of class V if for each point x̄ ∈ ∂Ω there exists an r > 0 and a function g ∈ V
such that

Ω ∩ Br(x̄) � {x ∈ Br(x̄) : xd > g(x1 , . . . , xd−1)},

where Br(x̄) is the d–dimensional ball of radius r centered at x̄ and, if necessary,
we admit a transformation of the coordinate system.

In particular, one is usually interested in Lipschitz, Ck–regular and
C

k ,α–Hölder continuous (α ∈ (0, 1]) boundary for V the corresponding
function space.

Definition A.8 (Sobolev space of integer order). Let k ∈ N, p ∈ [1,+∞].
The Sobolev space W k ,p(Ω) for Ω a regular domain is the set of all the
functions y such that for each multi–index α with length less than k, the αth
weak derivative exists and is a function in Lp(Ω). Moreover, we define the
norm:

‖y‖W k ,p (Ω) �


*.,
∑

|α|≤k

|Dα y |p
+/-

1/p

, 1 ≤ p < ∞,

max
|α|≤k

‖Dα y‖∞ , p � ∞.

preconditioned fast solvers for some large linear systems 259

Let us now extend this definition to a real order, i.e., let us substitute
the integer k with a real number α > 0. We start fixing the fractional ex-
ponent α ∈ (0, 1). Then for any p ∈ [1,+∞) we can extend the Definition
A.8 by considering

Wα,p(Ω) �

{

u ∈ L
p(Ω) :

|u(x) − u(y)|

‖x − y‖d/p+α
∈ L

p(Ω ×Ω)
}

, (A.13)

that is indeed an intermediate Banach space betweenLp(Ω) and W1,p(Ω)
if endowed with the natural norm

‖u‖W s ,p (Ω) �

(∫

Ω

|u |p dx +

"
Ω×Ω

|u(x) − u(y)|p

‖x − y‖d+αp
dx dy

) 1/p

,

where

|u |W s ,p (Ω) �

("
Ω×Ω

|u(x) − u(y)|p

‖x − y‖d+αp
dx dy

) 1/p

is usually called the Gagliardo seminorm of u. Now, for the general case
of a non integer α > 1, it suffices to write α � k+σ, where k is an integer
and σ ∈ (0, 1). In this way we can extend easily Definition A.8 as

Definition A.9 (Sobolev space of fractional order). Given α � k + σ
with k ∈ N and σ ∈ (0, 1), the space Wα,p(Ω) consists of classes of functions
u ∈ W k ,p(Ω) (see Definition A.8) whose distributional derivatives Dαu for
|α| � k belong to Wσ,p(Ω) in the sense of (A.13), and this is a Banach space
with respect to the norm

‖u‖Wα,p (Ω) �
*.,‖u‖

p

W k ,p (Ω)
+

∑

|α|�k

‖Dαu‖
p

Wσ,p (Ω)

+/-
1/p

.

What is needed now is a link between Definition A.9 and the
fractional derivatives we have defined, i.e., Riemann–Liouville fractional
derivative (Definition A.2) and Riesz fractional derivative (Definition
A.5). To achieve this, we need to obtain the so–called H–definition
of Sobolev spaces, thus restricting to the case p � 2, i.e., using L2(Ω)
as starting space. So letS be the Schwartz space of rapidly decaying
C
∞(Rn) functions. Then we can consider the topology generated by the

seminorms,

|ϕ|n � sup
x∈Rn

(1 + ‖x‖)N
∑

|α|≤N

‖Dαϕ(x)‖, N ≥ 0, ϕ ∈ S(n
R).

260 fabio durastante

Moreover, S′ is the topological dual of S, i.e., the set of all tempered
distributions. Then for any function ϕ ∈ S the Fourier transform of ϕ is
denoted by

Fϕ(ξ) �
1

(2π)n/2

∫

Rn

e−iξxϕ(x)dx ,

that can be extended fromS toS′. We can now consider the alternative
definition of the space Hs(Rn) � W s ,2(Rn) via the Fourier transform.
Therefore, what is needed, for s > 0, is to prove that

H̃s(Rn) �

{

u ∈ L
2(Rn) :

∫

Rn

(1 + ‖ξ‖2s)‖Fu(ξ)‖2dξ < +∞
}

, (A.14)

is equivalent to the space W s ,2(Rn).

Proposition A.8. Let s ∈ (0, 1). Then the fractional Sobolev space W s ,2(Rn)
from Definition A.9 coincides with H̃s(Rn) defined in (A.14), thus we will
identify it in any case simply as Hs(Rn) ≡ H̃s(Rn) ≡ W s ,2(Rn). In particular,
for any u ∈ HS(Rn) we find that

‖u‖2
Hs (Rn)

� 2C(n , s)−1

∫

Rn

|ξ |2s |Fu(ξ)|2 dξ,

where

C(n , s)−1
�

∫

Rn

1 − cos(ζ)

|ζ|n+2s
dζ.

The proof of this proposition, for which we refer to [92] and refer-
ences therein, relies on the Plancherel’s formula, i.e., to the fact that we
are using as starting space L2.

As a final step, we can focus on the connection between the operators
defined in Appendix A.1 and this formulation of the fractional Sobolev
spaces. For doing this we will follow the approach in [110]. Therefore,
we will start by giving some definitions of the objects we need. To keep
the notation simple, we restrict ourselves to the case of n � 1, as already
done with the definition of the fractional operators.

Definition A.10 (Left Fractional Derivative Space). Let µ > 0. We define
the semi–norm

|u |Jµ
L
(R) � ‖ RLD

µ
−∞,x u‖2 ,

the norm
‖u‖J

µ
L
� (‖u‖2

2 + |u |2
J
µ
L

)
1/2 ,

and let J
µ
L (R) denote the closure of C∞0 (R) with respect to the norm ‖ · ‖J

µ
L
.

preconditioned fast solvers for some large linear systems 261

Definition A.11 (Right Fractional Derivative Space). Let µ > 0. We
define the semi–norm

|u |Jµ
R
(R) � ‖ RLD

µ
x ,+∞u‖2 ,

the norm

‖u‖J
µ
R
� (‖u‖2

2 + |u |2
J
µ
R

)
1/2 ,

and let J
µ
R (R) denote the closure of C∞0 (R) with respect to the norm ‖ · ‖J

µ
R
.

Definition A.12 (Symmetric Fractional Derivative Space). Let µ > 0
with µ , n − 1/2, n ∈ N. We define the semi–norm

|u |Jµ
S
(R) � | < RLD

µ
x ,+∞u , RLD

µ
x ,+∞u >L2(R) |

1/2 ,

the norm

‖u‖J
µ
S
� (‖u‖2

2 + |u |2
J
µ
S

)
1/2 ,

and let J
µ
S
(R) denote the closure of C∞0 (R) with respect to the norm ‖ · ‖J

µ
S
.

In this way we have mimicked the construction of the fractional
Sobolev spaces via the Gagliardo norm, see Definition A.9. Now we
need the analogous of Proposition A.8.

Proposition A.9 (Ervin and Roop [110]). Given µ > 0 the following facts
hold true

• the spaces J
µ
L (R) and Hµ(R) are equal, with equivalent semi–norms and

norms;
• the spaces J

µ
L (R) and J

µ
R (R) are equal, with equivalent semi–norms and norms;

• if µ , n − 1/2, n ∈ N, then the spaces J
µ
L (R) and J

µ
S
(R) are equal, with

equivalent semi–norms and norms.

To extend the definitions and the equivalence to a bounded open
subintervalΩ � (L, R) ⊂ R, it is sufficient to consider the closure in the
relative norms (Definitions A.10, A.11 and A.12) of the space C

∞
0 (Ω).

Proposition A.10 (Ervin and Roop [110]). Let µ > 0, µ , n − 1/2, n ∈ N.
Then the space J

µ
S,0(Ω), J

µ
L,0(Ω), J

µ
R,0(Ω) and H

µ
0 (Ω) are equal, with equivalent

semi–norms and norms.

262 fabio durastante

A.3 Some Classical Discretization Formulas

Most of the discretization schemes for partial differential equations
have been extended to FDEs. Thus, there exist methods for discretizing
them in strong form, e.g., finite differences (FD) discretization, and
methods that exploit the weak forms through the use of the Fractional
Sobolev spaces from Appendix A.2.1.

Here we will focus on the use of finite differences schemes for our
derivatives, while some use of weak formulation is used in Chapter 6 for
treating FDE control problems that, nonetheless, will be solved indeed
by using strong formulation.

A.3.1 Finite Differences for Riemann–Liouville Fractional
Derivatives

For numerical calculation of fractional–order derivatives we can use
the relation given by Proposition A.7 and Equation (A.9) to obtain
finite difference discretizations of both Riemann–Liouville and Caputo
derivatives. Thus for functions y(x) suitably smooth, in the sense of
Proposition A.7, we can use the Grünwald–Letnikov expression (A.10)
to approximate the left–sided Riemann–Liouville derivative as,

RLDα
0,x y(x)

���x�xn
�

1

∆xα

n
∑

j�0

ω(α)
j

y(xn− j) + O(∆x),
{xk � j∆x}n

j�0
,

ω(α)
j

� (−1) j
!α

j

�
,

that is convergent approximation of order 1 for any α > 0. For the
sake of obtaining stable scheme for FDEs, we are interested also in
a slight modification of this formula for α ∈ (1, 2), that is the shifted
Grünwald–Letnikov approximation formula.

Definition A.13 (p–shifted Grünwald–Letnikov formula). Given α ∈
(1, 2), y ∈ C

2([0, 1]) with y(0) � 0 and p ∈ N, then for x ∈ (0, 1] the right
shifted Grünwald–Letnikov formula with p shifts to approximate the left
Riemann–Liouville derivative is defined by:

RLDα
0,x y(x)

���x�xn
�

1

∆xα

n+p
∑

j�0

ω(α)
j

y(xn− j+p)+ o(∆x),
{xk � j∆x} j≥0 ,

ω(α)
j

� (−1) j
!α

j

�
.
.

The best performances in terms of orders and stability for this
formula is obtained when choosing a value of p that minimizes the
quantity |p−α/2| that, for α ∈ (1, 2), is equivalent to choose p � 1. Observe
that for α � 2 Definition A.13 reduces to the second order central

preconditioned fast solvers for some large linear systems 263

difference method for y′′(x). Let us investigate now what happens
in the case y(0) , 0. Let us consider the function y(x) � xm for m a
non–negative integer. By choosing again the grid {xk � j∆x} j≥0, m � 0
the residual term is given by:

1

∆xα

n
∑

j�0

ω(α)
j

y(xn− j) � RLDα
0,x y(x)

���x�xn
+ (1−α) −αx−1−α

2Γ(1 − α)∆x +O(∆x2),

while form m > 0, we have

1

∆xα

n
∑

j�0

ω
(α)
j

y(xn− j) � RLDα
0,x y(x)

���x�xn
− αΓ(m + 1)xm−1−α

2Γ(m − α) ∆x + O(∆x2),

and, similarly, for the shifted Grünwald–Letnikov formula, and for
m � 0 the residual term is given by:

1

∆xα

n+1
∑

j�0

ω(α)
j

y(xn− j) � RLDα
0,x y(x)

���x�xn
+ (3−α) −αx−1−α

2Γ(1 − α)∆x +O(∆x2),

while form m > 0, we obtain

1

∆xα

n+1
∑

j�0

ω(α)
j

y(xn− j) � RLDα
0,x y(x)

���x�xn
+ (2 − α)Γ(m + 1)xm−1−α

2Γ(m − α) ∆x+

+ O(∆x2).

Therefore, whenever y(0) , 0, we find that the Grünwald–Letnikov
formula does not have first–order accuracy and a suitable correction is
needed. As we have observed when defining the Riemann–Liouville
derivative, the derivative of a constant is not zero, thus we can use
Equation (A.6) to obtain the correction we need

RLDα
0,x y(x)

���x�xn
� RLDα

0,x

!
y(x) − y(0)

����x�xn
+

y(0)x−αn

Γ(1 − α)

≈ 1

∆xα

n+p
∑

j�0

ω(α)
j

!
y(xn− j+p) − y(0)

�
+

y(0)x−αn

Γ(1 − α) ,
(A.15)

that achieves again first order convergence and is exact when y(x) is
a constant. To obtain a second–order method we can further modify
equation (A.15). Computing it again on y(x) � xm for N ∋ m ≥ 0 and

264 fabio durastante

eliminating the term that multiplies ∆x we obtain the method:

RLDα
0,x y(x)

���x�xn
�

1

∆xα


2 − α

2

n
∑

j�0

ω
(α)
j

(

y(xn− j) − y(0)
)

+
α
2

n+1
∑

j�0

ω
(α)
j

(

y(xn− j+1) − y(0)
)

 +
y(0)x−αn

Γ(1 − α) + O(∆x2),

that is a second order method for any y ∈ C
2([0, 1]).

To use this method we need to compute in an efficient way the coef-

ficients {ω(α)
j
} j that appear in the formula. Using the direct expression

in term of the binomial, i.e., ω(α)
j

� (−1) j
!α

j

�
, is obviously cumbersome.

One of the possible approaches for this computation is to use the
recurrence relationships:

ω(α)
0 � 1, ω(α)

j
�

(

1 − α + 1

j

)

ω(α)
j−1
, j ≥ 1.

Observe, moreover, that the coefficients {ω(α)
j
} j can be regarded as the

coefficients of the power series expansion of the function fα(z) � (1−z)α,
since:

fα(z) � (1 − z)α �

+∞
∑

j�0

(−1) j

(

α
j

)

z j
�

+∞
∑

j�0

ω(α)
j

z j .

From this relationship we have also a series expansion of fα(exp(−ıθ))
for θ ∈ [−π, π], thus the {ω(α)

j
} j are also the coefficient of the Fourier

expansion of fα(θ) , fα(exp(−ıθ)). Therefore, the coefficients {ω(α)
j
} j

can be computed using any suitable implementation of the FFT.
The feature we just uncovered open also the path to several the-

oretical interpretation. Firstly let us observe that, by the usual link
between regularity and order of magnitude of the Fourier coefficients

of a regular function, this implies that the coefficients {ω(α)
j
} j present a

polynomial decay depending on the value of α, i.e., |ω(α)
j
| � O(j−α−1),

for j → +∞.; see the application of this fact in Chapters 5 and 8.
Second, consider the numerical computation of the Riemann–

Liouville derivative of y(x) through Definition A.13. If y is the vector
containing the evaluation of y(x) over the grid {xk � j∆x}n

j�0
, i.e.,

(y) j � y j � y(x j), then the numerical computation can be achieved by

preconditioned fast solvers for some large linear systems 265

the matrix–vector product:

1

∆xα
Tn+1(fα)y �

1

∆xα



ω1 ω0 0 . . . 0

ω2 ω1 ω0
. . .

...
...

. . .
. . .

. . . 0
...

. . . ω1 ω0

ωn−1 ω2 ω1





y0

y2

...

...
yn


,

where Tn+1(fα) is the Toeplitz Matrix (Definition 2.4) generated by
the function fα(θ). Moreover, the sequence of Toeplitz matrices is
distributed in the sense of the singular values as fα(θ) (Definition 2.6):
{Tn+1(fα)}n ∼σ fα(θ); see [100] and references therein. In our work this
result and its extensions are used in Chapter 8; see also [226, 228, 229]
for further information on the matrix representations of discretized
fractional differential operators.

The last relevant information we are going to extract from the
function fα(θ) is the following: fα(θ) is the αth power of the function
that generates the coefficients for the first order approximation of the
first order derivative, i.e., f1(θ) � 1 − exp(−ıθ). From this observation
in [196] it is obtained that the αth power of the (p + 1)–point backward
difference gives the pth order approximation of the αth derivative.
Therefore, we can obtain the 2nd order expression of the αth derivative
by considering the series expansion of the function

f
(2)
α (z) �

(

3

2
− 2z +

1

2
z2

)α

,

or by doing the substitution with z � exp(−ıθ) and proceeding by
computing a FFT and at the same way for the formula of higher order;
see again [196] for the details.

At last, we have performed all the analysis for the left–sided deriva-
tive. All can be restated for the right–sided. One simply substitute to

the function f
(p)
α (θ) its complex conjugate or looking at the transpose of

Tn+1(f
(p)
α (θ))T � Tn+1(f

(p)
α (θ)), i.e., we start using the αth power of the

functions that generate the coefficients for the first order approximation
of the first order derivative but, this time, we use the (p + 1)–point for-
ward difference formula. In this case the standard Grünwald–Letnikov
formula is expressed as:

RLDα
x ,1 y(x)

���x�xn
≈ 1

∆xα

n
∑

j�0

(−1) j

(

α
j

)

y(xn+ j) �
1

∆xα

n
∑

j�0

ω(α)
j

y(xn+ j),

266 fabio durastante

while the p–shifted version is obtained as

RLDα
x ,1 y(x)

���x�xn
≈ 1

∆xα

n+p
∑

j�0

(−1) j

(

α
j

)

y(xn+ j−p)

�
1

∆xα

n+p
∑

j�0

ω(α)
j

y(xn+ j−p).

Observe that in this case all the considerations and the conditions
regarding the order of convergence are obtained by looking at the value
of y(x) at the right end of the interval, i.e., y(1).

A.3.2 Finite Differences for Riesz Fractional Derivatives

In this section, we focus on some formulas for the Riesz derivative
(Definition A.5) with order α ∈ (1, 2). From the Definition, one can go
for the use of the formulas from Appendix A.3.1 by

dα y(x)

d |x |α

�����x�xn

�
1

2 cos(απ/2)

(

RLDα
a ,x + RLDα

x ,b

)

y(x)
�����x�xn

≈ 1

2∆xα cos(απ/2)
*.,

n+p
∑

j�0

ω(α)
j

y(xn− j+p) +

n+p
∑

j�0

ω(α)
j

y(xn+ j−p)
+/- ,

that inherits all the theoretical features we have discussed in connec-
tion with the Grünwald–Letnikov formulas in the cases of one–sided
Riemann–Liouville derivatives.

The other scheme to be considered is the symmetrical fractional central
difference operators, that is obtained as

∂α y(x)

∂|x |α
� − 1

2 cos(α π2)Γ(2 − α)
d2

dx2

∫

R

y(ξ)dξ

|x − ξ |α−1
, α ∈ (1, 2]

and is equivalent to the fractional central difference formula [220]:

δ(α)
∆x y(x) �

+∞
∑

j�−∞

(−1) j
Γ(α + 1)

Γ(α/2 − j + 1)Γ(α/2 + j + 1)
y(x − j∆x).

The latter can be by truncated as follows

dα y(x)

d |x |α

�����x�xn

�
1
∆xα

∑

| j |≤n
(−1) j

Γ(α+1)
Γ(α/2− j+1)Γ(α/2+ j+1) y(x − j∆x) + O(∆x2)

�
1
∆xα

∑

| j |≤n g
(α)
j

y(x − j∆x) + O(∆x2) (A.16)

preconditioned fast solvers for some large linear systems 267

becoming a second order formula; see also [75] for further details. For
using this approximation we need again an efficient way to compute

the coefficients {g
(α)
j
} j .

Proposition A.11 (Çelik and Duman [75]). Let {g
(α)
j
} j be the coefficients

in (A.16) for j ∈ Z, and α > −1. Then

• g
(α)
0 ≥ 0, g− j � g j ≤ 0 for all | j | ≥ 1,

• g
(α)
j+1

�

(

1 − α+1
α/2+ j+1

)

g
(α)
j

and g
(α)
0 � Γ(α+1)/Γ(α/2+1)2,

• g
(α)
j

� O(j−α−1) for j → +∞.

Observe that Proposition A.11 implies also that again the coefficients
for the discretization formula are the Fourier coefficients of the bounded
L1 function:

gα(z) � |2 sin(z/2)|α ,
that gα is the spectral symbol for the sequence of Toeplitz matrices

obtained from the coefficients {g
(α)
j
} j , see Definition 2.5.

Acknowledgments

“Alas, eleventy one years is far too short a time
to live among such excellent and admirable
Hobbits. I don’t know half of you half as well
as I should like and I like less than half of you
half as well as you deserve.”

J.R.R. Tolkien, The Fellowship of the Ring.

Research is not a work that one does on its own, thus the first due
thanks go to all the people who made the existence of these pages
possible. First of all, my two advisors Daniele Bertaccini and Stefano
Serra–Capizzano, whose suggestions have enriched my way of seeing
and doing research in mathematics. Then, the other collaborators with
whom this research was written and discussed (in strict alphabetical
order): Daniele Bertaccini, Stefano Cipolla, Marco Donatelli, Marina
Popolizio and Stefano Serra–Capizzano.

A special thanks goes to the two anonymous Reviewers. Their work
and their effort spurred me to improve the proposed material. In this
regard, further thanks go back to Stefano Serra–Capizzano, Sven-Erik
Ekström and Ali Dorostkar, who have invested much of their spare time
to help me in the tense days of the review process.

To make good research, one of the fundamental points was finding
myself in a humanly welcoming and scientifically sparkling environ-
ment. For this reason, I would like to thank my fellow doctoral students
for their friendship, their feedbacks, and for all the challenging discus-
sion we have entertained during this three years.

Last but not least, a sincere “thank you” goes to my friends and my
family who, despite being completely outside the world of mathematics
and probably not having yet understood what I do, have endured my
complaints, my tiredness and all the negative effects of my work.

I thank you all for being there for me.

Fabio Durastante

Bibliography

[1] N. H. Abel. “Solutions de quelques problèmes à l’aide d’intégrales
définies (1823)”. In: Œuvres complètes de Niels Henrik Abel 1 (),
pp. 11–18 (cit. on p. 248).

[2] M. Abramowitz and I. Stegun. Handbook of Mathematical Func-
tions: With Formulas, Graphs, and Mathematical Tables. Applied
mathematics series. Dover Publications, 1964. isbn: 9780486612720
(cit. on pp. 182, 249).

[3] M. Afanasjew, M. Eiermann, O. G. Ernst, and S. Guettel. “Im-
plementation of a restarted Krylov subspace method for the
evaluation of matrix functions.” In: Linear Algebra Appl. 429.10
(2008), pp. 2293–2314 (cit. on pp. 122, 140).

[4] M. Annunziato, A. Borzì, M. Magdziarz, and A. Weron. “A
fractional Fokker–Planck control framework for subdiffusion
processes”. In: Optim. Control. Appl. Methods 37.2 (2016). oca.2168,
pp. 290–304. issn: 1099-1514. doi: 10.1002/oca.2168. url: http:
//dx.doi.org/10.1002/oca.2168 (cit. on p. 167).

[5] H. Antil and E. Otarola. “A FEM for an optimal control problem
of fractional powers of elliptic operators”. In: SIAM J. Control.
Optim. 53.6 (2015), pp. 3432–3456 (cit. on p. 167).

[6] W. E. Arnoldi. “The principle of minimized iterations in the
solution of the matrix eigenvalue problem”. In: Quarterly of
Applied Mathematics 9 (1951), pp. 17–29 (cit. on pp. 24, 33).

[7] G. Astrakhantsev. “An iterative method of solving elliptic net
problems”. In: Z. Vycisl. Mat. i. Mat. Fiz. 11.2 (1971), pp. 171–182
(cit. on p. 75).

[8] F. Avram. “On bilinear forms in Gaussian random variables and
Toeplitz matrices”. In: Probab. Theory Related Fields 79.1 (1988),
pp. 37–45 (cit. on pp. 62, 63).

272 fabio durastante

[9] A. Axelsson and J. Verwer. “Boundary Value Techniques for
Initial Value Problems in Ordinary Differential Equations”. In:
Math. Comp. 45 (1985), pp. 153–171 (cit. on p. 225).

[10] O. Axelsson and P. S. Vassilevski. “A black box generalized
conjugate gradient solver with inner iterations and variable–
step preconditioning”. In: SIAM J. Matrix Anal. Appl. 12.4 (1991),
pp. 625–644 (cit. on p. 45).

[11] R. E. Bank and T. Dupont. “An optimal order process for solving
finite element equations”. In: Math. Comp. 36.153 (1981), pp. 35–
51 (cit. on p. 75).

[12] F. Bassi, A. Ghidoni, and S. Rebay. “Optimal Runge-Kutta
smoothers for the p-multigrid discontinuous Galerkin solu-
tion of the 1D Euler equations”. In: J. Comput. Phys. (230 2010),
pp. 4153–4175 (cit. on p. 206).

[13] H. Bateman. “On dissipative systems and related variational
principles”. In: Physical Review 38.4 (1931), p. 815 (cit. on p. 248).

[14] B. Beckermann and S. Serra-Capizzano. “On the asymptotic
spectrum of Finite Element matrix sequences”. In: SIAM J.
Numer. Anal. 45 (2007), pp. 746–769 (cit. on p. 196).

[15] S. Bellavia, D. Bertaccini, and B. Morini. “Nonsymmetric Pre-
conditioner Updates in Newton–Krylov Methods for Nonlinear
Systems”. In: SIAM J. Sci. Comput. 33.5 (2011), pp. 2595–2619
(cit. on pp. 105, 106, 108, 111, 144, 156, 179, 180, 191).

[16] S. Bellavia, V. De Simone, D. Di Serafino, and B. Morini. “A pre-
conditioning framework for sequences of diagonally modified
linear systems arising in optimization”. In: SIAM J. Num. Anal.
50.6 (2012), pp. 3280–3302 (cit. on p. 102).

[17] S. Bellavia, V. De Simone, D. Di Serafino, and B. Morini. “Up-
dating constraint preconditioners for KKT systems in quadratic
programming via low-rank corrections”. In: SIAM J. on Opti-
mization 25.6 (2015), pp. 1787–1808 (cit. on p. 102).

[18] S. Bellavia, V. D. Simone, D. Di Serafino, and B. Morini. “Efficient
preconditioner updates for shifted linear systems”. In: SIAM J.
Sci. Comput. 33.4 (2011), pp. 1785–1809 (cit. on p. 102).

[19] M. Benzi. “Preconditioning Techniques for Large Linear Systems:
A Survey”. In: J. Comp. Phys. 182 (2002), pp. 418–477 (cit. on
pp. 16, 76, 155, 179).

preconditioned fast solvers for some large linear systems 273

[20] M. Benzi and D. Bertaccini. “Approximate inverse precondition-
ing for shifted linear systems”. In: BIT 43.2 (2003), pp. 231–244
(cit. on pp. 15, 138, 144, 156, 179, 180).

[21] M. Benzi, J. K. Cullum, and M. Tüma. “Robust approximate
inverse preconditioning for the conjugate gradient method”. In:
SIAM J. Sci. Comput. 22.4 (2000), pp. 1318–1332 (cit. on pp. 78,
89, 91, 96).

[22] M. Benzi, C. Meyer, and M. Tüma. “A Sparse Approximate
Inverse Preconditioner for the Conjugate Gradient Method”. In:
SIAM J. Sci. Comput. 17.5 (1996), pp. 1135–1149 (cit. on pp. 78,
89, 91, 93, 96).

[23] M. Benzi and N. Razouk. “Decay bounds and O(n) algorithms
for approximating functions of sparse matrices”. In: Electron.
Trans. Numer. Anal. 28 (2007), pp. 16–39 (cit. on p. 130).

[24] M. Benzi and M. Tüma. “A Sparse Approximate Inverse Pre-
conditioner for Nonsymmetric Linear Systems”. In: SIAM J. Sci.
Comput. 19.3 (1998), pp. 968–994 (cit. on pp. 78, 89, 91).

[25] M. Benzi and M. Tüma. “Orderings for factorized sparse ap-
proximate inverse preconditioners”. In: Siam J. Sci. Comput. 21.5
(2000), pp. 1851–1868 (cit. on pp. 126, 127).

[26] S. Bernstein. Leçons sur les propriétés extrémales et la meilleure
approximation des fonctions analytiques d’une variable réelle. Paris,
1926 (cit. on p. 81).

[27] D. Bertaccini. “P–circulant preconditioners and the systems of
the ODE codes”. In: Iterative methods in scientific computation IV.
Ed. by D. Kincaid. Ed. by A. Elster. Vol. 5. IMACS series in
computational and applied mathematics. IMACS, 1999, pp. 179–
193 (cit. on pp. 16, 230, 231).

[28] D. Bertaccini. “A circulant preconditioner for the systems of
LMF–based ODE codes”. In: SIAM J. Sci. Comp. 22.3 (2000),
pp. 767–786 (cit. on pp. 16, 65, 102, 227, 229, 230, 232).

[29] D. Bertaccini. “Reliable preconditioned iterative linear solvers
for some numerical integrators”. In: Numer. Linear Algebra Appl.
8.2 (2001), pp. 111–125 (cit. on pp. 16, 229–231).

[30] D. Bertaccini. “The spectrum of circulant–like preconditioners
for some general linear multistep formulas for linear boundary
value problems”. In: SIAM J. Numer. Anal. 40.5 (2002), pp. 1798–
1822 (cit. on pp. 16, 227, 231).

274 fabio durastante

[31] D. Bertaccini. “Efficient preconditioning for sequences of para-
metric complex symmetric linear systems”. In: Electron. Trans.
Numer. Anal. 18 (2004), pp. 49–64 (cit. on pp. 15, 106, 108, 122,
138, 144, 156, 179, 180).

[32] D. Bertaccini, M. Donatelli, F. Durastante, and S. Serra-Capizzano.
“Optimizing a multigrid Runge–Kutta smoother for variable–
coefficient convection–diffusion equations”. In: Linear Algebra
Appl. 533 (2017), pp. 507–535. issn: 0024-3795 (cit. on pp. 15, 195,
199–201).

[33] D. Bertaccini and F. Durastante. “Interpolating preconditioners
for the solution of sequence of linear systems”. In: Comput. Math.
Appl. 72.4 (2016), pp. 1118–1130 (cit. on pp. 15, 103, 107, 108, 144,
180, 191).

[34] D. Bertaccini and F. Durastante. “Limited memory block pre-
conditioners for fast solution of fractional PDEs”. In: J. Comp.
Phys x (2017). Submitted, pp. xx–xx (cit. on pp. 16, 223, 225, 233,
234).

[35] D. Bertaccini and F. Durastante. “Solving mixed classical and
fractional partial differential equations using short–memory
principle and approximate inverses”. In: Numer. Algorithms 74.4
(2017), pp. 1061–1082. issn: 1572-9265. doi: 10.1007/s11075-
016-0186-8 (cit. on pp. 15, 143, 179, 186, 191).

[36] D. Bertaccini and S. Filippone. “Sparse approximate inverse pre-
conditioners on high performance GPU platforms”. In: Comput.
Math. Appl. 71.3 (2016), pp. 693–711 (cit. on pp. 76, 78, 83, 86–89,
92–94, 96, 98, 104, 111, 130, 142, 144, 157, 179).

[37] D. Bertaccini, G. H. Golub, and S. Serra-Capizzano. “Spectral
analysis of a preconditioned iterative method for the convection-
diffusion equation”. In: SIAM J. Matr. Anal. Appl. 29.1 (2007),
pp. 260–278 (cit. on p. 195).

[38] D. Bertaccini and M. K. Ng. “Skew–circulant preconditioners for
systems of LMF–based ODE codes”. In: International Conference
on Numerical Analysis and Its Applications. Springer. 2000, pp. 93–
101 (cit. on pp. 16, 231).

[39] D. Bertaccini and M. K. Ng. “Band-Toeplitz Preconditioned
GMRES Iterations for Time-Dependent PDEs”. In: BIT 43 (2003),
pp. 901–914 (cit. on p. 39).

preconditioned fast solvers for some large linear systems 275

[40] D. Bertaccini and M. K. Ng. “Block {ω}-circulant precondition-
ers for the systems of differential equations”. In: Calcolo 40.2
(2003), pp. 71–90 (cit. on pp. 65, 229, 231, 232, 235, 236).

[41] D. Bertaccini, M. Popolizio, and F. Durastante. “Adaptive up-
dating techniques for the approximation of functions of large
matrices”. In: arXiv preprint arXiv:1709.06351 (2017) (cit. on
pp. 15, 121, 125, 126, 128, 129).

[42] D. Bertaccini and F. Sgallari. “Updating preconditioners for
nonlinear deblurring and denoising image restoration”. In: Appl.
Numer. Math. 60 (2010), pp. 994–1006 (cit. on p. 102).

[43] J. Bey and G. Wittum. “Downwind numbering: Robust multigrid
for convection-diffusion problems”. In: Appl. Numer. Math. 23.1
(1997), pp. 177–192 (cit. on p. 195).

[44] D. Bianchi, A. Buccini, M. Donatelli, and S. Serra-Capizzano.
“Iterated fractional Tikhonov regularization”. In: Inverse Problems
31.5 (2015), p. 055005 (cit. on p. 65).

[45] P. Birken. “Optimizing Runge-Kutta smoothers for unsteady flow
problems”. In: Electron. Trans. Numer. Anal. 39 (2012), pp. 298–312
(cit. on pp. 195, 196, 202, 205, 206, 211, 214–219).

[46] P. Birken, J. Duintjer Tebbens, A. Meister, and M. Tüma. “Pre-
conditioner updates applied to CFD model problems”. In: Appl.
Numer. Math. 58.11 (2008), pp. 1628–1641 (cit. on p. 102).

[47] A. Böttcher and S. M. Grudsky. Toeplitz matrices, asymptotic linear
algebra, and functional analysis. Basel–Boston–Berlin: Birkhäuser
Verlag, 2000 (cit. on p. 195).

[48] A. Böttcher and S. M. Grudsky. Spectral properties of banded
Toeplitz matrices. Siam, 2005 (cit. on p. 61).

[49] A. Böttcher and S. M. Grudsky. Toeplitz matrices, asymptotic linear
algebra, and functional analysis. Birkhäuser, 2012 (cit. on p. 61).

[50] A. Böttcher and B. Silbermann. Introduction to large truncated
Toeplitz matrices. Springer Science & Business Media, 2012 (cit. on
p. 61).

[51] D. Braess and W. Hackbusch. “A new convergence proof for the
multigrid method including the V-cycle”. In: SIAM J. Numer.
Anal. 20.5 (1983), pp. 967–975 (cit. on p. 75).

[52] A. Brandt. “Algebraic multigrid theory: The symmetric case”.
In: Appl. Math. Comput. 19.1-4 (1986), pp. 23–56 (cit. on p. 74).

276 fabio durastante

[53] R. K. Brayton, S. Director, G. D. Hachtel, and L. M. Vidigal.
“A new algorithm for statistical circuit design based on quasi-
Newton methods and function splitting”. In: IEEE Trans. Circuits
Syst. I. Regul. Pap. 26.9 (1979), pp. 784–794 (cit. on p. 213).

[54] R. P. Brent, F. G. Gustavson, and D. Y. Yun. “Fast solution of
Toeplitz systems of equations and computation of Padé ap-
proximants”. In: J. Algorithms 1.3 (1980), pp. 259–295 (cit. on
p. 61).

[55] C. Brezinski and M. Redivo Zaglia. “Treatment of near–breakdown
in the CGS algorithm”. In: Numer. Algorithms 7.1 (1994), pp. 33–73
(cit. on p. 51).

[56] C. Brezinski and M. Redivo Zaglia. “Look–ahead in Bi-CGSTAB
and other product methods for linear systems”. In: BIT 35.2
(1995), pp. 169–201 (cit. on p. 50).

[57] C. Brezinski, M Redivo Zaglia, and H. Sadok. “Avoiding break-
down and near-breakdown in Lanczos type algorithms”. In:
Numer. Algorithms 1.2 (1991), pp. 261–284 (cit. on p. 48).

[58] C. Brezinski, M. Redivo Zaglia, and H. Sadok. “A breakdown–
free Lanczos type algorithm for solving linear systems”. In:
Numer. Math. 63.1 (1992), pp. 29–38 (cit. on p. 48).

[59] C. Brezinski, M. Redivo Zaglia, and H. Sadok. “New look–
ahead Lanczos–type algorithms for linear systems”. In: Numer.
Mathematik 83.1 (1999), pp. 53–85 (cit. on p. 50).

[60] R. Bridson and W.-P. Tang. “Ordering, anisotropy, and factored
sparse approximate inverses”. In: SIAM J. Sci. Comp. 21.3 (1999),
pp. 867–882 (cit. on p. 89).

[61] R. Bridson and W.-P. Tang. “Refining an approximate inverse”.
In: J. Comput. Appl. Math. 123.1 (2000), pp. 293–306 (cit. on pp. 89,
154, 179).

[62] R. Bridson and W.-P. Tang. “Multiresolution approximate inverse
preconditioners”. In: SIAM J. Sci. Comput. 23.2 (2001), pp. 463–
479 (cit. on p. 179).

[63] W. L. Briggs, V. E. Henson, and S. F. McCormick. A multigrid
tutorial. SIAM, 2000 (cit. on p. 70).

[64] F. E. Browder. “Nonlinear monotone operators and convex sets
in Banach spaces”. In: Bull. Amer. Math. Soc. 71.5 (1965), pp. 780–
785 (cit. on p. 175).

preconditioned fast solvers for some large linear systems 277

[65] L. Brugnano and D. Trigiante. Solving Differential Equations by
Multistep Initial and Boundary Value Methods. Stability and Con-
trol: Theory, Methods and Applications. Taylor & Francis, 1998.
isbn: 9789056991074 (cit. on pp. 228, 229).

[66] L. Brugnano and D. Trigiante. Solving Differential Problems by
Multistep Initial and Boundary Value Methods. Gordon and Breach
Science Publishers, Amsterdam, 1998 (cit. on pp. 225–228).

[67] G. Bruun. “z–transform DFT filters and FFT’s”. In: IEEE T. Acoust.
Speech 26.1 (1978), pp. 56–63 (cit. on p. 64).

[68] W. Bu, Y. Tang, and J. Yang. “Galerkin finite element method for
two–dimensional Riesz space fractional diffusion equations”.
In: J. Comp. Phys. 276 (2014), pp. 26–38 (cit. on pp. 173, 174).

[69] M.-C. Cai and X.-Q. Jin. “BCCB preconditioners for solving
linear systems from delay differential equations”. In: Comput.
Math. Appl. 50.1 (2005), pp. 281–288 (cit. on p. 65).

[70] C. Calgaro, J.-P. Chehab, and Y. Saad. “Incremental incomplete
LU factorizations with applications”. In: Numer. Linear Algebra
Appl. 17.5 (2010), pp. 811–837. issn: 1099-1506. doi: 10.1002/nla.
756. url: http://dx.doi.org/10.1002/nla.756 (cit. on p. 102).

[71] C. Canuto, V. Simoncini, and M. Verani. “On the decay of the
inverse of matrices that are sum of Kronecker products”. In:
Linear Algebra Appl. 452 (2014), pp. 21–39 (cit. on pp. 82, 153).

[72] M. Caputo. “Linear models of dissipation whose Q is almost
frequency independent—II”. In: Geophys. J. Roy. Astron. Soc. 13.5
(1967), pp. 529–539 (cit. on p. 252).

[73] A. J. Carpenter, A. Ruttan, and R. S. Varga. “Extended numerical
computations on the 1/9 conjecture in rational approximation
theory”. In: Rational Approximation and Interpolation. Ed. by P. R.
Graves-Morris, E. B. Saff, and R. S. Varga. Vol. 1105. Lecture
Notes in Mathematics. Berlin: Springer-Verlag, 1984, pp. 383–411
(cit. on p. 123).

[74] D. Caughey and A. Jameson. “How many steps are required
to solve the Euler equations of steady compressible flow: In
search of a fast solution algorithm”. In: AIAA Journal (2001),
pp. 2001–2673 (cit. on p. 195).

[75] C. Çelik and M. Duman. “Crank–Nicolson method for the frac-
tional diffusion equation with the Riesz fractional derivative”.
In: J. Comput Phys. 231.4 (2012), pp. 1743–1750 (cit. on pp. 143,
149, 267).

278 fabio durastante

[76] R. Chan and T. F. Chan. “Circulant preconditioners for elliptic
problems”. In: J. Numer. Lin. Alg. and Appl. 1 (1992), pp. 77–101
(cit. on p. 65).

[77] R. Chan, M. Ng, and X.-Q. Jin. “Strang–type preconditioner for
systems of LMF–based ODE codes”. In: IMA J. Numer. Anal. 21.2
(2001), pp. 451–62 (cit. on p. 230).

[78] R. H. Chan, Q.-S. Chang, and H.-W. Sun. “Multigrid method
for ill–conditioned symmetric Toeplitz systems”. In: SIAM J. Sci.
Comput. 19.2 (1998), pp. 516–529 (cit. on p. 75).

[79] Z. Chen, R. E. Ewing, R. D. Lazarov, S. Maliassov, and Y. A.
Kuznetsov. “Multilevel preconditioners for mixed methods for
second order elliptic problems”. In: Numer. Linear Algebra Appl.
3.5 (1996), pp. 427–453 (cit. on p. 76).

[80] W. K. Ching. Iterative methods for queuing and manufacturing
systems. Springer Science & Business Media, 2013 (cit. on p. 61).

[81] S. Cipolla and F. Durastante. “Fractional PDE constrained opti-
mization: An optimize-then-discretize approach with L-BFGS
and approximate inverse preconditioning”. In: Appl. Numer.
Math. 123.Supplement C (2018), pp. 43–57. issn: 0168-9274. doi:
https://doi.org/10.1016/j.apnum.2017.09.001 (cit. on
pp. 15, 167, 169–172, 174, 181).

[82] W. J. Cody, G. Meinardus, and R. S. Varga. “Chebyshev ra-
tional approximations to e−x in [0,+∞) and applications to
heat-conduction problems”. In: J. Approx. Theory 2.1 (March
1969), pp. 50–65 (cit. on p. 123).

[83] J. W. Cooley and J. W. Tukey. “An algorithm for the machine
calculation of complex Fourier series”. In: Math. Comput. 19.90
(1965), pp. 297–301 (cit. on p. 64).

[84] S. Dalton, N. Bell, L. Olson, and M. Garland. Cusp: Generic Parallel
Algorithms for Sparse Matrix and Graph Computations. Version 0.5.0.
2014. url: http://cusplibrary.github.io/ (cit. on pp. 144, 156,
169, 179, 181).

[85] P. D’Ambra, D. D. Serafino, and S. Filippone. “MLD2P4: a pack-
age of parallel algebraic multilevel domain decomposition pre-
conditioners in Fortran 95”. In: ACM Trans. Math. Softw. 37.3
(2010), p. 30 (cit. on p. 144).

[86] T. A. Davis and Y. Hu. “The University of Florida sparse matrix
collection”. In: ACM Trans. Math. Software 38.1 (2011), p. 1 (cit. on
pp. 92, 136–138).

preconditioned fast solvers for some large linear systems 279

[87] D. De Cecchis, H. López, and B. Molina. “FGMRES precon-
ditioning by symmetric/skew–symmetric decomposition of
generalized Stokes problems”. In: Math. Comput. in Simulat. 79.6
(2009), pp. 1862–1877 (cit. on p. 45).

[88] L. Debnath. “A brief historical introduction to fractional calcu-
lus”. In: International Journal of Mathematical Education in Science
and Technology 35.4 (2004), pp. 487–501 (cit. on pp. 247–249).

[89] S. Demko, W. F. Moss, and P. W. Smith. “Decay rates for inverses
of band matrices”. In: Math. Comp. 43.168 (1984), pp. 491–499
(cit. on pp. 79, 81, 125, 150).

[90] W. Deng. “Short memory principle and a predictor–corrector
approach for fractional differential equations”. In: J. Comput.
Appl. Math. 206.1 (2007), pp. 174–188 (cit. on pp. 143, 150).

[91] J. Dennis Jr. and J. Moré. “Quasi–Newton Methods, Motivation
and Theory”. In: SIAM Rev. 19.1 (1977), pp. 46–89. doi: 10.1137/
1019005. eprint: http://dx.doi.org/10.1137/1019005. url:
http://dx.doi.org/10.1137/1019005 (cit. on p. 102).

[92] E. Di Nezza, G. Palatucci, and E. Valdinoci. “Hitchhiker’s guide
to the fractional Sobolev spaces”. In: Bull. Sci. Math. 136.5 (2012),
pp. 521–573 (cit. on pp. 170, 175, 257, 260).

[93] K. Diethelm. The Analysis of Fractional Differential Equations:
An Application–Oriented Exposition Using Differential Operators
of Caputo Type. Lecture Notes in Mathematics. Springer Berlin
Heidelberg, 2010. isbn: 9783642145735 (cit. on p. 251).

[94] H. Ding, C. Li, and Y. Chen. “High–order algorithms for Riesz
derivative and their applications (II)”. In: J. Comput Phys. 293
(2015), pp. 218–237 (cit. on p. 149).

[95] V. A. Dobrev, R. D. Lazarov, P. S. Vassilevski, and L. T. Zikatanov.
“Two–level preconditioning of discontinuous Galerkin approxi-
mations of second–order elliptic equations”. In: Numer. Linear
Algebra Appl. 13.9 (2006), p. 753 (cit. on p. 76).

[96] S. Dolgov, J. W. Pearson, D. V. Savostyanov, and M. Stoll. “Fast
tensor product solvers for optimization problems with fractional
differential equations as constraints”. In: Appl. Math. Comput.
273 (2016), pp. 604–623 (cit. on p. 167).

280 fabio durastante

[97] M. Donatelli, A. Dorostkar, M. Mazza, M. Neytcheva, and S.
Serra-Capizzano. “Function-based block multigrid strategy for
a two-dimensional linear elasticity-type problem”. In: Comput.
Math. Appl. 74.5 (2017), pp. 1015–1028. doi: 10.1016/j.camwa.
2017.05.024 (cit. on p. 75).

[98] M. Donatelli, C. Garoni, C. Manni, S. Serra-Capizzano, and H.
Speleers. “Spectral analysis and spectral symbol of matrices in
isogeometric collocation methods”. In: Math. Comput. 85.300
(2016), pp. 1639–1680 (cit. on p. 196).

[99] M. Donatelli, C. Garoni, C. Manni, S. Serra-Capizzano, and
H. Speleers. “Symbol-based multigrid methods for Galerkin
B-spline isogeometric analysis”. In: SIAM J. Numer. Anal. 55.1
(2017), pp. 31–62 (cit. on p. 75).

[100] M. Donatelli, M. Mazza, and S. Serra-Capizzano. “Spectral
analysis and structure preserving preconditioners for fractional
diffusion equations”. In: J. Comp. Phys. 307 (2016), pp. 262–279
(cit. on pp. 148, 180, 224, 225, 265).

[101] M. Donatelli, M. Molteni, V. Pennati, and S. Serra-Capizzano.
“Multigrid methods for cubic spline solution of two point (and
2D) boundary value problems”. In: App. Numer. Math. 104 (2016),
pp. 15–29 (cit. on p. 196).

[102] C. C. Douglas. “Multi–grid algorithms with applications to
elliptic boundary value problems”. In: SIAM J. Numer. Anal. 21.2
(1984), pp. 236–254 (cit. on p. 75).

[103] I. S. Du, R. G. Grimes, and J. G. Lewis. Users’ guide for the Harwell-
Boeing sparse matrix collection (Release I). Tech. rep. Report RAL-92-
086, Atlas Centre Rutherford Appleton Laboratory, Didcot Oxon
(UK), 1992. url: http://www.cs.colostate.edu/~mroberts/
toolbox/c++/sparseMatrix/hbsmc.pdf (cit. on p. 91).

[104] A. C. N. van Duin. “Scalable Parallel Preconditioning with
the Sparse Approximate Inverse of Triangular Matrices”. In:
SIAM J. Matrix Anal. Appl. 20 (4 1999), pp. 987–0. doi: 10.1137/
s0895479897317788 (cit. on pp. 78, 83, 89).

[105] D. M. Dunlavy, T. G. Kolda, and E. Acar. Poblano v1.0: A Matlab
Toolbox for Gradient-Based Optimization. Tech. rep. SAND2010-
1422. Sandia National Laboratories, Albuquerque, NM and
Livermore, CA, Mar. 2010 (cit. on pp. 169, 180, 181).

preconditioned fast solvers for some large linear systems 281

[106] F. Durastante. “Interpolant Update of Preconditioners for Se-
quences of Large Linear Systems”. In: Mathematical Methods,
Computational Techniques and Intelligent Systems (MAMECTIS
’15). Vol. 41. WSEAS Press. 2015, pp. 40–47 (cit. on pp. 15, 103,
106, 111, 144).

[107] H. Dym and H. McKean. Fourier Series and Integrals. Proba-
bility and mathematical statistics. Academic Press, 1972. isbn:
9780122264511 (cit. on p. 61).

[108] H. C. Elman. “A Stability Analysis of Incomplete LU Factoriza-
tions”. In: Math. Comp. 47.175 (1986), pp. 191–217. issn: 00255718,
10886842. url: http://www.jstor.org/stable/2008089 (cit. on
p. 83).

[109] J. B. Elsner and A. A. Tsonis. Singular spectrum analysis: a new tool
in time series analysis. Springer Science & Business Media, 2013
(cit. on p. 61).

[110] V. J. Ervin and J. P. Roop. “Variational formulation for the
stationary fractional advection dispersion equation”. In: Numer.
Methods Partial Differ. Equ. 22.3 (2006), pp. 558–576 (cit. on pp. 169–
171, 260, 261).

[111] J. van den Eshof and M. Hochbruck. “Preconditioning Lanczos
approximations to the matrix exponential”. In: SIAM J. Sci.
Comput. 27.4 (2006), pp. 1438–1457 (cit. on pp. 122, 140).

[112] L. Euler. “De Progressionibus Transcendentibus, sev quarum
Termini Generales Algebraice Dari Nequevent”. In: Commentarii
academiae scientiarum Petropolitanae (5 1738), pp. 36–57 (cit. on
p. 247).

[113] S. Filippone and M. Colajanni. “PSBLAS: A library for parallel
linear algebra computation on sparse matrices”. In: ACM Trans.
on Math. Software 26.4 (2000), pp. 527–550 (cit. on p. 144).

[114] G Fiorentino and S. Serra-Capizzano. “Multigrid methods for
Toeplitz matrices”. In: Calcolo 28.3 (1991), pp. 283–305 (cit. on
p. 75).

[115] G. Fiorentino and S. Serra-Capizzano. “Multigrid methods for
symmetric positive definite block Toeplitz matrices with non-
negative generating functions”. In: SIAM J. Sci. Comput. 17.5
(1996), pp. 1068–1081 (cit. on p. 75).

[116] R. Fischer and T. Huckle. “Using ω-circulant matrices for the
preconditioning of Toeplitz systems”. In: Selçuk J. Appl. Math 4
(2003), pp. 71–88 (cit. on p. 233).

282 fabio durastante

[117] B. Fornberg. “Classroom note: Calculation of weights in finite
difference formulas”. In: SIAM review 40.3 (1998), pp. 685–691
(cit. on p. 147).

[118] J. Fourier. Theorie analytique de la chaleur, par M. Fourier. Chez
Firmin Didot, père et fils, 1822 (cit. on p. 248).

[119] L. Fox, H. D. Huskey, and J. H. Wilkinson. “Notes on the solution
of algebraic linear simultaneous equations”. In: Quart. J. Mech.
and Applied Math. 1 (1948), pp. 149–173 (cit. on p. 89).

[120] R. W. Freund, M. H. Gutknecht, and N. M. Nachtigal. “An
implementation of the Look-Ahead Lanczos algorithm”. In:
SIAM J. Sci. Stat. Comput. 14.2 (1993), pp. 470–482 (cit. on p. 50).

[121] M. Frigo and S. Johnson. “The Design and Implementation of
{FFTW3}”. In: Proceedings of the IEEE 93.2 (2005). Special issue on
”Program Generation, Optimization, and Platform Adaptation”,
pp. 216–231 (cit. on p. 64).

[122] C. Garoni. “Topological foundations of an asymptotic approxi-
mation theory for sequences of matrices with increasing size”.
In: Linear Algebra Appl. 513 (2017), pp. 324–341 (cit. on p. 68).

[123] C. Garoni, C. Manni, S. Serra-Capizzano, D. Sesana, and H.
Speleers. “Spectral analysis and spectral symbol of matrices
in isogeometric Galerkin methods”. In: Math. Comput. 86.305
(2017), pp. 1343–1373 (cit. on p. 196).

[124] C. Garoni and S. Serra-Capizzano. “The theory of locally Toeplitz
sequences: a review, an extension, and a few representative
applications”. In: Bol. Soc. Mat. Mex. 22.2 (2016), pp. 529–565
(cit. on p. 67).

[125] C. Garoni and S. Serra-Capizzano. “The theory of generalized
locally Toeplitz sequences: a review, an extension, and a few
representative applications”. In: Large Truncated Toeplitz Matrices,
Toeplitz Operators, and Related Topics. Springer, 2017, pp. 353–394
(cit. on p. 67).

[126] C. Garoni and S. Serra-Capizzano. The theory of Generalized Locally
Toeplitz sequences: theory and applications - Vol I. Berlin: Springer
Monographs. ISBN: 978-3-319-53678-1:
http://www.springer.com/gp/book/9783319536781, 2017 (cit.
on pp. 16, 68, 69, 205).

preconditioned fast solvers for some large linear systems 283

[127] C. Garoni, S. Serra-Capizzano, and D. Sesana. “Tools for Deter-
mining the Asymptotic Spectral Distribution of non-Hermitian
Perturbations of Hermitian Matrix-Sequences and Applica-
tions”. English. In: Integral Equations Operator Theory 81.2 (2015),
pp. 213–225. issn: 0378-620X. doi: 10.1007/s00020-014-2157-6.
url: http://dx.doi.org/10.1007/s00020-014-2157-6 (cit. on
p. 205).

[128] R. Garrappa and M. Popolizio. “On the use of matrix functions
for fractional partial differential equations”. In: Math. Comput.
Simulation 81.5 (2011), pp. 1045–1056. issn: 0378-4754 (cit. on
p. 122).

[129] J. R. Gilbert. “Predicting structure in sparse matrix computa-
tions”. In: SIAM J. Matrix Anal. Appl. 15.1 (1994), pp. 62–79
(cit. on p. 21).

[130] I Gohberg and A Semencul. “On the inversion of finite Toeplitz
matrices and their continuous analogs”. In: Mat. issled 2 (1972),
pp. 201–233 (cit. on p. 67).

[131] A Golbabai and K Sayevand. “Analytical modelling of fractional
advection–dispersion equation defined in a bounded space
domain”. In: Math. Comput. Model. 53.9 (2011), pp. 1708–1718
(cit. on p. 257).

[132] L. Golinskii and S. Serra-Capizzano. “The asymptotic properties
of the spectrum of nonsymmetrically perturbed Jacobi matrix
sequences”. In: J. Approx. Theory 144.1 (2007), pp. 84 –102. issn:
0021-9045. doi: http://dx.doi.org/10.1016/j.jat.2006.05.
002. url: http://www.sciencedirect.com/science/article/
pii/S0021904506000864 (cit. on pp. 32, 205).

[133] G. H. Golub and C. Greif. “On solving block–structured in-
definite linear systems”. In: SIAM J. Sci. Comput. 24.6 (2003),
pp. 2076–2092 (cit. on p. 30).

[134] G. H. Golub and C. F. Van Loan. Matrix computations. 3rd ed.
Johns Hopkins studies in the mathematical sciences. Johns
Hopkins University Press, 1996 (cit. on pp. 21, 25, 35, 90).

[135] I. J. Good. “The interaction algorithm and practical Fourier
analysis”. In: J. Royal Statist. Soc. 20.2 (1958), pp. 361–372 (cit. on
p. 64).

284 fabio durastante

[136] S. Goossens, K. Tan, and D. Roose. “An efficient FGMRES
solver for the shallow water equations based on domain de-
composition”. In: Domain Decomposition Methods in Sciences and
Engineering. 1998, pp. 350–358 (cit. on p. 45).

[137] A. Greenbaum. “Analysis of a multigrid method as an iterative
technique for solving linear systems”. In: SIAM J. Numer. Anal.
21.3 (1984), pp. 473–485 (cit. on p. 75).

[138] A. Greenbaum. Iterative methods for solving linear systems. Vol. 17.
Siam, 1997 (cit. on pp. 29, 36, 40).

[139] A. Greenbaum, V. Pták, and Z. Strakoš. “Any Nonincreasing Con-
vergence Curve is Possible for GMRES”. In: SIAM J. Matrix Anal.
Appl. 17.3 (1996), pp. 465–469. doi: 10.1137/S0895479894275030.
eprint: http://dx.doi.org/10.1137/S0895479894275030. url:
http://dx.doi.org/10.1137/S0895479894275030 (cit. on p. 40).

[140] A. Greenbaum and Z. Strakoš. Matrices that generate the same
Krylov residual spaces. Springer, 1994 (cit. on p. 40).

[141] U. Grenander and G. Szegö. Toeplitz forms and their applications.
Vol. 321. University of California Press, 2001 (cit. on pp. 61–63,
67).

[142] A. K. Grünwald. “Über “begrenzte” Derivationen und deren
Anwendung”. In: Z. Math. Phys. 12 (1867), pp. 441–480 (cit. on
pp. 253, 254).

[143] X.-M. Gu, T.-Z. Huang, X.-L. Zhao, H.-B. Li, and L. Li. “Strang–
type preconditioners for solving fractional diffusion equations
by boundary value methods”. In: J. Comput. Appl. Math. 277
(2015), pp. 73–86 (cit. on pp. 228–231).

[144] H. Guo, G. A. Sitton, and C. S. Burrus. “The quick Fourier
transform: an FFT based on symmetries”. In: IEEE Trans. Signal
Process. 46.2 (1998), pp. 335–341 (cit. on p. 64).

[145] M. M. Gupta and J. Zhang. “High accuracy multigrid solution of
the 3D convection–diffusion equation”. In: Appl. Math. Comput.
113.2 (2000), pp. 249–274 (cit. on p. 195).

[146] M. H. Gutknecht. “Variants of BICGSTAB for matrices with
complex spectrum”. In: SIAM J. Sci. Comput. 14.5 (1993), pp. 1020–
1033 (cit. on p. 161).

[147] W. Hackbusch. “Convergence of multigrid iterations applied to
difference equations”. In: Math. Comp. 34.150 (1980), pp. 425–440
(cit. on p. 75).

preconditioned fast solvers for some large linear systems 285

[148] R. Haelterman, J. Vierendeels, and D. V. Heule. “A generalization
of the Runge-Kutta iteration”. In: J. Comput. Appl. Math. 224.1
(2009), pp. 152 –167. issn: 0377-0427. doi: http://dx.doi.org/
10.1016/j.cam.2008.04.021. url: http://www.sciencedirect.
com/science/article/pii/S0377042708001866 (cit. on pp. 196,
208, 212).

[149] N. Hale, N. J. Higham, and L. N. Trefethen. “Computing Aα,
log(A), and related matrix functions by contour integrals”. In:
SIAM J. Numer. Anal. 46 (2008), pp. 2505–2523 (cit. on pp. 121–
123).

[150] M. Hanke and J. G. Nagy. “Toeplitz approximate inverse pre-
conditioner for banded Toeplitz matrices”. In: Numer. Algorithms
7.2 (1994), pp. 183–199 (cit. on p. 233).

[151] P. C. Hansen. “Deconvolution and regularization with Toeplitz
matrices”. In: Numer. Algorithms 29.4 (2002), pp. 323–378 (cit. on
p. 65).

[152] P. C. Hansen, J. G. Nagy, and D. P. O’leary. Deblurring images:
matrices, spectra, and filtering. Vol. 3. Siam, 2006 (cit. on p. 61).

[153] G. H. Hardy and J. E. Littlewood. “Some properties of fractional
integrals. I.” In: Mathematische Zeitschrift 27.1 (1928), pp. 565–606
(cit. on p. 248).

[154] G. H. Hardy and J. E. Littlewood. “Some properties of fractional
integrals. II”. In: Mathematische Zeitschrift 34.1 (1932), pp. 403–439
(cit. on p. 248).

[155] O. Heaviside. Electrical papers. Vol. 2. Cambridge University
Press, 2011 (cit. on p. 248).

[156] F. Hecht. “New development in FreeFem++”. In: J. Numer. Math.
20.3-4 (2012), pp. 251–265. issn: 1570-2820 (cit. on pp. 113, 116).

[157] M. R. Hestenes and E. Stiefel. “Methods of conjugate gradients
for solving linear systems”. In: J. Res. Nat. Bur. Stand. 49 (1952),
pp. 409–436 (cit. on p. 25).

[158] N. J. Higham. Functions of matrices. Theory and computation.
Philadelphia, PA: SIAM, 2008, pp. xxiv+425. isbn: 0-12-558840-2
(cit. on pp. 121–123, 132, 141).

[159] R. Hilfer. Applications of fractional calculus in physics. World
Scientific, 2000 (cit. on p. 255).

[160] M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich. Optimization
with PDE constraints. Vol. 23. Springer Science & Business Media,
2008 (cit. on pp. 167, 171).

286 fabio durastante

[161] M. Hochbruck and C. Lubich. “On Krylov subspace approxi-
mations to the matrix exponential operator”. In: SIAM J. Numer.
Anal. 34.5 (1997), pp. 1911–1925 (cit. on pp. 122, 140).

[162] J. E. Hopcroft and J. D. Ullman. Data structures and algorithms.
Vol. 175. Addison-Wesley Boston, MA, USA: 1983 (cit. on p. 87).

[163] T. Huckle. “Approximate sparsity patterns for the inverse of a
matrix and preconditioning”. In: Appl. Numer. Math. 30.2 (1999),
pp. 291–303 (cit. on p. 78).

[164] T. Huckle. “Factorized sparse approximate inverses for precon-
ditioning and smoothing”. In: Selcuk J. Appl. Math 1 (2000), p. 63
(cit. on p. 78).

[165] T. Huckle. “Factorized sparse approximate inverses for precon-
ditioning”. In: J Supercomput 25.2 (2003), pp. 109–117 (cit. on
p. 78).

[166] S. Jaffard. “Propriétés des matrices «bien localisées» près de leur
diagonale et quelques applications”. In: Annales de l’IHP Analyse
non linéaire. Vol. 7.5. 1990, pp. 461–476 (cit. on pp. 83, 151).

[167] T. Kailath and J Chun. “Generalized displacement structure for
block-Toeplitz, Toeplitz-block, and Toeplitz-derived matrices”.
In: SIAM J. Matrix Anal. Appl. 15.1 (1994), pp. 114–128 (cit. on
p. 65).

[168] C. Kelley. Solving Nonlinear Equations with Newton’s Method.
1st. Society for Industrial and Applied Mathematics, 2003. doi:
10.1137/1.9780898718898. url: http://epubs.siam.org/doi/
abs/10.1137/1.9780898718898 (cit. on p. 186).

[169] C. Kenney and A. J. Laub. “Padé error estimates for the logarithm
of a matrix”. In: Internat. J. Control 50.3 (1989), pp. 707–730 (cit. on
p. 123).

[170] S. Kharchenko, L. Y. Kolotilina, A. Nikishin, and A. Y. Yeremin.
“A robust AINV–type method for constructing sparse approxi-
mate inverse preconditioners in factored form”. In: Numer. Linear
Algebra Appl. 8.3 (2001), pp. 165–179 (cit. on p. 89).

[171] L. Knizhnerman and V. Simoncini. “A new investigation of the
extended Krylov subspace method for matrix function evalua-
tions”. In: Numerical Linear Algebra with Applications 17.4 (2010),
pp. 615–638 (cit. on pp. 122, 140).

preconditioned fast solvers for some large linear systems 287

[172] D. Knoll and D. Keyes. “Jacobian–free Newton–Krylov methods:
a survey of approaches and applications”. In: J. Comp. Phys. 193
(2 2004), pp. 357–397. doi: 10.1016/j.jcp.2003.08.010 (cit. on
p. 102).

[173] T. Körner. Fourier Analysis. Cambridge University Press, 1989.
isbn: 9780521389914 (cit. on p. 61).

[174] I. Krishtal, T. Strohmer, and T. Wertz. “Localization of matrix
factorizations”. In: Found. Comput. Math. 15.4 (2015), pp. 931–951
(cit. on p. 151).

[175] S. F. Lacroix. Traité du calcul différentiel et du calcul intégral. 2nd ed.
Vol. 3. Courcier, 1819 (cit. on pp. 248, 252).

[176] J. L. Lagrange. Sur une nouvelle espèce de calcul rélatif à la différen-
tiation & à l’intégration des quantités variables. Académie royale
des sciences et belles lettres, 1772 (cit. on p. 248).

[177] V. Lampret. “Estimating the sequence of real binomial coeffi-
cients”. In: J. Ineq. Pure and Appl. Math. 7.5 (2006) (cit. on p. 147).

[178] C. Lanczos. “An iteration method for the solution of the eigen-
value problem of linear differential and integral operators”. In:
J. Res. Nat. Bur. Stand. 45 (1950), pp. 255–282 (cit. on pp. 24, 26).

[179] C. Lanczos. “Solution of systems of linear equations by minized
iterations”. In: J. Res. Nat. Bur. Stand. 49 (1952), pp. 33–53 (cit. on
p. 47).

[180] P. S. de Laplace. Théorie analytique des probabilités. Vol. 7. Courcier,
1820 (cit. on p. 248).

[181] A. J. Laub. Matrix analysis for scientists and engineers. SIAM, 2005
(cit. on p. 203).

[182] S.-L. Lei and H.-W. Sun. “A circulant preconditioner for fractional
diffusion equations”. In: J. Comp. Phys. 242 (2013), pp. 715–725
(cit. on p. 180).

[183] F. Lemeire. “Bounds for condition numbers of triangular and
trapezoid matrices”. English. In: BIT 15.1 (1975), pp. 58–64. issn:
0006-3835. doi: 10.1007/BF01932996. url: http://dx.doi.org/
10.1007/BF01932996 (cit. on p. 107).

[184] A. Letnikov. “Theory of differentiation of fractional order”. In:
Mat. Sb 3.1 (1868) (cit. on pp. 253, 254).

[185] G. Leugering, P. Benner, S. Engell, A. Griewank, H. Harbrecht,
M. Hinze, R. Rannacher, and S. Ulbrich. Trends in PDE constrained
optimization. Vol. 165. Springer, 2014 (cit. on p. 167).

288 fabio durastante

[186] R. LeVeque. Finite Difference Methods for Ordinary and Partial
Differential Equations: Steady-State and Time-Dependent Problems.
SIAM, 2007. isbn: 9780898716290. url: http://books.google.
it/books?id=qsvmsXe8Ug4C (cit. on pp. 61, 82, 102).

[187] C. Li, A. Chen, and J. Ye. “Numerical approaches to fractional
calculus and fractional ordinary differential equation”. In: J.
Comput Phys. 230.9 (2011), pp. 3352–3368 (cit. on p. 143).

[188] C. Li and F. Zeng. Numerical methods for fractional calculus. Vol. 24.
CRC Press, 2015 (cit. on p. 143).

[189] N. Li and Y. Saad. “Crout versions of ILU factorization with
pivoting for sparse symmetric matrices”. In: Electron. Trans.
Numer. Anal. 20 (2005), pp. 75–85 (cit. on p. 83).

[190] F. Lin, X. Jin, and S. Lei. “Strang–type preconditioners for solving
linear systems from delay differential equations”. In: BIT 43.1
(2003), pp. 139–152 (cit. on p. 65).

[191] J. Liouville. “Mémoire sur quelques questions de géométrie et
de mécanique, et sur un nouveau genre de calcul pour résoudre
ces questions”. In: J. Ècole Polytech. (13 1832), pp. 1–69 (cit. on
pp. 248, 249).

[192] J. Liouville. “Note sur une formule pour les diffèrentielles á
indices quelconques, á l’occasion d’un Mèmoire de M. Tortolini.”
fre. In: Journal de Mathématiques Pures et Appliquées (1855), pp. 115–
120. url: http://eudml.org/doc/235143 (cit. on p. 248).

[193] D. C. Liu and J. Nocedal. “On the limited memory BFGS method
for large scale optimization”. In: Math. Program. 45.1-3 (1989),
pp. 503–528 (cit. on p. 180).

[194] L. Lopez and V. Simoncini. “Analysis of projection methods for
rational function approximation to the matrix exponential”. In:
SIAM J. Numer. Anal. 44.2 (2006), 613–635 (electronic) (cit. on
p. 140).

[195] Y. Y. Lu. “Computing the logarithm of a symmetric positive
definite matrix”. In: Applied numerical mathematics 26.4 (1998),
pp. 483–496 (cit. on p. 137).

[196] C. Lubich. “Discretized fractional calculus”. In: SIAM J. Math.
Anal. 17.3 (1986), pp. 704–719 (cit. on pp. 143, 147, 265).

[197] F. Mainardi. Fractional calculus and waves in linear viscoelasticity: an
introduction to mathematical models. World Scientific, 2010 (cit. on
p. 255).

preconditioned fast solvers for some large linear systems 289

[198] J. Mandel. “Algebraic study of multigrid methods for symmetric,
definite problems”. In: Appl. Math. Comput. 25.1 (1988), pp. 39–56
(cit. on p. 73).

[199] B. Mandelbrot. The Fractal Geometry of Nature. Henry Holt and
Company, 1982. isbn: 9780716711865 (cit. on p. 247).

[200] S. McCormick. “Multigrid methods for variational problems:
general theory for the V–cycle”. In: SIAM J. Numer. Anal. 22.4
(1985), pp. 634–643 (cit. on p. 73).

[201] M. M. Meerschaert and C. Tadjeran. “Finite difference approx-
imations for fractional advection–dispersion flow equations”.
In: J. Comput. Appl. Math. 172.1 (2004), pp. 65–77 (cit. on pp. 143,
148, 157, 169, 176, 229).

[202] G. Meinardus and L. L. Schumaker. Approximation of functions:
theory and numerical methods. 1st ed. Springer Tracts in Natural
Philosophy. Springer, 1967. isbn: 9783540039853,3540039856 (cit.
on p. 81).

[203] J. Meldrum and N. Bourbaki. Elements of the History of Mathe-
matics. Springer Berlin Heidelberg, 2013. isbn: 9783642616938
(cit. on p. 247).

[204] R. Metzler and J. Klafter. “The random walk’s guide to anoma-
lous diffusion: a fractional dynamics approach”. In: Phys. Rep.
339.1 (2000), pp. 1–77 (cit. on p. 255).

[205] G. Meurant. “On the incomplete Cholesky decomposition of a
class of perturbed matrices”. In: Siam J. Sci. Comput. 23.2 (2000),
pp. 419–429 (cit. on p. 102).

[206] C. Moler and C. Van Loan. “Nineteen dubious ways to compute
the exponential of a matrix, twenty-five years later”. In: SIAM
Review 45.1 (2003), pp. 3–49 (cit. on p. 121).

[207] J. J. Moré and D. J. Thuente. “Line search algorithms with
guaranteed sufficient decrease”. In: ACM Trans. Math. Software
20.3 (1994), pp. 286–307 (cit. on p. 180).

[208] I. Moret. “Rational Lanczos approximations to the matrix square
root and related functions”. In: Numerical Linear Algebra with
Applications 16 (2009), pp. 431–445 (cit. on pp. 122, 140).

[209] I. Moret and P. Novati. “RD-Rational Approximations of the
Matrix Exponential”. In: BIT, Numerical Mathematics 44.3 (2004),
pp. 595–615 (cit. on pp. 122, 140).

290 fabio durastante

[210] I. Moret and M. Popolizio. “The restarted shift-and-invert Krylov
method for matrix functions”. In: Numerical Linear Algebra with
Appl. 21.1 (2014), pp. 68–80 (cit. on pp. 122, 140).

[211] M. K. Ng. Iterative methods for Toeplitz systems. Oxford University
Press, USA, 2004 (cit. on pp. 16, 230).

[212] M. K. Ng and J. Pan. “Approximate inverse circulant–plus–
diagonal preconditioners for Toeplitz–plus–diagonal matrices”.
In: SIAM J. Sci. Comput. 32.3 (2010), pp. 1442–1464 (cit. on pp. 144,
154).

[213] M. K. Ng, S. Serra-Capizzano, and C. Tablino-Possio. “Multi-
grid preconditioners for symmetric Sinc systems”. In: ANZIAM
Journal 45 (2004), pp. 857–869 (cit. on p. 144).

[214] M. K. Ng, S. Serra-Capizzano, and C. Tablino-Possio. “Numerical
behaviour of multigrid methods for symmetric Sinc–Galerkin
systems”. In: Numer. Linear Algebra Appl. 12.2-3 (2005), pp. 261–
269 (cit. on p. 144).

[215] J. Nocedal and S. Wright. Numerical optimization. Springer Science
& Business Media, 2006 (cit. on p. 180).

[216] Y. Notay. “Optimal V–cycle algebraic multilevel precondition-
ing”. In: Numer. Linear Algebra Appl. 5.5 (1998), pp. 441–459 (cit.
on p. 76).

[217] Y. Notay. “An aggregation–based algebraic multigrid method”.
In: Electron. Trans. Numer. Anal. 37.6 (2010), pp. 123–146 (cit. on
p. 195).

[218] Y. Notay. “Aggregation-based algebraic multigrid for convection-
diffusion equations”. In: SIAM J. Sci. Comput. 34.4 (2012), A2288–
A2316 (cit. on p. 195).

[219] D. Noutsos, S. Serra-Capizzano, and P. Vassalos. “Matrix algebra
preconditioners for multilevel Toeplitz systems do not insure
optimal convergence rate”. In: Theor. Comput. Sci. 315.2-3 (2004),
pp. 557–579 (cit. on p. 225).

[220] M. D. Ortigueira. “Riesz potential operators and inverses via
fractional centred derivatives”. In: Int. J. Math. Math. Sci. 2006
(2006) (cit. on pp. 149, 178, 224, 266).

[221] J. Pan, R. Ke, M. K. Ng, and H.-W. Sun. “Preconditioning tech-
niques for diagonal–times–Toeplitz matrices in fractional dif-
fusion equations”. In: SIAM J. Sci. Comput. 36.6 (2014), A2698–
A2719 (cit. on pp. 144, 154, 180).

preconditioned fast solvers for some large linear systems 291

[222] S. V. Parter. “On the distribution of the singular values of Toeplitz
matrices”. In: Linear Algebra Appl. 80 (1986), pp. 115–130 (cit. on
pp. 62, 63).

[223] X. Ping, R. Chen, K. Tsang, and E. K. Yung. “The SSOR-
preconditioned inner outer flexible GMRES method for the
FEM analysis of EM problems”. In: Microw. Opt. Techn. Let. 48.9
(2006), pp. 1708–1712 (cit. on p. 45).

[224] G. Plank, M. Liebmann, R. W. dos Santos, E. J. Vigmond, and
G. Haase. “Algebraic multigrid preconditioner for the cardiac
bidomain model”. In: IEEE Trans. Biomed. Eng. 54.4 (2007),
pp. 585–596 (cit. on p. 76).

[225] I. Podlubny. Fractional differential equations: an introduction to
fractional derivatives, fractional differential equations, to methods of
their solution and some of their applications. Vol. 198. Academic
press, 1998 (cit. on pp. 143–145, 148, 150, 169, 172, 179, 256).

[226] I. Podlubny. “Matrix approach to discrete fractional calculus”.
In: Fract. Calc. Appl. Anal. 3.4 (2000), pp. 359–386 (cit. on pp. 143,
146, 265).

[227] I. Podlubny. “Geometric and physical interpretation of fractional
integration and fractional differentiation.” English. In: Fract. Calc.
Appl. Anal. 5.4 (2002), pp. 367–386. issn: 1311-0454; 1314-2224/e
(cit. on p. 143).

[228] I. Podlubny, A. Chechkin, T. Skovranek, Y. Chen, and B. M. V.
Jara. “Matrix approach to discrete fractional calculus II: Partial
fractional differential equations”. In: J. Comput Phys. 228.8 (2009),
pp. 3137–3153 (cit. on pp. 143, 146, 265).

[229] I. Podlubny, T. Skovranek, B. M. V. Jara, I. Petras, V. Verbitsky,
and Y. Chen. “Matrix approach to discrete fractional calculus
III: non–equidistant grids, variable step length and distributed
orders”. In: Philos. T. R. Soc. A 371.1990 (2013), p. 20120153 (cit. on
pp. 143, 146, 265).

[230] M. Popolizio. “A matrix approach for partial differential equa-
tions with Riesz space fractional derivatives”. In: Eur. Phys.
J-Spec. Top. 222.8 (2013), pp. 1975–1985 (cit. on pp. 143, 150, 154).

[231] M. Popolizio and V. Simoncini. “Acceleration techniques for
approximating the matrix exponential”. In: SIAM J. Matrix
Analysis Appl. 30.2 (2008), pp. 657–683 (cit. on pp. 122, 140).

292 fabio durastante

[232] A. Quarteroni. Numerical Models for Differential Problems. Vol. 2.
MS&A. Springer Science & Business Media, 2010. 601 pp. (cit. on
p. 173).

[233] A. Rafiei and F Toutounian. “New breakdown–free variant of
AINV method for nonsymmetric positive definite matrices”. In:
J. Comput. Appl. Math. 219.1 (2008), pp. 72–80 (cit. on p. 96).

[234] A Ramage. “A multigrid preconditioner for stabilised discreti-
sations of advection–diffusion problems”. In: J. Comput. Appl.
Math. 110.1 (1999), pp. 187–203 (cit. on p. 76).

[235] S. S. Ray. Fractional calculus with applications for nuclear reactor
dynamics. CRC Press, 2015 (cit. on p. 255).

[236] R. Remmert. “Wielandt’s Theorem About the Γ–Function”. In:
Amer. Math. Monthly 103.3 (1996), pp. 214–220. issn: 00029890,
19300972 (cit. on p. 255).

[237] J. C. De los Reyes. Numerical PDE–constrained optimization.
Springer, 2015 (cit. on pp. 167, 168, 171, 175, 176).

[238] B. Riemann. “Versuch einer allgemeinen Auffassung der Inte-
gration und Differentiation”. In: Gesammelte Werke 62 (1876),
pp. 331–344 (cit. on pp. 248, 249).

[239] M. Riesz. “L’intégrale de Riemann–Liouville et le problème de
Cauchy”. In: Acta mathematica 81.1 (1949), pp. 1–222 (cit. on
p. 248).

[240] R. B. Rood. “Numerical advection algorithms and their role in
atmospheric transport and chemistry models”. In: Rev. Geophys.
25.1 (1987), pp. 71–100 (cit. on p. 202).

[241] B. Ross. “The development of fractional calculus 1695–1900”. In:
Historia Mathematica 4.1 (1977), pp. 75–89 (cit. on p. 247).

[242] J. Ruge and K. Stüben. “Algebraic Multigrid”. In: Multigrid Meth-
ods. Ed. by S. F. McCormick. Frontiers In Applied Mathematics.
Philadelphia, Pennsylvania: SIAM, 1987. Chap. 4, pp. 73–130
(cit. on pp. 70, 75).

[243] Y. Saad. “Analysis of some Krylov subspace approximations to
the matrix exponential operator”. In: SIAM J. Numer. Anal. 29
(1992), pp. 209–228 (cit. on pp. 121, 122, 140).

[244] Y. Saad. Iterative Methods for Sparse Linear Systems. Second. Society
for Industrial and Applied Mathematics, 2003 (cit. on pp. 14, 22,
24, 25, 27, 30, 31, 36, 44, 47, 51, 76, 83, 233).

preconditioned fast solvers for some large linear systems 293

[245] Y. Saad. “A flexible inner–outer preconditioned GMRES algo-
rithm”. In: SIAM J. Sci. Comput. 14.2 (1993), pp. 461–469 (cit. on
pp. 44, 47, 229, 233, 236).

[246] Y. Saad. “ILUT: A dual threshold incomplete LU factorization”.
In: Numer. Linear Algebra Appl. 1.4 (1994), pp. 387–402. url:
http://www-users.cs.umn.edu/~saad/PDF/umsi-92-38.pdf

(cit. on pp. 83, 86).

[247] Y. Saad. Iterative methods for sparse linear systems. SIAM, 2003
(cit. on pp. 111, 155).

[248] Y. Saad. Numerical Methods for Large Eigenvalue Problems 2nd
edition. SIAM, 2011 (cit. on p. 33).

[249] Y. Saad and M. H. Schultz. “GMRES: A Generalized Minimal
Residual Algorithm for Solving Nonsymmetric Linear Systems”.
In: SIAM J. Sci. Stat. Comput. 7.3 (1986), pp. 856–869 (cit. on pp. 35,
205).

[250] D. Sakrison. “An extension of the theorem of Kac, Murdock and
Szegö to N dimensions (Corresp.)” In: IEEE Trans. Inform. Theory
15.5 (1969), pp. 608–610 (cit. on p. 67).

[251] S. G. Samko, A. A. Kilbas, and O. I. Marichev. Fractional integrals
and derivatives. Theory and Applications. Yverdon: Gordon and
Breach, 1993 (cit. on p. 171).

[252] R. Schumer, M. M. Meerschaert, and B. Baeumer. “Fractional
advection-dispersion equations for modeling transport at the
Earth surface”. In: J. Geophys. Res. Earth Surf. 114.F4 (2009) (cit. on
p. 256).

[253] S. Serra-Capizzano. “Distribution results on the algebra gener-
ated by Toeplitz sequences: a finite-dimensional approach”. In:
Linear Algebra Appl. 328.1-3 (2001), pp. 121–130 (cit. on p. 68).

[254] S. Serra-Capizzano. “Generalized Locally Toeplitz sequences:
spectral analysis and applications to discretized partial differen-
tial equations”. In: Linear Algebra Appl. 366 (2003). Special issue
on Structured Matrices: Analysis, Algorithms and Applications,
pp. 371–402. issn: 0024-3795 (cit. on pp. 67, 68, 196).

[255] S. Serra-Capizzano. “The GLT class as a generalized Fourier
analysis and applications”. In: Linear Algebra Appl. 419.1 (2006),
pp. 180–233 (cit. on pp. 67, 196).

[256] S. Serra-Capizzano and C. Tablino-Possio. “Multigrid methods
for multilevel circulant matrices”. In: SIAM J. Sci. Comput. 26.1
(2004), pp. 55–85 (cit. on p. 75).

294 fabio durastante

[257] S. Serra-Capizzano and E Tyrtyshnikov. “Any circulant-like
preconditioner for multilevel matrices is not superlinear”. In:
SIAM J. Matrix Anal. Appl. 21.2 (2000), pp. 431–439 (cit. on p. 225).

[258] S. Serra-Capizzano and E Tyrtyshnikov. “How to prove that a
preconditioner cannot be superlinear”. In: Math. Comp. 72.243
(2003), pp. 1305–1316 (cit. on p. 225).

[259] J. Sherman and W. J. Morrison. “Adjustment of an Inverse
Matrix Corresponding to a Change in One Element of a Given
Matrix”. In: Ann. Of Math. Stat. 21 (1 Mar. 1950), pp. 124–127.
doi: 10.2307/2236561 (cit. on p. 84).

[260] V. Simoncini and D. B. Szyld. “Flexible inner–outer Krylov sub-
space methods”. In: SIAM J. Numer. Anal. 40.6 (2002), pp. 2219–
2239 (cit. on p. 47).

[261] V. Simoncini and D. B. Szyld. “Theory of inexact Krylov subspace
methods and applications to scientific computing”. In: SIAM J.
Sci. Comput. 25.2 (2003), pp. 454–477 (cit. on p. 45).

[262] V. Simoncini and D. B. Szyld. “Recent computational devel-
opments in Krylov subspace methods for linear systems”. In:
Numer. Linear Algebra Appl. 14.1 (2007), pp. 1–59 (cit. on p. 45).

[263] G. L. G. Sleĳpen and H. A. van der Vorst. “Maintaing convergence
properties of BiCGstab methods in finite precision arithmetic”.
In: Numer. Algorithms 10 (1995), pp. 203–223 (cit. on p. 56).

[264] G. L. G. Sleĳpen, H. A. van der Vorst, and D. R. Fokkema.
“BiCGstab(l) and other hybrid Bi–Cg methods”. In: Numer.
Algorithms 7 (1994), pp. 75–109 (cit. on p. 56).

[265] G. L. Sleĳpen and D. R. Fokkema. “BiCGstab(l) for linear equa-
tions involving unsymmetric matrices with complex spectrum”.
In: Electron. Trans. Numer. Anal. 1.11 (1993), p. 2000 (cit. on p. 56).

[266] P. Sonneveld. “CGS, a fast Lanczos–type solver for nonsymmetric
linear systems”. In: SIAM J. Sci Stat. Comput. 10 (1989), pp. 36–52
(cit. on p. 51).

[267] H. M. Srivastava and J. J. Trujillo. Theory and applications of
fractional differential equations. Elsevier, Amsterdam, 2006 (cit. on
p. 143).

[268] W. Stewart. “MARCA: Markov Chain Analyzer, A Software
Package for Markov Modeling”. In: Numerical Solution of Markov
Chains 8 (1991), p. 37 (cit. on pp. 135, 137, 140).

preconditioned fast solvers for some large linear systems 295

[269] K. Stüben. “A review of algebraic multigrid”. In: J. Comput. Appl.
Math. 128.1 (2001), pp. 281–309 (cit. on pp. 75, 76).

[270] C.-H. Tai, J.-H. Sheu, and B. Van Leer. “Optimal multistage
schemes for Euler equations with residual smoothing”. In: AIAA
Journal 33.6 (1995), pp. 1008–1016 (cit. on p. 206).

[271] P. L. Tchebychev. “Sur les polynômes réprésentant le mieux
les valeurs des fonctions fractionnaires élémentaires pour les
valeurs de la variable contenues entre deux limites données.”
In: Oeuvres. Ed. by S. Petersburg. Vol. II. Commissionaires de
l’Académie impériale des sciences, 1907, pp. 669–678. (Cit. on
p. 81).

[272] J. D. Tebbens and M. Tüma. “Efficient Preconditioning of Se-
quences of Nonsymmetric Linear Systems”. In: SIAM J. Sci.
Comp. 29 (5 2007), pp. 1918–1941. doi: 10.1137/06066151x (cit.
on p. 102).

[273] J. D. Tebbens and M. Tüma. “Preconditioner updates for solving
sequences of linear systems in matrix-free environment”. In:
Numer. Linear Algebra Appl. 17 (6 2010), pp. 997–1019. doi: 10.
1002/nla.695 (cit. on p. 102).

[274] L. Thomas. “Using a computer to solve problems in physics”.
In: Applications of Digital Computers. Ed. by W. Freiberger and
W. Prager. Boston: Ginn and Company, 1963, pp. 44–45 (cit. on
p. 64).

[275] P. Tilli. “Locally Toeplitz sequences: spectral properties and
applications”. In: Linear Algebra Appl. 278.1 (1998), pp. 91–120
(cit. on pp. 67, 68).

[276] O. Toeplitz. “Zur Theorie der quadratischen und bilinearen
Formen von unendlichvielen Veränderlichen”. In: Math. Ann.
70.3 (1911), pp. 351–376 (cit. on p. 61).

[277] U. Trottenberg, C. W. Oosterlee, and A. Schuller. Multigrid.
Academic press, 2000 (cit. on pp. 70, 71, 75).

[278] E. Tyrtyshnikov. “A unifying approach to some old and new
theorems on distribution and clustering”. In: Linear Algebra Appl.
232 (1996), pp. 1–43 (cit. on pp. 63, 67).

[279] E. Tyrtyshnikov. A Brief Introduction to Numerical Analysis. Boston:
Birkhauser, 1997 (cit. on p. 32).

296 fabio durastante

[280] E. Tyrtyshnikov and N. Zamarashkin. “Spectra of multilevel
Toeplitz matrices: advanced theory via simple matrix relation-
ships”. In: Linear Algebra Appl. 270.1 (1998), pp. 15–27 (cit. on
pp. 63, 67).

[281] B. Van Leer, W.-T. Lee, P. L. Roe, K. G. Powell, and C.-H. Tai.
“Design of optimally smoothing multistage schemes for the
Euler equations”. In: Commun. Appl. Numer. M. 8.10 (1992),
pp. 761–769 (cit. on pp. 195, 206).

[282] R. Varga. Solving Ordinary Differential Equations II. Stiff and
Differential-Algebraic Problems. Springer-Verlag, 1991 (cit. on
p. 102).

[283] P. Vassilevski. “Hybrid V–cycle algebraic multilevel precon-
ditioners”. In: Math. Comp. 58.198 (1992), pp. 489–512 (cit. on
p. 76).

[284] H. A. Van der Vorst. Iterative Krylov Methods for Large Linear
Systems. Cambridge University Press, 2003 (cit. on pp. 45, 50, 56,
229, 236).

[285] H. A. Van der Vorst. “Bi–CGSTAB: A fast and smoothly converg-
ing variant of Bi–CG for the solution of nonsymmetric linear
systems”. In: SIAM J. Sci. Stat. Comput. 13.2 (1992), pp. 631–644
(cit. on pp. 50, 51, 55, 205).

[286] J. Wendel. “Note on the gamma function”. In: Am. Math. Mon.
55.9 (1948), pp. 563–564 (cit. on p. 147).

[287] H. Weyl. “Bemerkungen zum begriff des differentialquotienten
gebrochener ordnung”. In: Zürich. Naturf. Ges 62 (1917), pp. 296–
302 (cit. on p. 248).

[288] N. Wheeler. Construction & Physical Application of the Fractional
Calculus. Reed College Physics Department. 1997. url: https:
//goo.gl/5GdFfL (cit. on p. 247).

[289] J. H. Wilkinson. The algebraic eigenvalue problem. Clarendon Press,
1965 (cit. on pp. 47, 48).

[290] J. H. Wilkinson and C. Reinsch. Handbook for Automatic Com-
putation Vol. II – Linear Algebra. Springer–verlag, 1971 (cit. on
p. 59).

[291] S. Winograd. “On computing the discrete Fourier transform”.
In: Math. Comput. 32.141 (1978), pp. 175–199 (cit. on p. 64).

preconditioned fast solvers for some large linear systems 297

[292] Q. Yang, F. Liu, and I Turner. “Numerical methods for fractional
partial differential equations with Riesz space fractional deriva-
tives”. In: Appl. Math. Model. 34.1 (2010), pp. 200–218 (cit. on
pp. 143, 162).

[293] H Zhang, F. Liu, and V. Anh. “Galerkin finite element ap-
proximation of symmetric space–fractional partial differential
equations”. In: Applied Mathematics and Computation 217.6 (2010),
pp. 2534–2545 (cit. on pp. 170, 171).

[294] J. Zhang. “Accelerated multigrid high accuracy solution of the
convection-diffusion equation with high Reynolds number”. In:
Numer. Methods Partial Differential Equations 13.1 (1997), pp. 77–92
(cit. on p. 195).

[295] A. Zygmund. Trigonometric series. Vol. 1. Cambridge university
press, 2002 (cit. on p. 61).

