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Abstract
Fluctuations affect the functionality of nanodevices. Thermodynamic uncertainty relations
(TURs), derived within the framework of stochastic thermodynamics, show that a minimal
amount of dissipation is required to obtain a given relative energy current dispersion, that is,
current precision has a thermodynamic cost. It is therefore of great interest to explore the
possibility that TURs are violated, particularly for quantum systems, leading to accurate currents at
lower cost. Here, we show that two quantum harmonic oscillators are synchronized by coupling to
a common thermal environment, at strong dissipation and low temperature. In this regime,
periodically modulated couplings to a second thermal reservoir, breaking time-reversal symmetry
and taking advantage of non-Markovianity of this latter reservoir, lead to strong violation of TURs
for local work currents, while maintaining finite output power. Our results pave the way for the use
of synchronization in the thermodynamics of precision.

1. Introduction

In 1665 Huygens observed the synchronization of two pendulum clocks mounted on a common support [1].
Since then, synchronization has emerged as a universal concept in the theory of dynamical systems, with a
broad range of applications in fields ranging from science and engineering to social life [2]. More recently, the
phenomenon has been investigated and characterized in quantum systems [3–17] with, however, only a few
studies addressing thermodynamic signatures of synchronization [18, 19]. Just as thermodynamics started in
the 1800s spurred by the industrial revolution, in the same way the miniaturization of devices, and in
particular the emergence of new quantum technologies, pushes the field of thermodynamics into new applied
and fundamental challenges [20–26]. In the thermodynamics of small systems, fluctuations [27–29] play a
prominent role, and thermodynamic uncertainty relations (TURs), derived within the framework of classical
stochastic thermodynamics, establish a lower bound to the amount of dissipation needed to reduce relative
energy current fluctuations to a given level [30–39]. This seminal result motivated the quest for possible
mechanisms to violate TURs, and consequently reduce the thermodynamic cost of precision. Routes for TUR
violations include breaking of time-reversal symmetry (TRS) [40–42] and quantum coherences [43–58]. In
addition, standard TURs have recently been generalized [42, 59, 60], including the case of time-dependent
driving [61–63]. Although it might be intuitive that synchronization, by locking the relative motion of
system constituents, can reduce fluctuations, its possible role in violating TURs has not yet been explored.

In this work, we consider two quantum harmonic oscillators (QHOs) coupled to common thermal baths
(see figure 1 for a schematic drawing of our model). The couplings to one bath are static and induce not only
dissipation but also the emergence of correlations between the two otherwise independent oscillators. At
strong damping and low temperatures, the oscillators are synchronized, oscillating at a common frequency
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Figure 1. Sketch of the dynamical quantum thermal machine. Two quantum harmonic oscillators, with frequencies ωA and ωB,
are in contact with two common thermal reservoirs at temperatures Tν , with ν = 1,2. Power Pl can be injected or extracted from
the l= A,B subsystem, while heat currents Jν flow from or toward the reservoirs. External monochromatic drives modulate the
weak coupling with the ν= 1 reservoir, while the coupling with ν= 2 is static and much stronger, and it is responsible for
synchronization.

and in phase opposition. The oscillators are then in contact with another thermal bath, with periodically
driven couplings breaking TRS. In this work, this symmetry breaking is the first necessary ingredient for TUR
violation [30]. We will also show that two other ingredients, namely synchronization and non-Markovianity,
are required to achieve TUR violation together with finite output local power. Indeed, we will discuss that a
strong violation for the injected or extracted power of each oscillator can occur, despite the fact that the TUR
for total power is rigorously proven as never violated. In addition, the finite cutoff frequency for the
dynamically coupled bath spectral density, which generally implies non-Markovian effects [64–66], allows
local TURs to be violated in the fast driving diabatic regime. Importantly, in this regime, the violation of
TUR is accompanied by the possibility of extracting finite and sizeable power from one oscillator, exploiting
synchronization achieved at strong damping. These results, already present in a isothermal regime, can
benefit from the presence of a temperature gradient, especially in the non-linear regime where TUR violation
is achieved in a wide parameter region. Finally, we show that local TURs can violate also the generalized
bound for time-dependent drives [42, 61–63], even in the diabatic regime with finite output power.

2. General setting

2.1. Model
Two uncoupled (no direct coupling) quantum harmonic oscillators (l= A,B) in contact with two common
thermal reservoirs (ν = 1,2) are the subsystems constituting the working medium (WM) of the quantum
thermal machine under study, as sketched in figure 1. The total Hamiltonian is (we set h̄= kB = 1)

H(t) =
∑
l=A,B

Hl +
∑
ν=1,2

[
Hν +H(t)

int,ν

]
, (1)

with Hl =
p 2
l

2m + 1
2mω2

l x
2
l the Hamiltonian of the lth QHO (same massm but different characteristic

frequencies ωA and ωB). The reservoirs Hν are modelled with the Caldeira–Leggett approach of quantum
dissipative systems [67–71] as a collection of independent harmonic oscillators, while the system-reservoir

interaction H(t)
int,ν =

∑
l=A,BH

(t)
int,ν,l is a bilinear coupling∼ xl

∑+∞
k=1 g

(l)
ν (t)ck,νXk,ν in the subsystem xl and

bath Xk,ν position operators, where ck,ν describe the coupling strengths weighted by the modulating function

g(l)ν (t) (see appendix A for details). Notice that with the apex (t) we indicate the parametric time-dependence
due to the presence of external drives. We assume that the couplings with the ν= 1 reservoir are weak and
oscillate in time [72–75], with two independent monochromatic drives of the form

g(A)1 (t) = fA (Ω)cos(Ωt) , g(B)1 (t) = fB (Ω)cos(Ωt+ϕ) , (2)

with Ω the external frequency, ϕ a relative phase, and fl(Ω) relative weights that in general can depend on the

external frequency Ω. The couplings with the ν= 2 reservoir, instead, are static, g(l)2 = 1. Furthermore, the
couplings with the ν= 2 bath are stronger than those with the ν= 1 bath.

The properties of the νth bath, including possible memory effects and non-Markovian behavior [76–79],

are governed by the so-called spectral density [68] Jν(ω)≡ π
2

∑+∞
k=1

c2k,ν
mk,νωk,ν

δ(ω−ωk,ν) , wheremk,ν and

ωk,ν are the mass and frequency of the kth modes of the νth bath.

2



Quantum Sci. Technol. 9 (2024) 045032 L Razzoli et al

As shown in [75], the out-of-equilibrium dynamics of the QHOs obey a set of coupled generalized
quantum Langevin equations where the bath responses are encoded in the memory kernels

γν (t) = θ (t)

ˆ +∞

−∞

dω

πm

Jν (ω)

ω
cos(ωt) , (3)

with θ(t) the Heaviside step function, and a noise term, related to the fluctuating force ξν(t) with null
quantum average ⟨ξν(t)⟩= 0 and correlation function [68, 75]

⟨ξν (t)ξν ′ (t ′)⟩= δν,ν ′

ˆ ∞

0

dω

π
Jν (ω)

[
coth

(
ω

2Tν

)
cos [ω (t− t ′)]− i sin [ω (t− t ′)]

]
. (4)

2.2. Thermodynamic quantities
In the following, we are interested in thermodynamic quantities in the long time limit, when a periodic steady
state has been reached. To characterize the working regime and the performance of the quantum thermal
machine, we focus on thermodynamic quantities averaged over the period T = 2π/Ω of the drives in the
off-resonant case with ωB < ωA. Due to the time-dependent drives in equation (2), power can be injected or
extracted into/from the subsystems l= A,B. The average power associated to the lth subsystem is defined as

Pl ≡
ˆ T

0

dt

T
Tr

[
∂H(t)

int,1,l

∂t
ρ(t)

]
, (5)

where we have introduced both temporal and quantum averages, and ρ(t) is the total density matrix evolved
at time t (see appendix A).

The total power is given by P=
∑

lPl. It is worth noting that power is associated to the temporal
variation of the interaction term and, as such, is only due to the dynamical coupling of the WM to the bath
ν= 1. Furthermore, with our convention positive sign indicates power injection (or current flow toward the
WM) and negative sign means power extraction (or current flow out of the WM). The average heat current

associated to the νth reservoir is given by Jν ≡−
´ T
0

dt
T Tr

[
Hν ρ̇(t)

]
, and the balance relation P+ J1 + J2 = 0

holds true. We also recall that, in accordance with the second law of thermodynamics, the entropy
production rate Ṡ≡−

∑
ν Jν/Tν is always Ṡ⩾ 0 [80, 81].

All quantities undergo fluctuations and the latter, once averaged over the period of the drives, can be
written as [42, 82]

DO ≡
ˆ T

0

dt

T

ˆ +∞

0
dτTr [{O(t) ,O(t− τ)}ρ(t0)] , (6)

for a generic operator O(t), and where {·, ·} is the anticommutator. Notice that here the operators evolve in
the Heisenberg picture with respect to the total Hamiltonian and are at two different times. Fluctuations,
together with entropy production rate Ṡ, are key figures of merit for thermal machines, which one often tries
to minimize while having, e.g. finite power for a heat engine, in order to improve performance and stability
of the thermal machine. In particular, the impact of fluctuations on thermal machine performance can be
assessed by standard TURs [30, 31, 41–45]. The latter combine energy flows, their fluctuations, and the
entropy production rate in a dimensionless quantity expressing the trade-off between the way the system
fluctuates versus the quality (in terms of magnitude and degree of dissipation) of the energy flow. This
trade-off parameter for a generic operator is given by

QO ≡ Ṡ
DO

O2
, (7)

and the standard TUR reads QO ⩾ 2. Therefore, any mechanism leading to a violation of the TUR results in
QO < 2. Among all the possible mechanisms for TUR violation we consider the breaking of TRS [41, 42],
which in our model is guaranteed by the presence of two independent drives with a finite phase shift ϕ ̸= 0.
Notice that breaking of TRS is a necessary but not sufficient condition for TUR violation. Indeed, in the
present setup it is possible to prove that the TUR for the total power P is never violated, QP ⩾ 2 always,
regardless of the value of ϕ and of the considered spectral densities (see appendices B and C for a proof of
this result). However, as we will show below, this is not the case for the properties of subsystems l= A,B, and
TUR violation can be achieved by looking at QPl associated to the subsystem power.

3
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Figure 2. Strong damping regime and synchronization. (a) Plot of the finite eigenvalue of χ ′ ′
2 (ω) as a function of frequency,

showing that a dominant common mode appears at strong damping. (b) Synchronization, measured by the Pearson
coefficient (11), as a function of temperature T2/ωA. Different curves refer to various γ2 damping strengths. Here and in the
following figures, ωB = 0.6ωA.

3. Synchronization

As stated above, we assume that the time-dependent couplings with the ν= 1 reservoir are much weaker than
the static couplings with the ν= 2 one. Under this assumption, a systematic perturbative expansion governed
by the ratio between the damping strengths γ1(ω)/γ2(ω) (i.e. the Fourier transform of equation (3)) can be
used, as formulated in [72]. Therefore, the dynamics and all thermodynamic quantities will be evaluated at

the lowest order in a perturbative expansion in the system-reservoir interaction H(t)
int,1 [73, 75]. Conversely,

the static couplings with the reservoir ν= 2 are treated to all order in the coupling strength. In the long time

limit the static unperturbed problem is solved by x† = χ2 · ξ
†/m, where x= (x(0)A (ω),x(0)B (ω)) is the

two-component vector of the positions of the oscillators, ξ = ξ2(ω)(1,1) is the noise vector and χ2(ω) is the
two-by-two response matrix, whose elements are the Fourier transform of the response function [75]

χ
(l,l ′)
2 (t)≡ imθ (t)⟨[xl (t) ,xl′ (0)]⟩ , (8)

where ⟨. . .⟩ denotes the quantum average. It is now worth to recall that in the resonant case (ωA = ωB) with
static couplings to the ν= 2 reservoir, symmetry arguments lead to a dissipation-free subspace (associated to
the relative coordinate normal mode xA - xB), preventing the system from reaching a stationary regime [75,
83–86]. For this reason, from now on we consider ωA ̸= ωB only. Assuming a strictly Ohmic spectral density
J2(ω) =mγ2ω, the two-by-two response matrix is given by [75]

χ
(l,l)
2 (ω)=

−
[
ω2 −ω2

l̄
+ iωγ2

]
D (ω)

; χ
(l,̄l)
2 (ω)=

iωγ2
D (ω)

, (9)

where we introduced the convention according to which if l=A then l̄= B and vice versa, and

D (ω)=
(
ω2−ω2

A

)(
ω2−ω2

B

)
+ iω

(
2ω2−ω2

A −ω2
B

)
γ2. (10)

The response matrix is a key quantity since it determines the long-time dynamics and enters into the
expressions of all the thermodynamic quantities of interest (see below). In particular, by inspecting the
eigenvalue problem posed by χ2(ω) (see above), at sufficiently strong damping γ2 a frequency–locked and
phase–locked mode appears. Indeed, γ2 not only determines dissipation, but it also mediates correlations
between the two, otherwise independent, subsystems. There, the two subsystems A and B become
synchronized, oscillating at a common frequency ω̄ =

√
(ω2

A +ω2
B)/2 and in phase opposition. The

appearance of a common frequency ω̄ can be inferred looking at the eigenvalues of the imaginary part of the
response matrix of equation (9) χ2(ω) = χ ′

2(ω)+ iχ ′ ′
2 (ω), for different damping strengths γ2. This is

illustrated in figure 2(a) where the finite eigenvalue is reported for two different damping strengths. At weak
damping γ2 ≪ ωl two peaks around ωA and ωB are present, while at strong damping γ2 ≫ ωl a unique
common frequency at ω̄ is the dominant one. In this regime, the corresponding eigenvectors show that the
two QHOs are in phase opposition.

Mutual synchronization between the two QHOs arises when, regardless of their detuning, they start to
oscillate coherently at a common frequency. In the present setup, therefore, synchronization can occur at
strong damping γ2 ≫ ωl. To quantify synchronization, we consider the dynamics of local observables and the
corresponding Pearson coefficient [87]. It is worth to note that since we are interested in the steady state

4
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regime, the Pearson coefficient attains its asymptotic value and does not depend on time. Focusing on the
position operator of the QHOs, this indicator reads

C =
⟨δxAδxB⟩√

⟨δxAδxA⟩⟨δxBδxB⟩
, (11)

where

⟨δxlδxl′⟩= Tr [xl (t)xl′ (t) ρ̃]−Tr [xl (t) ρ̃]Tr [xl′ (t) ρ̃]

=

ˆ +∞

−∞

dω

4πm
coth

(
ω

2T2

)
χ
(l,l ′)
2

′ ′
(ω) , (12)

with ρ̃= exp{−[
∑

l=A,BHl +H2 +Hint,2,l]/T2}. The Pearson coefficient takes values between−1 and+1,
respectively denoting perfect temporal anti-synchronization and synchronization of the local observables.
The value 0, instead, denotes the absence of synchronization [87]. In figure 2(b) the behavior of the Pearson
coefficient for our setup with different values of the damping strength γ2 is reported. This clearly shows that
at sufficiently strong damping the two subsystems become synchronized and in anti-phase, reaching C →−1
at low temperature. At high temperature this feature is smeared out, with Pearson coefficient C → 0. In the
opposite, weak damping regime instead C is always small, indicating no synchronization.

4. TUR violation for local power

In the following, we will investigate the local powers and associated TURs [30]. We will focus on the regime
of strong damping and emphasize the role of synchronization to find parameter regions where useful,
nonvanishing subsystem power (Pl < 0 and sizeable magnitude) can be obtained with high accuracy. We also
recall that we consider a perturbative expansion in the ratios between the ν= 1 and ν= 2 system-bath
coupling strengths. At the lowest perturbative order, the subsystem power contributions can be written as
(see appendix B for details)

Pl = P(0)l + δPl, (13)

with

P(0)l =−Ω

ˆ +∞

−∞

dω

4πm
J1 (ω+Ω)N(ω,Ω)

[
f 2l (Ω)χ

(l,l)
2

′ ′
(ω)+ cos(ϕ) fl (Ω) f̄l (Ω)χ

(l,̄l)
2

′ ′
(ω)

]
, (14)

δPA/B =∓Ω sin(ϕ) fA (Ω) fB (Ω)

ˆ +∞

−∞

dω

4πm

[
J1 (ω+Ω)χ

(A,B)
2

′
(ω)coth

(
ω+Ω

2T1

)
−m(ω+Ω)γ ′ ′

1 (ω+Ω)χ
(A,B)
2

′ ′
(ω)coth

(
ω

2T2

)]
, (15)

where the last line involves the imaginary part of the damping kernel of equation (3) in Fourier space,
γ1(ω) = γ ′

1(ω)+ iγ ′ ′
1 (ω), and we have introduced the function N(ω,Ω) = coth(ω+Ω

2T1
)− coth( ω

2T2
). It is

worth to stress that the total power is given by P= P(0)A + P(0)B ,

P=−Ω

ˆ +∞

−∞

dω

4πm
J1 (ω+Ω)N(ω,Ω)

[
f2A (Ω)χ

(A,A)
2

′ ′
(ω)

+ f2B (Ω)χ
(B,B)
2

′ ′
(ω)+2cos(ϕ) fA (Ω) fB (Ω)χ

(A,B)
2

′ ′
(ω)
]
. (16)

For the sake of completeness, we also report the expression for the ν= 1 heat current [75]

J1 =

ˆ +∞

−∞

dω

4πm
(ω+Ω)J1 (ω+Ω)N(ω,Ω)

[
f2A (Ω)χ

(A,A)
2

′ ′
(ω)

+f2B (Ω)χ
(B,B)
2

′ ′
(ω)+2cos(ϕ) fA (Ω) fB (Ω)χ

(A,B)
2

′ ′
(ω)
]
, (17)

and J2 =−P− J1. It is worth to underline that both P and Jν have an even dependence on ϕ and depend on

the imaginary part of the response functions χ(l,l ′)
2 only. Importantly, the subsystem power contains a term

δPl which is odd in the phase ϕ. As we discuss in a moment, this will play a crucial role in determining the
TUR violation for the subsystems l= A,B since it represents an explicit TRS-breaking contribution. Indeed,

5
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setting ϕ= 0 TRS is not broken, δPl = 0, and no TUR violation occurs (see appendix C). Finally, regarding
the fluctuations associated to the subsystem power to the lowest perturbative order (see appendix B) one gets

DPl =Ω2f2l (Ω)

ˆ +∞

−∞

dω

4πm
J1 (ω+Ω)N(ω,Ω)coth

(
ω

2T2
− ω+Ω

2T1

)
χ
(l,l)
2

′ ′
(ω) . (18)

As already mentioned, we assume a strictly Ohmic spectral function for the ν= 2 reservoir, J2(ω) =mγ2ω,
while the ν= 1 reservoir has an Ohmic spectral density in the Drude–Lorentz form

J1 (ω) =mγ1
ω

1+ ω2

ω2
c

, (19)

with a cut-off frequency ωc. Notice that in the strictly Ohmic regime, when ωc is the highest energy scale, one
recovers a memory-less (local in time) response. Finite cut-off values ωc, instead, would in general imply
non-Markovian effects [68, 88]. It is worth to note that finite (and small) values of ωc can be engineered in
the context of quantum circuits [88–91] and have been already inspected in other related dissipative
systems [64–66, 92]. With the spectral density of equation (19) the imaginary part of the damping kernel
γ ′ ′
1 (ω) appearing in equation (15) becomes γ ′ ′

1 (ω) = J1(ω)/(mωc).
Hereafter we discuss in detail results for the l=A channel and we exploit the ϕ phase degree of freedom,

setting it to ϕ = π/2 to maximize the TRS-breaking contribution. Furthermore we choose the relative
weights as fA(Ω) = 1 and fB(Ω) = (Ω/ωc)

r with the parameter r⩾ 0. As we will see below this is a flexible
choice that allows to obtain precise (small QPA) but sizeable local power PA < 0, together with high
work-to-work conversion efficiency η at the same time. Note that analogous results can be obtained for l=B
letting ϕ = 3π/2 and inverting the choice for the functions fl(Ω).

Although the two subsystems l= A,B have no direct coupling, correlations between the two are mediated
by the interaction with the ν= 2 common reservoir, and we here consider the regime of full synchronization
achieved at strong damping γ2 ≫ ωl. Physically, this situation results in a very efficient exchange of power
contributions between the two subsystems PA and PB. This can be first illustrated in the case of isothermal
reservoirs, T1 = T2 = T, where the two subsystems can act as a work-to-work converter [48], e.g. PB ⩾ 0 is
absorbed as input and PA ⩽ 0 is extracted as output (with an associated efficiency η =−PA/PB ⩽ 1). The
total power remains positive due to the second law of thermodynamics (indeed Ṡ= P/T⩾ 0).

By direct inspection of equation (18), in the isothermal regime the fluctuations associated to l=A reduce

to DPA =Ωcoth[Ω/(2T)]P(0)A , regardless of the shape of J1(ω), and

QPA =
Ω

T
coth

(
Ω

2T

)
PP(0)A

P2A
= QP

1+ P(0)B /P(0)A(
1+ δPA/P

(0)
A

)2 , (20)

where QP =Ωcoth [Ω/(2T)]/T. Since QP ⩾ 2 (see appendix C), violations of the TUR for QPA , if any, must
originate from the last fraction in the r.h.s. of the equation. In particular, one is interested in large values of

the denominator, and hence one should look for δPA/P
(0)
A ≫ 1.

It is thus instructive to study the two opposite asymptotic behaviors of small and large external frequency.
In the adiabatic regime (Ω≪ ωl,T) one has

P(0)l → Ω2f2l (Ω)α
(ad)
l ,

δPl → ΩfB (Ω)δα
(ad)
l , (21)

where we have indicated with α
(ad)
l and δα

(ad)
l the expansion coefficients that do not depend on the external

frequency Ω anymore (see appendix D for their explicit expressions). This leads to the adiabatic expansion
for the local TUR quantifier:

Q(ad)
PA = 2Ω2

(
α
(ad)
A + f2B (Ω)α

(ad)
B

) α
(ad)
A

f2B (Ω)δα
(ad)
A

2 . (22)

In the opposite, diabatic, regime (Ω≫ ωl,ωc) one obtains the following asymptotic expansions

P(0)l → ΩJ1 (Ω) f
2
l (Ω)α

(dia)
l ,

δPl →
Ω2

ωc
fB (Ω)J1 (Ω)δα

(dia)
l , (23)

6
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Figure 3. Quantifying fluctuations of PA via the trade-off quantity QPA in the isothermal regime. Density plots of QPA (a) and
associated power PA (c) as a function ofΩ/ωA and T/ωA for r= 0 in the large cut-off regime ωc = 1000ωA. Panels (b) and (d)
report the same quantities as in panels (a) and (c), respectively, but for a small cut-off ωc = 1.2ωA. All results have been obtained
in the strong damping regime γ2 = 100ωA; other parameters values are ωB = 0.6ωA, γ1 = 0.01ωA, and ϕ = π/2. In panels (a)
and (b) the dashed line denotes QPA = 2 separating regions where the TUR is violated (cool colors, QPA < 2) from regions where
it is not (warm colors, QPA > 2). In panels (c) and (d) the dashed line refers to PA = 0 separating negative power contributions
(power production, cool colors) from positive ones (power absorption, warm colors).

where again α
(dia)
l and δα

(dia)
l are frequency-independent expansion coefficients (see appendix D). These

expressions depend on the shape of J1(Ω) and on the value of the cut-off ωc. The corresponding TUR
quantifier becomes

Q(dia)
PA =

Ω

T

1+ f2B (Ω)α
(dia)
B /α

(dia)
A[

1+ C̃fB (Ω) Ω
ωc

]2 , (24)

where C̃ = δα
(dia)
A /α

(dia)
A . Due to the above scaling behaviors, in both the asymptotic regimes one gets the

possibility to achieve TUR violations as we will now discuss.

4.1. Standard TUR violation
Let us now start by discussing possible violations from the standard TUR QPA ⩾ 2. To this end, we first
consider the simple case of r= 0 that corresponds to equal weights fA(Ω) = fB(Ω) = 1. In the adiabatic

regime, from equation (22) one gets a Q(ad)
PA ∝ Ω2 regardless of the precise shape of the spectral density

J1(ω). This is indeed the case, as shown in figures 3(a) and (b). There, density plots of QPA in the Ω−T
plane are reported for two different values of ωc, where a region with QPA < 2 is clearly visible in the left
corner corresponding to Ω< ωA. Looking at the corresponding power contribution PA (see panels (c) and
(d)), one finds that PA < 0 in almost the same region, i.e. the system is acting as a work-to-work converter.
However, violation of the standard TUR in this parameter regime is associated with small power magnitude,

with PA → Ωδα
(ad)
A in the adiabatic limit. In passing we mention that for the l=B channel at ϕ = π/2

analogous TUR violation are observed but always with PB > 0 values, that is l=B cannot be used as a useful
resource for power production (see appendix E).

One may thus wonder if it is possible to achieve precise (QPA ≪ 2) but sizeable local power signals. To
this end, one can look at the large frequency regime. First of all, if one considers ωc as the largest energy scale,
thus with no memory effects, no TUR violations are expected (see the rightmost regions in the density plot
of figure 3(a)). Intriguingly, the situation is different in the case of small cut-off ωc, i.e. when non-Markovian
effects become important. Indeed, in the case of small ωc and considering finite values of C̃ one thus gets

Q(dia)
PA ∝ 1/Ω, which again shows the possibility to get QPA < 2. To corroborate this finding, in figure 3(b) the

density plot of QPA in the Ω−T plane is reported for a representative small value ωc = 1.2ωA. In this figure
two regions whereQPA < 2 are present: the first in the adiabatic regime, as discussed above, and a second new
region in the diabatic regime Ω≫ ωl,ωc. Importantly, this latter regime is also associated with finite power
magnitude. This is indeed shown in figure 3(d), where a region with negative power contribution PA < 0
with sizeable magnitude is evident. Physically, in the diabatic regime Ω≫ ωl,ωc, the external frequency is
much higher than the cut-off frequency of the reservoir that becomes effectively freezed, and the large

7
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Figure 4. Standard TUR violation and synchronization. Parametric plot of the ratio QPA/2 as a function of the Pearson coefficient
at varying damping strengths γ2. The stronger the damping, the more pronounced the (anti)synchronization (C →−1), the
more the TUR is violated (QPA/2< 1). Results for r= 0, T= 0.1ωA, ωc = 1.2ωA, and Ω= 200ωA (diabatic regime). Other
parameters are ωB = 0.6ωA, γ1 = 0.01ωA, and ϕ = π/2.

Figure 5. Quantifying fluctuations of PA via the trade-off quantity QPA , in the presence of a temperature gradient in the strong
damping regime γ2 = 100ωA, with cut-off ωc = 1.2ωA and for r= 0. Density plots of (a) QPA and (b) PA as a function of the
driving frequencyΩ/ωA and average temperature T̄/ωA at relative temperature gradient∆T/T̄= 1.8. Other parameters as in
figure 3.

amount of injected power from the l=B channel is almost entirely transferred to the l=A one, resulting in a
very efficient work-to-work conversion with efficiency η ∼ 1 (see appendix F).

We stress that in our model, in addition to TRS breaking, two are the key ingredients to achieve local
TUR violation together with finite output power: memory effects and synchronization induced by strong
damping γ2. Indeed, related to the latter point, in figure 4 one can notice a connection between the TUR
quantifier and the Pearson coefficient C. In particular, the stronger the synchronization, the lower the value
of the TUR quantifier. Interestingly, in the diabatic regime Ω≫ ωl,ωc, a quantity reminiscent of the Pearson
coefficient of equation (11) naturally appears. Indeed, looking at the denominator in equation (24) and
inspecting the definition of C̃ one finds that

C̃ =
⟨δxAδxB⟩
⟨δxAδxA⟩

= C

√
⟨δxBδxB⟩
⟨δxAδxA⟩

, (25)

and it is |C̃|< 1. The behavior of this Pearson-like coefficient is qualitatively the same as the one reported in
figure 2(b) for the Pearson coefficient C. At low temperature C̃ reaches values close to−1 in the strong
damping regime when the two subsystems reach full synchronization being in anti-phase. This allows to get
large values of the denominator in equation (24) that is a necessary condition to achieve TUR violation with
sizeable power, clearly showing the importance of synchronization, established at strong damping. In
appendix G for the sake of completeness we have reported the behavior of the TUR and the subsystem power
in the case of weak damping γ2, where synchronization is lacking, showing that there the standard TUR for
PA is not violated in the diabatic regime.

So far we have discussed results in the isothermal regime with T1 = T2 = T. Before closing, we now
demonstrate the robustness of our results in the presence of a relative temperature gradient∆T/T̄, with
T̄= (T1 +T2)/2 the average temperature and∆T= T1 −T2 the temperature difference. Not only the
presence of a region of standard TUR violation with sizeable power in the diabatic regime still holds with a
finite temperature gradient, but also wider regions are obtained in the non-linear regime of temperature
gradient. In figures 5(a) and (b) we show results for QPA and PA, respectively, as a function of Ω and T̄, at
given∆T/T̄= 1.8. Notice that this last value implies a strong unbalance T2 ≪ T1 (strongly non-linear
regime). At low driving frequencies, Ω< ωA, the TUR for PA is violated for very low average temperature,
T̄≲ 0.1ωA. Instead, at higher driving frequencies the TUR is violated almost independently of the average
temperatures considered, 0< T̄< 2ωA. Comparing figures 5(b) and 3(b), we can see that the temperature

8
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Figure 6. Violation of the generalized TUR bound. (a) Density plot of QPA/VPA with r= 1/2 as a function ofΩ/ωA and T/ωA for
small cut-off ωc = 1.2ωA. Other parameters as in figure 3. (b) Density plot of the local power PA for the same parameters as in
Panel (a).

gradient between the hot bath ν= 1 and the cold one ν= 2 can be exploited to greatly lower the driving
frequency required to violate the TUR for PA (see also appendix H). In closing this section we mention that
considering r> 0 the standard TUR is still violated and no qualitative changes are found.

4.2. Generalized TUR for periodic drives
So far we have discussed possible violations from the standard TUR bound QPA ⩾ 2. However, the authors of
[61–63], considering a system under time-dependent drives, have derived a generalized bound QO ⩾ VO with
the quantity in the r.h.s. that in our case for the local power Pl reads

VPl = 2

(
1−Ω

∂ΩPl
Pl

)2

. (26)

Focusing again on the l=A channel, and looking for precise but sizeable output power, we now compare the
TUR quantifier QPA to this generalized bound in the diabatic regime (Ω≫ ωl,ωc). First of all, inspecting
equation (23), the asymptotic behavior of equation (26) in the case r= 0 reads VPA ∝ 1/Ω2. Recalling that
the TUR quantifier QPA ∝ 1/Ω in the diabatic regime, regardless of the value of the parameter r, the
generalized TUR bound turns out to be satisfied with QPA ⩾ VPA . However, one can consider a more general
situation with r> 0. Looking at equation (23) this corresponds to optimize the magnitude of the local output
power. In this case, the asymptotic behavior of equation (26) becomes VPA → 2r2, independent of the
external frequency Ω. This allows to look for the simultaneous desiderata of precise (QPA/VPA ≪ 1), sizeable
local power PA < 0, and high work-to-work conversion efficiency η possibly close to unity in the isothermal
regime. This last requirement imposes a constraint (see appendix F) on the value of the parameter, leading to
0< r< 1. Indeed, for r> 1 the work-to-work conversion efficiency in the diabatic regime tends to vanish.
Therefore, by choosing 0< r< 1 it is possible to obtain TUR violations, together with finite output power,
even considering the generalized TUR bound posed by equation (26). In figure 6 we explicitly show a density
plot of the TUR ratio QPA/VPA for a representative value r= 1/2, demonstrating the generalized TUR
violation, again linked to the regime of synchronization achieved at strong damping, as discussed above.

5. Discussion

We have shown that two otherwise independent quantum harmonic oscillators synchronize through
coupling with a common thermal reservoir, at strong dissipation and low temperature. When the oscillators
are also dynamically coupled to a second thermal reservoir, the synchronization regime can be exploited to
achieve strong TUR violation for local powers. Such violation exploits breaking of TRS by dynamical
couplings. It is remarkable that, in the diabatic regime and when the dynamically coupled bath is
non-Markovian, both the power and the amount of TUR violation increase with the driving frequency.

Our results show the intimate connection between synchronization and thermodynamics of precision.
From the standpoint of quantum technologies, synchronization mechanisms could be exploited to obtain
finite and precise power in quantum circuits, where non-Markovian environments can be
engineered [88–91]. From a more general point of view, a thermodynamic perspective could also be useful in
the broad field of classical synchronization. These results open interesting perspectives for the exploitation of
synchronization mechanisms, including bath-induced ones [93], beyond the paradigmatic model studied
here. For instance it would be interesting to consider the impact of non-linearities and other systems
including two-level systems that are commonly used in superconducting circuits.
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Appendix A. System-reservoir interactions

Here we provide some details of the microscopic model of the reservoirs and their couplings with the
working medium of the quantum thermal machine. Following the Caldeira–Leggett approach [68], the νth
bath Hamiltonian reads

Hν =
+∞∑
k=1

(
P2k,ν
2mk,ν

+
1

2
mk,νω

2
k,νX

2
k,ν

)
. (A1)

The bilinear form describing the WM-bath interactions is given by

H(t)
int,ν =

∑
l=A,B

+∞∑
k=1

−g(l)ν (t) ck,νxlXk,ν +

(
g(l)ν (t) ck,ν

)2
2mk,νω2

k,ν

x2l +
g(l)ν (t)g

(̄l)
ν (t) c2k,ν

2mk,νω2
k,ν

xlx̄l

 , (A2)

with ck,ν describing the coupling strengths between the QHOs and the kth mode of the νth reservoir,

modulated by the drives g(l)ν (t). In the above equation we used the convention according to which if l=A

then l̄= B, and vice versa. Note that the superscript (t) reminds the time-dependent modulation g(l)1 (t). It is
important to note that the interaction in equation (A2) includes counter-term contributions having a
twofold purpose: (i) to avoid renormalization of the characteristic frequencies ωA,B of the QHOs and (ii) to
cancel the direct coupling between the latter that would naturally arise [75].

At the initial time t0→−∞ we assume that the reservoirs are in their thermal equilibrium at
temperatures Tν and that the total density matrix is in a factorized form
ρ(t0) = ρA(t0)⊗ ρB(t0)⊗ ρ1(t0)⊗ ρ2(t0), with ρl(t0) the initial density matrix of the lth QHO, and
ρν(t0) = exp(−Hν/Tν)/Tr[exp(−Hν/Tν)] the thermal density matrix of the νth reservoir.

Appendix B. Derivation of power PA and associated fluctuationsDPA

Here we provide details on the derivation of the subsystem average power Pl and its fluctuations. We start
from the definition in equation (5) and we first focus on the term present in the r.h.s.

⟨Pl (t)⟩= Tr

[
∂H(t)

int,1,l

∂t
ρ(t)

]
, (B1)

where we have indicated with ⟨·⟩ the quantum average. Denoting with x(0)l (t) the unperturbed position
operator, at the lowest perturbative order we obtain
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⟨Pl (t)⟩= ġ(l)1 (t)

{
i
∑
l′

ˆ t

t0

dsL1 (s−t)g
(l ′)
1 (s)

⟨[
x(0)l′ (s) ,x(0)l (t)

]⟩
+
∑
l′

ˆ t

t0

ds Γ̇1 (t−s)g
(l ′)
1 (s)

⟨
x(0)l (t)x(0)l′ (s)

⟩
+g(l)1 (t)Γ1 (0)

⟨
x(0)l (t)x(0)l (t)

⟩
+ g(̄l)1 (t)Γ1(0)

⟨
x(0)l (t)x(0)

l̄
(t)
⟩}

(B2)

where Γ1(t) is defined through equation (3) via γ1(t) =
1
mθ(t)Γ1(t). Here, we have introduced the symmetric

and anti-symmetric contributions of the correlation function of equation (4) ⟨ξν(t)ξν ′(s)⟩ ≡ Lν(t− s)δν,ν ′ ,
with Lν(t− s) = Lν,s(t− s)+Lν,a(t− s) where

Lν,s (t) =

ˆ +∞

0

dω

π
Jν (ω)coth

(
ω

2Tν

)
cos(ωt) , (B3)

Lν,a (t) =−i

ˆ +∞

0

dω

π
Jν (ω) sin(ωt) . (B4)

Changing variable τ = t− s and introducing C(l,l ′)(t− s) = C(l,l ′)(t, s)≡
⟨
x(0)l (t)x(0)l′ (s)

⟩
we rewrite

⟨Pl (t)⟩= i
∑
l′

ˆ +∞

0
dτ L1 (−τ)G(l,l

′) (t, τ)
[
C(l

′,l) (−τ)−C(l,l
′) (τ)

]
+
∑
l′

ˆ +∞

0
dτ Γ̇1 (τ)G(

l,l ′) (t, τ)C(l,l
′) (τ)

+G(l,l) (t,0)Γ1 (0)C
(l,l) (0)+G(l,̄l) (t,0)Γ1 (0)C(

l,̄l) (0) , (B5)

where l̄= B if l=A (and viceversa), and we have introduced

G(l,l
′) (t, τ) = ġ(l)1 (t)g

(l ′)
1 (t− τ) . (B6)

Recalling the identity

Γ̇1 (t) =−2iL1,a (t) , (B7)

introducing the average over the period and defining

G(l,l
′) (τ) =

ˆ T

0

dt

T
G(l,l

′) (t, τ) (B8)

and the combination of correlators

C
(l,l ′)
± (τ) = C(l,l

′) (τ)±C(l
′,l) (−τ) (B9)

we get

Pl =−i

ˆ +∞

0
dτ L1,s (τ)

[
G(l,l) (τ)C(l,l)

− (τ)+G(l,̄l)(τ)C
(l,̄l)
− (τ)

]
− i

ˆ +∞

0
dτ L1,a (τ)

[
G(l,l)(τ)C(l,l)

+ (τ)+G(l,̄l)(τ)C
(l,̄l)
+ (τ)

]
+G(l,̄l)(0)Γ1 (0)C(

l,̄l)(0) . (B10)

Recalling equations (B3) and (B4), we introduce the retarded Green function of the fluctuating force for
the ν= 1 bath

χ1 (t)≡ iθ (t)⟨[ξ1 (t) , ξ1 (0)]⟩= 2iθ (t)L1,a (t) (B11)

being L1,a(t) =
1
2 (⟨ξ1(t)ξ1(0)⟩− ⟨ξ1(0)ξ1(t)⟩). The Fourier transform of the symmetric, L1,s(t), and

anti-symmetric, L1,a(t), parts of L1(t) read, respectively,

L1,s (ω) = J1 (ω)coth

(
ω

2T1

)
, L1,a (ω) = J1 (ω) . (B12)
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Using equation (B11) and (B12), it follows

χ ′ ′
1 (ω) = L1,a (ω) = J1 (ω) . (B13)

We introduce now a shifted response function

ζ1 (ω) = χ1 (ω)−χ1 (ω = 0) . (B14)

Using the relations introduced so far, it is possible to prove that real and imaginary part of the Fourier
transform of the memory damping kernel γ1(t) in equation (3) are, respectively,

γ ′
1 (ω) =

1

m

ζ ′ ′
1 (ω)

ω
, γ ′ ′

1 (ω) =− 1

m

ζ ′
1 (ω)

ω
, (B15)

which can be summarized into ζ1(ω) = imωγ1(ω). For a Ohmic spectral density with a Drude–Lorentz
cut-off, J1(ω) =mωγ1/(1+ω2/ω2

c ), as in the present setup, we have γ ′
1(ω) = J1(ω)/(mω) and

γ ′ ′
1 (ω) = J1(ω)/(mωc), from which

ζ ′
1 (ω) =− ω

ωc
J1 (ω) , ζ ′ ′

1 (ω) = J1 (ω) . (B16)

Now, considering the monochromatic drives of equation (2) and following similar steps as done in [75]

we finally arrive at Pl = P(0)l + δPl, where

P(0)l =−Ω

ˆ +∞

−∞

dω

4πm
J1 (ω+Ω)N(ω,Ω)

[
f2l (Ω)χ

(l,l)
2

′ ′
(ω)+ cos(ϕ) fl (Ω) f̄l (ω)χ

(l,̄l)
2

′ ′
(ω)

]
,

(B17)

δPA/B =∓ΩfA (Ω) fB (Ω) sin(ϕ)

ˆ +∞

−∞

dω

4πm

[
ζ ′ ′
1 (ω+Ω)χ

(A,B)
2

′
(ω)coth

(
ω+Ω

2T1

)
+ζ ′

1 (ω+Ω)χ
(A,B)
2

′ ′
(ω)coth

(
ω

2T2

)]
. (B18)

Notice that the total power is eventually given by P= P(0)A + P(0)B and it is reported in the main text in
equation (16). The expressions for the average heat currents can be derived analogously and are reported in
equation (17). As a final remark we quote the expressions of the fluctuations for the separate power
contributions obtained at the lowest perturbative order by following similar steps as outlined above:

DPl =Ω2f2l (Ω)

ˆ +∞

−∞

dω

4πm
J1 (ω+Ω)N(ω,Ω)coth

(
ω

2T2
− ω+Ω

2T1

)
χ
(l,l)
2

′ ′
(ω) . (B19)

Finally, fluctuations associated to the total power at the lowest perturbative order are given by

DP =Ω2

ˆ +∞

−∞

dω

4πm
J1 (ω+Ω)N(ω,Ω)coth

(
ω

2T2
−ω+Ω

2T1

)
×
[
f2A (Ω)χ

(A,A)
2

′ ′
(ω)+f2B (Ω)χ

(B,B)
2

′ ′
(ω)+ 2cos(ϕ) fA (Ω) fB (ω)χ

(A,B)
2

′ ′
(ω)
]
. (B20)

Notice that this quantity, unlike the average total power, is not just the sum of the two subsystem
contributions, but it also includes mixed term proportional to cos(ϕ).

Appendix C. Proof ofQP ⩾ 2

Here we will prove, by contradiction, that

QP = Ṡ
DP

P2
⩾ 2 , (C1)

see equation (7). We start observing that equation (16) can be rewritten as

P=−Ω

ˆ +∞

−∞

dω

4πm
J1 (ω+Ω)N(ω,Ω)χ ′ ′

eff (ω) , (C2)
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where we have introduced for compactness

χ ′ ′
eff (ω) =f2A (Ω)χ

(A,A)
2

′ ′
(ω)+f2B (Ω)χ

(B,B)
2

′ ′
(ω)+ 2cos(ϕ) fA (Ω) fB (Ω)χ

(A,B)
2

′ ′
, (C3)

and we can similarly rewrite the expression of the total power fluctuations of equation (B20). Finally, the
entropy production rate Ṡ=−J1/T1 +(P+ J1)/T2 using equations (16) and (17) reads

Ṡ= 2

ˆ +∞

−∞

dω

4πm

(
ω

2T2
−ω+Ω

2T1

)
J1 (ω+Ω)N(ω,Ω)χ ′ ′

eff (ω) . (C4)

By plugging equations (B20), (C2) and (C4) into equation (C1) and performing straightforward algebra, the
following condition is found:

QP < 2 =⇒ I=

ˆ +∞

−∞

ˆ +∞

−∞
dωdω ′ΦΩ (ω,ω ′)< 0 , (C5)

where

ΦΩ (ω,ω ′) = χ ′ ′
eff (ω)χ

′ ′
eff (ω

′) [λω coth(λω ′)− 1]J1 (ω+Ω)J1 (ω
′ +Ω)N(ω,Ω)N(ω ′,Ω) , (C6)

and where λω = ω
2T2

− ω+Ω
2T1

. We will now show that the condition of equation (C5) can never be satisfied.
To begin with it is convenient to rewrite I in a more symmetric form by noting that one can also write

I=
1

2

ˆ +∞

−∞

ˆ +∞

−∞
dωdω ′ [ΦΩ (ω,ω ′)+ΦΩ (ω ′,ω)] .

Hence

I=
1

2

ˆ +∞

−∞

ˆ +∞

−∞
dωdω ′G(ω,ω ′)

N(ω,Ω)

λω

N(ω ′,Ω)

λω ′
J1 (ω+Ω)J1 (ω

′ +Ω)χ ′ ′
eff (ω)χ

′ ′
eff (ω

′) , (C7)

with

G(ω,ω ′)=λ2
ω[λω ′ coth(λω ′)]+λ2

ω ′ [λω coth(λω)]−2λωλω ′ . (C8)

Clearly, since λω coth(λω)⩾ 1 one has G(ω,ω ′)⩾ (λω −λω ′)
2 ⩾ 0 and therefore the sign of equation (C7)

is determined by the other factors in its integrand.
Now note that we can write

N(ω,Ω)

λω
=

coth
(

ω+Ω
2T1

)
coth

(
ω
2T2

)
− 1(

ω+Ω
2T1

− ω
2T2

)
coth

(
ω+Ω
2T1

− ω
2T2

) , (C9)

where we have exploited the identity

coth(x)− coth(y)

y− x
=

coth(x)coth(y)− 1

(x− y)coth(x− y)
.

The denominator of equation (C9) is strictly positive, while the identity

coth(x)coth(y)− 1=
cosh(x− y)

sinh(x) sinh(y)
(C10)

implies sgn{coth(x)coth(y)− 1}= sgn{xy}, the hyperbolic cosine (sine) being an even (odd) function,
where sgn{x} is the sign of x. Therefore

sgn

{
N(ω,Ω)

λω

}
= sgn{ω (ω+Ω)} . (C11)

One then concludes that the sign of the integrand in equation (C7) is given by

sgn{(ω+Ω)J1 (ω+Ω)} sgn{(ω ′ +Ω)J1 (ω
′ +Ω)} sgn{ωχ ′ ′

eff (ω)} sgn{ω ′χ ′ ′
eff (ω

′)} . (C12)

Since J1(ω) is an odd function with J1(ω)⩾ 0 for ω ⩾ 0, one immediately sees that
sgn{(ω+Ω)J1(ω+Ω)}⩾ 0.
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Finally, we have

ωχ ′ ′
eff (ω) = γ2ω

2 N (ω)

|D (ω)|2
, (C13)

where

N (ω) = f2B (Ω)
(
ω2 −ω2

A

)
+ f2A (Ω)

(
ω2 −ω2

B

)
+ 2cos(ϕ)

∏
l=A,B

fl (Ω)
(
ω2 −ω2

l

)
(C14)

and whereD(ω) is given in equation (10). Here,N (ω) is a quadratic form in ω2 with discriminant
−4f2A(Ω)f

2
B(Ω)(ω

2
A −ω2

B)
2 sin2(ϕ)⩽ 0, which proves thatN (ω)⩾ 0, whence we conclude that ωχ ′ ′

eff(ω)⩾ 0.
This finally shows that the integrand of equation (C7) is non-negative and thus I⩾ 0, contradicting the
condition stated in equation (C5). Thus, it is proven that QP ⩾ 2.

Appendix D. Asymptotic expressions

Here we report the expressions of the various power contributions in the two opposite regimes of small and
large external frequency Ω. These expressions are evaluated at phase ϕ = π/2.

In the adiabatic regime Ω≪ ωl the total power expansion reads

P→ Ω2
∑
l=A,B

f2l (Ω)α
(ad)
l , (D1)

with

α
(ad)
l =−

ˆ +∞

−∞

dω

4πm

J̇1 (ω)N(ω,0)− J1 (ω)

2T1 sinh
2
(

ω
2T1

)
χ(l,l)

2

′ ′
(ω) (D2)

where we used the notation Ḟ(ω) = dF(ω)/dω. The subsystem power contributions instead become

Pl ∼ δPl → ΩfA (Ω) fB (Ω)δα
(ad)
l , (D3)

where

δα
(ad)
A/B =∓

ˆ +∞

−∞

dω

4πm

[
J1 (ω)χ

(A,B)
2

′
(ω)coth

(
ω

2T1

)
−mωγ ′ ′

1 (ω)χ
(A,B)
2

′ ′
(ω)coth

(
ω

2T2

)]
. (D4)

The associated fluctuations start as

D(ad)
Pl

=Ω2f2l (Ω)

ˆ +∞

−∞

dω

4πm
J1 (ω)N(ω,0)coth

(
ω (T1 −T2)

2T1T2

)
χ
(l,l)
2

′ ′
(ω) . (D5)

In the opposite diabatic regime Ω≫ ωl,ωc, one gets

P→ ΩJ1 (Ω)
∑
l=A,B

f2l (Ω)α
(dia)
l , (D6)

where

α
(dia)
l =

ˆ +∞

−∞

dω

4πm
coth

(
ω

2T2

)
χ
(l,l)
2

′ ′
(ω) . (D7)

We also have

δPl → ΩfA (Ω) fB (Ω)J1 (Ω)

[
δα

(dia)
l

Ω

ωc
+ δβ

(dia)
l

]
, (D8)

with

δα
(dia)
A/B =±

ˆ +∞

−∞

dω

4πm
coth

(
ω

2T2

)
χ
(A,B)
2

′ ′
(ω)

δβ
(dia)
A/B =∓coth

(
Ω

2T1

)ˆ +∞

−∞

dω

4πm
χ
(A,B)
2

′
(ω) . (D9)
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Notice that the last term δβ
(dia)
l can be discarded when Ω≫ ωc. Finally, the associated fluctuations in the

diabatic regime read

D(dia)
Pl

=Ω2f2l (Ω)J1 (Ω)coth

(
Ω

2T1

)ˆ +∞

−∞

dω

4πm
coth

(
ω

2T2

)
χ
(l,l)
2

′ ′
(ω) . (D10)

Appendix E. TUR for the l=B subsystem

Here we report results concerning the thermodynamic uncertainty relation and the associated power for the
l=B subsystem. These results have been obtained in the same parameter regions as in figure 3 of the main
text. Also in this case regions of TUR violation are present both in the adiabatic and diabatic regime as for
l=A discussed in the main text. However, to these regions always correspond a positive PB > 0 and hence no
useful resource can be obtained from l=B in this case (see figure 7).

Figure 7. Quantifying fluctuations of PB via the trade-off parameter QPB in the isothermal regime. Density plots of QPB (a) and
associated power PB (c) as a function ofΩ/ωA and T/ωA in the large cut-off regime ωc = 1000ωA and for r= 0. Panels (b) and
(d) report the same quantities as in panels (a) and (c) respectively but for a small cut-off ωc = 1.2ωA. All results have been
obtained in the strong damping regime γ2 = 100ωA and other parameters as in figure 3.

Appendix F.Work-to-work conversion efficiency

In this appendix we consider the work-to-work conversion efficiency in the isothermal regime when PA < 0.
We remind its definition:

η =
|PA|
PB

=
|P(0)A + fB (Ω)δPA|

f 2B (Ω)P
(0)
B − fB (Ω)δPA

, (F1)

where, we recall, fB(Ω) = (Ω/ωc)
r.

In figure 8(a) we show the work-to-work conversion efficiency in the case of r= 0 and in the two
opposite case of weak and strong damping γ2. This quantity is plotted as a function of the external frequency
Ω, showing that in the strong damping regime (when synchronization is established) optimal efficiency close
to unity is achieved in the diabatic regime with sizeable output power. In figure 8(b), instead, we consider the
work-to-work conversion efficiency at strong damping γ2 = 100ωA but for different values of the parameter
r. Indeed we recall that both subsystem power in general will depend on the shape of fB(Ω) = (Ω/ωc)

r. In
particular, in the diabatic regime one gets the asymptotic behavior

η →

[
1+

(
Ω

ωc

)r−1
αdia
B

|δαdia
A |

]−1

. (F2)

It is clear that if r> 1 the efficiency in the diabatic regime tends to vanish, therefore one should consider
0⩽ r< 1 to still obtain a high efficiency.
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Figure 8.Work-to-work conversion efficiency as a function of external frequency. (a) Work-to-work conversion efficiency in the
weak (γ2 = 0.01ωA) and strong (γ2 = 100ωA) damping regime in the case r= 0. Other parameters are γ1 = 0.001ωA,
ωc = 1.2ωA, T= 0.1ωA, and ϕ = π/2. (b) Same quantity as in panel (a) but for different values of r at strong damping
(γ2 = 100ωA).

Appendix G. TUR at weak damping γ2

Here we present analogous results regarding the TUR quantifier QPA and the associated average power PA in
the case of weak damping γ2 ≪ ωl.

Figure 9.Quantifying fluctuations of PA via the trade-off parameter QPA at weak damping. Density plots of QPA (a) and associated
power PA (b) as a function ofΩ/ωA and T/ωA in the weak damping regime γ2 = 0.01ωA and for r= 0. Here γ1 = 0.001ωA, the
cut-off is ωc = 1.2ωA. Other parameters as in figure 3.

In particular, in figure 9 we set γ2 = 0.01ωA, and we show density plots for both quantities in the Ω−T
plane. As one can see, TUR violation in this case is present only in the low frequency and low temperature
regime (left bottom corner of the plot in panel (a)). In this weak damping regime synchronization is absent
and no TUR violation with sizeable power (in the diabatic regime) can be achieved.

Appendix H. Frequency threshold for TUR violation at finite temperature gradient

In figure 10 we report the behavior of the frequency threshold above which a TUR violation QPA < 2 is
obtained in presence of a temperature gradient. Here, one can see that a minimum of Ωth is attained at large
positive values of∆T/T̄ which lowers as T̄ increases.

Figure 10. Frequency threshold for TUR violation at finite temperature gradient. Threshold driving frequencyΩth such that
QPA < 2 forΩ> Ωth as a function of∆T/T̄ in the case r= 0 and for different values of T̄. Other parameters as in figure 5.
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