JOURNAL OF CHEMICAL PHYSICS VOLUME 119, NUMBER 14 8 OCTOBER 2003

Compact boundary-condition-determined wave function
for positronium hydride  (PsH)

Dario Bressanini® and Gabriele Morosi”
Dipartimento di Scienze Chimiche, Fisiche e Matematiche, Universita’ dell'lnsubria, Sede di Como,
via Lucini 3, 22100 Como, ltaly

(Received 26 June 2003; accepted 15 July 2003

A simple, compact, and accurate wave function for positronium hydride is written as a product of
Pade’ approximants for electron—nucleus interactions and of Jastrow functions for electron—electron
interactions. Most of the parameters are fixed taking into account both the correct cusp conditions
when two particles collide and the correct asymptotic behavior when one or two particles go to
infinity. The remaining parameters were optimized by variational Monte Carlo calculations. The
energy of this single term wave function is0.786073(6) hartree and favorably compares with
very long configuration interaction expansions and even with explicitly correlated function
expansions. The exam of the wave function and of various two-dimensional distribution functions
shows that the PsH structure is similar to the hydrogen anion structure, with the positron slightly
perturbing it and its motion strongly correlated to the electrons that are squeezed towards each other
and towards the nucleus. @003 American Institute of Physic§DOI: 10.1063/1.1605931

I. INTRODUCTION —0.75251 hartree, that is, a binding energy of 0.00251
hartree.

During the last few years, attention has been paid to the  Later PsH was experimentally observed by Schrader
energetic and structural properties of systems containing ongt al® in collisions between positrons and methareg,
or more positron$,with the aim to elucidate the problem of + CH,—CHj +PsH.
their stability and the annihilation behavior of positrons in  Starting from Ore’s pioneering work, calculations of the
ordinary mattef.> There is a growing number of experimen- total and binding energies have improved over the years. In
tal techniques that can accurately probe the interaction beyeneral, correlation effects are so great that any method
tween matter and antimatter, and the experiments need thepased on the independent particle model is completely inad-
retical support to be interpretéd.Positron containing equate in yielding accurate energies, structural properties,
systems represent a challenge for the standard methods @hd annihilation rates. The configuration interaction method,
quantum chemistryself-consistent fieldSCH, configura- although exact in the limit of a complete basis set, converges
tion interaction(Cl), density functional theoryDFT)] since  even more slowly than in electronic systems. The best ClI
they do not introduce electron—positron distances explicitlyresults were obtained by Bromley and Mitryjncluding
and so they are unable to correctly reproduce the local bed5 324 configurations, and by Saitbincluding 13 230 con-
havior of the wave function when two particles collide. figurations in a multireference configuration interaction
Quantum Monte Carlo methods can treat the instantaneou$1RCI). Those calculations recover 93.83% and 93.84% of
correlation between particles exactly and on equal footingsthe correlation energy. The ClI expansion is slowly conver-
so they represent the ideal technique to study systems cogent, and Bromley and Mitroy found PsH still unbound even
taining positrons:® including 3457 configurations. The most accurate and reli-

Here we focus our attention on the simplest system conable variational calculations have been performed using
taining nuclei, electrons, and one positron and possessing Hylleraas-type functiorté and explicitly correlated Gauss-
bound state: namely, PsH. Despite its molecularlike formulajans (ECG3.'® Quantum Monte Carl6QMC) results**®are
PsH is an exotic atom. PsH is a very useful testing ground tin agreement with those values. A summary of previous re-
study correlation effects between electrons and positronsults is reported in Table 1.
since the Hartree—Fock theory is not able to predict a bound Functions that do not satisfy the cusp conditions make
state stable against the dissociation into Ps and H. The SGRe convergence very slow, but even the use of explicitly
energy is —0.6669 hartree, well above the dissociation limit correlated basis sets has resulted in long expansions. Le Sech
of —0.75 hartree, and the SCF annihilation rate is eightand Silvi® tackled the problem of deriving a simple, com-
times smaller than the exact one. pact, and accurate wave function for PsH, which could allow

PsH stability was predicted by Ofavho used a simple a simple physical interpretation of the different terms consti-
correlated wave function and obtained a total energy otuting it, by constraining their wave function to fulfill all the
cusp conditions at interparticle coalescence points.
3Electronic mail: Dario.Bressanini@uninsubria.it In this paper we show how a wave function constrained
YElectronic mail: Gabriele.Morosi@uninsubria.it to satisfy not only the cusp conditions, but also the correct
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TABLE I. Some of the previous works on PsH.

Type Energy(hartree Reference
SCF —0.6669 Strasburger and Chojnac¢kb95?
VMC single term —0.7723 Le Sech and SiliL998"
Hylleraas 12 terms —0.7742 Lebeda and Schradd969°
VMC single term —-0.7774 Jiang and Schradgr998¢
Cl 95324 configurations —0.7867761 Bromley and Mitroy2002°
MRCI 13230 configurations —0.786782 Sait¢2003'
Hylleraas 396 terms —0.788951 Saitg20009
ECG 1600 terms —0.7891965536 Usukura, Varga, and Suz(1998"

Hylleraas 5741 terms —0.7891967 Yan and H(L999'

DMC —0.78918(5) Jiang and Schradd998¢

DMC —0.78915(4) Mella, Morosi, and Bressaniio99!
VMC single term —0.786073(6) Present work

®Reference 7. Reference 11.
PReference 16. 9Reference 26.
‘Reference 17. "Reference 13.
YReference 24. Reference 12.
°Reference 10. IReference 15.

asymptotic behavior when a particle goes to infinity, can giveand the following behavior when two leptons are close to
better results and allow an easy interpretation of the structureach other,
of PsH. f150

V(1,2p) — €192 (ry,rp,1p),

rlpﬂo
II. CONSTRUCTION OF THE WAVE FUNCTION ¥(1,2p) eirlp/ZFz(l’z,I’p,l’lz), 4
Within the Born—Oppenheimer approximation, the non- F2p—0

relativistic Hamiltonian operator for PsH can be written as W(1,2p) e 2R ,(ry 1,1 10),

1 1 1 1 1 i
He— S(V24+V24V2)— —— — 4 — 4 — Where_Gl, G,, F_l, and I_:z are unknown functlo_ns_. Note_
2 PPory 1y 1y rpp that since some interparticle distances are zero, it is possible
to rewrite the argument of the functions using different vari-

— i — i (1) ables.
Fip Ta2p In the same paper, Lebeda and Schrader recognized that
where we indicate the electrons with 1 and 2 and the positrof€ simple orbital description is completely inadequate for
with p. PsH, especially for the positronic density, and that the ex-

Already in their 1969 paper, Lebeda and Schriterc-  Plicit correlation between all particles must be included in
ognized the importance for the wave function to satisfy thehe wave function.

Kato cusp condition$® At particles coalescence, the exact

wave function behaves as

10¥

—_— :C’
W ary; =0

wherec is a constant, depending on the type of the colliding

The second property that we wish to incorporate into the
trial wave function is the correct asymptotic behavior when
one of the particles goes to infinity. For large, to first
order, the wave functidd behaves as

ri~>°0

Y p(1,2,...i—1i+1,.)efm, (5)

particles. In our case,c=1/2 for electron—electron, whereB=—+/2E;, E; being the energy required to separate

c=-—1/2 for electron—positron,c=—1 for electron—
nucleus, anat=1 for positron—nucleus interactions.
The local solution of Eq(2) suggests that a good trial

the ith particle, and¢ is the wave function of the residual
system.
If the positron goes to infinity, PsH dissociates into H

wave function should have the following asymptotic behav-+e*, even if its lowest dissociation channel is PsiPs
ior, when all particles are well separated except one of ther H with an energy threshold of 0.75 hartree. Based on the

leptons is close to the nucleus,
r{—0
W(1,2p) —— € "1Gy(ry,rp,r2p),
ry—0
W(1,2p) —— € "2Gy(rq,rp,r1p),
rp—>0
P(1,2p) —— €pGy(rq,r5,r19),

above conditions, a single-particle function describing the
motion of the positron in the field of the H nucleus should
behave a®'» whenr,—0 [Eq. (3)] and ase’’» whenr,
—o [Eq. (5)]. For the electrons the situation is different, as
an electron going to infinity would leave the'ld system
which is not bound® However we can apply Eq3) and(5)
to the hydrogen negative ion, so the functions used to build
the H™ wave function should behave like an exponengial
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close to the origin and ae’" for r—o, again with two Since the remaining fragment is a hydrogen atom, we
different exponential decays. A functional formwith two  can fixb;=0 andc;=0. In the exact wave functioh,/c,
different exponential decays, which satisfies both theshould be directly related to the ionization potential, but
asymptotic conditions exactly by a particular choice of pa-again we treat it as a variational parameter. In conclusion the

rameters, isf(r)=e@ P10 A function with slightly ~ resulting wave function for H,

more variational freedom i$(r)=e@ *or/(+en: in this W(H™)=(1+P)e el rzbaa)l1+cory)
case the asymptotic condition for—o defines only the ratio
b/c. X g(r122)/(1+eryp) (10)

As to the pair functions describing the electron—electrony, ;¢ three variational parameters, which we optimize using
and electron—positron pairs, in order to satisfy the cusp cong,o yariational Monte Carlo methdd. The values are
ditions in Eq.(4) they should behave, far—0, like expo- b,=—0.1042, ¢,=0.4100, and e;=0.3257. The ratio
nentials with the appropriate parameter, whilefferc they "y _ _ g 2541 must be confronted with the theoretical es-
must go to a cqnstant value. . A Jastrow factg(r) timate 3= — /2E;= — 0.2353. Although the wave function is
=ed(1*eN can satisfy these conditions - - - o

; o ) not particularly sophisticated, the corresponding variational

Here, we propose a simple wave function that mcludesenergy is —0.52503(1) hartree, the exact energy being
all two particle correlations —0.5278 hartree. If we force the wave function to decay

W(1,2p)=(1+ ﬁ)lz)fl(rl)fZ(rZ)f3(rp) with the theoretical value, we lose some variational freedom,

and the energy is worse by about 2 mhartree.

X
91(r12)92(r1p)9s(r2p). © B. Asymptotic condition for Ps ~ — oo

where I512 is the operator that permutes the two electrons.

This functional form has been used with success in the When the PS fragment_goes o mﬂnlty, it leaves a hydro-
2122 gen atom, so, in Eq7), b;=0 andc,;=0. Furthermorer,
past:™

In explicit form, the wave function, satisfying all the =Mp=l1z=l1p—, 2p=0O(1), so theasymptotic form of

iti Eq.(7) is
conditions, reads q.(7)
~ Ps—ow R
V(1,2p)=(1+ plz)e(—r1+b1rf)/(1+clr1) W(1,2p) (1+P)e el T2p/2/(1+exrz)
Xe(*r2+b2r§)/(l+<:2r2) ¢ @lba/ca + bylcp)ry, (11)

¢ glTp+ bpr (L cprp)g(ro /2 (L + et 1 ~ To recover the correct wave function for this dissocia-
tion, we have to impose;=0:

Xe(7r1p/2)/(1+ezrlp)e(7r2p/2)/(1+e3r2p)_ (7) s o

Let us now examine how this wave function can be sim- ¥ (1,.2p) —— (1+Pp)W(H)¥(Ps)
plified constraining it to satisfy the correct asymptotic behav- w e(b2/c2 + bplep)ry (12)

ior for dissociation. i ) o
Once againlf,/c,+by/cp), in the exact wave function, is

related to the PsH dissociation energy. We treated these four

parameters as variational ones, but it is important that the

correct exponential behavior be present in our simple trial
Let us consider the asymptotic form of our trial function aye function. A Gaussian function for example would have

for rp—oo. Sincer,~r;,~r,,—=, the functiong, andgs 3 too fast decay.

become constant: Having constrained few parameters, the PsH wave func-

Fp—o A ) tion now is
\If(l,Zp) - [(1+ Plz)e(7r1+b1r1)/(1+clr1)

A. Asymptotic condition for ~ r,—

W(1,2p)=(1+ Py el r2barp/(Lcara)
w @~ T2+ baro)/(1+corp) o(r122)/(1+ e112)] bp/%p M,

®)

The exponenb,/c, of the positronic part in the exact wave
function is related to the positron affinity. However, our
wave function being an approximated one, we do not expect (1 2p)=(1+ ﬁ;lz)q,(H—)e(rp+bprf,>/(1+cprp>

this relation to hold exactly, and prefer to treat it as a varia- Py )

tional parameter and optimize it. The electronic part of the X e(~M1pf2/(1r e 1p)er2pl2, (14

wave function, in square brackets, should describe the hydrqy pyt in evidence the new variational parameters, which we
gen negative ion. We apply again E@) to the H" wave  gptimized keeping the H parameters fixed. The optimized

function. Letting electron 2 go to infinity and assuming, t0gjyes areb,=—0.1216,c,=0.3996, ande,=0.5225, and

X e(rp+ bprlzj)/(l+cprp)e(rlle)/(l+e1r12)

Xe(—rlp/2)/(1+e2r1p)e—r2p/2, (13)

which can be written as

fix the ideas|b,/c,|<[bs/c4|, we obtain the energy is—0.782715(8) hartree. By simultaneously op-
rp—o ) timizing also the H parameters the energy does not de-
V(1,2 — el ~1tbarp/tery)gha/cary (9) crease. Only includinge; does the energy lower to
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—0.786073(6) hartree, the parameter values bein@rs have tried to understand how the electrons are distributed
b,=—0.1584, c,=0.5304, b,= —0.1251, ¢,=0.3810, ; in PsH and whether the positron and an electron form a Ps,
=0.3370,e,=0.3903, ande;=0.0277. In this case the de- getting different answers.

scription of the dissociation to RH is not correct sinces Frolov and Smitif? looking at the average values of the

is not zero; however, its very small value suggests that thénterparticle distances, noticed that the electron—electron and
dissociation to P$ H must be included to correctly build the positron—nucleus distances are significantly larger than those
wave function. between each of the positive particles and the nearest elec-
tron. This led them to conclude that PsH is a “cluster that
consists of the two neutral systems: the hydrogen atom and
the positronium atom.” However, they also continued notic-
ing that “the distance between the proton and the second
(remote electron is approximately the same as in the H

The most accurate wave functions reported in the literalo: While the distance between the first electron and the

ture are very long linear expansions, with many variationaPhos'tron IS app(rjoxr:mately the lsame e}s_tﬁe dl_stance be]tcween
parameters. It is very difficult to give physical meaning to the positron and the remote electron in PsSo in terms o

those functions and extract information on the PsH structuret.hree'bOdy clusters PsH can be represented as a “physical

So it is a challenge to develop a compact, but still accurat§Um” of the Ps and H ions. They support this point with

wave function. The simple functions proposed up to now o€ fact that the sum of the energies of ~H

describe the PsH system are not very accurate. Followin§~ 0-5277 hartree) and PY(—0.2620 hartree) is, to a very
Lebeda and Schradéh,Le Sech and Sil¥f developed a 900d approximation, the energy of the PsH system.

simple wave function treating all the Coulomb interactions, ~USukura, Varga, and Suzuki using an explicitly corre-
and fulfilling all the cusp conditions. The asymptotic behav-12ted Gaussian expansion that gives practically the exact re-
ior of the wave function in the limit of infinite interparticle SUlt, computed not only the average values of the distances
separations was also taken into account. Their wave functiofMoNg the particles in PsH, but also the corresponding dis-
was the product of’(H )W (e")W(e*e e), but it did tance distribution functions, to gain more insight mto its
not include the asymptotic behavior when one of the par_structure. These results were compared with those in the _H
ticles goes to infinity. It had a total of four variational param- @nd Ps atoms. They found the average electron—positron dis-
eters and after optimizaton gave an energy oftance to be larger than that in the Ps atom, the average

—0.7723 hartree. Jiang and Schrddethose a wave func- electron—nucleus distance to be much larger than {@.81

positron_e|ectr0n interactionS, as Pade’ approximants intUnCtion much broader than in the H atom. On the whole the
stead of Jastrow factors were used. On the contrary fointeraction between Ps and H in PsH distorts both fragments,
positron—nucleus interactions they selected a Jastrow fun&® the interpretation of PsH as-PHi is not supported.
tion, so their wave function cannot show the correct Saitdin a recent paper examined the question looking
asymptotic behavior when the positron goes to infinity. Theyat various density functions computed by Ho's 396-term
fixed all the cusp conditions, but did not consider the othetylleraas-type functio! Examining the electron and posi-
asymptotic conditions. On the whole they optimized ten pairon density functions, and the electron-positron pair density
rameters using separate variational Monte CdWC) function, he noticed that the electron denSity in PsH is simi-
simulations and recovered only 0.7774 hartree. With a lar to the one in H. However, by looking at the electronic
smaller number of parameters, 7, but a better functionadistribution calculated by lelng the coordinate of the pOSi-
form, we got —0786073(6) hartree. The importance of tron, he observed that, as the pOSitI’OI’] is moved away from
choosing a correct functional form is evidenced also by théhe nucleus, there is an appearance of the Ps structure. He
VMC results we computed in our grotfpwith a basis set of concluded that “not only PsH has an atomic structure with a
correlated exponentials. Six terrt&l parametejshad to be ~ positron added to a hydrogen negative ion, but also a di-
included to get—0.786310(11) hartree, a slightly better atomic molecular structure which consists of a hydrogen
value than the presert0.786073(6) hartree. Not only does atom and a positronium,” a point of view shared by Bromley
our compact wave function give a worse energy by only 0.7and Mitroy"® who wrote, “The PsH system consists of a
mhartree than the best wave functions based on the orbita¢asonably well-defined Ps atom bouwndat H atom, some-
approximation and by 3.1 mhartree than the best result, buwvhat similar to a light isotope of the Hmolecule.”
its functional form evidences that the PsH structure is mainly ~ Beyond bound-state calculations on PsH, also scattering
made by a H ion interacting with a positron. of Ps by H can give information on PsH structure. The im-
portance of the H channel in obtaining a convergent de-
scription of positronium—hydrogen elastic scattering was
There is no general consensus in the literature whethguointed out by Biswa&8 and confirmed by Blackwood,
PsH should be considered similar to a diatomic moleculéMcAlinden, and Walteré®*°who found that the inclusion of
made by an hydrogen atom with a Ps fragment or similar tovirtual H™ formation has a very substantial influence upon
an H™ ion with a positron added. This is reflected by the factthe low-energy scattering.
that sometimes two different notations have been used to In our derivation of the PsH wave function, we explicitly
indicate the positronium hydride: 1" or PsH. Many work- included the correct asymptotic behavior. Our construction

I1l. DISCUSSION

Structure of PsH
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FIG. 2. H two-dimensional distribution function of the electron—nucleus
FIG. 1. H and PsH two-dimensional distribution functions of the electron— distance vs the electron—nucleus—electron angle and its change on going
nucleus distances. from H™ to PsH.

led us naturally to include H, and this automatically gives a tron distribution of H around the nucleus, as already ob-
wave function with the character of an Hwith a positron  served, but the positron, attracting both electrons, also re-
bound to it. As correctly observed by Saito, the more distantluces the electron—nucleus—electron angle. To get further
we put the positron, the clearer is the Ps structure. Howeveinside in PsH structure we computed the distribution of the
the ground-state wave function is not well approximated bydistances between the positron and the two electrons, shown
the product ba H times a Ps. To get a clear view of the in Fig. 3. The most likely configuration is for equal distances
electronic  distribution, we computed several two- of the positron from the two electrons, while a+Ad struc-
dimensional distribution functions for PsH and Hand we  ture should give two different electron—positron distances as
report and discuss the most significant ones. All the distribu-
tion functions are normalized to 1. The two-dimensional
electron—electron correlation functions for PsH and &te
shown in Fig. 1. These correlation functions give more visual
information on the electronic distribution around the nucleus
than the simple one-dimensional electronic density. From
Fig. 1 one can see that the two distributions are very similar,
and they both share the characteristic that the highest prob-
ability is for both electrons at the same distance from the
nucleus, but configurations with an electron close to the
nucleus, while the second is further away, are slightly less
likely. The addition of a positron to Hkeeps the same pat-
tern, shrinking the electron distribution around the nucleus.
The distribution of the electron—nucleus distance against the

(=]

electron—nucleus—electron angle for ks shown in Fig. 2. 0
When going from H to PsH the maximum stays around 0 2 4 6 8
100° for an electron—nucleus distance of about 2 bohrs. To r (bohr)

1p

stress the effect of the inclusion of a positron we report the
difference between these d'St_”bunon funCt|0nS_ for PsH anql:IG. 3. PsH two-dimensional distribution function of the electron—positron
H™. The presence of the positron not only shrinks the elecdistances.
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180 T T T T goes to infinity we have succeeded in developing a compact,
accurate, and physically interpretable wave function for pos-

150 7 itronium hydride. Optimizing a total of seven parameters we

computed an energy- 0.7860786). Our result favorably

A12°' compares with very long configuration interaction expan-
4 90- - sions and even with explicitly correlated function expan-
2 sions. Our wave function and the examination of several

- 60 two-dimensional distribution functions give new insight into
. the PsH structure, which is a hydrogen anion perturbed by

304 the positron.
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