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The problem of inherently differing time scales of core and valence electrons in Monte(Ri€)o
simulations is circumvented in a straightforward and intuitive manner. By appropriately subdividing
into equivalent subspaces the high-dimensiofraany-electron space in which Monte Carlo
integration is done, it is possible to choose completely independent and appropriate sampling times
for each “electron.” This approach trivially satisfies detailed balance. The partitioning of space is
applicable to both variational and Green’s function MC. Such a partitioning, however, only provides

a significant computational advantage in variational MC. Using this approach we were able to have
inner electrons move with reasonably large steps and yet avoid excessive rejection, while outer
electrons were moved great distances in few steps. The net result is a large decrease in the sampling
autocorrelation time, and a corresponding increase in convergence rate. Results of several standard
algorithms are compared with the present acceleration algorithm for the atoms Be and Ne, and the
molecule Lp. © 1999 American Institute of Physid$50021-960809)50838-9

INTRODUCTION problems untouchable. This is the motivation behind the so-
called ordeN methods now becoming well-known in den-
Variational Monte CarlodVMC) methods allow one to sity functional theory, wherd\ is the number of electrons in
calculate quantum expectation values given a trial wavehe system. While density functional theory provides an ap-
function! Wave functions of great functional complexity are proach to electron correlation and is useful in many contexts,
amenable to this treatment, since analytical integration is naften an exact treatment of such correlations, or at least a
being performed. This greater complexity, including for ex-systematically improvable one, is necessary. Quantum
ample, explicit two-body and higher-order correlation termschemical approaches are of the latter variety. Unfortunately,
in turn allows for a far more compact description of a many-they are among the class of methods that scale with large
body system, with the benefit of high accuracy. The primarypowers of system size. On the other hand, Monte Carlo
disadvantage of using a Monte Carlo approach is that thenethods exist which are either systematically improvable or
calculated quantities contain a statistical uncertainty, whiclexact, and these methods scale reasonably well with system
needs to be made small. This can always be done, but at thgze. Generally these methods scale roughly betieand
cost of CPU time, since the statistical uncertainty decreaseq®; moreover algorithms with lower powers are in principle
asN~ 2 The term “variational” Monte Carlo derives from possible to implemente.g., using fast multipole methods to
the use of this type of Monte Carlo sampling to optimize theevaluate the Coulomb potential, and the use of localized or-
trial wave function via the variational principle. Despite the bitals together with sparse matrix techniques for the wave
inherent statistical uncertainty, a number of very good algofunction computation
rithms have been created that allow one to optimize trial  There is still a problem. This remaining problem is well-
functions?™” The best of these approaches go beyond simplknown from other contexts. It is often referred to as the
minimizing the energy, and exploit the minimization of the multiple time scales probleft:*2 Possibly the most extreme
energy variance, which vanishes for energy eigenfunctionsinstance of it occurs in condensed matter physics near a
All total energy methods, whether Monte Carlo or not, phase transition, where the problem is known cafical
suffer from scaling problenf§* That is, as the system be- slowing down.In the VMC [and more generally quantum
ing treated increases in size, the computational cost rises agonte Carlo(QMC)] context it has come to be known as the
an (often large power of the system size. Although such |argeZ problem. This class of problem occurs in both Monte
behavior is far preferable to that of the exponentially difficult Carlo and molecular dynamics simulations, and more gener-
problems in the classes NP and beyond, large-power polynailly whenever dynamical calculations are performed.
mial scaling is nevertheless a severe roadblock to the treat- Although, as mentioned above, the various quantum
ment of many physically interesting systems. Even signifi-Monte Carlo algorithms scale well witN, they have been
cantly faster computers will leave large classes of interestinghown to scale much more poorly with atomic numBeA
common estimate is that computational timeises between
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core and valence electrons. Zsncreases, the range of time dom number. Otherwise the new step remainRatThis
scales increases as well. In fag;—» is in many ways completes one step of the Markov chdor random walk
analogous to a critical poiff:**!* As in critical slowing Under very general conditiorfs such a Markov chain results
down, an unending hierarchy of time scales ensues as thie an asymptotic equilibrium distribution proportional to
critical point is approached. This is the problem that must bé¥(R)|?.
addressed. From the above description of the standard Metropolis
In critical phenomena, the problem has been effectivelwMC simulation algorithm, it is clear that the attempted
addressed through a class of acceleration methods, particmove of an electron covers a volume which is independent
larly so-called cluster acceleration methddi$® These take of its position. This means that the optimal move size is a
advantage of the self-similarity that occurs in the vicinity of trade-off between the best move size for electrons far from
a critical point. In the electronic structure problem, there dothe nucleusi.e., valenceor outer electron$, which need to
exist analogous critical pointé:*®However, ground states of be large since the accessible region of configuration space is
typical systems are not near the regime of these criticalery large, and the best move size for the electrons close to
points. Thus, a common way to address the lageoblem the nucleusi.e., coreor inner electron$. These latter moves
has been through the use of effective-core potentials whicimust be small, since the relevant region of configuration
eliminate the largeZ at the outset. This is the standard ap-space is quite limited, and also because the wave function
proach in quantum chemistry and solid-state physics. It i€hanges rapidly near the nucleus, meaning that large moves
also becoming widely(and effectively used in quantum would cause a high rejection rate.
Monte Carlo simulation&!°-?2 However, in Monte Carlo This situation is only mildly improved when one
there are many other possible ways to address the problerswitches to the commonly used, and otherwise more effi-
The method we discuss here can be used in VMC to avoidient, Langevin simulation schemThis scheme is a gen-
entirely the pseudopotential approximation, or can be used iaralization of the standard Metropolis algorithm in which a
conjunction with it to provide additional computational ad- Langevin equation containing drift and diffusiofe., a

vantage. “quantum” force term and white noigas employed for the
transition matrix fromR to R’. Although the quantum force
OVERVIEW OF VMC depends on position, the size of an attempted move is still

determined by the step sizrow thetime-step siz¢ Using a
Since very detailed descriptions of the VMC method aresjngle time step for all the electrons still implies a certain
available;** we only give here a short resume. The essenc@egree of negotiation between inner and outer electrons in
of VMC is the sampling of a distribution proportional to choosing the best global time step. The inner electrons still

|W+(R)[?, whereW is a given(“trial” ) wave function—a end up dominating the dynamics, and slowing down the
function of the 3N-dimensional coordinat®. Once such a gyter electrons.

distribution is established, expectation values of nondifferen-  There are many ways one can think of improving the

tial operators may simply be sampled, since simple algorithm. Several methods have been explored with
. . differing degrees of success. For example, one can render the
<O>=f O(R)|‘I’T(R)|2d3NR/ |Wr(R)[?d*NR attempted moves position-dependent, which subsequently

entails the need for a modified coordinate system to maintain
1N detailed balancé’ Another approach, borrowed from high-
~N ;1 O(R;). (1) energy theory, has been to modify the VMC dynamics while
keeping the steady-state unchand®t?0One can also radi-
Differential operators are only slightly more difficult, since cally change the algorithm by mixing a molecular dynamics
we can write approach with VME® or using a feedback methdflHere
. f[éllfT(R)/\IfT(R)]lWT(R)IstNR we explore an intuitive and straightforward new approach.

(o [ ¥+(R) PR

THEORETICAL APPROACH
N

%% Zl [OW(R)/W(R)]. ) Partitioning the space | |

As a result of the antisymmetry of an electronic wave
The remaining problem is how to sample the distributionfunction, there are multiple regions of IBdimensional
|¥(R)|%. This is readily done in a number of ways. The space which are equivalent. Specifically, up to a sign, the
most straightforward is simple Metropolis samplifgSpe-  value of the wave function is the same when any two coor-
cifically, this involves generating a Markov chain of steps bydinates representing like-spin electrons are interchanged.
“box sampling” R'=R+£A, with A the box size, and'a  This results inN,! Ny, equivalent volumes or domains.
3N-dimensional vector of uniformly distributed random Since it is hard visualizing in high-dimensional spaces, it is
numbers{ e[ —1,+1]. This is followed by the classic Me- worth pointing out here that we aret talking aboutnodal
tropolis accept/reject step, in whidW(R’)/W+(R)|? is  volumes that is, regions of the 8-dimensional space sur-
compared to a uniformly distributed random number be+ounded by a hypersurface where the wave function is zero.
tween zero and unity. The new coordind®é is accepted Though these volumes may be equivaléng., in 1D, gen-
only if the ratio of trial functions squared exceeds the ran-erally the nodal volumes are connected sets of the volumes
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the nodal surface. Now we will see how this simple fact can

be used to our advantage to help avoid the time-scale prob-
lem. Let us concentrate on an atomic system. Later in this
paper we will discuss the modifications needed to treat mol-
ecules.

Separating time scales

v In none of the earlier attempts to accelerate VNEG
described in the overview section abpwsas an attempt
made to make the electrons “distinguishable” within the
simulation. Based on the idea of dividing space into equiva-
lent subspaces, this is now possible. Here we explore such an
approach.

we are discussing here. In fact, there are suggestions that the Naively trying to assign a different time stépnd so a
number of distinct nodal volumes for all ground state atomicdifferent time scalgto different electrons does not work, of

or molecular systems is just two > The volumes we are course. Given a symmetric or antisymmetric wave function,
distinguishing are the following: given a poiRtin configu-  two identical particles(here like-spin electronscan ex-
ration space, there are anothég,! Ny, —1 points gener- change positions without changing the probability of the
ated by permutations of the indices. We can think of theseonfiguration. Thus, assigning larger time steps to electrons
points as belonging to different regions, or subspaces, of thetarting out in the valence region at the beginning of the
full space. If we can explicitly construct such subspaces, thegimulation would not accomplish our goal, since ultimately
the integration over the entireNsdimensional space is re- such electrons exchange positions with inner electrons, with
dundant, since for any operatOrwhich is totally symmetric  no energy penalty. Once this happens the electrons are taking

FIG. 1. Different partitioning schemes, illustrated with the inversion opera-
tor in a 2D box.

with respect to the exchange of two identical particles inappropriate step sizes. In terms of our previous discussion
of subspaces, we can restate this fact saying that in the stan-
f W#(R)(A)\PT(R)dm\‘R dard algorithm, for any subspace division, electrons can gen-
((5>= all space erally cross the Sl_Jbspace bound_aries. We can, hovyever, en-
J’ % (R\T-(R)4NR force the boundaries and constrain particles to stay in certain
all space T(R¥(R) subspaces.

Thus far, however, nothing suggests that constraining

* oy A aN moves to subspaces would be better for the efficiency of the
Lmy SUbSpanfT(R)O\IfT(R)d R algorithm than simply integrating over the whole configura-
= , (3)  tion space. Nevertheless, since the subspace division is to a
f *(R)W(R)d*NR large extent arbitrary, there is hope that a good choice can in
any subspace fact help. Specifically, we seek to construct a subspace such

meaning we only need to integrate over a single subspace.that the electrons in the outer regions of 3-space, away from

Such subspaces are not uniquely defined. The following€ nucleus, and likewise the electrons close-in, near the
example can help in visualizing this fact. Consider a tWO_nucIeus, each stay in their relative places through the action

dimensional box centered at the origin as the analogue of OLﬂf the constraint. Th's would enable us to assign different
3N-dimensional space, and the inversion operﬁl(d;he op- time steps to the different electrons, and let them explore
erator which take® to —R) as analogous to the permutation their respective regions of configuration space with the most
operator. Assume that in this spat[e(fR)= ~¥(R) and appropriate step sizes. This is actually quite readily done, as

S . .. the example below illustrates. Moreover, this generalizes im-
V(|R)—_\/(R)._Th|s system_ can be tho_u_ght of as a particle Inmediately to a practical scheme for constructing subspaces
a two-dimensional box with an additional symmetry con-

. . . : . for an m, and with little modification, for molecules.
straint. For each poinR there is a “corresponding point” or any atom, and with little modification, for molecules

R’=iR. Two (of an infinite number of equally valid sub-

space constructions are shown in Fig. 1. Each divides th@" example: The Be atom

space into two regions such that the poiRtandR’'=iR are Let us take as a practical example the Be atom in its
in opposite regions. In the example illustrated, the points 1ground state. After havingarbitrarily) assigned spin up to

2, and 3 all belong to the same subspace if we divide thelectrons 1 and 2, and spin down to electrons 3 and 4, we are
volume with the vertical line. The other curve shown still left with a configuration space in which it is possible to
divides all the points from their counterparts, however nowdefine four equivalent subspaces. Given a point in one sub-
point 1’ rather than 1 sits in the same volume as points 2 andpace, we can generate the symmetry-related points by per-
3. Because of the inversion symmetry, integration over anynuting electrons 1 and 2 and/or 3 and 4.

one of these subspaces is equivalent to integration over the Our chemical intuition tells us that, on the average, elec-
whole configuration space! Yet none of these curves needs toons 1 and 2 are not likely to be both close to the nucleus
be a nodal line for the system. Only an even lower-simultaneously. This is because they have the same spin, and
dimensional surfacénhere the originis guaranteed to be on we expect the beryllium “core” to be composed of electrons
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of opposite spin. Of course, the same reasoning applies to thdeavier atoms
other electron pair. We can now assign, say, electrons 1 and

. As the number of electrons increases, so does the num-
3 to the core, and electrons 2 and 4 to the valence. Havin

q defi b th t Of (RNt Ber of equivalent subspaces, and with that our freedom in
one so, we can define our subspace as the set of fioints choosing them. In particular, we can combine subspaces to

configuration space for which the first electron is alwaysincrease efficiency. Again, we prefer to give a concrete ex-

closer to the nucleus than the second, and the third clos%r : . :
! mple for pedagogical purposes: let us consider the neon
than the fourth. Specifically, we can define the space P pecagog purp

atom. With five spin-up electrons and five spin-down elec-

Q1(R)={R: 1,<r, AND r3<r,} trons the number ofequivalentsubspaces ??514_1400. We
can choose any one as our integration space, imposing, e.g.,
[xZ+y2+ 72 @ the constraint r{<r,<rz<r,<rs AND rg<r;<rg<r
r=\Xi+yi+z. 152 lgsTs 6>1751TgxTo

<ry, in analogy to what was done for the Be atom. How-

In a similar way, one can define the other three equivalengver, using again our chemical intuition, we expect the neon
subspaces, core to be composed of two electrons, and the *“valence”
space of the other eight. Since the outer electrons share the
same three-dimensional region of space, we expect very little
gain in imposing the above overly restrictive boundary con-
ditions. Instead, a more physically-sound partition would be

Q,={R: r;>r, AND rg>r,}. always to keep electron 1 closer to the nucleus than all the

other spin-up electrons, while electron 6 is kept closer to the

An equivalent integration can be performed over any of thesaucleus than all the other spin-down electrons. The net effect
subspaces. The simulation in e.g., the dom@ip can be s that we have merged some of the smaller equivalent sub-
done rejecting any configuration where&r,) or (r;  spaces to build a bigger subspace.
>r,). Since electrons 2 and 4 are outer electr@m in the Loosely speaking, we might expect that a good partition
above sense will always remain so during the simulafion is one in which we prevent electrons from changing
we can assign to them a larger time step than the one we giveshells,” while we leave free the electrons within a shell to
to the inner electrons. Separately optimizing these time stepexplore all the “shell” space. This should be more efficient
increases the efficiency of the overall simulation. as well, because we avoid unnecessary rejections which

Any starting configuration, i.e., a walker in VMC, is a would be caused by crossings among electrons with the same
single point in the Bl-dimensional space, and thus resides intime scale. Thus, going to still larget, for the argon atom
a single subspace. Subsequent moves need only enforce twe would divide the spin-up electron@nd similarly the
boundaries by rejecting any attempts to cross them. It is easspin-down onesinto three groups, and would impose con-
to see that detailed balance is trivially satisfied. One way tatraints such that electrons in any group never exchange their
see this is to regard the present algorithm as the standaftole.”
VMC algorithm, without any constraintthereby satisfying
detailed balande applied to a wave function that vanishes
outside the boundaries. Since all the subspaces are equi
lent, Eq.(3) tells us that all expectation values for this re- All the theoretical considerations regarding the subdivi-
stricted wave function are the same as those computed ovsion of configuration space into equivalent subspaces, which
the full space. we gave for atoms, are still valid for the molecular case. This

One point is worth noting here: we have designed a paris so because these considerations were based only on the
tition of configuration space through a set of constraints dePauli principle and not on any particular potential. What
fined in three-dimensional space rather th&irdmensional needs to be modified, of course, is the prescription on how to
space. This is a desirable feature of any partitioning schemelivide the configuration space in an efficient way. In particu-
since this greatly simplifies the practical implementation oflar, if we want to keep the useful picture of electrons in
the algorithm, and also leads to a nice physical interpretatiorshells we need to choose, e.g., an origin from which to mea-
However, since other division schemes of thesure the distance to the electrons. We could measure all the
3N-dimensional space are possible, we must take particulatistances from the heaviest nucleus of the molecule, and
care when devising the constraints in three-dimensionaimplement the constraints described above. This should be
space, in particular to ensure that no configurations are lefufficient for a molecule with only one heavy atom and other
out. Consider for example the following division scheme forvery light atoms. In general, however, we have different nu-
electron 1 and 2, which superficially looks similar to the clei with various atomic numbers and different cores belong-
previous one. We can constrain the two electrons, e.g., to bieg to the various nuclei. A more physically motivated ap-
on different sides of a given fixed plane passing through th@roach is thus to assign the various core electrons to the
nucleus, say the planey. Apart from the fact that such a corresponding nuclei, and to treat the remaining electrons as
partition would be useless for our purposes, it also is wrongbelonging to the “valence” space for the entire molecule.
since it leaves out all the configurations where the two elecThe core electrons can, as before, be assigned to multiple
trons are on the same side. A correct, though still uselesshells.
scheme is to constrain the second electron to be always to the Let us once again construct a practical example: we will
“left” of the first, with respect to a given plane. divide the configuration space of the,Lmnolecule. We can

Q,={R: 11<r, AND r3>T4}

Q3={R: r{>r, AND r3<<r4} (5)

olecules
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imagine this molecule as having two electrons always close 19 — — 012
to the first nucleus, two electrons likewise close to the sec-

ond nucleus, and lastly, two electrons free to explore the

region outside the two cores. Considering the spin-up elec- .80 -
trons, our subspace is then defined as having electron :
closer to nucleus\ than either of the other two; electron 2 is
then the remaining one which is closest to nucl&isand
electron 3 is the one farthest away from the two nuclei. This
partition is valid as long as the two centers are equivalasnt

in the case of Lj). However, as in the case of the atomic
shells, we are unnecessarily restricting the core electfbns
and 2, as these have the same time step behavior anyway
Thus, it is sufficient on physical grounds to merely prevent

Average displacement
— — — Acceptance rafio

0.08

Acceptance ratio

0.04

Average electronic displacement (a.u.)

the penetration of the thirtbuten electron into either of the 0.20 —
cores. |
0.00 T ,‘ ______ —— == =3 0.00
RESULTS AND DISCUSSION ' ' !
0.00 0.20 0.40 0.60
We have tested the proposed algorithm on the Be and Ne Time step (hartree 1)

at_oms an_d On_the Limolecule. Sin_Ce the main purpose of fiG, 2. Plots of mean electronic displacement and acceptance ratio versus
this algorithm is to separate the different time scales of theime step size for the Be atom. Here the algorithm used is a simple Metropo-

electrons, it is natural to compare the average movement ¢ moving all electrons at once.

the electrons in different regions with respect to those in a

standard algorithm, one which has the same time scale for all

the electrons. Such a microdiagnostic approach has been sugtost important quantity in which one is interested. The focus
gested recentl§? of these investigations has been on the energy correlétion

Usually, when making efficiency comparisons, one com-more properly, decorrelatirime.
pares against the “box Metropolis” algorithm, in which a We have implemented our partitioning algorithm within
uniform move within a box is accepted or rejected only afterthe framework of both the Metropolis and the Langevin al-
all the electrons have been moved to a new location. Thgorithms. In each case we compare the results obtained to
microdiagnostic analysis can be very useful in monitoringthose of algorithms which move all electrons at once and
such a simulation, to check that all the electrons move reawith those which move one electron at a time. Although it
sonable distances, and to ensure that the run time of thikes roughly twice as much computer time to move one
simulation is sufficient to allow a meaningful sampling of electron at a timéversusan all-electron move the former
configuration space. However, since our algorithm’s movesilgorithm is the more efficient. This is well-known, but pro-
are diffusion Monte Carlo based, the standard algorithm wejides a framework in which to observe decorrelation times.
wish to compare against should involve a time step rathe
than a box(length scalg To do so, we use as our standard
algorithm an all-electron Metropolis with moves chosen In order to better appreciate why this method can help in
from a Gaussian distribution whose mean is the box sizealleviating the problem of multiple time scales, we present a
The value of a time step controls the box size. In fact, this detailed analysis of several different simulations of the be-
is just the all-electron version of standard diffusion Monteryllium atom, showing the causes of the problem and how
Carlo with branching set to unity. our proposed algorithm eliminates it.

In addition to any microdiagnostic measures, it is also  Beginning with a Metropolis algorithm that moves all
useful to have a global measure of the efficiency of a samthe electrons at once, with a fixed time step, Fig. 2 shows the
pling algorithm. A useful quantity for this is the autocorre- acceptance ratio and the mean displacement obtained. Mean
lation timé&’ of the local energy. This quantity depends notdisplacement is defined for a single pass of a single electron.
only on the algorithm, but also on the trial wave function As is apparent, the acceptance ratio quickly drops with in-
employed. Thus it is necessary to compare different samereasing . Moreover, the average displacement is quite
pling methods while employing the same trial wave function.small. Note, however, that the old rule of thumb that an
In all the work described here we have employed simpleacceptance ratio of about 50% is optimal in a Metropolis
self-consistent-field plus electron-Jastrow forms for the trialsimulation, is satisfied here. Figure 3 shows the acceptance
wave functions. Choosing approximately optimum time stepratio as a function otlistance from the nucleusor different
sizes for each algorithm required only very short simulationsralues ofr. One can see that the acceptance ratio is high in
to fix the average acceptance ratio for each move at close the core (<1) only if 7is sufficiently small. In the valence
50%. region the acceptance ratio remains fairly constant.

Of course, measuring the correlation length for an opera-  Figure 4 illustrates the problem by showing the mean
tor other than the Hamiltonian provides a different globaldisplacement as a function of What it shows is well worth
efficiency measure; nevertheless the energy is usually themphasizing, even if it is well-known. Specifically, in order

biagnoses and cure: A detailed analysis
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. . . _ time step size for the Be atom, now obtained using a Metropolis algorithm
FIG. 3. Acceptance ratio as a function of distance from nucleus for variougyaying one electron at a time.

time steps in a simulation of the Be atom. The algorithm is as in Fig. 2,
namely all electrons move at once. The short length scale fluctuations seen
are statistical, and are on the order-of-magnitude of the error bars.

to have any significant movement, particulairiythe core 7
must be smallhere<0.1). In other words, this algorithm is
core-dominated: if we try to raise the time step, the accep-
tance ratio drops due to bad core moves, and the walker as a
whole cannot move(Recall, we are moving all electrons at
4 T :=Z:‘1’3A‘ =°°s‘:8 once) On the other hand, if the acceptance ratio is large
T (note values ofA in Fig. 4) the simulation is inefficient be-
0.15 — o :fz':’:ﬁ\fofzz cause of the very small moves. Thus, either the simulation is
ORI inefficient, or the ®-dimensional space is badly sampled.
As is typical, somewhere arourl=0.5 is an optimalbut
not necessarily gogdradeoff.

We turn now to what is well-known as a more efficient
algorithm. We again use Metropolis, but movitand ac-
cepting one electron at a time. Figure 5 is the analog of Fig.
2, but the difference between them is dramatic. Of course,
the acceptance ratio is now that of a single electron move. It
decreases witlhr, as expected. However the mean displace-
ment increases with for a long way, until it finally reaches
a plateau(not shown in the plotand dies off forr>3.0.
Note also that the displacement here is larger than in the
all-electrons-at-once case. Figure 6 shows the details. As be-
fore, the core electrons move only for small (here =
<0.1) causing the sampling of the valence space to be inef-
ficient. On the other hand, selecting the be&ir the valence

0.00 _1.00 2.00 3.00 space ¢>0.7), or even the bestoverall, results in the core
Distance from nucleus (a.u.) . . .
electrons essentially not moving at all. What we are looking
FIG. 4. The mean electronic displacement for Be as a function of distancéOr is an algorithm that moves the electrons with the best
from the nucleus. It is apparent that to have any significant movementtime step both in the corandthe valence.
particularly in the core7 must be small. Thus, we see that all-electrons-at- | ot s now consider our proposed algorithm. We parti-
once Metropolis is “core”-dominated. Such simulation is inefficient be- . . . . .
cause one requires very small times steps in order to sample well everfiON the space, adding our constraints as discussed earlier,
where. Note that such very small time steps greatly limit the distancenamely for Be that ;<<r, andr;<r,. Note that for now we
traveled in a single move, regardless of location relative to the nucleus. Attjll use thesamer for all the electrons. However, we can

the other extreme, large time steffarker curveiincrease the probability . gistinguish outer from inner electrons—they no longer
that a move will be rejected, as seen in the previous figure. In this limit, the

functional form reflects in part the underlying shape of the electron distri-eXChan_ge- Figure 7 should be compared to Eig. 5. If nothing
bution. else, this method allows for a useful diagnostic. We can now

0.18 — — T=0.001;A=0.87

Average electronic displacement (a.u.)

0.00 ' | ' I ' |
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FIG. 7. As in Fig. 5, plots of mean electronic displacement and acceptance

Distance from nucleus (a.u.) ratio versus time step size for the Be atom. The algorithm is Metropolis

FIG. 6. As in Fig. 4, the mean electronic displacement for Be atom as gnoving one electron at a time. Having partitioned the space we can now

function of distance from the nucleus. The algorithm, however, is now Me-tsriazratew plot displacement and acceptance ratio for inner and outer elec-
tropolis moving one electron at a time. As can be seen, time steps which are™ ™

too short still limit the distance traveled. However, large time stge

darker set of curves which increase the distance valence electrons can

travel, increase the probability that a move will be rejected near the nucleugive each electron a separate time-step size in a suitably
The entire set of electrons, however, is no longer constrained by the COBhopsen partitioning of the space.

electrons.

Results
find the bestr for the core and the best for the valence ) ) )
regions separately. This indicates that the one-electron-at-a- 1he results for the beryllium atom are summarized in
time algorithm is valence dominated: in the mean totalTable I. By exploiting the inherently different time scales of

displacement only the valence moves give a sizable contri-

bution.

1.00 — -

With this partitioning we are now in a position to use e eepnenrae
different values ofr for the different regimes. The plots of - ——— Radial olectranic density
Fig. 8 show what happens when one separately optimize: | [ |\ === Same T = 0.07; A= 0.66 1
these time steps: specifically we chase0.045 for the core 0807 Same T «26; A=0.25
_— T, =0045; T =25

and 7=2.5 for the valence. These values were chosen to 4 .
bring the respective acceptance ratios to 50%. It can be see_

0.60 —

in Fig. 8 that as a function of radial position, the total accep-&
tance ratio is quite graceful, always staying around 50%, ancg
actually passes through 50% twice, once at the center of eac%
orbital. (The plot is superposed with a graph of the electronic § 040 —
density so that one can better see the limits of the core ant
valence regions It can also be seen that the diffusion length L N
follows the overall maximum of the individual mean dis- 0.20 —
placement curves. This is “the best of both worlds”: the
acceptance ratio and displacement follow the smalkhav-

0.80

0.40

Average electronic displacement (a.u.)

2s shell

ior in the core and the largebehavior in the valence region. 0.00 : : : 0.00
All three of the above algorithms were repeated using 0.00 Hl)o zll'm 500
Langevin Monte Carl¥ instead of Metropolis. Actually, the Distance from nucleus (a.u.)

Langev!n approach as mplemented .IS a hybm.j of tradltlor.]alilG. 8. As in Fig. 6, Be atom mean displacement for different choices of
Langevin and MetrOpOHS' This hyb”d maintains the deSIr'time steps. Because the partitioning algorithm described in the text allows
able Metropolis property of having no time-step bias. But thedifferent size time steps for core and valence electrons, a “best of both
Langevin character results in better behavior overall withworlds” curve for the average displacement versus distance from the

: i : ucleus is possiblébold, solid ling. Also indicated is the acceptance ratio
respect to decorrelatlng moves. All the same mOdIflcatlongersus distance from nucleus for this cho{dash-dot ling The light solid

can be made here as in the above, pure Metropolis Case. Of& indicates the radial electronic density to provide perspective on the
can move all electrons at once, one electron at a time, an@gions of enhanced sampling.
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TABLE |. Time to decorrelate moves for Be with various algorithms. Val- TABLE Ill. Time to decorrelate moves for Liwith various algorithms.
ues of 7 are in units of hartreg. Correlation time is dimensionless, and Units as in Table I.
measures the number of steps required to effectively decorrelate two energy

measurements. Algorithm Teore Tyalence Correlation time
Algorithm Teore Tvaence  COIrelation time Metropolis 0.05 0.05 35

Metropolis: individual

Metropolis 0.030 0.03 50 electron moves 0.10 0.10 115

Metropolis: individual As above, with

electron moves 0.100 0.10 12 separated time scales 0.08 2.00 8.5

As above, with

separated time scales 0.045 2.50 6 Langevin 0.07 0.07 10
Langevin: individual

Langevin 0.07 0.07 17 electron moves 0.30 0.30 6

Langevin: individual As above, with

electron moves 0.10 0.10 7 separated time scales 0.20 2.00 35

As above, with

separated time scales 0.13 3.50 35

outside the two cores. Considering just the spin-up electrons,
we can define our subspaces by having electron 1 closer to
fucleusA than either of the other two; electron 2 is that one
the remaining two which is closest to nucleBs and
. . . ~electron 3 is then the one, in some sense, farthest away from
sfcales' n the system but instead to aspects of elec_trom.c MPoth nuclei. However, we are still unnecessarily restricting
tion within the shells. To further reduce the correlation time, .y« core electrons. as the two cores are equivalent, and so
one could couple this algorithm with another specifically de- 5 o the same tirr,le-step behavior. Thus. it is suffic,ient on
signed to alleviate this problem. The Appendix describes Onﬁhysical grounds to merely prevent the ;Jenetration of the

such attempt. . third (outen electron into either of the cores.
Table Il illustrates the results for the neon atom. As dis-

cussed earlier we replace the veiconstraintr ;<r,<r4
<ry<frg AND Ig<r,;<rg<rg<riq, which would be the CONCLUSIONS
analogy to what was done for the Be atom with the more
physically-sound  partition r{<r,,rs3,r,,'s AND Ig

core and valence electrons we see that we were able
greatly reduce the time needed to decorrelate moves. T
remaining correlation time is not due to the different time

We have shown that a great improvement in the effi-
. . S ' ciency of standard VMC algorithms can be achieved by com-
<r,,rg,rg,r 1. This derives from chemical intuition leading bining a very simple partitioning of the 3-space of the elec-

t? tr;e expe(_:ttr? tion tlhat the neon fc;)hre lsthcomp%iegli_hof tW(i’rons with appropriate time steps for electrons within each
clectrons, with a valence space of Ine ofher eignt. Thus WSartition. This improvement is comparable to what has been

end up with a less restrictive constraint which follows the ... o g using other acceleration approaches which are con-

shell _structure Of the atom. Agam we see the effect of S(apaéiderably more difficult to implement. In general, a decrease
rate time scales in decprrelatmg the Monte Carlo moves. ThBy a factor of 10 in the autocorrelation time is found over
largerZ for Ne results in a greater effect from the accelera-na--,ve algorithms. This amounts to an effective speedup of

tion algorithm. . . .
) ; simulations by an order-of-magnitude.
Finally we present the results for the,ltholecule. Table Using the present algorithm, core, and the valence

! |Illi|stré:1'te'{s the r\e/:iults for the ?Utiﬁgrrelatllon ;ume f(;r th's electrons—and more generally electrons in different shells
simple diatomic. YWe can imagine this molecule as having, 4 yifrerent regions of space—can be made to move at their

QNO electrlon;s Wh“t:h arei\ al':/vays I(_:ll(ose_ 0 trlle f'r?t r:rl:c(ees, down optimum rates, independent of the time steps of other
its core electrons two electrons likewise close to the secon electrons. Moreover, the configuration space can be divided

nucleus, and lastly, two electrons free to explore the re9Ion either a physical basis or using other practical criteria.

The algorithm is extremely easy to apply, and at almost no
TABLE Il. Time to decorrelate moves for Ne with various algorithms. Units a‘,j‘?"“ona' .cqmputan.naI. cost. Detailed Palance remains
as in Table I. trivially satisfied. Application to molecules is not any more
difficult. Finally, the algorithm can be used in conjunction

Algorithm Teore  Tualence ~ COITelation time with virtually any sampling approach, such as Metropolis
Metropolis 0.005 0.005 100 gnd Langevin as demonstrated here, or with others yet to be
Metropolis: individual invented.
electron moves 0.100 0.100 9.5 In essence, this approach overcomes the autocorrelation

As above, with resulting from the mixture of time scales due to core/valence

separated time scales 0.006 0.010 55 L . .

P exchange. However, within any given shell the algorithm
Langevin 0.01 0.01 29 does nothing, so there is room for improvement. In fact, it
Langevin: individual can be noted that the residual autocorrelation appears to de-
electron moves 0.03 0.03 6.5

: rive mainly from the core.
As above, with
separated time scales 0.01 0.10 25 Future work needs to focus on study of the effect of
constrained movement on other sampling methods, on inves-
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tigations with larger atoms and more complex moleculesThis is the usual Langevin movement, where for later con-

and with other division schemes. One division criterionvenience we have designat&®} as the position after the

worth investigation might be the assignment of electrons tajuantum force drift movement alone. Keep the angles

specific nuclei, e.g., on a chemical basis, and enforcement ¢®,,¢,) and discard ;.

constraints for each nucleus. (i) Generate the new coordinaté from the oldr using
Finally, it is significant to note that this acceleration ap-a (selectable, and still to be determingmobability distribu-

proach, apparently unlike all previous schemesn be ex-  tion P(r—r').

tended to full Green'’s function or diffusion quantum Monte (ili) Move to the new trial pointR'=(r',0;,¢;)

Carlo. The basis for doing so is updating all electrons to the=(r’,6',¢").

same absolute timghus, requiring varying numbers of steps (iv) Accept or reject the move using the Metropolis al-

for electrons in the different partitiondefore calculating a gorithm, with acceptance probability given by

branching factor for the net move. However, the need to

synchronize the steps, as indicated, would appear to reduéot‘e(R_>R )

the efficigncy of'the acceleration over that described here for [ WARHP(H —=1)P((0,0")—(6,0))

VMC. This requires further exploration. =min| 1,— ; e
YAR)P(r—r")Pqo((8,0)—(6",¢"))
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) . ] ] we need to integrate over all possible radial positionsn
In this Appendix we describe an alternative approach tqyger to get the probability of getting a certain padr, ¢).

accelerate VMC simulations. Our intent was to combine thisthe integration is trivially done passing into spherical coor-
approach with that described in the text to achieve an evepipates. Callingx the angle betweeR,; andR, we get
greater decoupling of the steps. However, little additional

improvement was discovered. Investigating further we found®a((8:¢)—(6",¢"))

that, used by itself, this approach is almost as good as that 252, up,
described in the body of this paper. It simply provides litle ~ ~ € ° (1+Eri(ro coga)/y4D 7))

APPENDIX

advantage in combination. Nevertheless, this method is Xsin(a)(7+r2cod(a))Dawr

simple enough, and a reasonable starting point for further

enhancement, that we find it worthwhile to describe it in +D7-rosin(2a)e*ff2)/4Df_ (AB)
some detail.

All that remains is the selection of the distributid®(r
—Tr'). Once we choose this, we can independently optimize
e angular step size and the radial step distribution.

We tested this algorithm using different radial transition
I;jistributions,P(r—>r’), including both a simple Gaussian
and aboXr'/A,r"A], whereA is here an effective step size.
This approacHusing either of the radial distributiongives
quite good results. When tested on the beryllium and neon

R'=R+D7F(R)+ 2D 7y, (A1) atoms, we obtained a correlation time of about 3.5 for both
whereF is the usual quantum forc® is the diffusion con- syste.ms, similar to what we obtained with the partitioning
stant,ris the step size, anglis a vector of Gaussian random algorithm. I\!ever.theless, we were not able to further decrease
variables with zero mean and unit width. To decouple theth? correlation t!me by combmmg the tyv_o a}pproaches, de-
angular movement from the radial movement, while at thesplte the effectiveness of spatial partitioning when used
same time retaining the simplicity of the Langevin algorithm,alcme
we use the quantum force in EGAL) to determine only the
direction of the movementmore specifically, the angular !D. Bressanini and P. J. Reynolds, Advances in Chemical Physics
displacement We independently choose the radial displace- (wiley, New York, 1999, Vol. 105, p. 37.

The goal is to modify the Langevin algorithm in such a
way that the angular and radial moves of the electrons ar
decoupled as much as possible. A similar approach has bed
pursued by Umrig&f through a geometric construction.

In the standard Langevin algorithm, each random walke
undergoes a displacement from poltto R’ following the
equation

ment from a separate probability distributi®fr—r’). Z(Sig;-QHuang. Z. W. Sun, and W. A. Lester, Jr., J. Chem. PBgs597
The steps of the al_gp,mhm .are the foIIowmg: . 3C. J. Umrigar, K. G. Wilson, and J. W. Wilkins, Phys. Rev. Lé@, 1719
(i) Move from the initial pointR=(r,8,¢) to an inter- (1988.
mediate poinR;=(rq,6;,¢1) USing 4A. Harju, B. Barbiellini, S. Siljamaki, R. M. Nieminen, and G. Ortiz,
Phys. Rev. Lett79, 1173(1997.
Ro=R+D7F(R), (A2) 5H. Bueckert, S. M. Rothstein, and J. Vrbik, Can. J. Ch@f).366(1992.

6R. N. Barnett, Z. W. Sun, and W. A. Lester, Jr., Chem. Phys. [2&8,
R;=Ry+ V2D 7. (A3) 321(1997.
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