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Simultaneous near-field and far-field spatial quantum correlations in the high-gain regime
of parametric down-conversion

E. Brambilla, A. Gatti, M. Bache, and L. A. Lugiato
INFM, Dipartimento di Scienze CC FF MM, Universita` dell’Insubria, Via Valleggio 11, 22100 Como, Italy

~Received 15 May 2003; published 9 February 2004!

We study the spatial correlations of quantum fluctuations that can be observed in multimode parametric
down-conversion in the regime of high gain. We investigate both a type-I and a type-II phase-matching
configuration: in the latter case spatial correlations at the quantum level are shown to exist both in the
near-field and in the far-field zones of the down-converted light. In the stationary and plane-wave approxima-
tion we treat the problem analytically. A stochastic model is solved numerically to obtain quantitative results
beyond this approximation. The finite transverse size and pulse duration of the pump beam and other features
of the system, such as spatial walk-off and diffraction are taken into account, and we show that correlations
beyond the standard quantum limit exist for values of parameters consistent with realistic experiments.
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I. INTRODUCTION

The spatial aspects of correlations of quantum opt
fluctuations have been the object of several studies in
past @1–11#. In general they show up in nonlinear optic
processes, typically wave-mixing phenomena which invo
a large number of spatial modes of the electromagnetic fi
From the middle of the 1990s there has been a renewa
attention because of new potential applications which exp
the quantum properties of the field for image processing
multichannel operations. Examples are quantum hologra
@12#, the quantum teleportation of optical images@13#, and
the measurement of small displacements beyond the R
leigh limit @14#. An overview of this relatively new branch o
quantum optics, for which the namequantum imagingwas
coined, can be found in Ref.@15#.

The process of frequency down-conversion is particula
suitable for this kind of application because of its large em
sion bandwidth in the spatial frequency domain. We consi
parametric down-conversion~PDC! taking place in a crysta
with a second-order nonlinearity set in a traveling-wave c
figuration. In this process the photons of a high-intens
pump field are split into pairs of photons of lower energy a
momentum through the nonlinear interaction with the m
dium. Since no signal field is injected, down-conversion
initiated only by vacuum fluctuations that equally cover
spatial and temporal frequencies. The fluorescence pa
that arises has therefore the angular spectrum determine
phase-matching conditions, and depends only on the lin
dispersion properties of the nonlinear material.

The spatial aspects of quantum correlations in PDC h
been initially studied mainly in the low-gain regime. In th
case, the mean number of photons per mode is small c
pared to unity and single-photon pairs can be resolved
time by the detectors. Information on spatial quantum co
lations can therefore be obtained directly from coinciden
measurements. A detailed theory has been developed in o
to evaluate the two-photon coincidence rate using a per
bative method to determine the two-photon entangled s
generated in the nonlinear process@3#. This theory has been
1050-2947/2004/69~2!/023802~19!/$22.50 69 0238
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applied to explain the outcomes of ‘‘two-photon entangl
imaging’’ experiments. These exploit the entanglement of
two-photon state in order to retrieve information from
object inserted in the path of one of the photons by detec
the position of its twin@4#. Both geometrical and coherenc
aspects of the physics underlying these two-photon imag
experiments have been carefully examined@5–10#.

In this paper we focus on spatial correlations in the op
site regime, where the number of photons per mode in
emitted field can be quite large, and their detection gives
to continuous photocurrents. Under these conditions the
turbative approach used in Refs.@3,4# fails and an analytical
expression of the output state can be formulated only wit
the stationary and plane-wave pump approximation~PWPA!.

Recently, in the PWPA framework we used a multimo
theory in order to demonstrate that PDC is able to disp
correlation effects in the spatial domain, both when phot
number@16,17# and polarization@18# measurements are con
sidered. In these papers it is shown that the correlation
quantum origin, usually investigated in the photon-count
regime, survives in a regime of high gain where a large nu
ber of photons are emitted in each mode. In particular,
theory predicts noise reduction well below the shot-no
level for the difference in the number of photons measured
the far-field from two detection areasR1 andR2 correspond-
ing to couples of phase-conjugate~signal and idler! modes.
In other terms, the photon numbers measured over the
detection areas are identical even at the quantum level.
phenomenon finds its explanation at the microscopic leve
the conservation of the photon transverse momentum wh
is fulfilled in each elementary down-conversion process:
each photon detected in, say, areaR1, the detection of its
twin in R2 is ensured by this law. The same kind of spat
correlations have also been extensively investigated in
continuous wave~cw! pumped optical parametric oscillator
where the down-conversion efficiency is enhanced by
closing the nonlinear crystal inside an optical resonator@11#.

Here we shall give a description of the photon-numb
spatial correlations that can be observed in a traveling-w
configuration, both in type-I and in type-II phase-matchi
conditions. In the second case, we shall focus our atten
©2004 The American Physical Society02-1
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on the spatial correlation property of PDC displayed in
near field, a problem that we never analyzed before.
signal and idler beams are found to exhibit quantum co
lated photon-number fluctuations when measured from
tection areas that image the same portion of the beam c
section. Twin photons are indeed generated simultaneo
and they remain localized in a limited region of space as lo
as they are observed close to the crystal. This ‘‘position
tanglement’’ of the generated photon pairs can be seen a
near-field counterpart of the momentum entanglement wh
can be observed in the far field. However, we shall see
for a realistic crystal length the measurement of near-fi
correlation is strongly affected by propagation effects, in p
ticular diffraction and spatial walk-off. We shall propose
procedure to overcome at least partially this problem.

It should be noticed that the existence of correlations b
in the near and in the far field of PDC is known in th
literature in the coincidence counting regime@10#. It has
been used in two-photon imaging experiments@4# and has
been recently emphasized in a more general context@19#. In
this work we focus on aspects that are specific of the hi
gain regime, because we study the spatial correlation fu
tions of the photon number, determining the condition un
which the signal-idler correlation beats the standard quan
limit.

The observation of photon-number correlation pheno
ena in the high-gain regime of PDC is also the aim of
experiment presently performed at the University of Insub
in Como. In this experiment photodetection takes place
means of a high quantum efficiency charged coupled de
~CCD! camera, which is able to resolve photon number fl
tuations that are below the standard quantum limit@20#. The
pump field is a high-power picosecond laser pulse that p
vides energy for a large number of down-converted photo
in a configuration such that the plane-wave and cw pu
approximations are very raw. Here we shall present a rea
tic description of the system, based on a numerical mo
that includes the finite duration and the transverse size of
pump pulse. Other features of the system that are rele
from an experimental point of view, such as spatial and te
poral walk-off, different kinds of linear dispersion and phas
matching ~type-I and type-II crystals!, are included in the
model. It is important to investigate how they affect the sp
tial quantum correlation phenomena predicted by the pla
wave pump theory, also in order to identify the best con
tions under which they can be observed in the experimen
numerical evaluation of the far-field photon-number corre
tion function is presented in Ref.@21# in the case of a type-
crystal at degeneracy. In Ref.@21#, which treats down-
conversion within a classical framework, the shape of
pump pulse included into the numerical model is taken fr
experimental data and the obtained signal-idler correla
peak displayed between symmetrical point reproduces
the correlation measured experimentally.

The paper is organized as follows. In Sec. II we brie
introduce the theoretical model used to describe PDC wi
a classical framework. The quantum description of the s
tem is illustrated in Sec. III, where a fully analytical trea
ment is developed in the framework of the plane-wave a
02380
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cw pump approximation. It is based on a multimode inp
output formalism, first introduced in Ref.@22# for a type-I
crystal at degeneracy, which is here extended to a typ
phase-matching configuration.

In Sec. IV we give a qualitative description of the phas
matching mechanism that determines both the phot
number distribution and the characteristic bandwidths of
down-converted field, illustrating thereby the differences b
tween type-I and type-II phase matching.

In Sec. V we define the quantities that can be measu
experimentally and that put in evidence the quantum na
of the spatial correlations in which we are interested. Th
analytical expressions are derived within the PWPA, wh
will be used to interpret the results of the numerical mod

The last part of the paper~Sec. VI! is devoted to presen
the numerical results obtained for two particular cryst
with different phase matching~type I and type II!. The
amount of correlation that may be achieved is evaluated
function of different parameters that can be varied exp
mentally, such as the size of the pump beam waist and
size of the detectors.

II. CLASSICAL DESCRIPTION OF THE PROCESS

We decompose the electric field in the superposition
three quasimonochromatic wave packets~denoted withE0 ,
E1, andE2) of central frequenciesv0 , v1, andv2, corre-
sponding to the pump, signal, and idler fields, respectiv
These frequencies are taken to satisfy the ener
conservation conditionv11v25v0. Assuming the mean di-
rection of propagation is thez direction, and denoting with
xW5(x,y) the coordinate vector in the transverse plane,
can write

Ej~z,xW ,t !}Aj~z,xW ,t !eik jz2 iv j t1c.c. ~ j 50,1,2!, ~1!

wherekj5njv j /c is the wave number of wavej at the car-
rier frequency along thez axis~for an extraordinary wave the
refraction indexnj depends on the propagation direction,
property leading to spatial walk-off!. To simplify the notation
we have ignored the vectorial character of the three fie
their polarization being determined by the kind of phas
matching conditions that are met inside the crystal.

Within the paraxial and slowly varying envelope approx
mation, the propagation equations for the signal and id
~S-I! field envelopes and the pump field envelope can
written in the form@23#

]Aj

]z
1kj8

]Aj

]t
1

i

2
kj9

]2Aj

]t2
2r j

]Aj

]y
2

i

2kj
¹'

2 Aj

5sA0Al* e2 iD0z ~ j ,l 51,2;j Þ l !, ~2a!

]A0

]z
1k08

]A0

]t
1

i

2
k09

]2A0

]t2
2r0

]A0

]y
2

i

2k0
¹'

2 A0

52sA1A2eiD0z ~2b!
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The driving terms on the right-hand side describe the wa
mixing process due to the second-order nonlinearity of
medium, the coupling constants being proportional to the
effective second-order susceptibilityxe f f

(2) characterizing the
down-conversion process.D05k11k22k0 is the collinear
phase mismatch of the central frequency components.

Linear propagation is described by the lhs of these eq
tions: the terms proportional tokj85(]kj /]v)v5v j

and kj9

5(]2kj /]v2)v5v j
lead to temporal walk-off between th

different waves and group-velocity dispersion, respectiv
while the terms containing the first- and second-order der
tives in the transverse coordinates (x,y) are responsible for
spatial walk-off and diffraction, respectively.r j indicates the
walk-off angle of wavej, determined by the anisotropy of th
crystal ~the walk-off direction is taken along they axis!.
Linear losses are neglected, so that the three waves exch
energy but their total energy is conserved.

In Sec. VI A we shall also consider the special case o
type-I phase-matched crystal where the signal and the i
fields have the same polarization and are observed clos
the degenerate frequencyv15v25v0/2. Under these con
ditions the signal and idler fields are no more distinguisha
and the down-converted field must be described by a sin
slowly-varying envelopeA(z,xW ,t) satisfying the following
propagation equation:

]A

]z
1k8

]A

]t
1

i

2
k9

]2A

]t2
2r1

]A

]y
2

i

2k
¹'

2 A5sA0A* e2 iD0z,

~3!

which is readily obtained from Eqs.~2a! by dropping the
S-I indices j ,l , which denote different polarizations and/
carrier frequencies in the nondegenerate case.

In a single-pass configuration with crystal length on t
order of a few millimeters, the amplitudes of the dow
converted field remain small with respect to the pump a
plitude and the nonlinear driving term in the rhs of Eq.~2b!
can be neglected. The pump depletion due to dow
conversion and absorption is indeed of small entity, unl
extremely high intensity laser sources are used. We s
therefore work within the parametric approximation th
treats the pump as a known classical field which propag
linearly inside the crystal, while the down-converted fiel
are quantized according to rules that are briefly illustrated
the following section.

III. QUANTUM DESCRIPTION IN THE PARAMETRIC
APPROXIMATION

We need now to substitute the classical signal and id
fields with operators. Making the formal substitution for t
field envelopesAj (z,xW ,t)→aj (z,xW ,t) ( j 51,2), we impose
the following commutation rules at equalz @1#:

@ai~z,xW ,t !,aj
†~z,xW8,t8!#5d i j d~xW2xW8!d~ t2t8!,

@ai~z,xW ,t !,aj~z,xW8,t8!#50 ~ i , j 51,2!, ~4!
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valid within the framework of the paraxial and quasimon
chromatic approximations. With this definition

I j~z,xW ,t !5aj
†~z,xW ,t !aj~z,xW ,t ! ~ j 51,2! ~5!

is the photon flux density operator associated with wavej: its
expectation value gives the mean number of photons cr
ing a region of unit area in the transverse plane. In the lin
regime the field operators obey the same equations as
corresponding classical quantities. For our purpose, it is u
ful to introduce the Fourier transforms of the field envelop
with respect to time and to the transverse plane coordina

aj~z,qW ,V!5E dxW

2pE dt

A2p
aj~z,xW ,t !e2 iqW •xW1 iVt ~ j 51,2!.

~6!

A similar definition holds also for the Fourier compone
A0(z,qW ,V) of the classical pump field envelope. The prop
gation equations~2a! take then the form

]aj~z,qW ,V!

]z

5 id j~qW ,V!aj~z,qW ,V!1se2 iD0zE dqW 8

2p E dV8

A2p

3A0~z,qW 2qW 8,V2V8!al
†~z,2qW 8,2V8!

~ j ,l 51,2;j Þ l !, ~7!

where

d j~qW ,V!5kj8V1
1

2
kj9V

21r jqy2
1

2kj
~qx

21qy
2! ~ j 51,2!,

~8!

is the quadratic expansion ofkjz(v j1V,qW )2kj aroundqW

50W ,V50, andkjz(v j1V,qW )5Akj
2(v j1V,qW )2q2 denotes

the z component of thek vector associated with the (qW ,V) j
plane-wave mode. In particular the walk-off angler j can be
identified as]kj /]qy calculated forqW 50,V50. A more de-
tailed derivation can be found in@1,24#.

Equations~7! contain the convolution integral in Fourie
space of the S-I field envelope with the pump field envelo
Within the undepleted pump approximation, the latter can
expressed as

A0~z,qW ,V!5eid0(qW ,V)zA0~z50,qW ,V!, ~9a!

d0~qW ,V!5k08V1
1

2
k09V

21r0qy2
1

2k0
~qx

21qy
2!,

~ j 51,2! ~9b!
2-3
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thez50 plane being taken at the input face of the crystal.
the following we shall assume that the pump pulse ha
Gaussian profile both in space and time, of beam waistw0
and time durationt0 at z50:

A0~z50,xW ,t !5~2p!3/2Ape2(x21y2)/w0
2
e2t2/t0

2
. ~10!

In Fourier space we have then the expression

A0~z50,qW ,V!52A2
Ap

dq0
2dv0

e2(qx
2
1qy

2)/dq0
2
e2V2/dv0

2
,

~11!

where

dq052/w0 , dv052/t0 ~12!

denote the bandwidths of the pump in the spatial freque
domain and in the temporal frequency domain respective

Let us now consider the limit of the PWPA approxim
tion, in whichw0 andt0 tend to infinity and

A0~z,qW ,V!→~2p!3/2Apd~qW !d~V!. ~13!

Under this condition, Eqs.~7! couple only pairs of phase
conjugated modes (qW ,V)1 and (2qW ,2V)2 and can be
solved analytically. The unitary input-output transformatio
relating the field operators at the output face of the cry
aj

out(qW ,V)[aj (z5 l c ,qW ,V) to those at the input face

aj
in(qW ,V)[aj (z50,qW ,V) take the following form:

a1
out~qW ,V!5U1~qW ,V!a1

in~qW ,V!1V1~qW ,V!a2
in†~2qW ,2V!,

a2
out~qW ,V!5U2~qW ,V!a2

in~qW ,V!1V2~qW ,V!a1
in†~2qW ,2V!,

~14!

with

U1~qW ,V!5expF i
d1~qW ,V!2d2~2qW ,2V!2D0

2
l cG

3Fcosh@G~qW ,V!l c#

1 i
D~qW ,V!

2G~qW ,V!
sinh~G~qW ,V!l c!G ,

V1~qW ,V!5expF i
d1~qW ,V!2d2~2qW ,2V!2D0

2
l cG

3
sp

G~qW ,V!
sinh~G~qW ,V!l c!,
02380
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U2~qW ,V!5expF i
d2~qW ,V!2d1~2qW ,2V!2D0

2
l cG

3Fcosh@G~2qW ,2V!l c#

1 i
D~2qW ,2V!

2G~2qW ,2V!
sinh~G@2qW ,2V# l c!G ,

V2~qW ,V!5expF i
d2~qW ,V!2d1~2qW ,2V!2D0

2
l cG

3
sp

G~2qW ,2V!
sinh~G@2qW ,2V# l c!, ~15!

and

G~qW ,V!5Asp
22

D~qW ,V!2

4
, ~16a!

D~qW ,V!5D01d1~qW ,V!1d2~2qW ,2V!'k1z~qW ,V!

1k2z~2qW ,2V!2k0 , ~16b!

sp5sAp . ~16c!

It is important to note that the gain functionsU j andVj given
by Eq. ~15! satisfy the following unitarity conditions:

uU j~qW ,V!u22uVj~qW ,V!u251 ~ j 51,2! ~17a!

U1~qW ,V!V2~2qW ,2V!5U2~2qW ,2V!V1~qW ,V!,
~17b!

which guarantee the conservation of the free-field commu
tion relations~4! after propagation.

IV. MEAN INTENSITY DISTRIBUTION

In the following we shall consider measurements eithe
the near-field or in the far-field zones of the nonlinear crys
In order to simplify the notation we shall omit the explic
dependence of the fields on thez coordinate: when specifi
cation is explicitly needed, the measured quantities will
labeled withp or p8, which will denote the near-field and
the far-field detection planes, respectively@see scheme o
Fig. 1~a!#. The analytical results given here and in the ne
sections are all obtained within the PWPA: on the one ha
they generalize those illustrated in Ref.@17# for a type-I crys-
tal at degeneracy to a type-II phase-matching configurat
on the other hand, they provide a good starting point to
terpret the results of the numerical model that includes
pulse shape and the finite cross section of of the pump be
A more general input-output formalism that goes beyond
PWPA is developed in Appendix A.

With a stationary and plane-wave pump the near-field
tensity distribution in the output plane of the crystal clea
does not depend onxW andt, because of the system invarianc
2-4
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FIG. 1. Scheme for the observation of down-conversion in the far-field zone~a!. The lens~not shown in the figure! is located atz5 l c

1 f . ~b! and~c! display the phase-matching curves~25! in the spatial frequency plane for a type-II~b! and a type-I~c! crystal, respectively.
The symmetrical black squaresR1 and R2 indicate the locations of the detectors from which maximal signal-idler correlation ca
measured.
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with respect to translation in time and in the transverse pla
Using input-output relations~14! and recalling that the inpu
fields are the vacuum states, we obtain easily

^I j~xW ,t !&p5E dV

2p E dqW

~2p!2
uVj~qW ,V!u2 ~ j 51,2!.

~18!

The function uVj (qW ,V)u2 gives the contribution of mode
(qW ,V) j to the total photon flux of beamj, and is usually
referred to as its spectral gain. On the other hand, in
far-field planep8 the spatial Fourier modes are resolved s
tially and the photon distribution reflects theqW dependence o
these spectral functions. From the expression ofG(qW ,V)
given by Eqs.~16!, we see that down-conversion occurs mo
efficiently for the modes satisfying the conditionD(qW ,V)
,2sp . Using Eqs.~16b! and~8!, the phase mismatch accu
mulated during propagation can be written in the form

D~qW ,V!l c5D0l c1sgn@k182k28#
V

V08
1

V2

V09
2

2r2qy2
qx

21qy
2

q0
2

,

~19!

where we assumed that the signal wave is ordinarily po
ized, so thatr150, and we introduced the parameters

q05A k̄

l c
, V085

1

uk182k28u l c

, V095A 2

~k191k29!l c

,

~20!

wherek̄52k1k2 /(k11k2). These determine the character
tic bandwidths of PDC both in the temporal frequency d
main and in spatial frequency domain. In the type-I pha
matching configuration we will consider in Sec. VI A, bo
the signal and the idler waves are ordinarily polarized a
are observed close to degeneracy, i.e., forv15v25v0/2. In
this special case the temporal bandwidth is determined
V0[V095A1/uk19l cu, since k1(v)5k2(v) implies that V08
5`. Far from frequency degeneracy the emission spect
has a much narrower bandwidth, on the order ofV0[V08
which is about two to three orders of magnitude smaller th
V09 ~for a typical crystal length of few millimeters!. On the
02380
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other hand, in type-II crystals the signal and idler waves
characterized by different polarizations and frequency d
persion relations, so thatV0[V08 remains finite even for
v15v2. The spatial bandwidthq0 gives the range of trans
verse wave vectors for which the gain spectrumuVj (qW ,V)u2

is close to its maximum value, sinh2(splc), when thej th field
is observed at a given frequencyv j1V @the gray region
shown schematically in Figs. 1~b! and 1~c! for V50]. We
remark that 1/r2l c andq0 are about the same order of ma
nitude as long asl c remains in the millimeter range.

For definiteness we assume that the far field is observe
the focal plane of a thin lens of focal lengthf which performs
the Fourier transformation of the field from the output fa
of the crystal~the so-calledf -f system!. The field operators
in the focal planep8 at z5 l c12 f @see Fig. 1~a!#, which we
denote withb1,2(xW ,t), are related to those in the output plan
of the crystal by the following Fresnel transformation:

bj~xW ,t !5E dxW8hj~xW ,xW8!aj
out~xW8,t !, ~21a!

hj~xW ,xW8!5
2 i

l j f
exp2~2p i /l j f !xW•xW8 ~ j 51,2!, ~21b!

wherel j52pc/v j ( j 51,2) are the free-space wavelengt
corresponding to the carrier frequencies. Using the inp
output relations~14! and unitarity relations~17! we can
evaluate the mean intensity distribution of the two fields w
the following approximate expression:

^I j~xW ,t !&p8'
1

Sdi f f
( j ) E dV

2p
uV̄j~xW ,V!u2 ~ j 51,2!, ~22!

where we introduced the barred gain functions defined in
space

Ū j~xW ,V!5U j S 2p

l j f
xW ,V D , V̄j~xW ,V!5Vj S 2p

l j f
xW ,V D ,

~ j 51,2!, ~23!

and Sdi f f
( j ) 5(l j f )2/SA ( j 51,2), denotes the resolution are

in the far-field plane at the S-I wavelengths, withSA being
the area characterizing the dimension of the system in
2-5
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transverse plane. As is shown in Ref.@17#, Eq. ~22! can be
obtained by assuming that a pupil of areaSA@1/q0

2 is put on
the crystal exit face. Assuming that the transverse dim
sions of the crystal are large compared to the pump waistSA
can be identified with the effective cross section area of
pump beam. Equation~22! represents a good approximatio
provided the pump beam shape changes negligibly du
propagation in the crystal and behaves therefore as a p
wave. This happens when the Rayleigh length characteri
the Gaussian pump beam divergence,zR

05pw0
2/l0, and its

analog characterizing dispersion,zdisp
0 5t0

2/2k09 , are much
longer than the crystal lengthl c . The same conditions ca
also be written in terms of the pump spatial and tempo
bandwidths~12! as

dq0

q0
!1,

dv0

V0
!1. ~24!

At the considered carrier frequenciesv1 and v2 the gain
functionsVj (qW ,V50) are maximal and perfect phase matc
ing is achieved when the equationsD(6qW ,V50)50 are
satisfied, with the plus sign for field 1, and the minus s
for field 2 @see Eqs.~15! and~16b!#. More explicitly, as can
be seen using expression~19!, they can be written as

qx
2

q0
2

1S qy

q0
6

1

2
r2l cq0D 2

5D0l c1S 1

2
r2l cq0D 2

. ~25!

Provided thatD0l c.2 1
4 r2

2l c
2q0

2 , we have therefore two
circles of radiusqR and centered at (qx50,qy56qC), with

qC5 1
2 r2l cq0

25 1
2 k̄r2 , ~26a!

qR5q0AD0l c1
qC

2

q0
2
5Ak̄D01

1

4
~ k̄r2!2. ~26b!

They are plotted in Figs. 1~b,c!, respectively, for a type-II
and a type-I phase-matching configuration. Modes close
these circles withinq0 ~gray annuli in the figure! give a
non-negligible contribution to the down-converted field.
the detection plane they give rise to characteristic couple
rings which have been observed in many experiments
parametric down-conversion~see, e.g., Refs.@25–27#!. It
should be stressed that, without any spectral filtering, em
sion occurs on a very wide range of wavelengths and em
sion angles, as allowed by the phase-matching condit
~see, e.g., Refs.@26,9#!. However, from an experimenta
point of view, a particular couple of rings can always
selected with the use of frequency filters centered at the c
sen frequenciesv1 andv25v02v1. Noting that there is the
following mapping between the spatial frequency plane a
the far field plane:

~qx ,qy!→ l1f

2p
~qx ,qy! for field 1, ~27!
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~qx ,qy!→ l2f

2p
~qx ,qy! for field 2,

it is easily seen that the ring radii,xR
(1,2)5l1,2f /2pqR , and

their distance from thez axis,yC
(1,2)5l1,2f /2pqC , are gener-

ally different except when observation is performed at f
quency degeneracy~i.e., for l15l2). In a type-I phase-
matching configuration these rings are concentric, since th
is no spatial walk-off between the two fields (r250) and the
radial symmetry of the system is preserved.

Figures 2 and 3 illustrate the kind of far-field patterns th
can be obtained from a single pump pulse at frequency
generacy in a type-I and a type-II crystal, respectively. Th
are obtained by numerical integration of the classical fi
equations~2!, with a white input noise which simulates th
vacuum fluctuations that trigger the process, as will be
scribed in Sec. VI. The pump pulse duration is 1.5 ps and
large waist conditiondq0!q0 is fulfilled. In the type-II case
the width of the rings is determined by the interval of fr
quencies of the numerical grid. In the examples shown
Fig. 2 the grid acts as a 15 nm box-shaped interference fi
In the type-I phase-matching case, being at frequency de

FIG. 2. Typical far-field pattern from down-conversion in
type-II crystal, assuming observation is performed at the degene
frequency~i.e., atl15l2). They are obtained for decreasing valu
of the collinear phase-mismatch parameterD0, which makes the
radius of the rings shrinks to zero. The pump pulse duration ist0

51.5 ps, the pump beam waist isw05664 mm (dq0 /q050.05),
and the parametric gain isspl c54.

FIG. 3. Far-field pattern in a type-I crystal at the degener
frequency for collinear~a! and noncollinear~b! phase-matching.
t051.5 ps,dq0 /q050.05 (w05920 mm) andspl c54.
2-6
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eracy, the two rings merge into one that contains both sig
and idler modes. Moreover, in this case the width of the rin
in the spatial frequency plane is determined by the nat
bandwidthq0, since the temporal frequency interval used
the numerical simulations is small compared to the cha
teristic temporal bandwidthV0 @as pointed out in the discus
sion following Eqs.~20!, in the type-I configuration at de
generacy the temporal bandwidth is much larger than in
type-II configuration#.

V. NEAR- AND FAR-FIELD CORRELATIONS

We now define explicitly the quantities that can be me
sured in an experiment in order to put in evidence the
correlations in the spatial domain we are investigating.
assume that the signal and idler beams are spatially sepa
in the detection plane and are measured over two detec
areas, which we denote withR1 andR2.

In the far field, correlations find their origin in the conse
vation of the transverse momentum of the generated ph
pairs. Therefore, in order to find maximal correlation,R1 and
R2 must correspond to couples of phase-conjugate mo
such as those indicated with the black squares in Figs.~b!
and 1~c!. For simplicity, in order to avoid the heavy notation
that arise if l1Þl2, we shall restrict our analysis to th
frequency degenerate case, indicating withl bothl1 andl2.
Phase-conjugate modes are then mapped by the lens
symmetrical points in planep8 according to relation~27!
andR1 andR2 must be taken symmetrical.

On the other side, near-field correlations arising from
position entanglement of the twin photons are expected to
observed ifR1 andR2 occupy the same region of the nea
field plane. In practice a type-II phase-matching configu
tion should be considered, so that the use of a polariz
beam splitter and lens systems allows the imaging of the
near fields on two physically separated detection planes~see
detection scheme illustrated in Fig. 4!.

If the detectors are the pixels of a CCD camera, as in

FIG. 4. Detection scheme to measure spatial correlations in
near field. A polarizing beam splitter~PBS! separates the S-I beam
Their near fields, at the planep:z5 l c2Dz, are imaged by two
lenses (L andL8) onto the pixel detectorsR1 andR2, which lie in
the plane conjugate to planep. Dz and Dy indicate the spatial
shifts applied to the optical devices that are necessary to optim
the measurement.
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experiment described in Ref.@26#, they do not allow any
spectral measurement due to the very low resolution po
of the device in the time domain. They simply measure
total number of incoming photons down-converted in ea
single pump shot, and the measurement timeTd can be iden-
tified with the pump pulse duration. We introduce therefo
the operators corresponding to the number of photons
lected by the two detectors in the finite-time windo
@2Td/2,Td/2#:

Nj5E
Rj

dxWE
2Td/2

Td/2

dt I j~xW ,t ! ~ j 51,2!. ~28!

The measurable quantity capable of displaying the quan
nature of the photon-number statistics in the spatial dom
is the variance of the photon-number difference,N25N1
2N2, which can be written in the form

^~dN2!2&5^N1&1^:~dN1!2:&1^:~dN2!2:&22^dN1dN2&.
~29!

dNj5Nj2^Nj& and dN25N22^N2& denote the photon-
number fluctuation operators associated withNj andN2 and
the colon ‘‘:’’ denotes normal ordering~n.o.! for the expec-
tation values. In Eq.~29! the shot-noise contribution, i.e., th
total number of photons intercepted by the two detec
^N1&5^N1&1^N2&, has been explicitly separated from th
term that describes the field correlations. We define

^:dNidNj :&5E
Ri

dxWE
Rj

dxW8E
2Td/2

Td/2

dtE
2Td/2

Td/2

3dt8Gi j ~xW ,t,xW8,t8! ~ i , j 51,2!, ~30!

where

Gi j ~xW ,t,xW 8,t8!5^:I i~xW ,t !I j~xW8,t8!:&2^I i~xW ,t !&

3^I j~xW8,t8!& ~ i , j 51,2! ~31!

are the n.o. self- and cross-photon number correlation fu
tions of the S-I beams. Notice that in the nondegenerate c
~type II or type I far from frequency degeneracy! we have

^:I 1(xW ,t)I 2(xW 8,t8):&5^I 1(xW ,t)I 2(xW 8,t8)&.
We now focus on the analytical results that can be

duced from the PWPA. We shall consider explicitly only th
case of type-II phase matching. The case of type I, at leas
the far field, can be described with a similar treatment a
has been already discussed in Ref.@17#. Assuming that the
detection timeTd is large compared to the coherence tim
tcoh5V0

21, as is usually the case, we have

^:dNidNj :&'TdE
Ri

dxWE
Rj

dxW8 Gi j ~xW ,xW8,V50! ~ i , j 51,2!,

~32!

whereGi j (xW ,xW 8,V50) is the Fourier transform of function
~31! with respect tot2t8 ~notice that in a cw regime this

e

ze
2-7
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function depends only ont2t8). Next, the Gaussian charac
ter of the field statistics allows to express fourth-order cor
lations in terms of second-order correlations@see Appendix
A, Eq. ~A5b!# In this way the photon-number correlatio
defined by Eq.~30! in a planez can be written as the photon
number correlations defined by Eq.~30! in a planez as

^:dNidNj :&z5TdE
Ri

dxWE
Rj

dxW8E dV

2p
uG i j

(z)~xW ,xW8,V!u2

~ i , j 51,2!, ~33!

where

G j j
(z)~xW ,xW8,V!5E dte2 iVt^aj

†~z,xW ,t1t!aj~z,xW8,t !&

~ j 51,2!, ~34a!

G12
(z)~xW ,xW8,V!5E dte2 iVt^a1~z,xW ,t1t!a2~z,xW8,t !&,

~34b!

are the only correlation spectra of the S-I fields which do
vanish when the input field is in the vacuum state. We
sumed here implicitly that propagation in free space occ
without losses.

In the far-field planep8, the self- and cross-correlatio
functions are given by

G j j
(p8)~xW ,xW8,V!5d~xW2xW8!uV̄j~xW ,V!u2 ~ j 51,2!,

~35a!

G12
(p8)~xW ,xW8,V!52d~xW1xW8!Ū1~xW ,V!V̄2~2xW ,2V!

~35b!

as can be inferred using the Fresnel transformations~21!. In
this case, both correlation functions display ad-like peak,
located atxW85xW for the self-correlation, and atxW852xW for
the cross correlation. Thed-like character of the correlation
derives from the unphysical assumption that the transv
dimensions of the system are infinite. In Ref.@17#, which
deals only with far-field correlations, the transverse size
the system was taken into accounta posterioriby consider-
ing a finite apertureSA placed at the crystal output face
assuming a condition equivalent to Eq.~24! is met. With this
approach, we found that far-field correlations are localiz
within the resolution area determined by the size of this
erture @that is, Sdi f f5(l f )2/SA with the f -f lens system#.
This procedure also eliminates the cumbersome divergen
arising from the singularity of the spatiald functions, allow-
ing the formal substitutiond(xW50)→1/Sdi f f as has been
done in Eq.~22!. By integrating over two symmetric detec
tion pixels of area much larger than this resolution length,
obtain

^:~dN1!2:&p85^:~dN2!2:&p8

5
1

Sdi f f
E dV

2p E
R1

dxW uV̄1~xW ,V!u4, ~36a!
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^dN1dN2&p85
1

Sdi f f
E dV

2p E
R1

dxW uŪ1~xW ,V!V̄2~2xW ,2V!u2.

~36b!

In order to obtain these expressions, both unitarity relati
~17a! and~17b! must be used, together with the fact that t
integration areasR1 andR2 are taken symmetric with respec
to the origin. We then easily get

^:~dN1!2:&p81^:~dN2!2:&p822^dN1dN2&p8

52
1

Sdi f f
E dV

2p E
R1

dxW uV̄1~xW ,V!u2, ~37a!

52^N1&p8 , ~37b!

which implies^(dN2)2&p850, as follows from Eq.~29!. A
more rigorous approach to the issue concerning the fi
resolution of the system is given in Appendix B, where w
derive an approximate solution of the propagation equati
which include the finite pump dimensions in limit~24!. It is
shown that the widths of the far-field correlation peaks
indeed on the order ofxdi f f5(l f /2p)dq0, the resolution
length determined by the pump beam waistw0.

In the near-field planep ~at z5 l c), using Eqs.~14! and
~4! we obtain the expressions

G j j
(p)~xW ,xW8,V!5E dqW

~2p!2
e2 iqW •(xW2xW8)uVj~qW ,V!u2 ~ j 51,2!,

~38a!

G12
(p)~xW ,xW8,V!5E dqW

~2p!2
eiqW •(xW2xW8)

3U1~qW ,V!V2~2qW ,2V!, ~38b!

which depend only on the offset between the two pointsxW

2xW8, as a consequence of the invariance of the system w
respect to translations in the transverse plane which follo
from the PWPA. Provided that the typical scale of variati
of the function appearing under the integrals in Eqs.~38a!
and ~38b! is q0, we expect that these correlations are loc
ized in a region of size

xcoh[1/q0'Al c / k̄, ~39!

a quantity that can be identified with the transverse coh
ence length of the down-converted fields. This finite corre
tion length comes from the spread out of the generated p
tons due to diffraction, which increases proportionally to t
square root of the propagation distance; we can there
expect that the detection areas must be larger than this
herence area in order to measure good correlations in
near field.

We incidentally note that the cross-correlation functi
G12 displays a localized peak, which in the near field is
cated atxW85xW @Eq. ~38b!#, while in the far field it is located
at xW852xW @Eq. ~35b!#. The xW↔xW8 correlation in the near
2-8
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field reflects the entanglement in positions of the twin ph
tons, while thexW↔2xW8 correlation in the far field come
from their entanglement in momentum.

For what concerns the near field, let us consider more
general what happens in a generic plane of coordinatez close
to the crystal output face. As is shown schematically in F
4, we consider a measurement in which the signal and
idler fields are separated with a polarizing beam spli
placed beyond the crystal. The two lensesL andL8 put in the
signal and idler arms perform the imaging of planez onto
two distinct detection planes~note that we have here tw
2 f -2 f lens systems, while in the case of the far-field me
surement considered previously we had a singlef -f system!.
The S-I photons are collected by means of two square p
detectorsR1 andR2, centered at positionsxW1 andxW2, respec-
tively. The propagation from the crystal exit facez5 l c to the
detection planes can be described by a Fresnel transfo
tion of form ~21a! with the kernel

h~xW ,xW8!5
2 i

l~z2 l c!
expS 2 i

l~z2 l c!
uxW2xW8u2D , ~40!

where inessential phase factors due to the presence o
lenses have been omitted. By using this transformation in
Eqs.~34a! and~34b! we can calculate explicitly each term o
the rhs of Eq.~29!. By performing explicitly the integration
over the square pixel areas in Eq.~33!, we obtain

^:~dNj !
2:&z5TdE dqW E dqW 8H11~qW ,qW 8!

3E dV

2p
uVj~qW ,V!u2uVj~qW 8,V!u2

~ j 51,2!, ~41a!

^dN1dN2&z5TdE dqW E dqW 8H12~qW ,qW 8!E dV

2p
Ū1~qW ,V!

3V̄2~2qW ,2V!Ū1* ~qW 8,V!V̄2* ~2qW 8,2V!,

~41b!

^N1&z52Tdd2E dqW

~2p!2E dV

2p
uVj~qW ,V!u2, ~41c!

where the functionsHi j depend on the square pixel sized
and on their relative positions through the relations

H11~qW ,qW 8!5~d/2p!4 sinc2F ~qx2qx8!d

2 G sinc2F ~qy2qy8!d

2 G ,
~42a!

H12~qW ,qW 8!5expS 2 i
l~z2 l c!

2p
~q22q82!

1 i ~qW 2qW 8!•~xW12xW2! D H11~qW ,qW 8!. ~42b!
02380
-

in

.
e
r

-

el

a-

the
e

We first note that if the detection areas are reduced w
below the coherence areaxcoh

2 , the fluctuations ofN2 ap-
proach shot noise. Indeed, in the limitd!xcoh we can re-
placeH11(qW ,qW 8) with H11(qW ,qW )5d4/(2p)4 in Eqs.~41a! and
~41b!, from which it can be verified that the correlation term
scales asd4/xcoh

4 while the shot-noise contribution scale a
d2/xcoh

2 ~to evaluate this scaling it should be noted that fo

fixed V, the area inqW space where the gain functions are n
negligible is on the order ofq0

251/xcoh
2 ). On the other hand

if the detection areas are large enough with respect toxcoh
2 ,

the substitutions

Hi j ~qW ,qW 8!→ d2

~2p!2
d~qW 2qW 8! ~43!

can be used for evaluating both Eq.~41a! and Eq.~41b!; this
leads to vanishing fluctuations in the measurement ofN2 as
for the far-field case@again, unitarity relations~17! must be
used in order to obtain this result#. However, the condition
large enough is more stringent for cross correlation than
self-correlation. Let us first consider the casez5 l c and xW1

5xW2. The function appearing under the integral in Eq.~41a!
is always positive. By contrast, the function appearing un
the integral in Eq.~41b! is an oscillating function, which
becomes positive only for an infinite pixel size, when lim
~43! is strictly achieved. This feature tends to low
^dN1dN2&z with respect tô :(dN1)2:&z and^:(dN2)2:&z . As
a consequence of this behavior the fluctuations ofN2 will
therefore exceed shot noise, as it can be easily inferred f
expression~29!. As a matter of fact, as we shall see in Se
VI C, xW15xW2 andz5 l c are not the better choices to minimiz
the fluctuations ofN2 , and special care in the positioning o
the detectors is necessary in order to compensate both
effect of diffraction and the spatial walk-off between the S
fields, which are included by the phase of the functi
U1(qW ,V)V2(2qW ,2V).

Finally we note that if the losses of the detection proc
are taken into account, the ideal result^(dN2)2&50 must be
replaced with

^~dN2!2&5h~12h!^N1&, ~44!

h denoting the finite quantum efficiency of the detectors.

VI. NUMERICAL RESULTS

We now present the results obtained from the numer
model that includes the effects of the finite pump. The qu
tum averages in which we are interested~i.e., mean photon
numbers and photon-number correlations! are evaluated
through a stochastic method based on the Wigner repre
tation. With respect to other representations in phase sp
the Wigner representation presents the advantage tha
c-number stochastic equations equivalent to the equations
the field operators~2! do not contain Langevin noise term
~because of linearity and the absence of dissipation! and are
therefore identical to the classical propagation equations~7!.
The statistical character of the quantum fields is theref
2-9
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BRAMBILLA et al. PHYSICAL REVIEW A 69, 023802 ~2004!
wholly contained in the stochastic input field~see, e.g., Ref.
@28# for more detailed discussion!. We therefore proceed a
follows:

~1! We generate the input field with the appropriate pha
space probability distribution, which is a Gaussian wh
noise with zero mean, corresponding to the vacuum stat
the Wigner representation@29#.

~2! We perform the numerical integration of Eqs.~7!. We
use a split-step algorithm@30# which integrates separatel
the terms describing linear propagation and the term desc
ing the wave-mixing process: the former are integrated
Fourier space, the latter in real space.

~3! The obtained output fields are used to evaluate
correlation functions of interest. The procedure must be r
erated a sufficiently large number of times, so that the s
chastic averages performed become good approximation
the corresponding quantum expectation values. Furtherm
some corrections are usually necessary in order to con
them to the desired operator ordering~the Wigner represen
tation yields quantum expectation values of symmetrized
erator products!.

A. Far-field correlation in a type-I crystal at degeneracy

We first focus our attention on far-field correlations th
can be observed in a type-I crystal with emission close
degeneracy~the case illustrated in Fig. 3!. Since there is no
spatial and temporal walk-off between the signal and
idler modes, the most significant parameters in play are

spatial bandwidthq05Ak̄/ l c and the the ring radiusqR

5Ak̄D0, which are determined by the crystal length and
collinear phase-mismatch parameter@see Eqs. ~20! and
~26b!#. To a large extent, the analysis that we have perform
does not depend on the particular type-I crystal conside
We shall, however, refer to the specific case of LB
(LiB3O5: lithium triborate! set in the type-I configuration
described, e.g., in Refs.@25,26#. The pump field operates a
l05532 nm and propagates in theXY crystal plane forming
an angle with theX axis close to 11°, for which collinea
phase matching at degeneracy is achieved. In order to ev
ate the characteristic bandwidths and walk-off parame
given by Eq.~20!, we have used the Sellmeier dispersi
relation coefficients, which can be found in Ref.@23#. Con-
sidering a crystal length of 5 mm, the coherence time
tcoh5V0

21'0.01 ps. Assuming the pump pulse has a du
tion of about 1.5 ps, as in the experiment described in R
@26#, the ratiodv0 /V0 is as small as 1022. The analytical
results obtained within the plane-wave and cw pump
proximation are therefore expected to provide good insi
as long as the ratiodq0 /q0 remains small compared to unity
The temporal/spatial walk-off between the signal and
pump field is negligible unless the pump pulse time/be
waist is exceedingly small, a situation we do not consid
since it is too far from the ideal plane-wave pump limit~it
would prevent the observation of any spatial quantum co
lation effects!.

Figure 5 displays the intensity distribution obtained n
merically from a single integration of the propagation equ
tions, for increasing values of the pump beam spatial ba
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width dq052/w0, both in the near-field and in the far-fiel
planes. In the near field, the intensity follows the Gauss
profile of the pump and displays a noisy spot pattern wit
characteristic wavelengthp/qR . In the far field, the inten-
sity peaks~white spots in the figures! always appear in sym
metrical pairs as in the plane-wave pump case illustrated
Fig. 3~b!. However, these become broader and broader as
pump beam waistw0 beam is reduced. Their size in th
observation planep8 is on the order of the resolution lengt
imposed by the finite transverse size of the pump be
waist, i.e., xdi f f5l f /2pdq0. The following quantitative
evaluations of the amount of correlation include
consider only one transverse dimension in space, s
a full two-dimensional ~2D! calculation ~two transverse
dimensions1time! would have required an exceedingly lon
CPU calculation time for our computer.

Some insight can be gained by looking at the n.o. phot
number correlation̂ :dN(xW )dN(xW8):&p8 between two pixels
centered atxW andxW8, defined by an expression similar to E
~30! which refers to the type-II phase-matching configu
tion. The vectorsxW and xW8 denote here the positions of th
two pixel detectors in the transverse plane~typically two
pixels of a CCD camera!, their size being determined in th
simulation by the spatial step of the numerical grid. In t
degenerate case considered here the indicesi , j are dropped
since the signal and idler fields are not distinguishable. In
gration in time is performed over an intervalTd which is
taken larger than the pump pulse time,t051.5 ps, so that all
the down-converted photons generated by a single pu

FIG. 5. Near-field~left! and far-field~right! patterns obtained for
dq0 /q050.05 ~corresponding to a pump beam waistw05920 mm
in the LBO case! ~a!, dq0 /q050.1 (w05460 mm) ~b!, and
dq0 /q050.3 (w05150 mm) ~c!, spl c54 andt051.5 ps.
2-10
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FIG. 6. Far-field correlations:̂:dN(xW )dN(xW8):&p8 is plotted as a function ofx, for increasing values of the ratiodq0 /q0. In ~a! the mean
photon-number distribution profile is also shown~dotted line!. x853.6x0 is kept fixed in the region of maximum gain. The other paramet
are the same as in Fig. 5.
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pulse are collected by the two detectors. Its 1D~one trans-
verse dimension1time! numerical evaluation is plotted in
Fig. 6 as a function ofx, keeping x8 fixed at x8
5(lf/2p)qR , where the gain is maximum, and for differe
values of the ratiodq0 /q0. Thex coordinate is normalized to
x05l f /2pq0, the spatial scale of the photon-number dist
bution in the far-field plane. According to these simulatio
the widths of the two peaks are on the order ofxdi f f , the
resolution length imposed by the pump beam transverse
mensions. The correlation peak atx52x8, left in the plots
of Fig. 6, is always higher than the correlation peak on
right atx5x8. In a similar way as was shown in Sec. V@see
Eqs. ~29! and ~37!#, this particular behavior of the n.o. co
relation function indicates the possibility that the fluctuatio
of N25N1(xW )2N2(xW8) vanish when measured from tw
symmetrical pixels~i.e., taking xW52xW8). Indeed, for two
disconnected pixels we have

^~dN2!2&5^N1&1^:@dN~xW !#2:&1^:@dN~xW8!#2:&

22^dN~xW !dN~xW8!&, ~45!

where ^N1&[^N(xW )1N(xW8)& represents the shot noise fo
N2 ; therefore, sincê (dN2)2& is always a non-negative
quantity, the following inequality holds:

2^dN~xW !dN~xW8!&2^:@dN~xW !#2:&2^:@dN~xW8!#2:&<^N1&.
~46!

In particular, when the equality sign holds in Eq.~46!, the
maximum amount of correlation between pointsxW andxW8 is
achieved, implying thus a complete suppression of the n
of N2 .
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However, the amount of noise inN2 depends on the ac
tual size of the detectors used to probe the correlation.
have evaluated numerically the variance ofN2 for two sym-
metric detection areas, by varying the size of the detector
could be obtained in practice by grouping several pixels o
CCD. The results are shown in Fig. 7, where the differe
lines correspond to different values of the ratiodq0 /q0, that
is, to different values of the pump beam waist. Fluctuatio
are well below shot noise when the detector sized is larger
thanxdi f f , that is, ford/x0.dq0 /q0, which in turn implies
that the detection size must be larger than the width of
correlation peaks. These simulations show that the locali
character of the correlation predicted by the plane-wa
pump theory is well preserved as long as the pump be
waist is not too small. Only in the worst case consider
with dq0 /q050.5, the noise reduction facto
^(N2)2&p8 /^N1&p8 is never close to zero unless the dete

FIG. 7. Far-field correlation in type I:̂(dN2)2&p8 /^N1&p8 is
plotted as a function of the detector size for different values
dq0 /q0. The other parameters are the same as in the Fig. 6.
2-11
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BRAMBILLA et al. PHYSICAL REVIEW A 69, 023802 ~2004!
tors cover the whole width of the ring pattern. It should
noted that a further increase of the ratiodq0 /q0 would lead
to single-mode emission: the inverse of this ratio provid
indeed an estimation of the number of spatial modes that
efficiently amplified when the field is observed at a fix
temporal frequency.

B. Far-field correlation in type-II crystals

For the case of a type-II phase-matching configurati
we shall consider explicitly the system described in R
@26#: a 1.5-ps high-intensity laser pulse is injected in
4-mm-long beta barium borate~BBO! crystal cut for type-II
phase matching. In the example we consider the pum
oriented at an angle close to 48.2° with respect to the cry
axis and PDC is observed around the degenerate wavele
l15l25704 nm with a 10-nm interference filter. For th
chosen parameters, the radii of the two ringsqR vanish,
which is the situation illustrated in Fig. 2~c!. As for the type-I
configuration, we investigated the momentum correlat
that can be observed in the far-field planep8 by considering
two symmetrical detection areas. The variance ofN2 nor-
malized to shot noise is plotted in Fig. 8 as a function of
detector sized and for different values of the pump bea
waist. The result is similar to that obtained for the type
crystal configuration illustrated in Fig. 7: fluctuations a
well below shot noise only ifd is larger than the characte
istic resolution length of the systemxdi f f5l f /2pdq0. We
note that the number of temporal modes that are amplified
the crystal is much lower than in the degenerate type-I c
figuration, since in this case temporal walk-off between
signal and idler fields reduces drastically the emission ba
width V0. Indeed, for the picosecond pump pulse we co
sidered heredv0 /V0 is in the order of the unity for the
type-II configuration, against the 0.02 value found for t
type-I LBO crystal at degeneracy, for which temporal wa
off is not present. The numerical simulations show that t
feature of type-II phase matching does not affect spatial c
relations, but simply lowers the number of generated pho
pairs per pulse.

FIG. 8. Far-field correlation: the ratiô(dN2)2&p8 /^N1&p8 is
plotted as a function of the detector sized for increasing value of
the ratio dq0 /q0. The parametric gain isspl c54. The negative
value of the collinear phase mismatch,D0l c52qC

2 /q0
25274.4, is

such that the radii of the ringsqR vanish.
02380
s
re

,
f.

is
al
gth

n

e

I

y
-

e
d-
-

-
s
r-
n

C. Near-field correlation in type-II crystals

A main advantage of the type-II configuration lies in th
fact that the signal and idler fields have different polariz
tions and can therefore be manipulated more easily. In
ticular, it is possible to measure their mutual correlation
the near field after they have been physically separated
polarizing beam splitter, as shown schematically in Fig.
The lensesL andL8 shown in the figure simply perform th
2 f -2 f imaging of the ‘‘near-field plane’’p onto the two
detection planes. For the moment, we only assume that p
p is located at some coordinatez inside the crystal. The S-
field self- and cross-correlation functions, which in th
plane-wave pump limit have expressions~38a! and ~38b!,
display pronounced peaks forxW85xW . In particular, the cross-
correlation peak ofG12(xW ,xW8,V) describes the position en
tanglement of the S1I photons, which are generated in pai
in the same region of the crystal. The width of the peaks
on the order of the coherence lengthxcoh51/q0 defined in
Eq. ~39!. It reflects the spread out of the generated phot
due to diffraction, which increases proportionally to th
square root of the propagation distance. In addition, depe
ing on the phase-matching conditions, twin photons can
emitted noncollinearly with an aperture angle on the orde
aR52qR / k̄, qR being the radius of the rings in Fourier spa
given by Eq.~26!. This introduces a further indeterminacy o
the order ofaRl c/25qR /q0xcoh in the relative positions of
the twin photons measured in the near field. We expect th
fore that the two macroscopic fields display identical fluctu
tions when observed from the same region of the near-fi
plane, provided that the detection areasR1 andR2 are larger
than the indeterminacy introduced by these propagation
fects. However, for crystal lengths on the order of a fe
millimeters this indeterminacy can be as large as several
to hundreds of micrometers, so that a substantial portion
the two beams must be intercepted in order to measure
nificant correlation in the quantum domain. We shall see w
a specific example that this difficulty can be at least partia
overcome.

The role of spatial walk-off is more subtle to determin
As pointed out in Ref.@31#, the Poynting vectors of the
phase-matched modes, which determine the photon fluxe
the signal and idler beams, generate two cones that have
same axis inside the crystal. To verify this point explicit
we consider the Poynting vectors associated with two p
ticular modes of the signal and idler fields atV50 with
transverse wave vectorsqW 1 and qW 2. Within the paraxial ap-
proximation their directions are determined by the~two-
dimensional! angles

aW 15
qW 1

k1
, aW 25

qW 2

k2
1rW 2 , ~47!

where rW 2[(0,2r2) indicates the walk-off direction of the
idler field ~the minus sign is due to the fact that in the chos
reference frame the walk-off is oriented opposite to they
axis,r0 andr2 being assumed to be positive!. For the modes
propagating along the axis of the signal and idler cones,
2-12
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have qW 15(0,2qC) and qW 25(0,qC) with qC5 1
2 k̄r2, from

which we see that the corresponding Poynting vectors

collinear withaW 15aW 25(0,2k2 /(k11k2)r2). As a result, if
the near field is measured directly on the crystal output f
z5 l c , walk-off does not contribute to the indeterminacy
the relative position of the twin photons. It should b
stressed, however, that free propagation beyond the cr
occurs at angles which are simply proportional to the tra
verse wave vector of the phase-matched modes, since in
space the Poynting vector and thek-vector directions again
coincide. Outside the crystal, the signal and idler emiss
cones are therefore oriented along different directions w
an aperture angleaC52qR /k(v)5 k̄/k(v)r2, as illustrated
schematically in Fig. 1~a!, and give rise to separate rings
the far field (k(v)52p/l152p/l2 denote here the wav
number of the S-I fields in free space at the carrier frequ
cies!. In the simulation illustrated in Fig. 9, we consider th
type-II BBO crystal in the same conditions described in S
VI B. The near-field coherence length isxcoh516.6mm and
qR50. The plot displays the noise reduction fact
^(N2)2&p /^N1&p , evaluated numerically as a function o
the 1D detector sized. If the near-field observation planep
coincides with the output face of the crystal atz5 l c ~white
circle!, we see that the fluctuations are significantly reduc
only when d is about 15 times larger thanxcoh . The im-
proved result~black squares! has been obtained by imagin
onto the detection planes a plane inside the crystal atz5 l c
2Dz rather than the crystal output face. Furthermore,
arrays of pixel detectors in the signal and idler arms
shifted with respect to each other by a distanceDy in the
transverse direction of walk-off. Notice that this is a 1
simulation, and the quantitiesDy andDz correspond to the
quantitiesxW12xW2 and l c2z, respectively, which appears i
definition ~42b! of the functionH12(qW ,qW 8). Dz and Dy are

FIG. 9. Near-field correlation: the ratiô(dN2)2&p /^N1&p is
plotted as a function of the detector size. The parameters of
pulsed Gaussian pump arew05332 mm (dq0 /q050.1) and t0

51.5 ps (dv0 /V051.14); the gain isspl c53 and qR50. The
simulations performed applying diffraction and walk-off compen
tion ~squares! are well below the one performed without optimiz
tion ~white triangle!. The dashed line corresponds to the analyti
solution obtained in the PWPA, given by Eqs.~29! and ~41!.
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chosen in order to minimize the dependence onqW andqW 8 of
the phase of the integrand in Eq.~41b!, maximizing in this
way the photon-number cross correlation^dN1dN2&. This is
achieved by taking

Dzopt5
tanhspl c

2spl c

n11n2

2n1n2
l c , ~48a!

Dyopt5
tanhspl c

2spl c
r2l c . ~48b!

Indeed, with these values ofDy andDz the phase factor of
the functionH12(qW ,qW 8) defined by Eq.~42b! nearly cancels
the phase of the gain function product appearing in the rh
Eq. ~41b!, as can be verified by using the approximate e
pression

arg@U1~qW ,V!V2~2qW ,2V!U1* ~qW 8,V!V2* ~2qW 8,2V!#

'
tanhspl c

2spl c
@D~qW ,V!2D~qW 8,V!# l c , ~49a!

52
tanhspl c

2spl c
Fr2~qW y2qW y8!1

q22q82

q0
G , ~49b!

which holds in the high-gain region of the spatial frequen
plane. These shifts of the detection S-I planes are neces
in order to minimize the effects of both diffraction and sp
tial walk-off.

The plot of Fig. 10 displays the variance ofN2 normal-
ized to shot noise in the (Dz,Dy) plane, as calculated from
Eqs. ~41!. In this example,d is only twice the coherence
length, xcoh516.6mm, while Dyopt547.5mm and Dzopt
5407 mm ~with spl c53). The fluctuations are well abov
shot noise everywhere except in the narrow diagonal reg
around the point (Dzopt ,Dyopt), where^(dN2)2&p /^N1&p

50.3. Outside this region, the self-correlation becom

e

-

l

FIG. 10. Near-field correlation: contour plot of the rat
^(dN2)2&p /^N1&p in the (Dz,Dy) plane calculated according t
the PWPA theory. The minimum in the center corresponds to
values given by Eqs.~48!.
2-13
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BRAMBILLA et al. PHYSICAL REVIEW A 69, 023802 ~2004!
much larger than the cross correlation and the variance
N2 rapidly exceeds the shot-noise level. This means that
such small detectors a highly precise imaging of the n
field determined by Eqs.~48! is therefore necessary in orde
to observe some noise reduction effect.

Although the previous results rely on a detailed desc
tion of the relative phases of the signal and idler fields,
can give them a more intuitive explanation based on
particle picture.

~1! In the low-gain regime (spl c!1), photon pairs are
generated uniformly along the crystal. In this case the cho
Dz' l c/2 lowers the effect of diffraction and noncollinea
propagation, since the mean propagation distance that ph
pairs must undergo to reach the imaging planep from the
point in which they are created is minimized. The fac
depending on the refractive indices takes into account
photons propagate in a dense medium rather than in
space.

~2! On the other hand, the fields imaged from a gene
plane inside the crystal lying at distanceDz from the output
face can be obtained by a virtual free space back-propaga
from planez5 l c to planez5 l c2Dz. As already mentioned
free space propagation leads to an angular divergence o
signal and idler beams with a mean aperture angle equa
aC'r2 along the walk-off direction. The signal and idle
photons are therefore pulled apart a distanceDy5aCDz
'r2Dz when observed in planez5 l c2Dz. In order to com-
pensate this effect the two detection areas must be sepa
by the same distance along the they axis. This explains why
the value ofDy for which the fluctuations are minimized i
a given imaging plane is proportional toDz, as appears from
the cigar shaped region of low fluctuations along the dia
nal direction illustrated in the contour plot of Fig. 10.
particular, forDz5Dzopt walk-off is compensated by takin
Dy5aCDzopt5r2l c/2 and we obtain thereby the shifts give
by Eqs.~48a! and ~48b! for the limit spl c!1.

~3! The factor depending on the gain parameter in E
~48a!, which decreases asspl c increases, can be understoo
by noting that in a high-gain regime most of the photon pa
are generated in the last part of the crystal, because
cascading effect. Hence in order to minimize the propaga
distance from the point where they are created to the p
p, this plane should be taken closer and closer to the cry
exit face as the gain is increased.

Thanks to this procedure, the noise inN2 is considerably
lowered with respect to measurements performed at plaz
5 l c with aligned detection areas~i.e., with Dz5Dy50).
Although values~48a! and~48b! have been evaluated withi
the plane-wave pump approximation, the numerical simu
tions demonstrate that the procedure works well even w
the pump has a finite size. It should also be emphasized
both shifts~48a! and~48b! proved to be equally necessary
order to obtain this improvement.

VII. CONCLUSIONS

The results of this paper demonstrate that PDC is abl
display spatial correlation effects at the level of quant
fluctuations even in a regime of high gain, i.e., when
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down-converted photons form macroscopic fields. The qu
tum origin of the S-I correlations, which lie in the positio
and momentum entanglement of the twin photons build
up the two beams, can be best demonstrated in a typ
phase-matching configuration where both near-field and
field measurements can be implemented. We showed num
cally that spatial far-field correlations of quantum origin a
observable when the pump beam waist is in the millime
range and the detection areas are larger than the resol
area of the system. Near-field correlations seem more d
cult to observe experimentally since propagation tends
destroy the position entanglement of the generated pho
pairs. We proposed a detection scheme that allows to o
mize their measurement by compensating the detrimenta
fect of diffraction. These results are strongly related to
recent paper of ours@19#, which discusses the topic of en
tangled imaging and extends this technique to the ma
scopic domain. The simultaneous presence of spatial
tanglement in both the near and the far field plays a cru
role in the analysis of Ref.@19#. In this paper we provide a
more quantitative analysis of the level of quantum corre
tion which is present in the far field on the one hand and
the near field on the other.
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APPENDIX A: INPUT-OUTPUT FORMALISM

The finite pump pulse bandwidth in space and in tim
generates coupling between all modes of the S-I field, d
riorating thereby the perfect correlation between the (qW ,V)1

and (2qW ,2V)2 modes. In this section we generalize th
input-output formalism of the PWPA to the finite pump cas
Input-output transformations~14! are replaced by the mor
general linear transformation:

a1~z,qW ,V!5E dqW 8E dV8@U1~z;qW ,V;qW 8V8!

3a1
in~qW 1qW 8,V1V8!1V1~z;qW ,V;qW 8,V8!

3a2
in†~2qW 1qW 8,2V1V8!#, ~A1a!

a2~z,qW ,V!5E dqW 8E dV8@V2~z;qW ,V;qW 8,V8!

3a1
in†~2qW 1qW 8,2V1V8!

1U2~z;qW ,V;qW 8V8!a2
in~qW 1qW 8,V1V8!#,

~A1b!

which express the fields in a generic planez inside the crystal
in the form of a convolution integral with the input fiel
2-14
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Fourier modesaj
in(qW ,V)5aj (z50,qW ,V), j 51,2. From Eqs.

~7!, we can obtain a fully equivalent set of equations for t
propagation kernels:

]U1~z;qW ,V;qW 8,V8!

]z

5 id1~qW ,V!U1~z;qW ,V;qW 8,V8!1se2 iD0z

3E dqW 9

2p E dV9

A2p
A0~z,qW 9,V9!V2* ~z;qW 92qW ,V9

2V;qW 81qW 9,V81V9!, ~A2a!

]V2~z;qW ,V,qW 8,V8!

]z

5 id2~qW ,V!V2~z;qW ,V,qW 8,V8!1se2 iD0z

3E dqW 9

2p E dV9

A2p
A0~z,qW 9,V9!

3U1* ~z;qW 92qW ,V92V;qW 81qW 9,V81V9!. ~A2b!

The equations for the remaining kernelsV1 and U2 can be
obtained by interchanging indices 1 and 2, and the follow
initial conditions must be fulfilled:

Uj~z50;qW ,V;qW 8,V8!5d~qW 8!d~V8!, ~A3a!

Vj~z50;qW ,V;qW 8,V8!50 ~ j 51,2!. ~A3b!

It can be shown that the solutions of this set of equati
satisfy the relations

E dqW 9E dV9@U1~z;qW ,V;qW 92qW ,V92V!

3U1* ~z;qW ,V;qW 92qW 8,V92V8!2V1~z;qW ,V;qW 9

1qW ,V91V!V1* ~z;qW ,V;qW 91qW 8,V91V8!#

5d~qW 82qW !d~V2V8!, ~A4a!

E dqW 9E dV9U1~z;qW ,V;qW 92qW ,V92V!

3V2~z;qW ,V;qW 91qW 8,V91V8!

5E dqW 9E dV9V1~z;qW ,V;qW 91qW ,V91V!

3U2~z;qW ,V;qW 92qW 8,V92V8!, ~A4b!

which generalize the unitarity conditions~17! beyond the
case of plane wave and cw pump.

The normally ordered photon-number correlation funct
in a generic transverse planez can be written as
02380
e
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Gi j
(z)~xW ,t,xW8,t8!

5^ai
†~z,xW ,t !aj

†~z,xW8,t8!aj~z,xW8,t8!ai~z,xW ,t !&

2^ai
†~z,xW ,t !ai~z,xW ,t !&^aj

†~z,xW8,t8!aj~z,xW8,t8!& ~A5a!

5u^ai
†~z,xW ,t !aj~z,xW8,t8!&u21u^ai~z,xW ,t !aj~z,xW8,t8!&u2.

~A5b!

In the last identity we made use of the general property ch
acterizing fields with Gaussian statistics, which allows
write the fourth-order field correlations as a sum of the pro
ucts of the second-order correlation functions~see, e.g., Ref.
@32#!. We now consider explicitly the transformations rela
ing the S-I fields in the planes where detection is perform
to those on the crystal output face,aj

out(qW ,t):

aj~z,xW ,t !5E dqW hj~xW ,qW !aj
out~qW ,t !

5E dxW8hj~xW ,xW8!aj
out~xW8,t ! ~ j 51,2!, ~A6!

with

hj~xW ,qW ![E dxW8

2p
eiqW •xW8hj~xW ,xW8!. ~A7!

Propagation outside the crystal can include several opt
devices, such as lenses and polarizing beam splitters, and
take different paths for the signal and idler beams~see
scheme of Fig. 4!. We shall assume, however, that it occu
without losses and this latter condition implies that t
Fresnel kernelshj (xW ,qW ) satisfy the relation

E dxWhj* ~xW ,qW !hj~xW ,qW 8!5d~qW 2qW 8! ~ j 51,2!, ~A8!

which can be obtained by requiring that the commutat
rules ~4! are preserved in the transformation. When the
tection timeTd is much longer than the coherence timeV0

21,
the photon-number self- and cross-correlations measu
over two detection areasR1 andR2, as defined by Eq.~30!,
can be written as

^:~dN1!2:&z5E dVE dV8E
R1

dxWE
R1

dxW8

3U E dqW E dqW 8h1* ~xW ,qW !h1~xW8,qW 8!

3^a1
out†~qW ,V!a1

out~qW 8,V8!&U2

, ~A9a!
2-15
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^dN1dN2&z5E dVE dV8E
R1

dxWE
R2

dxW8

3U E dqW E dqW 8h1~xW ,qW !h2~xW8,qW 8!

3^a1
out~qW ,V!a2

out~qW 8,V8!&U2

, ~A9b!

where we used relation~A6! in order to express the secon
order field correlations appearing in Eqs.~A5b! in terms of
the output field operatorsaj

out(qW ,V), j 51,2. The correlation
functions of the output fields can be expressed in terms of
propagation kernels defined by Eq.~A1a! evaluated at plane
z5 l c as

^a1
out†~qW ,V!a1

out~qW 8,V8!&

5E dxWE dtei (qW 2qW 8)•xW2 i (V2V)tV1* ~ l c ;qW ,V;xW ,t !

3V1~ l c ;qW 8,V8;xW ,t !, ~A10a!

^a1
out~qW ,V!a2

out~qW 8,V8!&

5E dxWE dtei (qW 1qW 8)•xW2 i (V1V)tU1~ l c ;qW ,V;xW ,t !

3V2~ l c ;qW 8,V8;xW ,t !, ~A10b!

^a1
out~qW ,V!a1

out~qW 8,V8!&5^a1
out†~qW ,V!a2

out~qW 8,V8!&50,
~A10c!

with

Uj~z;qW ,V;xW ,t !5E dqW

2pE dt

A2p
eiqW 8•xW2 iV8t

3Uj~z;qW ,V;qW 8,V8! ~ j 51,2!.

~A11!

A similar definition holds for the functionsVj (z;qW ,V;xW ,t),
j 51,2. In caseR1 and R2 intercept all the photons of th
signal and idler fields generated in the down-conversion p
cess, it can be shown that the variance ofN25N12N2 van-
ishes if condition~A8! is fulfilled ~i.e., if free propagation
occurs without losses!. However, in general such a resu
does not hold if the two detectors collect photons only fro
finite portions of the two beams.

APPENDIX B: APPROXIMATE SOLUTION IN THE
QUASISTATIONARY REGIME

In this appendix we derive an approximate analytical
lution of the propagation equations~7! assuming the spatia
and temporal frequency bandwidths of the pump are sm
but finite; more precisely we assume that conditions~24! are
satisfied.

It is useful to write the propagation equations in the r
02380
e

-

-

ll

-

erence frame comoving with the pump field envelope, wh
coordinates are related to the original laboratory coordina
through the linear transformationt85t2k08z, y85y1r0z.
In Fourier space this corresponds to multiplying the Four

components of the S-I field envelopes bye2 i (k08V1r0qy)z.
More precisely we consider the transformation

aj8~z,qW ,V!5expS i FD0

2
2k08V2r0qyGzDaj~z,qW ,V!

~ j 51,2!, ~B1!

where the constant phase factoreiD0/2z has been added in
order to eliminateeiD0z from the convolution term in Eqs
~A2!. Input-output transformations~A1a! and unitarity con-
ditions ~A4! still hold for the transformed kernels

U j8 ~z;qW ,V;qW 8,V8!

5expS i FD0

2
2k08V2r0qyGzDUj~z;qW ,V;qW 8,V8!, ~B2a!

V j8 ~z;qW ,V;qW 8,V8!

5expS i FD0

2
2k08V2r0qyGzDVj~z;qW ,V;qW 8,V8!

~ j 51,2!, ~B2b!

which satisfy the propagation equations

]U18~z;qW ,V;qW 8,V8!

]z

5 id18~qW ,V!U18~z;qW ,V;qW 8,V8!1E dqW 9

2p E dV9

A2p

3eid08(qW 9,V9)zA0~z50,qW 9,V9!

3V28* ~z;qW 92qW ,V92V;qW 81qW 9,V81V9!, ~B3a!

]V 28 ~z;qW ,V,qW 8,V8!

]z

5 id28~qW ,V!V82~z;qW ,V,qW 8,V8!1E dqW 9

2p E dV9

A2p

3eid08(qW 9,V9)zA0~z50,qW 9,V9!

3V18* ~z;qW 92qW ,V92V;qW 81qW 9,V81V9!. ~B3b!

The explicit form for the propagation of the pump field~9!
has been used and we defined the new detuning parame

d j8~qW ,V!5
D0

2
1d j~qW ,V!2r0qy2k08V ~ j 51,2!,

~B4a!
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d08~qW ,V!5
1

2
k09V

22
1

2k0
q2. ~B4b!

Remembering the hypothesis that the pump envelope Fo
transform at planez50 has the Gaussian form~11! with
dq0!q0 and dv0!V0, we can now apply the following
approximations.

~1! The phase term in the convolution integrals can
neglected, sinced08(qW ,V) l c is at most on the order o
max(dq0

2/q0
2,dv0

2/V0
2) in the region where the Fourier tran

form of the pump envelope is not negligible.
~2! We expect that the propagation kernels defined by

~A1a! are characterized by the slow variation scale (q0 ,V0)
in their unprimed arguments, while they are strongly pea
in the origin of the primed variable space (qW 8,V8), in which
they have a much faster variation scale. This assumptio
justified by the form of the solutions of Eqs.~B3! obtained in
the PWPA limit. As dq0 /q0→0 and dv0 /V0→0, the
primed propagation kernels satisfying initial conditions~A3!
take indeed the simple form:

Uj8~z;qW ,V;qW 8,V8!

5d~qW 8!d~V8!expS i FD0

2
2k08V2r0qyGzDU j~z;qW ,V!,

~B5a!

Vj8~z;qW ,V;qW 8,V8!

5d~qW 8!d~V8!expS i FD0

2
2k08V2r0qyGzDVj~z;qW ,V!,

~B5b!

where the gain functionsU j (z;qW ,V) and Vj (z;qW ,V) are
given by Eqs.~15!, with l c being replaced by thez coordi-
nate. This latter hypothesis allows us to neglect the dep
dence onqW 9 andV9 in the first argument of the kernels in th
convolution integrals at the rhs of Eqs.~B3a! and ~B3b!.
With these approximations, we obtain a system that can
solved analytically and which acquires its simplest fo
when written for the kernels Fourier transformed in th
primed arguments@see definition~A11!#:

]U18~qW ,V;xW ,t !

]z
5 id18~qW ,V!U18~qW ,V;xW ,t !1sA0~z50,xW ,t !

3V28* ~2qW ,2V;2xW ,2t !, ~B6a!

]V 28 ~qW ,V,xW ,t !

]z
5 id28~qW ,V!V28~qW ,V,xW ,t !1sA0~z50,xW ,t !

3U18* ~2qW ,2V;2xW ,2t !, ~B6b!

The solution of this system satisfying initial conditions~A3!,
which now read U j8(z50;qW ,V;xW ,t)51/(2p)3/2, V j8(z

50;qW ,V;xW ,t)50, (j 51,2), are
02380
ier

e

q.

d

is

n-

e

r

U 18 ~z;qW ,V;xW ,t !5expF i
d18~qW ,V!2d28~2qW ,2V!

2
zG

3U~z;qW ,V;xW ,t !,

V 18 ~z;qW ,V;xW ,t !5expF i
d18~qW ,V!2d28~2qW ,2V!

2
zG

3V~z;qW ,V;xW ,t !,

U28~z;qW ,V;xW ,t !5expF i
d28~qW ,V!2d18~2qW ,2V!

2
zG

3U~z;2qW ,2V;2xW ,2t !,

V28~z;qW ,V;xW ,t !5expF i
d28~qW ,V!2d18~2qW ,2V!

2
zG

3V~z;2qW ,2V;2xW ,2t !, ~B7!

with

U~z;qW ,V;xW ,t !5
1

~2p!3/2FcoshG~qW ,V,xW ,t !z

1 i
D~qW ,V!

2G~qW ,V,xW ,t !
sinhG~qW ,V,xW ,t !zG ,

~B8!

V~z;qW ,V;xW ,t !5
1

~2p!3/2

sA0~xW ,t !

G~qW ,V,xW ,t !
sinhG~qW ,V,xW ,t !z,

G~qW ,V;,xW ,t !5As2A0
2~xW ,t !2

D~qW ,V!2

4
, ~B9!

D~qW ,V!5d18~qW ,V!1d28~2qW ,2V!

5D01d1~qW ,V!1d2~2qW ,2V!. ~B10!

Clearly, asdq0 ,dv0→0 these function lose their depen
dence on the space-time coordinates (xW ,t) and we recover
the PWPA solution expressed by Eqs.~15! and ~16!. In the
more general case in which the ratiosdq0 /q0 and dq0 /q0
are small but finite, the self-correlation function~A10a! is
peaked atqW 85qW , while the cross-correlation function~A10b!

is peaked atqW 852qW , the width of both peaks being on th
order of dq0. This is more clearly seen by considering th
special limit in whichl c→0 and the gain parametersApl c
remains a finite quantity. In this case the effects of line
propagation, such as diffraction, dispersion and walk-off,
come negligible and the propagation kernels~B8! lose their
2-17
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dependence onqW andV @as can be inferred from the fact th
the characteristic bandwidths defined in Eq.~20! go to infin-
ity as l c→0]. The correlation functions~A10a! and ~A10b!
are then simply the Fourier transforms of sine and cos

hyperbolic functions ofsA0(xW ,t) l c , calculated inqW 2qW 8 and

in qW 1qW 8, respectively. We also verified that these appro
mate solutions look very similar in shape to those obtain
with the complete numerical model~see Fig. 6!, although for
the chosen crystal length of 4 mm, propagation effects are
from being negligible.

Considering the specific case of a far-field measurem
with the f -f lens system described in Sec. V, the Fres
kernels defined by Eq.~A6! take the form

h1~xW ,qW !5h2~xW ,qW !52
2p i

l f
dS qW 2

2p

l f
xW D ,

as can be verified by substituting expression~21b! into Eq.
~A7!. Equations~A9! reduce then to
.A

.

.

,

e-

,

,

D
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^:~dN1!2:&p85^:~dN2!2:&p8

5E dVE dV8E
Q1

dqW E
Q1

dqW 8U E dqW E dqW

3^a1
out†~qW ,V!a1

out~qW 8,V8!&U2

, ~B11a!

^dN1dN2&p85E dVE dV8E
Q1

dqW E
Q2

dqW 8U E dqW E dqW 8

3^a1
out~qW ,V!a2

out~qW 8,V8!&U2

, ~B11b!

where Q1 and Q2 indicate the regions in the spatial fre
quency plane corresponding to the two symmetrical de
tion areas R1 and R2 according to the mappingxW

→2p/l f xW . Knowing that^(dN2)2&→0 asR1 , R2→`, the
localization of the cross- and self-correlation functio
~A10a! and ~A10b! on a area on the order ofdq0

2, for qW 8
5qW and qW 852qW , respectively, guarantees that nearly co
plete noise reduction is achieved if the area of the two
tectors is large compared to the resolution area determ
by the pump beam waist, that is,Sdi f f5(l f /2p)2dq0
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