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Delayed rejection variational Monte Carlo
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An acceleration algorithm to address the problem of multiple time scales in variational Monte Carlo
simulations is presented. After a first attempted move has been rejected, the delayed rejection
algorithm attempts a second move with a smaller time step, so that even moves of the core electrons
can be accepted. Results on Be and Ne atoms as test cases are presented. Correlation time and both
average accepted displacement and acceptance ratio as a function of the distance from the nucleus
evidence the efficiency of the proposed algorithm in dealing with the multiple time scales problem.
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I. INTRODUCTION of VMC simulations. Although Monte Carlo methods scale
well with N, they show a poor scaling with the atomic num-
Variational Monte CarlqVMC) has become an impor- berZ; CPU time is estimated to scale wit?-> or 265,
tant technique in quantum chemistry. When analytical inte-  Analyzing the standard Monte Carlo algorithm, Bressa-
gration is not available, it allows the computation of expec-nini and ReynoldS showed that the optimal move size is a
tation values of an arbitrary trial wave functiomith no  trade-off between the best move size for electrons far from
restriction on its functional complexity. The trial wave func- the nucleudi.e., valence electronswhich needs to be large
tion can include explicit two-body and higher-order correla-since the accessible region of configuration space is very
tion terms, allowing a better description of many body inter-large, and the best move size for the electrons close to the
actions and thus higher accuracy. The optimization of thewucleus(i.e., core electrons These latter moves must be
variational parameters can be done by minimizing thesmall, since the relevant region of configuration space is
energy.~° the energy varianc®,® or the mean absolute de- quite limited, and also because the wave function changes
viation of the local energ}’ Nevertheless, the main problem rapidly near the nucleus, meaning that large moves would
of any stochastic method is the need of reducing the statistcause a high rejection rate.
cal uncertainty on the calculated quantities. For this reason Acceleration algorithms have been suggested to cope
large systems present a computational challenge: in particivith the multiple time scale problem. Belohoretal* pro-
lar, Monte Carlo, as all total energy methods, suffers fromposed the “split-tau” technique, that is, they used different
scaling problems: an increase of the size of the system givedgne scales for different shells, dividing the electrons into
rise to an exp|osi0n in the Computationa| COost, proportionaﬁhe”S on the basis of their distance from the nucleus. Trying
to (often) large powers of the system size. This large-powert0 assign a different time steand so a different time scale
polynomial scaling is surely preferable to the computationaf© different electrons does not work. Given a symmetric or
exponential dependency on the system size oftntisymmetric wave function, two identical particlésere
Nondeterministic-PolynomidNP) problems; nevertheless, it like-spin electronscan exchange positions without changing
prevents the treatment of many physically interesting largéhe probability of the configuration. Thus, assigning larger
systems. time steps to electrons starting out in the valence region at
Another drawback is that systems containing atoms othe beginning of the simulation would not accomplish the
large atomic numbe(Z) would require different time steps in goal, since ultimately such electrons exchange their positions
order to efficiently sample both the regions close and fatith inner electrons, with no energy penalty. Once this hap-
away from the nuclei: this problem is referred to as the mulPens, the electrons take inappropriate step sizes and detailed
tiple time scales problem. Core electrons require a Sma"eipalan_ce is no more satisfied. In formulating their split-tau
time step than valence electrons. This causes an intrinsk€chnique, Belohoreet a_l-lz had to assume that thel ex-
algorithmic inefficiency since the standard Metropolis algo-change between shells is negligible. However, Stal."®
rithm assigns the same time step to all the electrons. Thu&sults do not support this hypothesis, showing that it is true

sampling in the region close to the nucleus is the bottlenecRNY Ifotr very small time steps, that is, for very inefficient
simulations.

Umrigar® proposed the factorization of the transition
matrix in radial and angular parts. The overall move is large,
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increasing the acceptance probability. Seinal!®> showed mined by the time step. Once again, the use of a single time
that the addition of a simplified quadratic approximation tostep for all electrons implies a kind of negotiation between
the wave function to sample the electron displacement autoralence and core electrons.

matically reduces the step size of the core electrons defined

by the linear approximation, i.e., by the quantum force.

Mella et al® used a transition matrix in which the time step !ll. DELAYED REJECTION MONTE CARLO

dﬁp_ends”on tTﬁ actu?I IpofS![trllon ?ff t:lefizLectron: ta SL;'table Tuning the time step of the Metropolis algorithm is not
choice aflows the control of the eNect of the quantum force, easy task. As previously outlined, there is a trade-off be-

giarng}gé?ugrl]%usezn?hg?arag]; no;?i_gﬁr;aciﬁéBsreZizm_?]'t:{] een the time step and the acceptance ratio of the corre-
y W ’ partitioning P ' onding proposed move. Furthermore, if we move one elec-

. o . ! S

equwe}lent_subspaces, it is possible to choose mdepende@%n at a time(local moves, the “optimal” time step for each

samIE)lImg ?r:ntles for core a??hvalebnce electrtpns.d hmove depends on the distance of the electron from the
evertheless, none ot the above mentioned approacneg, o s the closer a particle is to the nuclécsre region,

is general. Some of these solutions are impossible to 9enefie smaller the time step should be
allze|_,| while others are very ?'mﬁu” Ef)hlmplemept.. | N The origin of our proposal is the simple observation that,
€re We propose a simpie aigorithm, €asy 1o implemen tsing the same time step, core-electron moves are rejected
compl_etely general and that allows to sensibly improve thEfnore than valence-electron moves. The previously proposed
sampling. acceleration techniques tried to prevent this rejection, the
delayed rejection algorithm, instead, uses this information
Il. OVERVIEW OF VMC and tries a second stage proposals to improve the sampling

Since very detailed descriptions of VMC are availableby the Metropolis and Langevin algorithms.

elsewheré® we only give a short resume. VMC allows to A. The delayed rejection strategy
satril ot ; 2
sample a distribution proportional #7(R), whereW(R) In a generalized Metropolis algorithm, one samples

is a trial wave function. From such a distribution expectationW(R):‘I, (R)2 by constructing a Markov chain. Given the
values of nondifferential operators can be obtained simply b¥:urrent pz)sition of the chain at theth step R(n'):R, a

. f‘P%(R)(A)(R)dR 1 N cgndidate m_oveRl durin_g a time stepr; is generated by a
O)y=—F—= N (Ry). (1)  given transition probabilityT;(R’—R;;7;). The proposed
J¥3(R)AR =1 move is accepted with probability
Writigiﬁerential operators can also be simply treated, by p— 7(R)Ty(Ri—R’, 1) .
’ ) S T(ROTIR —Ryi7)|
[W2(R) MdR N A so that detailed balance with respect#@), and thus sta-
(0)= ™ H(R) 232 O¥+(R)) @ tionarity, is preserved.
)= JP2(R)dR "N&=L V(R If the move is accepted, the simulation time is advanced

N ~_ and the chain position is update@"* V=R

The problem reduces to sample efficiently a distribution  gq far the updating mechanism of the Markov chain is
proportional tO‘P$(R)_- A set of walkers at positionB; is  jyst like the one used for a regular Metropolis algorithm. In
displaced to new positior; by moving each walker. In the  the delayed rejection algorithm the difference is in what hap-
standard Metropolis algorithm a step is generated by “boxpens upon rejection of the candidate move. In the Metropolis
sampling,” that is R=R’+ A, with A the step size anda  scheme, upon rejection the simulation time is advanced and
3N-dimensional vector of uniformly distributed random the current position is retaine®&"*=RM=R’. Although
numbersée[—0.5+0.5]. This move is followed by the remaining in the current state contributes to preserve the sta-
classical Metropolis accept/reject step, in whichtionary distribution through detailed balance, intuitively it
[W+(R)/¥(R")]? is compared to a uniformly distributed increases autocorrelation in the realized chain and thus re-
random number between zero and one. The move is acceptédces the efficiency of the resulting estimators. Substance is
only if the squared ratio of trial functions exceeds the ran-given to this intuition by a result stated, and proved for the
dom number, otherwise the old position is retained. This isase of a finite state space, by Pesk{ia;proof for general
one step of the Markov chain. Under very general conditionsstate spaces was given by Tiert@yGiven two Markov
this chain results in an asymptotic equilibrium distribution chains with stationary distributiomr, T,, and T, being the
proportional to\If%(R). corresponding transition matriceg; is more efficient than

The sampling can be improved using the Langevin samT, (in the sense of reducing the asymptotic variance of the
pling algorithm. This scheme is a generalization of the Me-resulting estimators and thus the autocorrelation time, for
tropolis sampling in which a Langevin equatidR=R’ any stochastic variablx) if
+D7rF(R')+x, containing drift and diffusionf[i.e., a , , ,
“quantum” force F(R’) and a white noisgy, a Gaussian Ti(R'=R)=To(R'=R) vV R#R’. @)
random variable with a mean value of zero, and a standard In other words, the higher the probability of moving
deviation D 7], is employed. The quantum force depends onaway from the current position, the better the efficiency. Fol-
the position, but the overall attempted move is still deterdowing this intuition, in the delayed rejection stratégypon
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rejection of a first stage candidate moRe, a second stage time step problem, a time step can now be chosen shorter
candidate movédR, is proposed by generating it from a dif- than the one previously used. In order to maintain the revers-
ferent transition probabilityT,(R’ —R,; 7). Now the tran- ibility condition and to preserve the stationary distribution,
sition probability T,(R’—R,;7,) is allowed to depend on the acceptance probability of the new candidate move must
the rejected value at the first stage. To cope with the multiplde adjusted as

m(Ry)T1(Ry—Ry;7)[1—-P1(Ry,R1) T2(Ry,— R 7) 5
'm(R")T1(R"=R1;7)(1—P1(R",R))T2(R' =Ry, 7)

Pz(R’,Rl,Rz)zmin 1

to preserve the detailed balance conditiorRjfis accepted, measure of efficiency. It is related to the time one needs to
we setR(""D=R,. Otherwise the delayed rejection processobtain decorrelated measures of the observable and the
can either be interrupted by settiRf""V=RM=R’, or  smaller it is, the more efficient is the algorithm. The autocor-
continued with higher stage proposals using an iterative forrelation time depends both on the sampling inefficiency of
mula for the acceptance probabilff/Since the acceptance the algorithm and on the trial wave function through the
probabilities preserve detailed balance separately at eadluctuations of the local energy. Thus, in order to make com-
stage, hybrid strategies can also be considered: upon rejeparisons with different sampling methods, one must use the
tion a coin is tossed and depending on the result the delayeshme trial wave function. In this work a simple Self Consis-
rejection process is either continued or interrupted. The seaent Field (SCH wave function multiplied by an electron-
ond attempted move reduces the overall probability of reelectron Jastrow factor was chosen. The Clementi and Roetti
maining in the current state. It can be proVthat an algo-  basis séf was employed for Be atom, while for Ne atom a
rithm with delayed rejection dominates, in the Peskun senselouble { (DZ) basis set was optimized. Simulations were
the corresponding standard algorithm. This is true for Meperformed with different time steps, trying to minimize the
tropolis as well as for Langevin algorithms. The autocorrela-energy autocorrelation time. The autocorrelation time is a
tion time for any stochastic variabk is reduced by adding “macroscopic” measuré of the simulation efficiency, it pro-
one or more delayed rejection steps. Taking different transivides information on long term, accumulated effects. To in-
tion probabilities corresponding, for example, to two differ- vestigate the problem of the multiple time scales, a “micro-
ent time stepsr; > 7, allows moving particles far from the scopic” analysis is more informative. The space around the
nucleus at the first stage and particles in the core at the segucleus was divided in spherical shells and the acceptance
ond stage. Both moves can either be lo@ale electron at a ratio and the mean accepted displacement in each shell was
time) or global (all electrons at ongeln a similar way the  estimated. First of all, the electron displacement was evalu-
delayed rejection strategy can be used to combine globalted for the standard Metropolis algorithm, in which the
(first stage with local moves(second stage again global move is accepted or rejected only when all electrons have
moves are less likely to be accepted, but faster to perforrioved to new positions. Since in the delayed rejection algo-
from a computational point of view. The usefulness of therithm each electron moves independently of the others, also
delayed rejection algorithm depends on whether the obtaineghe results obtained with a standard Metropolis algorithm,
reduction in variance compensated for the additional compugt moving one electron at a time, were examined. Then this
tational cost. analysis was repeated using the standard Langevin algo-
rithm, again moving all electrons at once and one electron at
a time.
The delayed rejection algorithm was implemented within
Our main goal, introducing the delayed rejection algo-the framework of both Metropolis and Langevin algorithms.
rithm in VMC is to improve the efficiency of the method, A comparison between the results obtained by our algorithm
allowing the electrons to move both near the core and faand the standard ones, both moving all electrons at once and
from it. So, as test cases we chose Be and Ne atoms tne electron at a time is now presented.
compare the effect of differe@ values. In particular Ne was Let us begin discussing the autocorrelation time of the
studied by Suret al,?! Mella et al,*® and Bressanini and local energy, the macroscopic measure of the efficiency of a
Reynoldst! so our results can be compared with those ofsampling algorithm. The correlation times for simulations
different acceleration algorithms. The efficiency is measuredising the different algorithms are reported in Table | for Be
by the asymptotic variance of the estimator of the quantity ofand in Table Il for Ne. The time steps are those that minimize
interest[typically the local energ¥e(R)], with respect to a the correlation time. For comparable correlation times the Ne
distribution 7(R) known up to a normalizing constant. Since time steps are shorter than for Be, the more compact is the
the estimator is the average of the sampled vakiealong  atomic core the shorter must be the move. Moving one elec-
the Markov chain, its asymptotic variance is the sum of thetron at a time allows longer time steps, due to the possibility
autocorrelations of; along such path. So, the autocorrela- of electrons to move independently, and is more efficient
tion time of the local energy can be considered a naturalhan moving all electrons at once, a well known fact. The

IV. RESULTS AND DISCUSSION
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TABLE I. Time to decorrelate moves for Be with various algorithmsn T T T T

hartree!, while correlation time is dimensionless. —— attempted moves |
= — — accepted: 14 ste
. . . -——— :cce:::ed: ;"“ s(m:)
Algorithm T T Correlation time
Metropolis 0.03 20
Metropolis: individual electron moves 0.1 15
Metropolis with delayed rejection 0.07 0.01 9
Langevin 0.07 8
Langevin: individual electron moves 0.1 7
Langevin with delayed rejection 0.1 0.03 5

Langevin sampling is more efficient than the Metropolis one
as a consequence of the effect of the quantum force on the
electron move. For single electron moves the best time ste;féG- 1. Number of attempted and accepted mdwekitrary scalgfor Ne as
. . . unction of the distance from the nucleus. The algorithm is delayed rejection

are eqL_JaI for Lapgev_ln ar_]d MetropO“S sampllng, b_Ut t_heLangevin with 7;=0.03 hartree! and 7,=0.007 hartree! moving one
Langevin correlation time is smaller. The delayed rejectionelectron at a time.
algorithm further on improves the efficiency both of Me-
tropolis and Langevin Monte Carlo, for Ne the correlation
time is halved. The first time step is more than twice theprobability at the second step within the delayed rejection
corresponding value in absence of delayed rejection, improvnethod. However, in this simulation the correlation time,
ing the sampling of the valence space. The time step for theeported in Table I, is higher than the one found when both
second move is one order of magnitude smaller than the firsiteps use Langevin sampling. This result evidences the inter-
one, so also the core space is efficiently sampled. The délay betweerT, andT, in Eq. (5) in determining the overall
crease of the second time step with respect to the first one Receptance: the Langevihy is lower than the Metropolis
larger for Ne than for Be, due to the presence of a mordl1, decreasing the probability of the second move to be
compact atomic core that requires shorter time steps t@ccepted.
sample the core region. The acceptance ratio and the mean accepted displace-

In the following microscopic analysis we will discuss ment as function of the distance from the nucleus for the
only the Ne case, as the results for Be and Ne are similar, btelayed rejection Metropolis algorithm are reported in Figs.
the effect of the delayed rejection algorithm is more eviden and 3. The average acceptance ratios for the two moves
for Ne. The number of attempted and accepted moves for theith 7;=0.07 hartreg" and 7,=0.005 hartreg" are, respec-
delayed rejection Langevin simulation with r;  tively, 50% and 66%. In the same figures the results for two
=0.03 hartree! and 7,=0.007 hartree! as function of the simulations with standard Metropolis algorithm moving one
distance from the nucleus are shown in Fig. 1. The attempteglectron at a time and time steps=0.07 hartree* and 7
move distribution at the first step obviously reproduces the=0.005 hartre€™, respectively, are also reported for com-
electron density of the Ne atom with its shell structure. Forparison. The acceptance ratio for=0.07 hartree* obvi-
r>1.4 bohr nearly all attempted moves are accepted, but fopusly overlaps the acceptance ratio of the first time step of
shorter distances the number of accepted moves goes quickiye delayed rejection algorithm. It is close to zero in the
to zero. The second step allows to recover a substantial fra¢egion near the nucleus, then it rises until reaching a constant
tion of the rejected moves. A similar plot for delayed rejec-value of about 60%. The acceptance ratio for the second time
tion Metropolis evidences a minor number of acceptedstepr,=0.005hartree* of the delayed rejection algorithm
moves at the first step in the valence region, but a largepverlaps the acceptance ratio of the standard Metropolis al-
number at the second step in the core space. This resugorithm with the same time step near the nucleus, while at
prompted us to perform the first step with the Langevin al-
gorithm and the second step with the Metropolis one. This

0.4

sampling points out the freedom in choosing the transition s 4w Mw007
' e & M 1=0.005 1
0.3 DR s
] . . . . = | =---- DR 1,=0.07
TABLE Il. Time to decorrelate moves for Ne with various algorithmsn S b DR 1,0.005 -
hartree’, while correlation time is dimensionless. £ o
0.2+ K,,.r" -
A A
Algorithm T1 T Correlation time % F ‘/* 1
\'4 /
Metropolis 0.003 50 0.1 /X qessccscsccace
Metropolis: individual electron moves  0.05 10 P4 ;-:' _____________________________ ]
Metropolis with delayed rejection 0.12  0.005 55 o Lxf ——
Langevin 0.01 25 0 02 04 06 08 i
Langevin: individual electron moves 0.03 7 r (bohr)
Langevin with delayed rejection 0.07  0.003 35
Langevin first move 0.07  0.005 4.5 FIG. 2. The acceptance ratio for Ne as function of the distance from the
Metropolis second move nucleus. The algorithms are standard Metrop@Wls and delayed rejection

(DR) Metropolis.
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FIG. 3. The mean accepted displacement for Ne as function of the distandg!C: 5- Mean accepted displacements for Ne as function of the distance
from the nucleus. The algorithms are standard Metropidisand delayed  Tom the nucleus. The algorithm is delayed rejectibf) Langevin moving
rejection(DR) Metropolis moving one electron at a time. one electron at a time.

larger distances it stabilizes at lower values, anyway around ~Thanks to the improved efficiency in sampling the whole
80%, as the acceptance is defined by &y.instead of Eq.  SPace, ergodicity is guqranteed also in the core region. This
(3). Overall, the acceptance ratio is different from zero alsdS an important result, since a better local sampling allows a
in the core region. The effect of the delayed rejection algo-9reater confidence in ev_aluatlng properties largely dependent
rithm is better shown by the average displacen{ex®) as  ©n the electron density in the core region.. _
function of the distance from the nucle(see Fig. 3 During ~ Obviously, the delayed rejection algorithm, despite the
the first steg AR) is relevant only in the valence region and improvement in the autocorrelation time, requires more CPU
goes to zero near the nucleus. The second step causes {{ge with respect to the standard algorithms: this is due to
electron to move in the core region, but it slightly affects alsothe fact that for each rejected step another move is tried,
the displacement in the valence region. In fact, only in fewcausing a new evaluation of the wave function, its gradient
cases electrons try the second move, because of the hi@hd its Laplacian. The time needed for a delayed rejection
acceptance ratio at the first step. So the average displaceméinulation is between 20% and 40% longer than the time of
is affected mainly by the first time step in the valence regior? standard one electron at a time simulation. Nevertheless,
and by the second one in the core region. Overall, the globdfis drawback is more than rewarded by the improvement in
average displacement is larger than ¢AR) of the standard the auto_correlatlon time and by the better sampling of the
Metropolis algorithm at every distance from the nucleus. COre region.

Figures 4 and 5 are similar to Figs. 2 and 3, but now the A comparison of our results on Ne with previously pro-
algorithm is the delayed rejection Langevin. The time step®0sed acceleration methdds™is not easy as different wave

chosen in order to minimize the energy correlation time ardunctions were adopted as well as different time steps. Um-
0.07 and 0.003 hartreé respectively for the first and the figar by his spherical polar coordinate directed Metropolis
second step, while the global acceptance ratios are 82% ameth°&4_90t a significant reduction of the correlation time,
49%. Again as before the electron displacement is dominateBUt he did not perform a microscopic analysis, so it is diffi-
in the core by the smaller time step move and in the valenc€ult t0 judge how much the improvement deper;ds' on a cor-
by the larger one. Overal{AR) is larger than the displace- rect sampling of the core region. Sanal. method® slightly

ment of the standard Langevin sampling at any distance frorfinProves the mean accepted displacement at short distances
the nucleus. from the nucleus, but their best time step 0.03 harttes-

lows a rather poor sampling of the valence space. Slightly
better values for the mean accepted displacement in the core
region are computed by Melkt al® For r=0.07 hartreé !
— their improved transition matrix gives.,,=6.653), while
------- o eanan] the corresponding delayed rejection value is 3.5. All these
" 4 ] methods improve the sampling with a negligible increase of
/ CPU time, while the computational cost of the delayed re-
! // 1 jection algorithm is higher. One might implement the de-
. layed rejection method on one of these acceleration algo-
rithms to further improve their performance, trying to
recover the rejected moves.
The delayed rejection algorithm might be also effective
0 02 04 08 08 1 in Langevin simulations when the quantum fofeéR) be-
r (bohr) comes very large, that is, when a walker is near a nodal
FIG. 4. The accept_ance_ratio for Ne as f_unction of the_ distan_ce from the_sl_urface or in atomic cluster simulations as atoms ‘?c,’a@sce'
nucleus. The algorithm is delayed rejectiBR) Langevin moving one | nen the attempted move and therefore the transition prob-
electron at a time. ability T,(R'R,7) are very large, whileT{(RR’,7) is
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