THE JOURNAL OF CHEMICAL PHYSICS 123, 204109 (2005)

An investigation of nodal structures and the construction
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The factors influencing the quality of the nodal surfaces, namely, the atomic basis set, the
single-particle orbitals, and the configurations included in the wave-function expansion, are
examined for a few atomic and molecular systems. The following empirical rules are found: the
atomic basis set must be fairly large, complete active space and natural orbitals are usually better
than Hartree-Fock orbitals, multiconfiguration expansions perform better than single-determinant
wave functions, but only few configurations are effective and their choice is suggested by symmetry
considerations, while too long determinantal expansions spoil the nodal surfaces. These rules allow
us to reduce the nodal error and to compute the best fixed node-diffusion Monte Carlo energies for
a series of dimers of first-row atoms. © 2005 American Institute of Physics.

[DOLI: 10.1063/1.2128672]

INTRODUCTION

The antisymmetric character of the electronic wave
function is efficiently introduced in the diffusion Monte
Carlo (DMC) method through the fixed-node approximation
(FN-DMC).! 1t is well known that one could exactly simulate
the system of interest if only the exact nodes were available.
Several exact simulation schemes that do not rely on the
knowledge of the exact nodes have been proposed,2_7 but
none of them, at the current state of the development, ap-
pears to be able to cope with more than a handful of elec-
trons. The fixed-node approximation introduces the so-called
nodal error, and the calculated energy in general is only an
upper bound to the exact energy. Past experiences showed
that the FN-DMC method is able to usually recover more
than 90% of the correlation energy for small systems, per-
forming better than standard ab initio methods, but this is not
enough to get chemical accuracy (1 kcal/mole
=0.0016 hartree/molecule). Only the cancellation of the
nodal error when computing dissociation energies8 or elec-
tron affinities” has allowed obtaining of very good results.
The main problem is that the fixed-node approximation is
uncontrolled, and it is not possible to know in advance if a
certain wave function has good nodes. Even worse, there is
not yet a way to systematically generate wave functions with
better nodes for a given system. The problem of reducing the
nodal error to reach chemical accuracy on a sound basis has
been tackled by several authors,*'*" studying the effect ei-
ther of the atomic basis set or of the single-particle orbitals
[Hartree-Fock (HF), complete active space (CAS), natural
orbitals (NOs), and density-functional theory (DFT)], or of
the length of the determinantal expansion. Flad et al.”® were
the first to systematically investigate the seemingly paradoxi-

YElectronic mail: dario.bressanini @uninsubria.it
)Electronic mail: gabriele.morosi @uninsubria.it
“Electronic mail: silvia.tarasco@uninsubria.it

0021-9606/2005/123(20)/204109/11/$22.50

123, 204109-1

cal effect that having a wave function with a better varia-
tional energy does not necessarily lead to better fixed-node
energies. It is possible that while the variational energy im-
proves as more configuration state functions (CSFs) are
added to the expansion, the FN-DMC energy gets worse. In
that seminal paper, the authors concluded that it is necessary
to get a better understanding of how CSFs influence the
nodes.

In this paper we try to examine, on several small sys-
tems, the effect of different factors on the quality of the
nodes, namely, the atomic basis set, the generation of the
single-particle orbitals, and the configuration state functions
added to the multideterminant expansion.

The general form of the wave function in our analysis is
a determinantal part times a Jastrow correlation factor which,
being positive everywhere, does not modify the location of
the node.

Be ATOM

The first system we examined is the beryllium atom, a
very well-known case where the nodes of a single-
determinant wave function are analytically defined by the
equation

(ry=r)(r3=ry) =0, (1)

where 1 and 2 being « electrons and 3 and 4 § electrons. In
this case the choice of the atomic basis set and of the single-
particle orbitals does not influence the FN-DMC energy. The
HF nodes were shown to have the wrong topology:16 they
divide the ground-state trial function into four nodal regions,
while it has been proved that the exact ground-state wave
function must have exactly two nodal volumes: one where
the wave function is positive and the other where it is nega-
tive.

For this reason a single-determinant wave function is not
sufficient to obtain the exact energy, and other configurations

© 2005 American Institute of Physics

Downloaded 06 Oct 2006 to 193.206.165.63. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp


http://dx.doi.org/10.1063/1.2128672
http://dx.doi.org/10.1063/1.2128672
http://dx.doi.org/10.1063/1.2128672

204109-2 Bressanini, Morosi, and Tarasco

must be added. It is interesting to note that simply adding
more terms to the determinant expansion does not necessar-
ily improve the FN-DMC energy. Consider, for example, the
expansion 15?252+ 1s?nsms. This trial wave function has
exactly the same nodes as the HF wave function, that is,
(ri=ry)(rs—ry)=0. The reason is that both configurations
have the same algebraic structure |f;(r))f2(r2)||f3(r3)f4(rs)
Any linear combination of configurations built only with s
orbitals will necessarily lead to a trial wave function with
exactly the HF nodes. Of course the variational energy im-
proves, but the fixed-node energy will remain the same. In
the worst case the added configurations might even introduce
some spurious nodes and increase the fixed-node energy.

To change the nodes and have a topologically correct
nodal surface it is necessary to include the configuration
1s?2p?. Several FN-DMC calculations are reported in the
literature using a trial wave function with the two configura-
tions 15%2s%+15%2p®. Apart from the earlier value of
—14.6672(2) hartree by Liichow and Anderson,® which has
an error bar one order of magnitude larger than the more
recent results of —14.667 19(3),'7 —-14.66726(1),'® and
—14.667 26(1) hartree,'® no value has the exact energy of
~14.667 355 5 hartree' within one error bar, although with
four determinants it is possible to get 99.9% of the correla-
tion energy. We confirmed this with an independent calcula-
tion, employing a fairly large basis set: 2(1s) 3(2s) 2(3s)
3(2p) 1(3d).*° Using two CSFs (1522s%+1s22p?) we get
—14.667 29(2) hartree, a slightly better energy that those pre-
viously reported in the literature. This strongly suggests that
convergence with respect to the atomic basis set has not been
achieved yet, so we performed calculations with increasingly
larger basis sets, starting from the atomic Hartree-Fock basis
set by Clementi and Roetti’' plus a 2p orbital and adding
more 2s orbitals. An extra 2s orbital improves the nodal sur-
face of the four-determinant wave function enough to get a
FN-DMC energy of —14.667 34(4) hartree that has the exact
value within one error bar. To investigate whether the effect
of a smaller atomic-orbital basis set can be compensated by a
longer configuration-interaction (CI) expansion, using the
original Clementi and Roetti basis set and two 2p orbitals,
we added more 1s’npmp configurations, but the nodes failed
to improve. Although it is not possible to obtain the analyti-
cal form of the nodes of the 1s’npmp in an explicit closed
form, unlike the 1s%nsms case, we observe the same behav-
ior: adding more configurations of the same kind does not
improve the nodes. It is interesting to note that all configu-
rations of the kind 1s’np,mp,, for example, have the same
algebraic structure [f}(r))xaf>(r2)|[f3(r3)xaf4(rs)].

To check the conjecture that higher angular momentum
orbitals might be needed to improve the energy, we added
the 15%3d” configuration. We observed a small improvement
at all time steps employed, but the extrapolated value was
statistically indistinguishable with the energy obtained with
the 15252+ 1522p? wave function.

It would be interesting to understand why certain con-
figurations contribute to the convergence towards the exact
node and others do not. Only a speculation is possible at this
point, but it is interesting to observe that in this case the
useful configurations discovered so far (1s5*2s and 15%2p?)
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belong to higher and different symmetry groups than the ex-
act wave function. They all have S symmetry, being rotation-
ally invariant, but are eigenfunctions corresponding to differ-
ent eigenvalues if one considers operators other than the
rotation. For example, the 15?25 is invariant with respect to
the inversion of two electrons of the same spin, while the
1s*2p? configuration changes its sign. Another way to see
this is to consider that the overlap integral between these
configurations is zero, and they interact through the potential
term, which is only rotationally invariant. A possibility is that
the symmetry of the nodes of Be is higher than the symmetry
of the wave function itself. This phenomenon has been ob-
served in other atomic cases’> and in a molecular case (see
He] below).

THE He; SYSTEM
The exact eigenfunction: Symmetry requirements

The Be atom does not allow to investigate the influence
on the nodal structure of the atomic-orbital basis set and of
the single-particle orbitals with a simple single-determinant
wave function. So we choose as second system the He} ion.
This three-electron system is a good, realistic, and nontrivial
model to study the properties of the many-body nodal sur-
faces in a molecular environment.

Its ground-state has 3" symmetry and the wave func-
tion is an object defined in a nine-dimensional space

\I}(R) = \P(] ’2»3) = q,(xl’yl7Z1’x2’y2’z2’x3’y3513) . (2)

Without losing generality, we set the origin of the coor-
dinate system in the middle of the bond, and align the mol-
ecule along the z axis. A different coordinate system could be
constructed by specifying, for each electron, the distances
from the two nuclei, r4 and rp, and the azimuthal angle ¢,
i.e., the angle between the plane including the z axis and the
electron and the yz plane. Using this coordinate system we
can write the wave function as

W(R) =W (r 4715 P1>T24: 725 P2:734: T35 P3) - (3)

However, since a %, wave function has cylindrical sym-
metry, it is possible to factor out a global azimuthal angle
and use only eight variables to describe the ground state,

W(R) =W (r g 71524, T28: 73438, P12> P13) (4)

where ¢;,=¢;—¢, and ¢;3=¢;— ¢3. This is only one of the
many possible coordinate systems, and it is not necessary, at
this point, to specify the coordinate system for which such a
factorization is performed.

For this molecule it is not possible to factorize the wave
function into a product of a spin part and a space part. How-
ever, as long as we are only interested in spin-independent
properties, we can arbitrarily assign spin to electrons. For
example, we can assign spin « to electrons 1 and 3, and spin
B to electron 2. In order to satisfy the Pauli principle, the
function must be antisymmetric with respect to the exchange
of electrons 1 and 3, thus

v(1,2,3)=-¥(3,2,1), (5)

or
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v(1,2,3)=f(1,2,3) - f(3,2,1), (6)

where f(1,2,3) is a generic function. However, this choice is
not sufficient to completely specify the spin state, since such
a wave function would have both doublet and quartet com-
ponents. It can be shown? that the following constraint pro-
vides a necessary and sufficient condition for having a pure
doublet state satisfying the Pauli principle:

W(1,2,3) +¥(3,1,2) + ¥(2,3,1) =0. (7)

An alternative way to generate a wave function with the
proper symmetry is to start with a generic function f(1,2,3)
multiplied by a pure doublet spin eigenfunction, for example,
[a(1)B(2)-B(1)a(2)]a(3), and to apply the antisymmetrizer
operator. To project the resulting spin-space wave function
against a particular spin product, for example, a(1)8(2)a(3),
amounts to assigning the specified spin labels to the elec-
trons. With the above choice, the most generic wave function
that can be written with the correct permutational symmetry
is

W(R) =£(1,2,3) + f(2,1,3) - (2,3,1) - f(3,2,1).  (8)

The nodal surface: Symmetry requirements

The nodal surface is implicitly defined by the equation
W(R)=0 and so it is an eight-dimensional object. However, a
consequence of the dimensional reduction is that only seven
variables are sufficient to describe the nodal surface. When
we say that the node is a seven-dimensional (7D) surface, we
mean that to uniquely identify any point on this surface we
must specify, in general, seven coordinates, the eighth being
given implicitly by the node-defining equation. In general,
the dimensionality of a surface embedded in 9" space is
N-M, where M is the number of constraints (equations) that
the surface must satisfy. Note that, topologically, only an
(N-1)-dimensional surface is able to divide an
N-dimensional region. This does not mean that the nodal
surface cannot be described by fewer variables than N—1. It
only means that the shape of the node is “flat” (constant) in
the remaining coordinates.

Any symmetry constraint imposed on the wave function
is automatically imposed also on its nodes. For example,
suppose we fix the positions of the three electrons and rotate
them jointly around the z axis. Since the wave function has
cylindrical symmetry, its value remains constant as we rotate
the electrons. This remains true if we choose the electron
positions, such that the wave function is zero.

In one-dimensional systems the nodes of the wave func-
tions can sometimes be fixed by symmetry. For example, the
node of the first excited state of the harmonic oscillator can
be inferred by symmetry to be exactly at the origin, without
knowing the wave function. Unfortunately symmetry con-
straints are usually not sufficient to completely specify the
nodes for many-body systems. The Pauli principle implies
that the spatial wave function must be zero when two elec-
trons with the same spin are at the same point, i.e.,
r;=r;=W(R)=0. This is equivalent to the three constraints
X;=Xj, y;=Y;, and z;=z;. This set of points, sometimes called
the “Pauli hyperplane,” has dimension N-3 and does not
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completely specify the full (N-1)-dimensional node. It is
only a sort of “scaffolding” through which the rest of the
node must pass. A common misconception is that W(R)=0
only when two electrons with the same spin are at the same
position. The above argument shows that this is not true, and
the wave function can be zero even when two electrons are at
an arbitrary distance.

Taking into account the cylindrical symmetry of the
state, other subsets of the full nodal surfaces can be specified.
For example, the wave function is zero if ry=r34, r1p="r3p,
and ¢,=¢,3. However, this is still an (N-3)-dimensional
set.

The restricted Hartree-Fock (RHF) wave function:
Symmetry requirements

The restricted Hartree-Fock ground-state wave function
for Hej is

; )

which, in a spin-free formalism, can be factorized into
Veur(R) = (0,(1)0,(3) = 0,(3)0,(1))0, (2). (10)

It is appropriate to note that this approximate wave function
does not belong to the same symmetry group as the exact
wave function, but rather to a higher symmetry group. It is
easy to see this fact by noticing that each orbital, being of o
type, is a function of only two coordinates, r, and rp for
example; only six variables are then needed to specify the
RHF wave function. The higher symmetry is apparent if, for
example, we consider the rotation of a single electron around
the z axis, keeping the other two electrons fixed. The RHF
wave function is invariant with respect to this rotation, but
the exact wave function is not. A different way to say the
same thing is that the RHF wave function does not depend,
neither explicitly nor implicitly, on the interparticle coordi-
nates.

Let us now consider the node of this approximate wave
function. Since Wyyr is described using only six coordinates,
we can loosely say that the node is a five-dimensional object,
but due to the factorization of Wyyr into a and 8 determi-
nants there is a further reduction of the dimensionality of the
node, which can be described with only three coordinates.
The RHF node is completely independent from the distance
between the two « electrons and from the position of the 8
electron. The antisymmetric part of the RHF wave function

0,(1)0,(3) = 0,(3)7,(1) (11)

does not define the node structure by geometric symmetry.
The wave function changes sign upon inversion through the
center of the molecular ion, but, because an infinite number
of g, and o, orbitals can be used, the node structures of the
resulting RHF wave functions are different.

It is worth to remind that the nodes of a many-body
wave function are not directly related to the nodes of the
single-particle orbitals. In He; the lowest o, orbital has no
nodes, while the first o, orbital, by symmetry arguments, has

Yrur(R) = |0'g5'g(7u
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TABLE 1. Hej: basis sets and fixed-node energies in hartrees.

RHF CAS CAS-NO CI-NO
Basis set orbitals orbitals orbitals orbitals
A 1s —4.9905(2)
B 2(1s) -4.9913(2)
C 1s2s —4.9938(2) —4.9444(5) —4.8499(5) —4.8503(6)
D 4(1s) —4.9940(2)
E* 5(1s) -4.9926(2) -4.9939(2) -4.9921(2) -4.9918(2)
F 2(1s)2s3s —4.9943(2) -4.9925(1) -4.9916(2) -4.9917(2)
G 1s2p —4.9938(1) -4.9935(1) —4.9932(1) —4.9936(1)
H 2(1s)2s3s2p —4.9939(1) -4.9941(1) —4.9936(1) —4.9936(1)
r 2(1s)25352(2p) -4.9932(2)
Exact energy —4.9945°¢

“Reference 21.
PReference 24.
“Reference 26.

the xy plane as a node. While the nodes of the many-body
approximate wave functions are in general dependent on the
basis set expansion, the o, orbital node does not change.

Atomic-orbital basis set effect

We begin analyzing the effect of the atomic basis set on
the quality of the nodal surfaces within the framework of the
RHF method. We selected the basis set optimized for Hej by
Reagan et al®* and the atomic Hartree-Fock basis set by
Clementi and Roetti*! and examined the effect of the various
atomic orbitals on the nodal surfaces. For each set the RHF
wave function was computed and its energy and the corre-
sponding FN-DMC energy are reported in Table I.

All calculations were performed at the equilibrium dis-
tance of 2.0626 bohrs.”> We estimated a nonrelativistic limit
of —4.9945 hartree from the values computed by Cencek and
Rychlewski.26

The first consideration that can be made is that a single-
determinant wave function built with only s orbitals (basis F)
is able to correctly predict the energy, at least to chemical
accuracy. This fact is quite surprising in the light of the sym-
metry considerations made in the previous section, as the
number of coordinates on which the exact nodal surface de-
pends is drastically reduced from eight to three on going
from the exact to the HF wave function. Since a nodal sur-
face is defined implicitly by an equation which, in this case,
cannot be solved analytically, it is not possible to look at the
analytical structure of the node. However, since the RHF
wave function does not depend on the interparticle distances,
the same applies to the RHF node; but since the RHF fixed-
node energy is, within chemical accuracy, equal to the exact
energy, we can infer that the exact nodal surface is indepen-
dent or perhaps very weakly dependent from the interparticle
coordinates. Furthermore, we have previously seen that the
nodal surface of the RHF wave function is also independent
from the coordinates of the S electron, so we can conclude
again that the exact nodal surface is independent, or perhaps
very weakly dependent, on the coordinates of the 8 electron.
A more mathematically precise statement is that the nodal
surface belongs to a higher-symmetry group than the wave

function itself. Far from being a mathematical curiosity, this
fact has important practical consequences, as we will see.

The unexpected higher symmetry of the nodal surfaces
for many-body systems has been previously noted for the
helium case,'®*’ where in some states it is possible to prove
it analytically, and numerically for the lithium atom ground
state.'® Also the exact nodes of spin-polarized states of few
two- and three-electron systems show a higher symmetry
than would be expected solely from antisymmetry.28 Appar-
ently the He; ground state is yet another example of this, still
theoretically unexplained, phenomenon. The first, and most
important consequence, is that two somewhat contrasting
factors are at play: the exact wave function depends on the
interparticle distances and on the coordinates of the S elec-
tron, and so to converge toward the exact wave function one
must include all the relevant coordinates. At the same time,
however, convergence to the exact wave function nodes can
be partially disrupted, since apparently the nodes depend on
fewer coordinates, and there must be a very delicate cancel-
lation of terms right at the node in order to converge towards
the exact node.

This observation might explain some of the seemingly
bizarre behavior that has been sometimes reported in the
literature,13 where, upon the improvement of a trial wave
function by using a larger basis, the quality of the related
nodal surface is unchanged or even decreased. The energy
for basis H, obtained by adding a p atomic orbital to basis
F, is higher, so the extra functions have spoiled the nodal
surface.

Usually it is not possible to have a visual representation
of the nodal surfaces due to their high dimensionality. How-
ever, in this case we can take advantage of the fact that the
nodes of RHF wave functions depend only on the coordi-
nates of the two « electrons. To further reduce the dimen-
sionality of the plots we decided to fix the position of the
first a electron along the z axis. Taking advantage of the
cylindrical symmetry of the system, we constrained the sec-
ond « electron to the yz plane, so that we can make a contour
plot by joining all the coordinates of the second electron,
such that the wave function is zero. Cuts of the nodal sur-
faces for four basis sets are plotted in Fig. 1. The black small
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FIG. 1. He3: cuts of the nodal surfaces for RHF wave functions with basis
sets defined in Table 1.

dots represent the various positions where we fixed the first
a electron, while the bigger squares represent the positions
of the nuclei. All the curves pass through one black dot, since
the wave function must be zero whenever two like electrons
are at the same point. Examining the sign domains for a
wider range of y and z coordinates, no nodal artifacts were
observed as found in Be atom by Hachmann et al. 250 plots
are reported in the range [-3, +3] bohrs from the center of
the molecular ion. The best nodal surfaces are those of the
RHF wave function for basis F. All the surfaces are given
approximately by =0 for z;=z3, a situation similar to the
one found in the triplet state *3* of the H, molecule.”

We can take advantage of the fact that cuts of the nodal
surfaces can be visualized to get some insight when compar-
ing different wave functions.

It is reasonably easy in FN-DMC simulations for atoms
and molecules to recover 80%—-90% of the correlation en-
ergy, using a moderately small basis set. However, there is
not yet a consensus on which strategy is better if one wants
to recover the remaining correlation energy, which appears to
be a much more difficult task than originally thought. Enlarg-
ing the basis set, for a given trial wave function, is surely an
option. However, it is far from clear which is the best way to
proceed in order to improve the quality of the basis set. Let
us now examine the effect of enlarging the atomic basis set
on the nodal surfaces of our model system.

We start from the minimal basis set wave function (basis
A). A curious feature of this wave function is that the nodal
surface is independent from the exponent of the 1s Slater
orbital centered on the nuclei. A little algebra shows that the
equation of the node is

A= T1B=134~13B> (12)

which is a family of hyperboloid surfaces. Similarly to the
previously seen case of the Be atom wave functions built
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with only s atomic orbitals, this is another explicit proof that
the variational energy of a trial wave function is not directly
related to its fixed-node energy: different values of the expo-
nent of the ls orbital would change the variational energy,
but not the shape of the nodal surface.

Cuts of the nodal surfaces for basis A are shown in Fig.
1(A). While the DMC energy of this trial wave function is
about 4 mhartrees away from the exact energy, nevertheless
it is interesting that such a simple analytical form for the
node can recover a substantial part of the correlation energy.
In principle one can imagine a scheme for systematically
improving the ansatz for the node itself, starting from this
simple analytical form by including higher-order terms.
However, we have not yet explored this possibility.

Comparing the nodes of Figs. 1(A) and 1(F) one can see
that the nodes of the worse wave function show a higher
curvature. This finding is consistent with the intuitive argu-
ment that nodes with a higher curvature increase the global
curvature of the wave function, which in turn increases the
local kinetic energy and the local energy.

To improve the quality of the minimal basis set A one
could either add more 1s-type functions or introduce 2s func-
tions. Adding a second 1s function (basis B) allows us to
recover a FN-DMC energy of —4.9913(2) hartree, worse
than —4.9938(2) hartree of basis C, built adding instead a 2s
function [see Fig. 1(C)]. We reoptimized the atomic-orbital
exponents, but the fixed-node energy came out higher, so the
effect of the atomic orbitals of the original basis sets was
investigated without further optimization of the exponents.
To recover an energy value equal in a statistical sense to the
one of basis C using only ls orbitals, one has to include as
many as four (basis D). In both cases there is a substantial
gain in the energy with respect to the minimal basis set. The
plots look similar to the plot of the exact node, and the en-
ergies are close to the exact value. However, the number of
atomic orbitals doubles on going from the first function to
the second one. It is clear that it is far more efficient to add
functions with a higher principal quantum number than to
use more functions of the same type. Consider now what
happens if we add yet another ls function to basis set D.
While the resulting wave function (basis E, the atomic
Hartree-Fock basis set by Clementi and Roetti*') has a lower
RHF energy (—4.9082 against —4.9049 hartree), its fixed-
node  energy is  higher  [-4.9926(2)  against
—4.9940(2) hartree]. A plot of the nodal surface cuts shows
an increased curvature.

This behavior, unfortunately, appears not to be uncom-
mon to DMC simulations. It seems that, after a certain qual-
ity of the nodes has been achieved with a basis set, it is
difficult to enlarge the basis without decreasing it. Appar-
ently, too large basis sets do more harm than good. Unfortu-
nately it is not yet possible to know how many functions of
the same kind it is possible to add to the basis without spoil-
ing the quality of the nodes.

A similar comparison can be performed by including, as
customary in ab initio calculations, polarization functions,
that is, basis functions with a higher angular momentum. A
simple basis composed of a single 1s function and a single
2p function (basis G) gives a DMC energy very close to the
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exact energy [-4.9938(1) hartree], greatly improving the
nodes, in comparison to the nodes of the minimal basis set
wave function. This result is similar to the one computed
adding a 2s atomic orbital. However, adding a p function
(see basis H) to the best basis composed by s functions (basis
F), the RHF energy improves, as it should (—4.9219 against
—4.9102 hartree), but the fixed-node energy increases
[-4.9932(2) hartree], being slightly worse than the one of
the simple 1s-2p wave function. Further addition of polar-
ization functions of the basis set by Reagan et al® progres-
sively spoils the nodal surfaces, even if the effect is tiny, as
shown in Fig. 1(I).

We also tried to reoptimize all the parameters of the total
wave function, either by minimizing the variance or the ab-
solute deviation of the local energy: all the attempts resulted
in a wave function with worse fixed-node energy.

From the above discussion we can draw some tentative
conclusions: first of all, to enlarge a basis it seems more
efficient to add functions with a higher principal quantum
number rather than to add more functions of the same type.
A second lesson to be learned is that apparently it is not
possible to arbitrarily enlarge a basis set: although the varia-
tional energy improves, after a certain size of the basis the
quality of the nodes can decrease. Unfortunately it is not
possible to know in advance when the quality of the nodes
will start to degrade.

Single-particle basis set effect

The second effect we want to investigate is the influence
of the different single-particle orbitals that can be used in the
wave-function construction.

Beyond HF orbitals, multiconfiguration-self-consistent-
field- (MCSCF) generated orbitals'>*° and natural orbitals'
have been employed with success. More recently pair natural
orbitals have been used to study the nitrogen and the water
molecules.’’ Also DFT methods have been used to generate
orbitals.'** Usually it has been implicitly assumed that the
nodes of a RHF wave function would give the best possible
nodes, within a single-determinant description. In this sec-
tion we investigate if this is true.

For a few selected atomic-orbital basis sets we per-
formed four simulations using monodeterminantal wave
functions built using RHF orbitals, optimized CAS orbitals,
and natural orbitals computed from CAS and CI calculations.
The resulting FN-DMC energies are shown in Table I.

The results differ significantly, which means that the
nodal surfaces are somewhat different. Rather surprisingly,
the RHF wave function is not always the best single-
determinant wave function, with respect to the fixed-node
energy for all considered bases. CAS orbitals give the best
fixed-node energy with bases E and H, while RHF orbitals
perform better with bases C, F, and G. It is interesting to note
that CAS orbitals perform better for the basis sets that are too
large at the RHF level, those for which the inclusion of extra
atomic orbitals resulted in spoiling the nodal surfaces of the
smaller basis set. In one case (basis C) CAS orbitals perform
significantly worse. Natural orbitals, both CAS-NO and
CI-NO, give almost always the worst result. A plot of the
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3 3

2 2

1 1

0 1 0

-1 -1

-2 -2
1 2 3

5 1 -2 -1 0 1 2 3
RHF CAS
3 3
2 2
1 1
0 4 0!
-1 -1
-2 =)
-2 -1 1 2 3 -2 -1 0 1 2 3
CAS - NO CI-NO

FIG. 2. Hej: cuts of the nodal surfaces for monodeterminantal wave func-
tions built with different single-particle orbitals (basis F).

various nodal surfaces, shown in Fig. 2, evidences that the
curvature of the nodal surfaces increases on going from RHF
to CAS to NO orbitals. Also DFT orbitals, generated using
several different functionals, have been tested, but the results
were worse and are not reported in Table L.

Approximate wave functions:
Multideterminant expansion

Although in early quantum Monte Carlo (QMC) calcu-
lations the trial wave function used was typically of HF type,
in recent years it has become common to employ multideter-
minant expansions, either from MCSCF,15 or CAS™ calcula-
tions, sometimes with hundreds of terms,13’31 with a high
computational cost. While it is obvious that the variational
energy improves with the length of the determinantal expan-
sion, there are cases, reported in the literature,l‘}’31 where,
upon increasing the length of the configurations expansion,
the fixed-node energy does not change, or even worse, in-
creases. No explanation has been put forward for this phe-
nomenon, and unfortunately so far there appears to be no
general criterion to choose configurations to be included into
the expansion with the aim to lower the fixed-node energy.
While it appears reasonable, even if not mathematically
proven, that as the variational energy of the expansion con-
verges to the exact energy the nodes of the trial wave func-
tion converge to the exact nodes, the convergence of the
fixed-node energy to the exact energy does not need to be
monotonous, and indeed sometimes it is not. Sometimes the
fixed-node energy is unchanged upon the addition of several
determinants, in other cases the addition of a single determi-
nant to the expansion can spoil the nodes of the trial wave
function, and several more determinants might be needed to
counterbalance this effect, with a substantial computational
cost. It would be desirable to have a procedure to select in
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TABLE II. He}: multideterminant expansions. Energies in hartrees.

J. Chem. Phys. 123, 204109 (2005)

Energy
Basis Energy Energy Energy extra CSF’s
set single determinant Added CSF’s (RHF orbitals) (CAS orbitals) (RHF orbitals)
C -4.9938(2) lojlo)20, -4.9778(3) -4.9753(1) -4.9503(3)
F -4.9943(2) loylo)20, -4.9925(1) -4.9908(1) -4.9924(1)
G —-4.9938(1) lollm, +1lol, —-4.9928(1) —-4.9926(1) —-4.9929(1)
H -4.9932(2) Lol +1ol1m, -4.9946(2) -4.9939(1) -4.9933(1)

advance only those terms in a CI expansion contributing to
lower the fixed-node energy. This would ensure a more reli-
able DMC simulation and a reduced computational cost.

In order to investigate this matter, we performed a few
tests, using different multideterminant expansions. The re-
sults are reported in Table II.

Adding the excited CI configuration with the largest co-
efficient, namely, 10';1011{20';, to the RHF (basis C) wave
function, the fixed-node energy worsens dramatically, going
from —4.9938(2) to —4.9778(3) hartree. The energy is even
worse if CAS orbitals are used in this two-determinant ex-
pansion, and this is true for all basis sets considered in Table
II. The same increase of the fixed-node energy happens also
with basis F, even if the effect is reduced. The opposite im-
provement of the quality of the nodes is observed by adding
the first excited CI configuration 1o} 17> + 101 7Tiy for basis
H; the resulting fixed-node energy is —4.9946(2) hartree,
which is the exact energy within the statistical error.

However, if we build a two-configuration wave function
using basis G, which performs better than basis H at the RHF
FN-DMC level, it is interesting to note that the resulting
energy slightly increases. It is more difficult to improve a
good trial wave function by adding more configurations than
to improve a relatively bad wave function. However, we note
that the configurations that can be added to the single-
determinant wave functions built using bases C and F in-
volve only o orbitals. It seems that the addition of configu-
rations, built using orbitals with the same angular momentum
of those used to build the single determinant, spoils the qual-
ity of the nodes. Basis sets G and H instead generate orbitals
with a higher angular momentum, and basis H, with two
configurations, is able to correctly describe the exact nodes.
Including more configurations either leaves the fixed-node
energy unchanged or leads to its increase.

It is interesting to compare the performance of the two
very small basis sets C (1s2s) and G (1s2p). They give the
same FN energy when used to build a single-determinant
wave function, and better than basis B (see Table I). How-
ever, they behave differently when used to build a multide-
terminant expansion. While in the case of basis C there is a
complete disruption of the nodes, using basis G leads only to
a small perturbation of the nodes. It is clear that, while in
both cases they provide an adequate description of the
single-determinant wave function, there is not enough flex-
ibility in basis G to accurately describe the lalila'rix
+ lafllﬂ'zuy configuration, which appears to be able to correct
the inaccuracies of the node of the single determinant when
using basis H. It is worth to remind that the excited configu-

rations 10';10;20;, and lol172 + 10‘;17Tiy belong to differ-
ent symmetry species of a higher-symmetry group of the
Hamiltonian. These symmetry species are those of the model
Hamiltonian with all electron-electron interactions turned
off.

A few tentative conjectures can be drawn from all these
numerical experiments: the basis set should be fairly large to
recover as much correlation energy as possible. Given that
we are studying a three-electron system, the basis needed to
recover the exact energy seems to be larger than previously
thought. It is still common to employ, in the DMC literature,
double-zeta quality basis sets.

Our findings seem to show that larger basis sets should
be used. However, care must be taken when choosing the
basis functions: it appears more useful to include functions
with a higher principal quantum number than functions with
the same principal quantum number and a different expo-
nent. When building a multideterminant expansion it seems
that including configurations built on orbitals of the same
symmetry as those of the ground state leads to a decrease of
the quality of the nodes. In this light higher angular momen-
tum functions should be included in the basis set. Basis F,
while building a very good single-determinant node, cannot
generate configurations of different symmetries. Basis H on
the other hand, while not as good as basis F at the single-
determinant level, is able to generate a configuration of the
needed symmetry, and gives the exact energy. Considering
different ways to generate the orbitals to be included into
multideterminant wave functions, it seems that the optimal
strategy depends on the quality of the basis set. For good
atomic-orbital basis sets RHF orbitals used in a CI expansion
give the best results. With lower-quality basis sets, CAS
seems to perform better. Natural orbitals are the last choice.

Li, MOLECULE

The system we studied next is the Li, molecule in its
ground state, at an equilibrium distance of 5.051 bohrs.*® We
chose this system because it is nontrivial and there are a few
published QMC calculations' ?'**¥ that we can compare
with.

It was not possible to perform a systematic study for Li,
as we did for Hez, but we tried to see if the empirical rules
that we found for Hej were valid also for this bigger system.

Single-determinant FN-DMC calculations have been re-
ported in the literature: Reynolds et al.** used double-zeta
basis sets; their best result was —14.991(7) hartree. Huang
and Liu®® at the zeroth order of their eigenvalue expansion
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TABLE III. Li, DMC energies in hartrees for multideterminant trial wave
functions. We omit the core double occupied molecular orbitals lo'ﬁlof.

J. Chem. Phys. 123, 204109 (2005)

TABLE IV. C, DMC energies in hartrees for a single-determinant trial wave
function.

CSF Ndet Additional CSF DMC energy A* B’ (o

1 1 207, -14.9923(2) CAS —75.8638(6) —75.8591(6) —75.8612(3)
8 8 3oo+don+ 490, -14.9914(2) NO —75.8594(4) ~75.8642(5) —75.8694(3)
2 3 1ﬂ2”"+ 1772’” ~14.9933(2) “Basis set from Ref. 33.

5 9 lﬂix"'lﬂzu.v"’ o +4Wix+4ﬂﬁ.v -14.9933(1) "Basis set from Ref. 21.

3 4 1775{" 1 '”'iy"’2"'§ -14.9939(2) “Basis set from Ref. 30.

4 5 L, +1m +20%+30, -14.9952(1)

Exact energy —14.9954%

“Reference 37.

method computed a value of —14.9818(4) hartree with a
minimal basis set. A value of —14.9890(2) hartree was com-
puted by Umrigar er al.'” with a 2(1s)2s2p basis set. Filippi
and Umrigar3 7 with a double-zeta plus polarization basis set
obtained —14.9911(1) hartree, while a value of
—14.9919(6) hartree was computed by Luchow and Fink®'
with a larger basis. These results suggest that, as already
found in the study on Hej, a double-zeta quality basis set is
insufficient to reach convergence of the HF nodes. For this
reason we tested several larger basis sets taken from the lit-
erature, namely, a 6s4p2d1f basis set,”® the atomic HF basis
set,”! and a basis set optimized for the dimer by Cade and
Wahl.* EN-DMC calculations were performed using a single
determinant, built with single-particle HF or CAS orbitals, as
explained in the previous section. The results are consistently
better than the literature values computed with smaller basis
sets.

The best FN-DMC energy, —14.9923(2) hartree, was ob-
tained using the basis set by Liu et al.*® without d and f
orbitals (basis A in the following), as they spoil the nodal
surfaces. Since the energy is far from the nonrelativistic limit
—14.9954 hartree, the single-determinant nodes have not yet
reached convergence. As previously found for HeJ, in this
situation CAS single-particle orbitals perform better than HF
orbitals.

It is interesting to note that our single-determinant wave
function recovers as much correlation energy as a four-
determinant wave function built with a smaller basis.”” This
confirms our tentative conjecture that before starting to add
different configurations, if it is computationally feasible, it is
a good idea to check whether the single-determinant nodes
have reached convergence, using a sufficiently large basis
set. Sometimes configurations that seemed important in order
to improve the energy came out to be useless if a larger basis
was used. Unfortunately there appears to be yet no way to
know beforehand if an employed basis set is sufficiently
large.

Unlike the Hegr case, our best single-determinant wave
function does not reach the chemical accuracy, and the use of
a multideterminant expansion is necessary to converge to the
exact energy.

We now proceed to add configurations using CAS orbit-
als of basis A that performed better at the single-determinant
level: the results are shown in Table III.

Adding to the ground-state configuration up to seven
CSFs of the type 20‘§—>n0‘§, results in a sensible increase of

the energy, the same is found using o, orbitals instead of a,.
As already noted in the He case, the nodes are spoiled by
excitations to orbitals with the same angular momentum as
those occupied at the HF level. To improve the energy one
has to include excitations to orbitals with a higher compo-
nent of the angular momentum along the internuclear axis, in
this system double excitations to 7 orbitals. Neither adding
further configurations of the same kind, up to four, nor exci-
tations to orbitals of an even higher angular momentum,
namely, & orbitals, changes the energy. The next most impor-
tant configuration to add to the three-determinant wave func-
tion is the double excitation to a o, orbital with a strong p,
character; the excitation instead to a o, orbital gives a
smaller improvement. However, its contribution becomes
relevant after the inclusion of the excitation oé% oﬁ and this
five-configuration wave function allows us to recover, within
two standard deviations, the exact energy. So excitations to
orbitals with the same angular momentum might be effective
only after orbitals with a higher angular momentum have
contributed to improve the wave function. An alternative
conjecture is that the contribution from the a';—m'; excita-
tion would disappear by using an even larger basis, as ob-
served in the previously presented cases. In conclusion the
relevant configurations are those describing angular, radial,
and left-right correlation. The same trend can be evidenced
from the results by Filippi and Umrigar,37 even if their inclu-
sion of the excitation to the o, orbital before the excitation to
the , orbital apparently implies a negative effect of the
corresponding configuration. In conclusion only five deter-
minants are required to build a nearly exact nodal surface.
Our energy is —14.9952(1) hartree; the best previous QMC
result, obtained by Luchow and Fink,'  was
—14.9948(1) hartree.

C, MOLECULE

C, is a challenging system to computational chemistry
owing to its multireference nature that presents problems to
single-reference methods. For example, CCSD(T) calcula-
tions with large basis sets cannot achieve chemical
accuracy.40 Filippi and Umrigar37 outlined the difficulty in
the treatment of this system with quantum Monte Carlo:
comparing DMC results of the first-row diatomic molecules,
at a multideterminant level C, provides the worst energy
result, recovering less correlation energy percentage than the
other first-row diatomic molecules. Barnett ez al.*® showed
that DMC can recover more than 96% of the correlation
energy, if one uses a large multideterminant expansion and a
large basis set. This was also found by Luchow and Fink,!
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TABLE V. C, DMC energies in hartrees for a multideterminant trial wave
function built with NO single-particle orbitals and basis C. We omit the core
double occupied molecular orbitals loilof.

CSF Ndet Additional CSF DMC energy
! 1 20217 17 207 ~75.8694(3)
2 2 20217 17 30 ~75.8859(3)
3 10 2211w 20300 1m) —75.8944(4)
4 12 2217202 7 ~75.8962(3)
u u g

6 2 2 w2l 1w ~75.8945(6)
7 24 gzgug 171{21775217%2 ’ ~75.8997(4)
8 32 2glintim202m 30l ~75.9032(8)
g 32 20w im 202130 ~75.9038(6)
4 16 ~75.8901(7)°
36 ~75.9025(7)¢

—75.900(1)*
Exact energy -75.923(5)°

“Linear coefficients optimized at the DMC level.
"Reference 37.
‘Reference 30.
dReference 31.

who obtained very accurate results for C, using a quite large
MCSCF expansion built with the Cade-Wahl basis set.”
Overall, those results support our hypothesis that basis sets
larger than previously thought must be used to describe the
nodes adequately.

We first tested several basis sets taken from the literature
and performed DMC simulations, at the experimental bond
length of 2.3481 bohrs,* using a single-determinant wave
function. CAS and NO orbitals give better FN-DMC ener-
gies than HF orbitals: the results are shown in Table IV. To
expand the wave function with excited configurations we
decided to use NO orbitals and basis C that give the best
result at the single-determinant level. Furthermore, its use
allows us to perform a systematic comparison between our
results and the ones reported by Barnett ef al.*® FN-DMC
energy results are reported in Table V.

We added up to seven CSFs to the ground state. Each
inclusion improves the nodes, except for the 1,1

1 1
— 1, 11, excitation that slightly raises the energy, but its

inclusion is required together with the successive CSFs in

TABLE VI. DMC energies in hartrees for dimers.

J. Chem. Phys. 123, 204109 (2005)

Table V to get the final value of —75.9032(8) hartree, at
present the best DMC value. We tried to add more CSFs, but
we were not able to recover more correlation energy. On the
contrary, an expansion of 23 configurations gave a worse
energy [—75.8999(4) hartree]. With the same basis set and an
optimized wave function containing 36 CFSs, Barnett et al®
obtained —75.9025(7) hartree. Our better result once again
suggests that, when a good description of nodes is reached,
the inclusion in the wave function of further CFSs spoils the
nodal surface. Examining the configurations that contribute
to improve the nodes, we observe that the first six involve
excitations from the three highest doubly occupied orbitals
and only the last CFS includes the excitation of a lower
energy o orbital. Furthermore all CSFs involve excitations
from g to u or from u to g orbitals, including so the left-right
correlation. They correlate o and 7 electron pairs and cross-
correlate o and 7 electrons and 7 electrons in different
orbitals.

Optimization of the coefficients of the determinant ex-
pansion and of the molecular orbitals is another common
way to improve the wave function, but it is computationally
expensive. We tried to optimize the linear coefficients of the
eight CSF expansions obtaining a value —75.9038(6) hartree,
recovering 96.3% of the correlation energy.

In conclusion, since in some cases FN-DMC energies
became even worse after adding additional CSFs, it is impor-
tant to select only configurations that improve the nodes: this
selection allows not only a better description of the nodal
surface, avoiding to spoil correct nodes, but also an appre-
ciable reduction in the computational cost of the simulation.

MORE DIMERS

We applied the empirical rules found examining the pre-
viously discussed systems to other dimers of the first row.
We do not present their results with the level of details al-
ready used; we limit ourselves to report the best FN-DMC
energies in Table VI. The basis sets by Cade-Huo,"! opti-
mized for the first-row hydrides, were selected instead of the
ones optimized for first-row dimers™ as they are larger and
so give better nodal surfaces. However, for Be, we neglected
the d orbitals, as we did for Li,, and added an extra 2p

E Exact’

Molecule CSF* Epmc’ CSF® Epyc” (%) energy

Be, 1 —29.3178(2) 1 -29.3176(2) —29.338 54(5)
4 —29.3336(2) 5 —29.3301(2) 95.9

B, 1 -49.3813(1) 1 —49.3778(8) -49.415(2)
5 —49.3998(3) 6 —49.3979(6) 95.3

N, 1 —-109.5041(4) 1 —109.487(1) —109.5423
3 —-109.512(1) 4 —109.505(1) 94.5

0, 1 ~150.2850(6) 1 ~150.268(1) ~150.3268
2 —-150.2869(6) 4 —150.277(1) 94.0

F, 1 —199.4806(8) 1 —199.478(2) -199.5299
2 —199.4862(7) —199.487(1) 94.2

“Present work.
"Reference 37.
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function, while for the other dimers the basis set was supple-
mented with an extra d orbital. We did not check whether the
nodal surfaces are at convergence with respect to the atomic-
orbital basis set. We compare our values with those by Fil-
ippi and Umrigalr37 who made a systematic study of the first-
row dimers. For Be, we get the same value with a single-
determinant wave function, but our value with four CSFs is
lower than their —29.3301(2) hartree computed with five
CSFs, the CSF associated with the second spin function for
the excitation 20,20, — 1m,lm, being detrimental to the
FN-DMC energy. For Be, the best FN-DMC energy of
—29.3334(3) hartree was computed by Casula et al* using a
correlated geminal wave function; for the other systems ex-
amined in this work their approach gives worse energies. For
B, our better basis set allows us to improve over the values
by Filippi and Umrigar both at the single-determinant level
and when including five CSFs instead of their six CSFs.
Again for the space configuration with four electrons in four
orbitals it is enough to include only one spin function. The
effect of a large basis set of atomic orbitals is even more
evident in N,, O,, and F,. For N, our best result was ob-
tained using only three CSFs instead of their four CSFs,
again including only one spin function for a given space
configuration. A larger reduction of the expansion was found
for O,: only two CSFs are effective instead of their four
CSFs, the excitations from 30'g orbital being detrimental to
the FN-DMC energy. For F, we included the same CSFs, the
better result depends on the larger atomic basis set.

As a general comment on the CSFs we found effective in
improving the nodal surface, only excitations to valence
bonding and the corresponding antibonding orbitals must be
included in the CI expansion, the contribution of higher-
energy orbitals is either negligible or harmful.

CONCLUSIONS

In this paper the problem of the so-called nodal error in
FN-DMC simulations has been investigated in a series of
atoms and molecules. The elements that influence the deter-
minantal part of the wave function, namely, the atomic basis
set, the single-particle orbitals, and the length of the deter-
minantal expansion, were examined. A series of empirical
rules can be extracted from this study. The atomic basis set
must be larger than the double-zeta (DZ) basis sets and
should be optimized on the molecule,33 not on the atoms.”!
The cost of the optimization by ab initio methods is negli-
gible with respect to the cost of the DMC simulation and
does pay in reducing the nodal error and the energy variance.
Usually CAS or NO single-particle orbitals are better than
HF orbitals. Few configurations contribute to improve the
nodal surface upon the single-determinant node; long expan-
sions are not only expensive, but usually include CSFs that
spoil the nodal surface. When more spin functions can be
associated with a space configuration, in general only the
CSF with the largest coefficient improves the nodal surface.
Almost always, it is better to include CSFs built using orbit-
als with different orbital angular momenta.

Using these empirical findings, for a series of molecules
we were able to compute FN-DMC energies that are better

J. Chem. Phys. 123, 204109 (2005)

than almost all the previously published results. It might be
possible to further improve these values, in particular, by
enlarging the atomic basis set. However, even if we were
able to reduce the nodal error, we do not recover much more
than 95% of the correlation energy. Beyond a given point,
enlarging the atomic basis set and including more CSFs do
not improve the nodal surfaces. Our feeling is that the larger
the number of electrons, the more difficult is to improve the
nodal surfaces: for example, the number of CSFs that we
found effective increases from four for Li, to eight for C,
and then decreases to three for N, and two for O,. The wave
functions are very involved functions that result from the
optimization of many linear and nonlinear parameters with
respect to the energy. On the other hand we have seen that
the nodal surfaces have simpler structures, so the more terms
are present in the wave function, the more difficult is to
define its zero by cancellation of terms of opposite sign.
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