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Interaction-induced quantum ratchet in a Bose-Einstein condensate
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We study the dynamics of a dilute Bose-Einstein condensate confined in a toroidal trap and exposed to a pair
of periodically flashed optical lattices. We first prove that in the noninteracting case this system can present a
quantum symmetry which forbids the ratchet effect classically expected. We then show how many-body
atom-atom interactions, treated within the mean-field approximation, can break this quantum symmetry, thus

generating directed transport.
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The ratchet effect, that is, the possibility to drive directed
transport with the help of zero-mean perturbations, has re-
cently gained renewed attention due to its possible relevance
for biological transport, molecular motors, and the prospects
of nanotechnology [1,2]. At the classical level, the ratchet
effect can be found in periodic systems due to a broken
space-time symmetry [3]. The ratchet phenomenon has also
been discussed in quantum systems [4], including the Hamil-
tonian limit without dissipation [5]. Experimental implemen-
tations of directed transport range from semiconductor het-
erostructures to quantum dots, Josephson junctions, and cold
atoms in optical lattices [6].

Quantum Hamiltonian ratchets are relevant in systems
such as cold atoms in which the high degree of quantum
control may allow experimental implementations near the
dissipationless limit. Moreover, the realization of Bose-
Einstein condensates (BECs) of dilute gases has opened new
opportunities for the study of dynamical systems in the pres-
ence of many-body interactions. Indeed, it is possible to pre-
pare initial states with high precision and to tune over a wide
range the many-body atom-atom interaction. From the view-
point of directed transport, the study of many-body quantum
system 1is, to our knowledge, at the very beginning.

In this paper, we investigate the quantum dynamics of a
BEC in a pair of periodically flashed optical lattices. We
show how the interaction between atoms in the condensate,
studied in the mean-field approximation, can break the quan-
tum symmetry present in our model in the noninteracting
limit, thus giving rise to the ratchet effect. The role of noise,
the validity of the mean-field description, and the possibility
to observe experimentally our ratchet model are discussed as
well.

We consider N condensed atoms confined in a toroidal
trap of radius R and cross section 712, with the condition r
<R, so that the motion is essentially one dimensional. The
dynamics of a dilute condensate in a pair of periodically
kicked optical lattices at zero temperature is described by the
Gross-Pitaevskii nonlinear equation,
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where @ is the azimuthal angle, g=8NaR/r? is the scaled
strength of the nonlinear interaction (we consider the repul-
sive case, i.e., g>0), a is the s-wave scattering length for
elastic atom-atom collisions. The kicked potential V(8, ¢,¢)
is defined as

V(6,,1) = 2, [V1(0) 8t = nT) + V,(0,$) 8t = nT - )],

Vi(0) =k cos 6, V,(6,¢)=kcos(0- ¢), (2)

where k is the kicking strength and T is the period of the
kicks. The parameters ¢ E[0,27] and £E[0,T] are used to
break the space and time symmetries, respectively. Note that
we set =1 and that the length and the energy are measured
in units of R and A%/mR2, with m the atomic mass. The wave
function normalization reads [3"d6|y(6,1)|>=1 and bound-
ary conditions are periodic, Y{(6+2,1)=y(6,1).

We first consider the noninteracting case g=0. Here, when
¢#0,mand £€#0, T/2, space-time symmetries are broken
and there is directed transport, both in the classical limit and,
in general, in quantum mechanics [7]. However, if we take
T=6m and &é=47, then the quantum motion, independently
of the kicking strength k, is periodic of period 27.

In order to prove this periodicity, it is useful to write the
initial wave function as (6,0)=2,A, exp(inf), where A,
=%T é”g&(ﬁ,O)exp(—in&). After free evolution up to time ¢,

the wave function becomes (4,1)=% A, exp(—i%zt+in0). It
t=4m we have (0,1)=y(6,0) while, if t=27, we obtain
(0,1)=y(6+7,0). Using these relations we can easily see
that the system is periodic with period 127r. Indeed,

lﬂ(05477+) = CXP[— 1V1(9)]¢(9,0),
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FIG. 1. Momentum vs time for different values of interaction

strength g, at k=0.74 and ¢p=-—m/4: g=0 (dashed line), g=0.5
(continuous curve), g=1 (dotted curve).

#(0,67") = exp[—iV,(6, §) |0+ m,47)
=exp{- i[V2(6,¢) = V1 (0) [}4(6+ ,0),

#(0,107%) = exp[— iV, (0)]y{ 6,67)
=expl— iV,(6, )0+ .,0),

W(6,127%) = exp[— iV,(6, §) |0+ m,107") = (6,0),

3)
where (6,1") denotes the value of the wave function at
time ¢ just after the kick. The momentum (p(z))
=—if37d 0¢*(0,t)£9¢(6,t) also changes periodically with pe-
riod 127 (four kicks). Therefore the average momentum
pa=lim,_.p(t) ()= [4dr' (p(t"))) is given by

4m(p(0)) + 2m(p(4 7)) + 47(p(67")) + 2m(p(107™))
Pav=
127

2

=(p(0)) + gf [sin(6) - sin(6— H)]|4(6,0)*d6.  (4)

0

In particular, for the constant initial condition #(6,0)
=1/+21r, which is the ground state of a particle in the trap,
the momentum remains zero at any later time. This initial
condition has an important physical meaning, as it corre-
sponds to the initial condition for a Bose-Einstein conden-
sate.

It is therefore interesting to study the case of a BEC be-
cause atom-atom interactions may break the above periodic-
ity, and this may cause generation of momentum. The nu-
merical integration of Eq. (1) confirms this expectation: as
shown in Fig. 1, at g #0 the momentum oscillates around a
mean value clearly different from zero. Notice that without
interactions (g=0) the momentum is exactly zero, so that
directed transport is induced by the many-body atom-atom
interactions.

In Fig. 2, we compare the asymptotic value p,,, obtained
from long numerical integrations of the Gross-Pitaevskii
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FIG. 2. Momentum averaged over the first 30 kicks (solid line
with boxes) and asymptotic momentum (dotted line with triangles).
Inset: Cumulative average p(r) as a function of time for different
values of g. From bottom to top g=0.1, 0.2, 0.4, 1.0, 1.5. Parameter
values: k=0.74, ¢p=—m/4.

equation (dotted line with triangles), with the average of
{p(1)) over the first 30 kicks [p(907), continuous line with
boxes]. It can be seen that this short-time average is suffi-
cient to obtain a good estimate of the average momentum
Pay> provided that g =0.5. It is interesting to remark that the
average momentum after the first kicks grows monotonically
with g. Therefore the ratchet current provides a method to
measure the interaction strength in an experiment. In the in-
set of Fig. 2 we show the cumulative average p(z). For strong
enough interactions (g =0.5) the convergence to the limiting
value p,, is rather fast as we can already see from the main
part of Fig. 2.

Since the above complete periodicity of the single particle
system (g=0) is a very fragile quantum phenomenon, it is
important to check the visibility of the ratchet effect when
the unavoidable noise leads to a departure from the ideal
periodic behavior. For this purpose we consider fluctuations
in the kicking period, modeled as random and memoryless
variations of the period between consecutive kicks, with the
fluctuation amplitude at each kick randomly drawn from a
uniform distribution in the interval [—¢,€]. We have seen
that, when the size of the fluctuations is e=7/200, then the
ratchet current generated in the noninteracting case is
p(907)=-0.007. This value of p is much smaller than the
genuine many-body ratchet current already shown in Fig. 2
for values of g=0.2. A similar conclusion is obtained when
the kicks are substituted by more realistic Gaussian pulses of
width 7/10. In this case p after 30 kicks is equal to
p(907)=-0.01, again too small to hide or to be confused
with the many-body ratchet effect.

The interaction-induced generation of a nonzero current
can be understood as follows. We approximate, for small
values of g, the free evolution of the BEC by a split-operator
method as in [8]:

WO, ~ =) (P16%)(12) =ig W 0,712 7,=i(1/2)(196) (+12) #(6,0),
(5)
where §A(6,1+Af) = e"'(”z)("’/‘wz)mgb( 0,1).
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In particular, we obtain

Y(6,4) ~ exp[— idmg|(6,0)*19(6,0) (6)

and

(6,2) = exp{- img[|(6.0)]* + |6+ m,0)]*1}
X {cos[F(6,0) ] 6+ ,0) — sin[F(6,0)]4(6,0)},
(7)

where we have defined F(0,0)=img[¢"(0,0)¢{6+7,0)
—i(0,0)y"(6+,0)]. Note that, in the limit g— 0, Egs. (6)
and (7) become (0,4)=y{(6,0) and (6,27)=y{6+1,0),
as expected for the noninteracting free evolution. Using this
approximation, we compute the evolution of the condensate
for the first two kicks, starting from the initial condition
#(6,0)= 1/\27. We obtain

1
(0,47") = ——=-exp[—iV,(0)|exp(-i2g),
N2

H0.67) = T—expl- 1V:(0.) - Vi(Ofexpl- i3¢)

X {cos[€2;(6)] + sin[Q,(6) Jexp[- 2V, (0) ]},
(8)

where Q,(6)=g sin(2V(6)). The mechanism of the ratchet
effect is now clear: due to atom-atom interactions, the modu-
lus square of the wave function at time 67 (before the sec-
ond kick) is no longer constant in 6. Instead we have, to first
order in g, |/(0,6m)|* = ﬁ{l +g sin[4V,(0)]}, so that the ini-
tial constant probability distribution is modified by a term
symmetric under the transformation §— —6. The current af-
ter the kick at time =67 is then given by

2

(p(6T)=— f 40V3(0,8)| (0.6

0
2

~ gkf d6 sin(6— ¢)sin(4k cos 6)
0

= — gk sin(¢)J,(4k), )

where J| is the Bessel function of the first kind of index 1.
This current is in general different from zero, provided that
V,(8, ¢) is not itself symmetric under §— —6, that is, when
¢F+0, .

In Fig. 3, we show that it is possible to control the direc-
tion of transport by varying the phase ¢: the current can be
reversed simply by changing ¢— —¢. This current inversion
can be explained by means of the following symmetry con-
siderations. The evolution of the wave-function ¢(6,7) is
given by Eq. (1). After substituting in this equation 6— —6,
and taking into account that V(-0,¢,1)=V(0,-¢,1), we
obtain
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FIG. 3. Momentum vs time for different values of the parameter
¢, at k=0.74 and g=0.5: ¢=—m/4 (continuous curve), ¢=0
(dashed line), ¢p=1/4 (dotted curve).

%:z(e,t): > 92+g|w(et)|2+vw 1) |H6.0),

(10)

where zZ(ﬂ,t) = (- 0,1). Therefore if 4 6,1) is a solution of

the Gross-Pitaevskii equation, then also J(H,t) is a solution,
provided that we substitute ¢p— —¢ in the potential V. The
momentum (5(7)) of the wave function ¢(6,7) is obviously
given by (p(1))=—(p(t)), where {p(¢)) is the momentum of
(6,1). This means that, for every ¢ 6,t) whose evolution is
ruled by the Gross-Pitaevskii equation with potential

V(6, ¢,1), the wave function J(G,t) evolves with exactly op-
posite momentum if ¢——¢ in V. Since we start with an

even wave function, ¢(6,0)=y(—6,0)=y¢(6,0), then chang-
ing ¢— —¢ changes the sign of the momentum of the wave
function at any later time.

When studying the dynamics of a kicked BEC, it is im-
portant to take into account the proliferation of noncon-
densed atoms. Actually, strong kicks may lead to thermal
excitations out of equilibrium and destroy the condensate,
rendering the description by the Gross-Pitaevskii equation
meaningless [9,10]. In the following, we show that, for the
parameter values considered in this paper, the number of
noncondensed particles is negligible compared to the number
of condensed ones, thus demonstrating that our theoretical
and numerical results based on the Gross-Pitaevskii equation
are reliable.

Following the approach developed in [11] (see also [10]),
we compute the mean number of noncondensed particles at
zero temperature as 5N(t):2;';1 I g”d0|vj(t9,t) 2, where the
evolution of v;(6,1) is determined by

{ (0;)} {Hl(ﬂ,t) Hy(6,1) Huj(a,z)]
at v;(6,1) —Hy(6,1) —Hj(6,0) |[v;(6.1) |

(11)
Here H(0,0)=H(0,1) - (1) +g Q0| 0,0[*Q(1),  H(0,1)

=— 092+g|1,b (0,)]?+V(6, ¢,1) is the mean-field Hamiltonian
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FIG. 4. Mean number SN of noncondensed particles vs time for
different values of the interaction strength g: from bottom to top,
£=0.5, 1.5, and 2.0. Inset: 6N vs g after 30 kicks. Parameter values:
k=0.74, p=—m/4.

that governs the Gross-Pitaevskii Eq. (1), u(r) is the
chemical potential [H(0,1)y(0,1)=u(t)(0,1)], QO(r)=1
—|y(t)){yt)| projects orthogonally to |¢At)), and H,(6,t)
=20y (6,00"(1).

We integrate in parallel Egs. (1) and (11). The initial con-
dition of the noncondensed part is obtained by diagonalizing
the linear operator in Eq. (11) [10,11]. We obtain

(uj(e,())) =1(5+ 1/§>£’ 12)
v(0.0)) " 2\¢é-1/&) 2o

where ¢=(2 )™, with (6,0)=1/\2 initial condi-

tion of the BEC. The numerical evolution is performed using
the split-operator method as in Eq. (5), with small integration
steps 7<<T.

The number 6N of noncondensed particles, depending on
the stability or instability of the condensate, grows polyno-
mially or exponentially. As shown in Fig. 4, SN grows poly-
nomially at small g and exponentially for large g. The tran-
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sition from stability to instability takes place at g=g.~1.7.
At g>g,., thermal particles proliferate exponentially fast,
SN ~exp(rt), leading to a significant depletion of the con-
densate after a time t;,~1In(N)/r. In this regime, the validity
of the mean field description is undermined. On the other
hand, for g<<g. the exponential growth rate r=0 and the
number of noncondensed particles is negligible for up to
long times. For instance, as shown in Fig. 4, SN=0.2 (10)
after t=907r (30 kicks) at g=0.5 (1.5), which is much smaller
than the total number of particles N~ 103—10° [10,12].

Finally, we would like to comment on the experimental
feasibility of our proposal. The toruslike potential confining
the BEC may be realized by using two two-dimensional cir-
cular optical billiards with the lateral dimension being con-
fined by two plane optical billiards [13], where the circular
barrier is obtained by deflecting a laser beam with acousto-
optic deflectors fast enough so that this potential can be ap-
proximated by a static potential barrier. The toruslike poten-
tial may also be realized by using optical-dipole traps
produced by red-detuned Laguerre-Gaussian laser beams of
varying azimuthal mode index [14]. The kicks may be ap-
plied using a periodically pulsed strongly detuned laser beam
transverse to the ring with the intensity linearly growing in
one direction in the plane of the ring while constant in the
other two directions, as proposed in [15]. The feasibility is
also supported by the latest progress in the realization of
BECs in optical traps such as the ’Rb BEC in a quasi-one-
dimensional optical box trap, with condensate length
~80 um, transverse confinement ~5 um, and number of
particles N~ 103 [12]. Sequences of up to 25 kicks have
been applied to a BEC of ’Rb atoms confined in a static
harmonic magnetic trap, with kicking strength k~1 and in
the quantum antiresonance case for the kicked oscillator
model, T=2 [16]. Finally, the interaction strength g can be
tuned over a very large range using a Feshbach resonance or
varying the number of atoms [17].
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