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We study the spatiotemporal coherence properties of superfluorescence radiation generated in optical para-

metric amplification of quantum noise. We show that the angular dispersion properties of the spatiotemporal

spectra, measured in different phase-matching conditions, lead to a clear X-shaped structure of the mutual

correlation function of the radiation. Within a statistical picture, we interpret the generated superfluorescence as

a stochastic “gas” of quasistationary modes characterized by a skewed correlation in the spatiotemporal do-

main, with characteristics similar to linear and nonlinear X waves not describable within a separable approach

in space and time.
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I. INTRODUCTION

Coherence is a key physical concept underlying the sta-

tistical properties of a large variety of fundamental phenom-

ena, such as Bose-Einstein condensation, superfluid flows,

superconductivity f1,2g, laser light emission f3,4g, hydrody-
namic turbulent flows f5g, or synchronization of biological

rhythms f6g. In optics, which is the natural context to discuss
this notion, the simplest manifestations of correlations in

fluctuating electromagnetic fields are the well-known inter-

ference effects that arise when two light beams originating

from the same source are superposed. The elementary con-

cepts of spatial coherence were first introduced by Wolf in

1955 to characterize the statistical properties of partially in-

coherent light f3,4,7g. Conventionally, a light field is called

coherent when there is a fixed phase relationship between the

electric field values at different locations or at different

times, within the chosen statistical ensemble. Therefore, spa-

tial coherence refers to the ability of a field to interfere with

a spatially shifted sbut not delayedd region of the same field,
whereas temporal coherence describes the similar ability to

interfere with a delayed sbut not spatially shiftedd version of
itself. The coherence time tc is conveniently measured by

using a Michelson interferometer, leading to a longitudinal

coherence length of the light defined as Dl=ctc, c being the
light speed in vacuum. The Young’s interference experiment,

on the other hand, gives information on the spatial coherence

area sc of the radiation f3g. From these definitions, usually

adopted in the case of a nearly plane, quasimonochromatic

linearly polarized wave, follows the concept of coherence

volume around a particular point of the field, which is de-

scribed as the right-angle cylinder occupying a domain of

volume DV=scDl f3g. The coherence volume appears then
as a space–time factorizable quantity, which corroborates the

general idea that a separable characterization of the spatial

and temporal properties of coherence provides a convenient

description of fluctuating fields, as witnessed by common
interferometric measures of coherence.

In fact a unified mathematical description of these notions
of spatial and temporal coherence is provided by the mutual
coherence function or autocorrelation function, permitting
us, for instance, to evaluate the spartiald correlation that ex-
hibits a wave field at two distinct points, or at the same point

at different instants of time. This autocorrelation function

characterizing a random fluctuating field is usually written as

GsrW1 ,rW2 , t1 , t2d= kVpsrW1 , t1dVsrW2 , t2dle, where the average k¯le
is intended to be made over an ensemble of different realiza-

tions of the field f3g. In particular when the field exhibits a

stationary statistics, the mutual correlation function only de-

pends on the time delay t= t1− t2 and if the field statistics is
also ergodic the ensemble average can be replaced by a time

average. A complex degree of coherence is obtained by nor-

malizing G, and usually, in the literature, the complex de-

grees of temporal and spatial coherence are obtained sepa-

rately by setting rW1=rW2 or t=0, respectively. These provide
information about the degree of correlation between two

fields arriving in the same position but at two different in-

stants separated by a time interval t or between two fields

arriving simultaneously in two different points f3,7g. In this

paper the concept of stationarity will be readdressed within

the context our experimental work, involving a pulsed radia-

tion field.

Note for completeness that, whereas the traditional coher-

ence theory considers only the lowest order field correlation

function, Glauber’s approach presented in 1963 f8g considers
correlation functions of any order both in quantum theory

and in classical theory and shows, in particular, that fields

generated by conventional optical sources are coherent only

at the lowest order. In fact, the most important difference

with respect to the traditional approach is the introduction of

a succession of correlation functions for the complex field

strengths, where the nth order function expresses the corre-

lation values of the fields at 2n different points in space and

time si.e., the intensity correlation, which is proportional

to the joint probability of photodetection at n space-time

pointsd. The notion of complete coherence requires then that
the field correlation functions satisfy an infinite succession of
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coherence conditions ssee also Ref. f3g, Chap. 12d. In fact,
for the purpose of our work, we will deal in this paper with
first order coherence only, and with the diagnostic technique
used to measure it in the full spatiotemporal domain.

In many fields of physics, common experimental mea-
surements of coherence are usually aimed at providing a
separate characterization of the spatial and temporal coher-
ence properties of fluctuating phenomena. This is the case in
optics for the study of the statistical stemporald properties of
laser radiation or of radiation emitted from different kinds of
sources such as, for instance, thermal sources f9,10g. Astro-
nomical interferometers are also typically used to study the
degree of spatial correlation existing, over great areas, in the
light reaching the Earth’s surface from individual stars f9g.
On the other hand, dynamical light scattering experiments
ssee, e.g., Refs. f11–13gd often evaluate field correlations in
both the spatial and temporal domain. Nevertheless, regard-
ing the notion of radiation coherence volume, we recently
reported experimental evidence of a direct and complete

space-time characterization of radiation coherence f14g. Pre-
cisely, we showed the existence of a state of X-shaped spa-

tiotemporal coherence, i.e., a state in which coherence is nei-

ther spatial nor temporal, but skewed along specific

spatiotemporal trajectories f15g. Such a peculiar coherent

state results from the combined action of sspatiald diffraction,
stemporald dispersion, and nonlinearity. In this respect, we

have pointed out that the emission process may be pictured

as a stochastic generation of an ensemble of skewed corre-

lated modes, the latter resembling nonlinear X waves, which

are coherent localized structures recently discovered in vari-

ous contexts f16–28g.
Before going into detail, let us discuss the physical origin

of X coherence from a different point of view. For this pur-

pose, let us recall that emergence of coherence in the para-

metrically down-converted fields relies on the interplay be-

tween natural wave dispersion and the nonlinear parametric

amplification. The term “dispersion” is used here in a broad

sense and refers both to first order dispersion effects si.e.,
spatial or temporal walk-off between the down-converted

fieldsd as well as second-order dispersion effects si.e., dif-
fraction or group-velocity dispersiond. When first- ssecond-d
order dispersion effects dominate the interaction, it is known

that the coherence time or length of the down-converted

fields increases as z1/2, sz1/4d, z being the propagation dis-

tance in the crystal. As a result, when second-order disper-

sion effects may be neglected, the coherence of the fields

appears thanks to the feedback action caused by the walk-off

between the waves. Let us stress, however, that in the pres-

ence of both a spatial and a temporal walk-off, the concept of

walk-off is generalized to two dimensions and hence has a

vector nature. In this case, coherence will be established in

those skewed space-time directions in which spatial and tem-

poral walk-off compensate each other, a property that was

discussed in Ref. f15g. Because walk-off may be regarded

as a first-order dispersive effect, this skewed coherent state

is induced by walk-off in the same way as X coherence is

induced by second-order dispersive effects. As a result, X

coherence emerges along two specific spatiotemporal trajec-

tories in which temporal dispersion and spatial diffraction

compensate each other. This is illustrated in Fig. 1, which

shows that the down-converted field has reached a peculiar

state of coherence characterized by the presence of X-shaped

lines of correlation, a peculiar feature that will be discussed

in detail in Sec. III.

The aim of this paper is to extend the previous work f14g
on the experimental observation of optical waves character-

ized by X-shaped spatiotemporal coherence, by presenting

measurements and results. Through the analysis of several

different experimental configurations, we prove the general-

ity of the aforementioned property of the parametric down-

conversion process. Consequences on the nature of the emit-

ted field se.g., mode structure, stationarityd are also

discussed. With this work, we confirm that the dichotomous

picture of spatial and temporal coherence fails to describe the

coherence properties of a large variety of nonlinear wave

systems. In Sec. II, we provide a complete and detailed de-

scription of the experiment for the direct characterization of

such a nontrivial volume of coherence, realized from corre-

lations measurements over the entire space-time domain, and

in different experimental configurations. The experimental

setup and the spectral method used for such a purpose is

described in Sec. II A. In Sec. II B, we present measurements

of the spatiotemporal correlation function in the case of para-

metric radiation generated by a type-I beta-barium-borate

sBBOd crystal. We illustrate single-shot spectra recorded in

different phase-matching configurations, together with the

corresponding correlation function calculated by means of a

spatiotemporal Fourier transform. In Sec. II C we comment

on the quasistationarity of the spatiotemporal modes, which

constitute, in our picture, the stochastic distribution of the

near-field radiation. Experimental measurements of single-

shot radiation generated within a lithium triborate crystal

sLBOd, and covering a different frequency range than that of
the BBO, are then presented in Sec. II D. Section III is de-

voted to the theoretical and numerical model analyzed in

2D+1 dimensions. It provides further insight into the mecha-

nism underlying the emergence of X-shaped spatiotemporal

coherence. In Sec. IV, we describe in detail the interferomet-

ric measurement based on Young’s experiment, corroborat-

ing the existence of skewed coherence. Finally a summary

and the conclusions of our work are presented in Sec. V.

FIG. 1. sColor onlined Numerical simulation showing the spa-

tiotemporal intensity distribution of the down-converted signal field

at the propagation distance z=1 mm with parameters correspond-

ing to the conditions of the experiment reported in Sec. II B sthe
simulation has been performed in s2+1d dimensions in the paraxial
and slowly varying envelope approximationd.
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II. SPECTRAL MEASUREMENTS AND COHERENCE

It is worth noting that the nonlinear mechanism underly-

ing the formation of the peculiar coherent states skewed in

the spatiotemporal reference frame essentially relies on sym-

metry considerations associated with momentum and energy

conservation laws, that is, the phase-matching conditions of

the parametric amplification process f29g. A first extensive

study of the spontaneous optical parametric process in non-

linear, anisotropic, and dispersive media, was presented by

Giallorenzi and Tang in Ref. f30g, where the tuning charac-

teristics, beam divergence, and spectral properties of the

emission for collinear and noncollinear interactions have

been described in detail and illustrated with numerical ex-

amples. In fact, we shall see that the key feature of the emis-

sion spectrum that leads to an X-shaped spatiotemporal co-

herence is the angular dispersion si.e., the dependence of the
angle of the emitted radiation on the radiation wavelengthd,
which is determined by phase matching, independently of the

type of operation sdegenerate or nondegenerated. For the

sake of simplicity this can be illustrated by considering the

basic process of parametric generation around degeneracy, in

which a second harmonic spumpd beam, of frequency v2,

parametrically amplifies quantum noise fluctuations in a

spectral region around the fundamental harmonic frequency

v1=v2 /2 f16,29g. By projecting the phase-matching condi-

tion along the longitudinal axis z of propagation, one has

Dkz=k2,zsv2d−k1,zsv1+Vd−k1,zsv1−Vd, where kW1,2 represent
the wave vectors of the beams and V a detuning of the signal

frequency with respect to v1. Expanding then the dispersion

relation k1,zsv1+Vd to second order in V and making use of

the paraxial approximation, one readily obtains Dkz=K
2 /k1

−V2k19, where K2=k1,x
2 +k1,y

2 and k19= s]2k1 /]v2d. It becomes
apparent that whenever a nonlinear material exhibits normal

dispersion k19.0, preferential amplification sDkz.0d occurs
for spatial and temporal frequencies lying along an X-shaped

spectrum. Thus, if the crystal is oriented in such a way swith
respect to the pump directiond that axial emission occurs at

degeneracy si.e., K=0 for V=0d, such an X-shaped spectrum

is defined by the two symmetric lines K= ±Îk1k19V. Note

that the features characterizing simultaneous angle and

wavelength one-beam noncritical phase matching have been

studied numerically and theoretically by Lantz and co-

workers in Ref. f31g, clearly illustrating how the gain exhib-

its an X-shaped plateau at degeneracy. Actually, spatiotem-

poral emission spectra characterized by angular dispersion

sindependently of the spectral features around degeneracyd
will be shown to witness the presence of a field featuring an

X-shaped correlation function in the space-time domain, i.e.,

a coherence volume characterized by a nonfactorizable, spa-

tiotemporal biconical shourglassd shape.
The aim of the experiment is precisely the characteriza-

tion of the coherence properties of the superfluorescence ra-

diation generated by a quadratic xs2d nonlinear process of

parametric amplification of vacuum field fluctuations. Two

experimental configurations are considered: in the first case

sad, the parametric radiation is generated in the visible range
by a BBO crystal pumped by a ultraviolet laser pulse and in

the second case sbd an LBO crystal is pumped by a visible

green pulse, generating superfluorescence in the infrared re-

gion of the spectrum. In case sad, the pump pulse is given by
a Tp=1 ps duration, Dlp=0.1 nm spectral bandwidth scen-
tered at l2=352 nmd, Dp=200 mm diameter, Ep=80 mJ en-
ergy speak power P=80 MWd, transform-limited Gaussian

pulse. It is generated by frequency tripling the output of a

chirped pulse amplification Nd:glass laser sTwinkle, Light
Conversion, Ltd.d, operated at 2 Hz repetition rate. The pump
pulse is injected into a 2-mm-long BBO crystal, cut for

a type-I degenerate interaction at l1=704 nm. In case sbd,
a similar pump pulse sbut centered at l2=527 nmd, with
Dp=1 mm diameter, Ep=200 mJ energy speak power P

=200 MWd is generated by frequency doubling the output of
the Nd:glass laser, and is injected into a 15 mm-long LBO

crystal, temperature tunable and cut for type-I degenerate

interaction at l1=1055 nm. In both cases, the parametric

down-converted radiation is generated over a conical broad-

band spectrum, whose characteristics are determined by the

phase-matching conditions and the parametric crystal gain

bandwidth f32,33g. The study of coherence properties of the
superfluorescence is based on the measurement of the radia-

tion spectrum resolved both in angle and wavelength sor,
equivalently, transverse momentum and frequencyd as de-

scribed in the following.

A. The spatiotemporal spectral diagnostics

The direct demonstration of the existence of a nontrivial

coherence volume shape se.g., skewed in the spatiotemporal
domaind, has been achieved by means of an experimental

technique that allows us to record the spatiotemporal spec-

trum of each single optical wave packet generated by the

nonlinear crystal from one laser pump pulse. More precisely,

the spectrum Ssu ,ld of the spontaneously generated signal is
analyzed in both the spatial and temporal domains, i.e., it is

resolved in vertical angle u.K /k1 and in wavelength l
sv1+V=2pc /ld. For this purpose, the entrance slit of an

imaging spectrometer sOriel Instruments, MS260id consti-

tuted by two toroidal mirrors sM1 and M2d and a dispersive

grating G, is placed in the focal plane of a lens L sf
=75 mmd that collects the far-field signal of the radiation.

This setting allows different vertical-angle components of

the impinging radiation to enter the slit at different vertical

positions. Note that the first measurements of far-field signal

wavelength dependence on angle with respect to the pump

direction were performed in 1968 by Budin et al. f34g, in the
regime of noncollinear phase matching, and were shown to

be in accordance with the theoretical prediction. Our tech-

nique is also similar to that of Lantz et al. already used to

show the features of a X-shaped su ,ld spectrum issued from

xs2d amplification of a broadband source at degeneracy in a

type-I crystal f35g. Moreover this diagnostic technique has

been recently applied in many other contexts, where the re-

trieval of such spectra in both the spatial and the temporal

domains has proved to be very useful for the understanding

of the wave packets nonlinear dynamics f22,25,36,37g.
In this work, the spectrum Ssu ,ld is acquired by a high

dynamic range s16-bitd CCD camera sAndor, EEV 40–11d,
placed in the spectrometer imaging plane, and a laser-
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synchronized shutter permits single-shot acquisition of the

radiation generated by a single laser pulse. During the data

analysis, a calibration of the measured spectrum is performed

by taking into account the CCD quantum efficiency curve as

a function of the wavelength. A simplified scheme of the

experimental apparatus used for the diagnostic is shown in

Fig. 2.

The coherence hidden in the radiation spectrum is re-

vealed through the analysis of the spatiotemporal correlation

function Csj ,td, which is calculated by means of the space-
time Fourier transform of the averaged spectrum kSsK ,Vdl
fwhere SsK ,Vd is obtained from the spectrometer output

spectrum Ssu ,ldg, by virtue of Wiener-Kintchine theorem

f3,4g. In our experiment, the average over-realization

kSsK ,Vdl is recorded from multiple shots on chip integration

by keeping the shutter open for a suitable time interval. Be-

fore entering into the details of our experiment, let us note

that the theorem of Wiener-Kintchine is commonly used in

statistical physics for the derivation of the correlation func-

tion f4g in the spatial domain or in the temporal domain, for
instance, in all those light scattering problems concerning the

study of the structural properties of molecular solutions si.e.,
of spatial distribution of scatterersd, or the study of the mo-

lecular temporal dynamics ssee, e.g., Refs. f11g and f12g,
respectivelyd. As we shall see here below, we will use a

generalized form of the Wiener-Kintchine theorem extended

in the space-time domain, that allows us to study the com-

plete spatiotemporal coherence in a way conceptually similar

to what is usually performed in dynamic light scattering ex-

periments ssee, for instance, Ref. f13gd.

B. Experimental results from a type-I BBO crystal

We present here the spectral measurements and the evalu-

ation of the mutual correlation function of the field of super-

fluorescence generated from the BBO crystal pumped by the

352-nm, 1-ps laser pulse. Figure 3sad illustrates a typical ex-
ample of spatiotemporal signal spectrum S retrieved from a

single pump pulse. In this particular case where the crystal

has been tuned for collinear emission at degeneracy, it ex-

hibits a very clear X-shaped structure, which indicates the

emission of radiation at angles u increasing with the fre-

quency shift V, as previously anticipated by the linear rela-

tionship K= ±Îk1k19V snote that the system is characterized

by radial symmetry with respect to the z axisd. Spectra with

similar features, observed experimentally out of degeneracy

in Ref. f34g, and at degeneracy in the context of parametric
amplification of a polychromatic image f35g, have also been
measured subsequently in many other works ssee, for in-
stance, Refs. f32,33gd. They are now known to characterize X

waves f16–26g, which constitute the polychromatic generali-
zation of diffraction-free Bessel beams f38g. However, in
contrast to X waves, which are inherently coherent localized

structures si.e., characterized by smooth X spectra, see, for

instance, Ref. f25gd, here the spectrum exhibits a specklelike

substructure reflecting the spartiallyd incoherent nature of the
field. It is interesting to note the symmetry of the spatial

intensity distribution of the speckles with respect to the col-

linear propagation direction sV=K=0d, evidencing the far-

field correlations existing between the phase-conjugated pho-

ton pairs ssignal-idlerd emitted in the PDC process and

coupled through the phase-matching relations. We also men-

tion that the symmetry of the speckles in angle has already

been observed in far-field spatial patterns, together with evi-

dent classical signal-idler correlations of spatial fluctuations

at a fixed wavelength sat degeneracyd f33g. These have also
been studied numerically in Ref. f39g. On the other hand, the
existence of such spatial correlations has also been predicted

at the quantum level ssee Ref. f40gd, and subshot noise

signal-idler intensity correlations have been recently mea-

sured around degeneracy in a type-II nonlinear crystal

f41,42g. This incoherent specklelike pattern is a manifesta-

tion of the amplification of quantum vacuum field fluctua-

tions. The structure of the speckles gives information about
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FIG. 2. sColor onlined Schematic setup of the experimental ap-
paratus. The pump after the nonlinear sNLd crystal is eliminated by
means of filters denoted by FF scorresponding, respectively, to one
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and to two broadband filters centered at 527 nm for the LBO
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the spatiotemporal gain profile of the spontaneous amplifica-

tion process, and thus reflects the fact that the pump wave

packet size is spatially and temporally finite sthe speckles

dimensions can be estimated in first approximation as dv
,Tp

−1 ,dk,Dp
−1d f32g. On the other hand, the X-shaped enve-

lope of the spectrum has to be related to the spatiotemporal

modes of the superfluorescence radiation generated within

the crystal and thus to their coherence volume structure.

It is worth noting that the spectrum is extended over very

large temporal and spatial bandwidths DK and DV sDV al-

most spans the complete visible spectrumd. If the radiation
were analyzed by means of traditional techniques, one would

be led to the erroneous conclusion that the field is spatially

and temporally almost incoherent, since tc,2p /DV,5 fs

and Dl,2p /DK,3.5 mm. However, in contrast to usual

incoherent fields, whose spectra uniformly fill the space-time

frequency domain sK ,Vd, here the spectrum is sharply local-

ized over a thin X-shaped surface. As we shall see later on

salso in the case of degeneracyd, the presence of skewed

“arms” determined by the angular dispersion of the radiation

is the key element characterizing the X-shaped space-time

coherence. Figure 3sbd shows the result of the average of

single shot spectra, obtained by integrating on the CCD the

radiation fluence over 400 laser shots. In this way, we have

assumed that, under stable laser conditions, each wave

packet generated from a single pump pulse constitutes a dis-

tinct realization of the statistical ensemble and thus an

equivalent replica of the system. In computing the average,

the granularity gets evidently smoothed. The dependence on

the vertical detection plane is removed owing to the radial

symmetry with respect to the axis z.

In order to be rigorous, it is important to precise that

given the short pulse duration and the small beam width of

the signal field, the statistics of the signal cannot be assumed

a priori homogenous and stationary. The autocorrelation R

= kA1srW'1 , t1 ,zdA1
psrW'2 , t2 ,zdl of the signal field results to be a

function of both the “space-time distances” jW= srW'1−rW'2d,
t= st1− t2d, as well the “space-time coordinates” rW'0=

1

2
srW'1

+rW'2d, t0=
1

2
st1+ t2d, where rW'= sx ,yd. Note that, as is usual

in nonlinear optics, the variable t refers to the “retarded”

time in a reference frame moving at the group velocity v1 of

the harmonic field. The spatiotemporal spectrum R̂

= kÂ1sKW 1 ,V1 ,zdÂ1
psKW 2 ,V2 ,zdl is thus linked to the autocorre-

lation by means of the generalized form of the Wiener-

Khinchine theorem,

Rst,jW,t0,rW'0,zd =E dVE dKWE dvE dkWR̂sV,KW ,v,kW,zd

3expfisVt + KW · jW + vt0 + kW · rW'0dg , s1d

where V=
1

2
sV1+V2d, KW =

1

2
sKW 1+KW 2d, v=V1−V2, and kW

=KW 1−K
W
2. However, the typical size of the speckles reported

in the experiment is much smaller than the size of the X

spectrum, which indicates that the signal statistics may be

assumed to be quasihomogenous and quasistationary, as de-

scribed by a straightforward spatiotemporal generalization of

the Schell model of partially coherent light f3g. This also

reflects the fact that the spatiotemporal spectral bandwidth of
the pump pulse is much narrower than the emission spectrum
of the parametric fluorescence. The autocorrelation function

may thus be factorized as R̂.kSsKW ,V ,zdlÎskW ,v ,zd, where Î
takes into account the nonhomogenous and nonstationarity
character of the statistics through the finite size of the speck-

les. In this respect, note that ÎskW ,v ,zd tends to a Dirac’s d
distribution in the limit of a homogenous and stationary sta-

tistics ÎskW ,v ,zd=ds2dskWddsvd. The correlation function R

=CsjW ,t ,zdIsrW'0 , t0 ,zd turns out to be the product of a station-

ary contribution CsjW ,t ,zd, and a nonstationary contribution

IsrW'0 , t0 ,zd, which simply corresponds to the space-time

overall envelope of the signal intensity profile. C and I then,

respectively, correspond to the space-time Fourier transform

of kSl and Î. Assuming the effect of the finite size of the

pump negligible in our situation, all the information on the

autocorrelation function can thus be extracted from the two-

dimensional Fourier transform of the averaged spatiotempo-

ral spectrum kSsKW ,V ,zdl. Accordingly, this regime is analo-
gous to that of a monochromatic plane wave, so that the

averaged spectrum obtained from multiple shot acquisition

“virtually” coincides with the averaged spectrum that would

have been obtained if the pump were a continuous plane

wave. In the same way, this regime is analogous to the one of

dynamic light scattering experiments. Typically in the latter,

the spectrum of the scattered radiation is detected at different

angles and frequencies, leading to the so-called structure fac-

tor that is linked to the Fourier transform of the correlation.

The result of these kinds of study is the retrieval of a full

spatiotemporal correlation ssee, e.g., Ref. f13gd in complete

analogy to what we do here in our investigation of superfluo-

rescence light. Clearly note that, contrary to our case, the

physics involved in light scattering experiments only de-

pends on linear response processes, and the origin of the

detection of temporal spectral components is typically due to

the temporal fluctuations of the scatterers se.g., density fluc-
tuationsd.

The result of the two-dimensional Fourier transform ap-

plied to our averaged spatiotemporal spectrum is illustrated

in Fig. 4. Figure 4sad shows the spatiotemporal correlation

function Csj ,td of the signal field. The contour-plot repre-

sentation is given in Fig. 4sbd. As already noted f14g, Csj ,td
is also X shaped, indicating that two points in the field are

correlated with each other only if their temporal delay t and

spatial distance j belong to such an X structure. As a result of

the radial symmetry of the system, C only depends on the

modulus ujWu, so that the X-shaped correlation function corre-
sponds to a biconical shape in three dimensions. Interest-

ingly, the size of the coherence volume evaluated at full

width at half maximum sFWHMd of the correlation function
leads to a transverse coherence length of 4±1 mm and a

coherence time of 6±2 fs, respectively, in accordance with

the estimation made by taking the inverse of the whole spa-

tial sDKd and temporal sDVd bandwidth, respectively, of the
recorded spectrum. Nevertheless, it is only thanks to this

diagnostic technique that the skewed extended arms of the

spatiotemporal correlation can be experimentally observed,
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confirming also the nonfactorizability of the mutual coher-

ence function investigated.

In the following we would like to illustrate the result of

the application of the bidimensional spatiotemporal Fourier

transform to a single-shot spectrum recorded by the CCD.

Wiener-Kintchine theorem cannot be applied in this case,

because such a single-shot spectrum constitutes a single re-

alization of the statistical ensemble. Nevertheless we have

observed that with this diagnostic technique it is still possible

to extract qualitative information about the shape and struc-

ture of the correlation. Figures 5sad and 5sbd show in loga-

rithmic scale the results retrieved from the Fourier transform

of the single-shot spectrum presented in Fig. 3sad. On the top
of a noisy bell-shaped background sexisting as a conse-

quence of the fine specklelike structure of the spectrumd, an
X-shaped pattern can be identified, and the contour-plot rep-

resentation clearly allows us to define the skewness of the

correlation arms. An estimation of the FWHM of the peak of

this structure leads to a rough estimation of the spatial and

temporal dimensions of the coherence volume, these appear-

ing to be slightly larger sbut of the same order of magnituded
as those obtained from Fig. 4sbd. This is due to the presence
of the quantum noise fluctuations, which in the latter case

were smoothed out when taking the spectral average over the

realizations.

Keeping in mind these considerations, we have analyzed,

by using only single shot spectra, the shape of the radiation

coherence for different phase-matching conditions, the latter

reproduced by slightly tilting smaximum two degrees from

degenerate configurationd the angle of the nonlinear crystal
with respect to the pump direction. The angular distribution

of the output parametric radiation follows the phase-

matching curves of the crystal, in accordance with previous

results f17,33g. The different recorded single-shot spectra to-
gether with the contour plots of their spatiotemporal Fourier

transform are shown in Fig. 6. Note that, while the X-shaped

structure is still present, slight differences from one correla-

tion structure to another exist, following the change of shape

of the radiation spectrum as a function of the crystal tilt

angle.

The results presented in this section clearly indicate that

the physical origin of X coherence in the near-field pattern

relies on the conditions of energy and momentum conserva-

tion sphase-matching conditionsd, which in turn lead to a

far-field spectrum characterized by chromatic and angular

dispersion. As a matter of fact, the parametric amplification

process is known to occur provided that a well-defined phase

relationship between the pump and the down-converted

fields is satisfied f43g. The coherence properties of the gen-
erated fields have to be those for which such phase relations

are preserved during the propagation of the fields in the crys-

tal. This leads to the spontaneous emergence of a particular

field-mode geometry in the parametric wave-mixing process.

The selection of the field-mode geometry occurs in such a

FIG. 4. sColor onlined Spatiotemporal correlation function

Csj ,td of the signal field from BBO sad, contour-plot representation
sbd.

FIG. 5. sColor onlined Bidimensional FT of the single shot spec-

trum from BBO sad, contour-plot representation sbd.
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way that the phase relations between the interacting fields are

preserved despite the presence of chromatic dispersion and

diffraction effects. As a result, preferential amplification si.e.,
maximum gaind occurs for the radiation modes whose phase
relations can be statistically described by an X-shaped corre-

lation ssee Fig. 1d. This is the subject of the next section

sSec. II Cd.
Finally note that, quite importantly, the characteristic

X-shaped structure is also recovered in the analysis of

higher-order correlation functions, e.g., in the signal-idler in-

tensity cross-correlation. Indeed, preliminary numerical in-

vestigations indicate that, at the crystal output si.e., in the

near fieldd, the signal field and the corresponding phase-

conjugated idler field are not exactly correlated at the same

time and at the same spatial point, but rather within an

X-shaped spatiotemporal contour area f44g.

C. Analogy with linear X waves

Coming back to our analysis of the field autocorrelation, it

is worth pointing out that this does not permit us to charac-

terize the exact mode structure of the generated field. Our

study of the coherence in the full spatiotemporal domain is

indeed based on a statistical approach, and the results ob-

tained here only suggest that the superfluorescence radiation

within the crystal may be statistically described as a “gas” of

coherent states with a characteristic spatiotemporal skewed

structure ssee Fig. 1d. As already mentioned in the previous

section, this kind of radiation belongs to the family of coni-

cal waves—such as, for instance, X waves in normal

dispersion—sfor a review, see Ref. f45g, and references

thereind, and similar to the latter is characterized by an auto-
correlation function that mixes space and time in a nonsepa-

rable way. It is interesting to recall that conical waves exhibit

a very localized peak, in both transverse and longitudinal

stemporald coordinates, which propagates free from diffrac-

tion and dispersion, even in dispersive materials, for dis-

tances far exceeding those achievable with a conventional

Gaussian-like beam, and that they are stationary modes of

the linear propagation equation f28g. Here, from the analysis

of the radiation autocorrelation function, only the statistical

distribution of spatiotemporal modes may be pictured. In the

following we would like to comment on the stationarity of

these modes.

It can be shown that in the nonparaxial approach, the

condition of stationarity of the intensity in some moving ref-

erence frame, requiring the axial propagation constant kz to

be a linear function of frequency f46g, can be expressed in

the form kzsVd= sk1−bd+ sk18−adV, where a and b are free

parameters. Considering that K=Îk12svd−k1,z
2 , a dispersion

relation depending on these free parameters, can be derived

for a nonparaxial description of wave modes in dispersive

media. By adjusting opportunely the values of a and b, the
dispersion relation curve can then be compared with the one

describing the phase-matching process in the nonlinear me-

dium under consideration. Note that Orlov and co-workers

have demonstrated within a paraxial approximation approach

that the creation of broadband localized fields inside the

crystal of optical parametric generators is feasible f16g. In
Fig. 7, we show for two different cases a qualitative agree-

ment between a portion of phase-matching curve and the

spatiotemporal spectrum of the stationary wave mode. We

could imagine then that for each laser shot the superfluores-

cence radiation consists of a random distribution of “quasis-

tationary” modes. In fact, because the characteristics of the

angular dispersion set in by the phase-matching process are

slightly different from that supporting a linear stationary

mode, we are able to say that the autocorrelation function of

the field is actually not fully stationary. As will be shown in

Sec. III, also the nonlinear dynamics contributes to the im-

perfect stationarity of the correlation, the angular spectrum

experiencing modification in its overall shape, along with the

amplification. As a result, the autocorrelation progressively

develops starfishlike arms during propagation, consistently

with the fact that X waves are “long-range” objects.

D. Experimental results from a type-I LBO crystal

The aim of this section is to present the single-shot spa-

tiotemporal spectrum of the parametric superfluorescence

emitted by a type-I LBO crystal pumped by a 525 nm laser

pulse, and the result of the bidimensional spatiotemporal

Fourier transform applied to this spectrum. Because of the

broad spectral range of the emitted radiation lying in this

case from the red to far-infrared region, and because of the

limited high detection efficiency range of the CCD sthe latter
having quantum efficiency going rapidly to zero for wave-

lengths greater than 1000 nmd, only one portion of the spa-

tiotemporal spectral structure could be measured. Neverthe-

less from symmetry considerations related to the energy and
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FIG. 6. sColor onlined Single-shot spectra from BBO recorded

for three different phase-matching conditions scrystal tuned out of

degeneracyd sad and relative contour plots of the bidimensional Fou-
rier transform sbd.
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momentum conservation laws of the nonlinear process, we

expect a symmetric structure around degeneracy, as for the

case of the BBO radiation spectra. Figure 8 shows a single-

shot spectrum retrieved in these conditions. The complete

spectral curve has been obtained by duplicating, around the

degenerate frequency, the portion of spectrum effectively

measured. The curvature of the X-spectrum arms leads to an

“` shape,” already observed in Ref. f32g. This peculiar fea-
ture will be discussed in the next section of the paper.

By applying the spatiotemporal Fourier transform of this

spectrum we obtain the results presented in Figs. 9sad and
9sbd. Even in presence of a background, the X shape of the

mutual coherence function is clearly visible through the con-

tour plot representation shown in Fig. 9sbd. The central peak
dimensions are of the order of 8±1 mm and 6±2 fs.

III. THEORETICAL DESCRIPTION OF THE EMERGENCE

OF X COHERENCE

Further insight into the mechanism underlying the emer-

gence of X coherence may be obtained through the analysis

of Maxwell’s equations describing the propagation of the

optical fields in the crystal f29g. Our aim here is to provide

an extension of the brief theoretical treatment presented in

Ref. f14g. Note that the whole theoretical treatment presented
in this section is only relevant for the propagation of the

fields within the quadratic nonlinear crystal, while the re-

shaping of X coherence during the propagation of the fields

in air will be briefly discussed in the next section. Let us split

the electric field amplitude into the fundamental and second

harmonic components E=
1

2
fE1 exps−iv1td+E2 exps−iv2td
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+c.c.g, which allows one to derive the following coupled

nonlinear equations governing the evolution of the corre-

sponding envelopes E1,2st ,rWd

]
2E1

]z2
+ D'E1 +E k2sV + v1dẼ1sV,rWdexps− iVtddV

= − xs2dSv1

c
D2E2E1

p, s2d

]
2E1

]z2
+ D'E2 +E k2sV + v2dẼ2sV,rWdexps− iVtddV

= − 2xs2dSv1

c
D2E1

2, s3d

where z denotes the longitudinal axis of propagation of the

fields, rW'= sx ,yd the transverse position vector, and D'=]x
2

+]y
2 the corresponding transverse Laplacian. The dispersion

relation is ksvd=vnsvd /c, nsvd being the refractive index at

frequency v, and Ẽ1,2sV ,rWd refers to the temporal Fourier’s

transform of E1,2st ,rWd. We implicitly assumed in Eqs. s2d and
s3d that axial emission occurs at degeneracy sK=0 for V=0d.
Let us remark that these equations are valid beyond the usual

paraxial and slowly varying envelope approximations. In the

limit where the depletion of the pump wave may be ne-

glected, the equation governing the evolution of the signal

envelope E1=A1 expsik1zd may readily be linearized to get

]
2Â1sKW ,Vd

]z2
+ 2ik1

]Â1sKW ,Vd

]z
+ fk2sv1 + Vd − k1

2

− K2gÂ1sKW ,Vd = − sÂ1
ps− KW ,− Vd , s4d

where

Â1sKW ,V,zd =E dtE d2rW'A1st,rW',zdexps− iKW · rW'dexps− iVtd

s5d

refers to the spatiotemporal Fourier’s transform of the signal

envelope at the propagation length z, and s=xs2dv1
2uE2u /c

2.

By means of the Laplace transform Â1sKW ,V ,gd

=e0
`Â1sKW ,V ,zdexps−gzddz, the growth rate g of the paramet-

ric instability is shown to satisfy the following dispersion

relation:

hs2k1Id4 − 2s2k1Id2fQ − s2k1gd2g

+ fQ + s2k1gd2g2j/fs2k1Id2 − Qg = 0 s6d

with Q= f2k1P−K2+g2g2−s2. The quantities I

=oi=0
` V2i+1k

1

s2i+1d
/ s2i+1d! and P=oi=1

` V2ik
1

s2id
/ s2id!, respec-

tively, refer to the odd and even expansions of the wave

vector ksv1+Vd=P+I around v1. The explicit solutions to

the dispersion relation s6d are extremely involved. It is worth
noting, however, that the angular-spectrum of the radiation is

relatively narrowband sDu.5° =0.09 rad≪p in Figs. 3, 6,

and 8d, so that physical insight may be obtained in the limit

of the paraxial approximation, where the parametric growth-

rate g takes the following simplified form:

gsK,Vd = iI + Îs2/4k1
2 − sP − K2/2k1d

2. s7d

More precisely, in the framework of the paraxial approxima-

tion, one may derive the exact solution to the equation gov-

erning the evolution of Â1sKW ,V ,zd fEq. s4d with ]z
2Â1;0g:

Â1sKW ,V,zd = UsKW ,VdÂ1sKW ,V,0d + VsKW ,VdÂ1
ps− KW ,− V,0d ,

s8d

where

UsKW ,Vd = expsiIzdFcoshsGzd + i
D

G
sinhsGzdG , s9d

VsKW ,Vd =
is

2k1G
expsiIzdsinhsGzd , s10d

with D=P−K2 /2k1, G= ss2 /4k1
2−D2d1/2. Note that this solu-

tion is valid beyond the usual slowly varying envelope ap-

proximation f29g. The analytical solution s8d–s10d may be

exploited to calculate the evolution of the spatiotemporal

spectrum of the signal field during its propagation in the

crystal

kSsK,V,zdl = kuÂ1u
2l = kSsK,V,z = 0dlF1 + 2s2

4k1
2G2

sinhsGzdG .
s11d

This expression reveals that the complex parameter G deter-

mines the nature of the parametric amplification process.

Space-time frequencies for which G is real exhibit an expo-

nential growth, while the others for which the parameter is

imaginary will evolve in oscillatory fashion.

Let us first analyze the spectrum s11d within the slowly

varying envelope approximation. The expansion of the wave

vector ksv0+Vd is thus truncated to the second order in P,

and the parametric growth rate reduces to g= fs2 /4k1
2

− sk19V
2 /2−K2 /2k1d

2g1/2 snote that k19;k
1

s2dd. It becomes ap-
parent from this expression that, depending on the sign of the

dispersion parameter k19, two qualitatively different regimes

of parametric amplification are found. In the anomalous dis-

persion regime sk19,0d, gsK ,Vd has a symmetric structure

which reflects the symmetric role of space and time. Con-

versely, in normal dispersion sk19.0d, gsK ,Vd exhibits a hy-
perbolic structure, which means that the modes lying on the

X-shaped spectrum are preferentially amplified in the para-

metric process, as previously anticipated through simple

phase-matching considerations ssee Sec. II Ad.
The corresponding evolution of the correlation function

Cst ,j ,zd is obtained by means of the spatiotemporal Fourier
transform of kSsK ,V ,zdl ssee Sec. II Bd. It reveals that X
coherence emerges progressively during the field propaga-

tion in the crystal, in a way that may remind the reader of the

growth of starfish arms ssee Fig. 10d. This peculiar feature
could be intuitively explained as follows. Let us consider one

of the arms of the X spectrum, say, e.g., the right-tilted line
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sor /d defined by the straight line K= +Îk1k19V. Let us note

that S is the characteristic bandwidth of such a right-tilted

line ssee Fig. 10d. Expanding gsK ,Vd in the proximity of

K= +Îk1k19V, the characteristic bandwidth is shown to

evolve according to S~ ss /zd1/2 / uKu,ss /k1k19zd
1/2 / uVu. This

means that due to the parametric amplification process

f47,48g, the characteristic width S of the right-tilted line gets

narrower during the propagation of the field sS~1/z1/2d. The
corresponding length of the left-tilted line sor \d gets longer
in the X-correlation function ssee Fig. 10d, as a result of the
familiar property of the Fourier’s transform. Accordingly, the

signal field becomes self-correlated along two specific spa-

tiotemporal trajectories t= ±Îk1k19j. Let us remark that in the
limit in which dispersion sdiffractiond dominates the interac-
tion, i.e., k19 tends to infinity szerod, the arms of the

X-correlation function get superposed and parallel to the

temporal sspatiald axis. It is only in these two particular cases
that the coherence properties of the generated field can be

correctly described by the usual concepts of spatial and tem-

poral coherence. In the general case of skewed coherence,

the use of these usual concepts would lead to the conclusion

that the field exhibits no coherence since it is neither spatial

nor temporal.

Let us now study the influence of higher-order dispersion

effects on the coherence properties of the generated signal

field. According to the expression of the signal spectrum

s11d, maximum gain occurs for those spatiotemporal fre-

quencies satisfying DsK ,Vd=P−K2 /2k1=0. The role of

fourth-order dispersion may be analyzed by retaining the first

two terms in the expansion of PsVd, which gives the follow-
ing relationship between the spatial and temporal frequencies

K = ± uVuÎk1k1s2ds1 + k1
s4dV2/12k1

s2dd . s12d

This expression reveals that fourth-order dispersion leads to

a curvature in the arms of the X-shaped spectrum, as illus-

trated in Figs. 11 and 12. If k
1

s4d
is positive, both arms are

inclined toward the K axis sFig. 11d, whereas they are in-

FIG. 10. sColor onlined Left column: Evolution during the

propagation z of the spatiotemporal spectrum kSsK ,V ,zdl obtained
from Eq. s11d. Right column: Corresponding evolution of the cor-

relation function Csj ,t ,zd obtained from the spatiotemporal Fouri-

er’s transform of kSsK ,V ,zdl. As the bandwidth S of the X spec-

trum gets narrower, the corresponding arms of the X correlation get

longer. The three rows correspond, respectively, to z=2Lnl, z

=4Lnl, z=15Lnl, with Lnl=1/s. The variables t and j sV and Kd are
in units of t0 and L0 s2pt0

−1 and 2pL0
−1d, where t0= sLnlk19 /2d1/2

and L0= sLnl /2k1d
1/2.

FIG. 11. sColor onlined Same as in Fig. 10, but in the presence
of positive fourth-order dispersion. The three rows correspond, re-

spectively, to z=2Lnl, z=4Lnl, z=15Lnl fLnl=1/s, t0= sLnlk19 /2d1/2,
L0= sLnl /2k1d

1/2, k
1

s4d
= +0.36k19

2Lnlg.

FIG. 12. sColor onlined Same as in Fig. 10, but in the presence
of negative fourth-order dispersion. The three rows correspond, re-

spectively, to z=2Lnl, z=4Lnl, z=15Lnl fLnl=1/s, t0= sLnlk19 /2d1/2,
L0= sLnl /2k1d

1/2, k
1

s4d
=−0.36k19

2Lnlg.
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clined toward the V axis for k
1

s4d,0 sFig. 12d. In this

latter case, the curvature forms a closed loop at Vc

= ±Î12k
1

s2d
/ uk

1

s4du, leading to an `-shaped spatiotemporal

spectrum. As a result of this analysis it is found that fourth-

order dispersion effects merely explain the origin of the

`-shaped spectrum retrieved in the LBO experiment sFig. 8d,
in which k

1

s4d,0 sk
1

s4d
=−1.05265310−13 ps4 /mmd. Note,

however, that the expression Vc= ±Î12k
1

s2d
/ uk

1

s4du provides
poor agreement with the corresponding value of Vc mea-

sured experimentally. Nevertheless, to reduce the discrep-

ancy, one has just to include higher order dispersion effects

in the expansion of PsVd fincluding the six-order dispersion
effect, one obtains sVc−Vc

expd /Vc
exp.7%g. Let us finally

make the important point that, regardless of the sign of

fourth-order dispersion, the spatiotemporal correlation func-

tion still exhibits an X-shaped structure, which is reminiscent

of the coherence properties induced by second-order disper-

sion effects. The X-shaped spatiotemporal coherence then

constitutes the natural state of coherence of parametrically

amplified fields, beyond the standard slowly varying enve-

lope approximation.

IV. YOUNG’S TWO-PINHOLE EXPERIMENT

The last step of this work is related to an interferometric

measurement based on the well-known Young’s two-pinhole

experiment. This experiment was initially proposed in

Ref. f15g to identify the coherence hidden in the spatio-

temporal domain, and it was subsequently realized in

Ref. f14g. Here we present a detailed description of the

experiment, which provides an alternative experimental

demonstration of the existence of X coherence. In order

to perform this experiment, two pinholes have been realized

by evaporating the aluminium surface of a metallic mirror.

This was made by focusing on the mirror an intense green

laser s527 nmd pulse by means of a microscopic objective.

During this operation the mirror was mounted on a transla-

tion stage with micrometric movement in order to adjust

the distance a between the two pinholes. The width of each

pinhole sd=5±0.5 mmd and the distance between them

sa=30±4 mmd have been quantitatively characterized by

analyzing the standard Young’s interference fringe pattern

svisibilityd obtained by using a cw green laser diode as the

source. The interferometric measurement was then per-

formed by sending the parametric down-conversion radiation

emitted by the BBO crystal on the two-pinhole screen and by

recording the diffraction pattern with the CCD camera. A

scheme of the experimental setup is presented in Fig. 13. The

latter shows in detail the configuration of the two-pinhole

“screen.” It consists of an aluminum surface sdenoted by Ald
evaporated on a 6 mm BK7 glass substrate. In front of

the pinhole screen is placed a 0° high-reflectivity mirror

sreflectivity.99.9% at 352 nmd in order to remove the uv

frequency components of the pump field. As already pointed

out f14g, the result of the experiment shows that rather than
producing the usual single-peak fringe pattern f3g, X coher-

ence leads to a double-peak pattern sFig. 14d, where each

peak arises from one arm of the X correlation f15g. In order

to emphasize the double-peak structure, an integrated profile

of the recorded pattern has been obtained by binning

the CCD pixels along the vertical axis. Indeed, the fringe

visibility is given by the normalized correlation function

Csj=a ,td, in which j is fixed to the distance a between the

pinholes and t corresponds to the time delay between the

two beams coming from the two pinholes f3g. The double-
peak structure then reflects the ability of the field to interfere

with a spatially shifted version of itself, provided it is de-

layed by appropriate times t±, determined by the spatiotem-

poral trajectories t±. ±Îk1k19a. These trajectories are those
in which temporal dispersion and spatial diffraction compen-

sate each other ssee Sec. Id. Note that the limited visibility of
the fringes in Fig. 14 may be ascribed to the short time

correlation stc.5 fsd, which is close to the optical cycle

time and thus limits the spatial extension of the visibility

pattern Dx to the fringe period i0 sDx / i0=ctc /l1.1d.
The positions of the peaks of the visibility pattern are

related to the slope of the skewed lines of coherence in the

space-time reference frame. We define utilt as the tilt angle
between the normal to the propagation axis st=0d and the

top right arm of C. This is approximately given by 20° from

a fit of Fig. 4sbd. This value has to be compared with the

angle of the skewed coherence line liable to form the visibil-

ity pattern reported in Fig. 14. The position of a visibility-

peak xm on the CCD screen plane is indeed related to the

tilt-angle of the radiation arriving at the pinholes plane s13
mm behind the crystal output facet, see Fig. 13d, denoted

C
C
D

BBO

!(2)

Al

BK7HR

@
352nm

.

Young pinholes

Pump

2mm
10mm 3mm 6mm 7mm 10mm

.

FIG. 13. sColor onlined Scheme of the experimental setup used
for Young’s two-pinhole experiment

FIG. 14. sColor onlined Experimental fringe pattern obtained by
means of Young’s interference experiment. The signal radiation is

recorded on the CCD screen plane placed 23 mm behind the two-

pinhole screen. The white curve is the integrated profile obtained

after binning along the vertical pixels.
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here by qYoung, according to dsxmd=a / tansqYoungd, where
dsxmd is the optical path difference between the two beams

that emanate from the two pinholes and that arrive at xm. The

optical path difference has to be evaluated by taking into

account that, before reaching the CCD screen, the radiation

propagates through 6 mm of glass and 17 mm of air ssee Fig.
13d. From the experimental result and using optical refrac-

tion laws, one obtains qYoung>5°. This value cannot be di-

rectly compared with the value of utilt measured from the

spatiotemporal coherence profile, but it is important to note

that the propagation in air from the BBO crystal to the pin-

holes is expected to cause a sizable tilt reduction, resulting

from finite beam size effect ssee, e.g., Ref. f49gd. Referring to
Ref. f49g, our calculations show that a tilt reduction from 20°

to 5° should indeed be obtained in first approximation for 80

fs duration tilted pulses, having a full width at half maximum

size of 70 mm. These values are in good agreement with the
extension of the arms of the X-correlation function illustrated

in Fig. 4sbd. Accordingly, the positions of the peaks on the

visibility pattern in Fig. 14 are consistent with those ex-

pected from the analysis of the correlation function measured

experimentally. It is interesting to note that, if the pinholes

were moved further away from the crystal si.e., in the case of
further propagation in aird the tilt of the radiation would tend
to zero. We thus expect that the two arms of the X-wave field

would tend toward almost plane-wave fronts. Accordingly,

the two arms would give rise, separately, to lateral interfer-

ence patterns, which would look similar to the usual white-

light textbook fringe patterns. From the experimental point

of view, it might be difficult to observe this phenomenon

because of the low signal-to-noise ratio caused by the long

propagation of the field in air.

We briefly mention that in order to better understand the

result of this interference experiment, simplified numerical

simulations have been carried out in order to compare the

resulting interference pattern, for two different input field

distributions. The first refers to a field distribution character-

ized by an amplitude given by a Bessel function of first order

J0 f50g, which represents a monochromatic conical wave.

The second refers to a stochastic distribution of several

Bessel waves with amplitude J0, each of them being charac-

terized by a random global phase and a random position of

its center with respect to the pinholes axis of symmetry. The

interference pattern resulting from the second distribution

sdata not shownd indicates a slight reduction of the visibility
of the central fringes, due to the fact that the modes con-

tained in the stochastic distribution are not correlated. This is

in agreement with the intuitive idea that X coherence leads to

a double peak fringe pattern.

V. CONCLUSIONS

In this paper, we have presented detailed measurements of

coherence of superfluorescence parametric radiation in the

whole spatiotemporal domain, evidencing the skewed nature

of the correlation retrieved. Application of the usual, purely

spatial or temporal, coherence measurements would errone-

ously lead to the conclusion that the generated field is neither

spatially nor temporally coherent. Such hidden coherence

has been identified thanks to the spectral diagnostic tech-
nique used, based on an imaging spectrometer and combined
with the generalized form of the well-known theorem of
Wiener-Kintchine. The X-shaped coherence function has
been retrieved in this way for the superfluorescence emitted
in perfect phase-matching conditions at degeneracy, from a
type-I BBO crystal, and has been compared with the bidi-
mensional spatiotemporal Fourier transform applied to a
single-shot spectrum. Having observed that the angular fea-
tures and shape of the structure emerging from this analysis
reflects those of the effective spatiotemporal correlation
function of the radiation well, the analysis has been further
extended, by using single-shot spectral measurements, to
other configurations with the crystal angle tilted with respect
to the pump direction, so as to fulfill different phase-
matching conditions snoncollinear emission at degeneracyd.
For the radiation generated by a type-I LBO crystal, the
“`-shaped” phase-matching curve has been clearly evi-

denced and confirmed by the theoretical analysis of Maxwell

equations, and the skewed features of the field correlation

has been revealed also in that case. The realization of

Young’s interference experiment has corroborated the exis-

tence of X coherence. A theoretical analysis of the equations

governing light propagation in the crystal has also provided

insight into the mechanism underlying the emergence of X

coherence. As a result, X-shaped spatiotemporal coherence

appears as the natural state of coherence of superfluorescence

light, beyond the standard slowly varying approximation.

The generated radiation may be statistically described as a

random superposition s“gas”d of modes. These are character-
ized by a skewed spatiotemporal structure not describable

within a separable approach in space and time, similarly to X

waves, which are known as the stationary modes of the linear

and nonlinear process f28g. Clearly, the above interpretation
does not give a precise deterministic picture of the near field

distribution at the crystal output and for each laser shot nor

does it allow us to say that the modes of the parametric

down-converted radiation are really X-type modes, but sim-

ply suggests how these can be visualized as extended over

pieces or portions of skewed spatiotemporal correlation. We

have also noted that the spatiotemporal correlation can be

considered to be quasistationary, the phase-matching curve

of the nonlinear crystal partially coinciding with the spec-

trum of the stationary conical wave mode in a dispersive

material. We may also see the parametric down-conversion

process as similar to, in some sense, the stochastic counter-

part of the deterministic generation of X waves in the phase-

mismatched second-harmonic generation nonlinear process

f19–23g. Finally, note that in addition to the emergence of the
long-range skewed tails of the correlation, an interesting re-

sult of this work is also given by the narrowness of the cen-

tral peak of the correlation function of the radiation, both in

space and in time, thus approaching the single-cycle optical

pulse length and duration. This opens new perspectives for

the attempt of generation, in parametric amplification pro-

cesses, of a single ultrashort coherent single-cycled localized

X wave; work is in progress in this direction.

Our study also generalizes the concept of coherence in

any field where partially coherent states cannot be described

by means of the standard definitions of spatial and temporal
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coherence. Let us stress then the general relevance of X co-
herence by emphasizing that it constitutes the natural state of
coherence for all nonlinear systems whose governing equa-
tions exhibit a space-time hyperbolic structure, as discussed

above through Eq. s7d. X coherence is thus expected to arise

in any multidimensional optical system involving nonlinear

wave propagation in normal dispersion. A typical example is

the modulational instability of plane waves propagating in

cubic xs3d nonlinear Kerr media f51g. In complete analogy

with the present work, we have verified that X coherence

emerges spontaneously in Kerr media in the modulational

amplified noise fluctuations sdata not shownd. This is also
what implicitly emerged in Ref. f52g, where a numerical

analysis of the amplification gain profiles in Kerr media has

been made by seeding the material with a background white

noise, and showing a specklelike X-shaped pattern in the

spatiotemporal spectrum.

Note that space-time skewed coherence does not neces-

sarily require radial symmetry in the phase-matching con-

figuration. It is indeed sufficient to consider a noncollinear,

planar interaction geometry. For instance, in the case of the

standard process of four-wave mixing supported by a cubic

nonlinearity, in which two noncollinear pump waves para-

metrically amplify two daughter waves from noise fluctua-

tions f29g, coherence emerges along those skewed spatiotem-
poral trajectories where spatial walk-off and temporal group-

velocity difference compensate each other f15g, in the same
way that X coherence emerges along skewed lines where

diffraction compensates chromatic dispersion. Four-wave

mixing is indeed a very general process; it is known to play

a key role not only in optics but also in such diverse fields as

plasma f53g, acoustic f54g, water f55g, and matter waves

f2,56g. Considering specifically the process of parametric

four-wave mixing in Bose-Einstein condensates f2,56g, we
may reasonably infer the formation of long-range phase co-

herence scondensationd along specific spatiotemporal lines.

This feature might be revealed by means of sYoung’sd
double-slit interference experiments f57g. However, follow-
ing the spectral technique reported here, an alternative, sim-

pler approach would consist of detecting correlation directly

in the momentum distribution sspectrumd of the expanded

matter wave.

Finally, we point out the natural importance that X coher-

ence may have in the context of quantum optics. For in-

stance, one may reasonably expect that the X-shaped spec-

trum characterizing the superfluorescence radiation emitted

in high-gain parametric down-conversion, as well as the

double-peak fringe pattern, would be similarly obtained if

the acquisition were performed in the parametric fluores-

cence regime, i.e., photon-by-photon. This implies that each

individual photon would be characterized by an X-shaped

space-time correlation. An experiment in low-gain regime is

also the topic of future work.
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