
28

A Framework to Enforce Access Control
over Data Streams

BARBARA CARMINATI and ELENA FERRARI
DICOM, University of Insubria
and
JIANNENG CAO and KIAN LEE TAN
National University of Singapore

Although access control is currently a key component of any computational system, it is only
recently that mechanisms to guard against unauthorized access to streaming data have started
to be investigated. To cope with this lack, in this article, we propose a general framework to
protect streaming data, which is, as much as possible, independent from the target stream engine.
Differently from RDBMSs, up to now a standard query language for data streams has not yet
emerged and this makes the development of a general solution to access control enforcement more
difficult. The framework we propose in this article is based on an expressive role-based access
control model proposed by us. It exploits a query rewriting mechanism, which rewrites user queries
in such a way that they do not return tuples/attributes that should not be accessed according to
the specified access control policies. Furthermore, the framework contains a deployment module
able to translate the rewritten query in such a way that it can be executed by different stream
engines, therefore, overcoming the lack of standardization. In the article, besides presenting all the
components of our framework, we prove the correctness and completeness of the query rewriting
algorithm, and we present some experiments that show the feasibility of the developed techniques.

Categories and Subject Descriptors: D.4.6 [Security and Protection]: Access Controls; H.2.7
[Database Administration]: Security, Integrity, and Protection

General Terms: Security

Additional Key Words and Phrases: Data stream, access control, secure query rewriting

ACM Reference Format:
Carminati, B., Ferrari, E., Cao, J., and Tan, K. L. 2010. A framework to enforce access control over
data streams. ACM Trans. Info. Syst. Sec. 13, 3, Article 28 (July 2010), 31 pages.
DOI = 10.1145/1805974.1805984 http://doi.acm.org/10.1145/1805974.1805984

J. Cao and K. L. Tan are partially supported from a research grant R-252-000-307-112 from NUS.
Authors’ addresses: B. Carminati and E. Ferrari, DICOM, University of Insubria, Varese, Italy;
email: {barbara.carminati, elena.ferrari}@uninsubria.it; J. Cao and K. L. Tan, National University
of Singapore, Singapore; email: {caojiann, tankl}@comp.nus.edu.sg.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2010 ACM 1094-9224/2010/07-ART28 $10.00
DOI 10.1145/1805974.1805984 http://doi.acm.org/10.1145/1805974.1805984

ACM Transactions on Information and System Security, Vol. 13, No. 3, Article 28, Publication date: July 2010.

28:2 • B. Carminati et al.

1. INTRODUCTION

Data Stream Management Systems (DSMSs) have been increasingly used to
support a wide range of real-time applications (e.g., battlefield and network
monitoring, telecommunications, financial monitoring, sensor networks). In
many of these applications, there is a need to protect sensitive data from unau-
thorized accesses. For example, in battlefield monitoring, the position of sol-
diers should only be accessible to the battleground commanders. Even if data
are not sensitive, it may still be of commercial value to restrict their accesses.
For example, in a financial monitoring service, stock prices are delivered to
paying clients based on the stocks they have subscribed to. Hence, there is a
need to integrate access control mechanisms into DSMSs. As a first step in this
direction, in Carminati et al. [2007b], we have presented a role-based access
control model specifically tailored to the protection of data streams. Objects to
be protected are essentially views (or rather queries) over data streams. The
model supports two types of privileges—a read privilege for operations such as
selection, projection, and join and aggregate privileges for operations such as
min, max, count, avg, and sum. In addition, to deal with the intrinsic temporal
dimension of data streams, two temporal constraints have been introduced—
general constraints, which allow access to data during a given time bound, and
window constraints, which support aggregate operations within a specified
time window.

The second important issue to be addressed is related to access control en-
forcement. This issue is further complicated by the fact that, differently from
RDBMSs, a standard query language for DSMSs has not yet emerged. Nonethe-
less, one of our goals is to develop a framework, which is, as much as possible,
independent from the target stream engine. Therefore, to overcome the prob-
lem of the lack of standardization in current DSMSs, in this article, we define
a core query model, on which our access control mechanism is based, which
formalizes the set of operators that are common to most of the stream query
languages proposed so far (e.g., Abadi et al. [2005, 2003], Arasu et al. [2003],
Cranor et al. [2003], and Chandrasekaran et al. [2003]).

One of the key decisions when developing an access control mechanism is the
strategy to be adopted to enforce access control. In this respect, three main solu-
tions can be adopted: preprocessing, postprocessing, and query rewriting. Pre-
processing is a naı̈ve way to enforce access control according to which streams
are pruned from the unauthorized tuples before entering the user query. The
main drawback of this simple strategy is that it works well only for very simple
access control models, which, unlike ours, do not support policies that apply
to views. We believe that this is an essential feature to be supported, because
it allows the specification of very useful access control policies. For instance,
if preprocessing is adopted, it is not possible to enforce a policy authorizing a
captain to access the average heart beats of his/her soldiers, but only during the
time of a certain action and/or of those soldiers positioned in a given region. In
contrast, postprocessing first executes the original user query, then it prunes
from the result the unauthorized tuples before delivering the resulting stream
to the user. Like preprocessing, this strategy has the drawback that it does
not support access control policies defined over portions of combined streams.
ACM Transactions on Information and System Security, Vol. 13, No. 3, Article 28, Publication date: July 2010.

A Framework to Enforce Access Control over Data Streams • 28:3

In addition, as we will show in Section 6.2, it may waste computation, since
queries are evaluated even if they are denied by the specified access control
policies.

For the previously mentioned reasons, we adopt the query rewriting ap-
proach. Thus, unlike conventional RDBMSs, our access control mechanism
operates at query definition time, and hence avoids runtime overhead. This
strategy fits very well in the data stream scenario where queries are continuous
and long running. Queries are registered into the stream engine and continu-
ously executed on the incoming tuples. Whenever a user submits a query, the
query rewriter checks the authorization catalogs to verify whether the query
can be partially or totally executed, or should be denied. In case of partially
authorized queries, the specified query is rewritten in such a way that it out-
puts only authorized data. On support of the query rewriting task, we design a
set of novel secure operators (namely, Secure Read, Secure View, Secure Join,
and Secure Aggregate) that filter out from the results of the corresponding
(not secure) operators those tuples/attributes that are not accessible according
to the specified access control policies. In the article, besides presenting the
secure operators and the query rewriting algorithm, we formally prove the cor-
rectness of the algorithm and the completeness of its results with respect to
the specified access control policies.

Since query rewriting is based on the defined core query model, it is indepen-
dent from the target stream engine. The last step is, therefore, the translation
of the rewritten query into the language of the target DSMS. In identifying
the target DSMSs to be considered, we have focused on existing commercial
DSMSs. To the best of our knowledge, these are Coral8 [2008], StreamBase
[2008], and Truviso [2008]. Unfortunately, at the time of this writing, it has not
been possible to retrieve helpful documentation about Truviso and its underly-
ing query language. For this reason, we focus on Coral8 and StreamBase, and
we show how the rewritten query can be deployed in these systems.

To the best of our knowledge, this is the first article presenting a frame-
work for access control over data streams, which supports a very expressive
access control model and, at the same time, is, as much as possible, indepen-
dent from the target DSMS. The work reported in this article substantially
extends the work presented by us in Carminati et al. [2007a, 2007b]. Carmi-
nati et al. [2007a, 2007b] only presents the access control model underlying
our framework, whereas Carminati et al. [2007a] presents an access control
enforcement mechanism integrated into the Aurora data stream prototype
[Abadi et al. 2003]. In this article, we build on what has been presented in
Carminati et al. [2007a, 2007b], and we present a framework able to deploy au-
thorized queries into different stream engines. This is a substantial extension
both from a technical and from a practical point of view in that it greatly en-
hances the applicability of our system. Designing an access control framework,
mostly independent from the adopted stream engine, has required the defini-
tion of the core query model, a substantial redesign of the secure operators,
and the secure rewriting algorithm defined in Carminati et al. [2007a]. Addi-
tionally, differently from Carminati et al. [2007a], the framework presented in
this article is equipped with a module able to deploy the rewritten query into

ACM Transactions on Information and System Security, Vol. 13, No. 3, Article 28, Publication date: July 2010.

28:4 • B. Carminati et al.

different DSMSs. Finally, differently from Carminati et al. [2007a], we have
implemented a prototype and carried out a performance evaluation study.

The remainder of this article is organized as follows. Section 2 presents the
architecture of our framework, whereas the core query model is illustrated in
Section 3. Section 4 presents the access control model, and Section 5 focuses
on query rewriting. Section 6 discusses the prototype we have developed and
presents some experiments we have carried out to demonstrate the feasibility
of our approach. Section 7 overviews the related work, and Section 8 concludes
the article.

2. OVERVIEW OF THE FRAMEWORK

The goal of the proposed framework is to provide a middleware able to en-
force access control into several commercial data stream management systems.
Achieving this goal requires to address several issues. The first issue arises
from the fact that, differently from what has happened for RDBMSs, a stan-
dard query language for DSMSs has not yet emerged. In contrast, each DSMS
adopts its own language, resulting in several distinct languages (e.g., Stream-
SQL in StreamBase, CCL in Coral8). To enforce access control, we rewrite the
submitted queries according to the specified access control policies. However,
devising rewriting strategies suitable for all DSMSs without a standard query
language is rather difficult. To overcome this problem, we have first identified
an abstract query model, capturing operations common to most of the existing
DSMS query languages. In particular, similarly to Coral8 [2008] and Stream-
Base [2008], we model a query according to the data-flow paradigm. Therefore,
rather than specifying a query according to the syntax of a specific language, we
model a query as a loop-free directed graph. According to this representation,
the nodes in the graph are the operations performed on the streams, whereas
the edge connecting two nodes indicates the flow that tuples follow through the
graph. In Section 3, we introduce the proposed core query model, by presenting
the supported operators.

By exploiting the core query model and the access control model proposed in
Carminati et al. [2007b] (see Section 4), we develop a query rewriting mecha-
nism (see Section 5) whose output can then be deployed into several DSMSs.
In particular, our framework makes a user able to submit a query, formulated
according to the core query model, and then it deploys the corresponding au-
thorized query into several data stream management systems. By authorized
query, we mean the user query rewritten in such a way that the result contains
all and only the tuples answering the original query and for which the user has
the necessary authorizations according to the specified access control policies.

As depicted in Figure 1, our framework consists of three main components,
namely, a GUI, the Query Rewriter, and the Deployment Module. The first
component provides a graphical environment by which users can define their
queries, to be registered into the stream engines. The GUI supports all the
operators of the core query model. The user query is then processed by the
Query Rewriter component. More precisely, the Query Rewriter rewrites
the query graph into a set of authorized graphs, that is, graphs giving in

ACM Transactions on Information and System Security, Vol. 13, No. 3, Article 28, Publication date: July 2010.

A Framework to Enforce Access Control over Data Streams • 28:5

Fig. 1. Architecture of our framework.

output all and only the authorized tuples satisfying the user query. To realize
the Query Rewriter, we have designed a set of secure operators, inspired
by those proposed in Carminati et al. [2007a], and revisited according to
the adopted core query model. Once the Query Rewriter has generated the
authorized graphs, they have to be registered into the target stream engines,
that is, StreamBase and Coral8. However, since the Query Rewriter produces
authorized graphs independent from the DSMS selected for query execution,
there is the need of an additional phase where the authorized graphs are
translated according to the languages supported by StreamBase and Coral8,
that is, StreamSQL and CCL, respectively. The component in charge of this
task is the Deployment Module. For each authorized graph generated by the
Query Rewriter, the Deployment Module provides a set of statements in the
target query languages, such that their execution generates the same stream
obtained by the authorized graph. Due to lack of space, we do not describe the
Deployment Module in this article. However, we refer interested readers to
Carminati et al. [2008] for a detailed discussion.

In the following text before going into the details of the Query Rewriter, we
illustrate the core query model and the supported access control model.

3. THE CORE QUERY MODEL

Although all DSMSs have their own query language, most of them are based on
the SQL standard, which has been extended to support the inbound processing,
typical of DSMSs. Even if the languages adopted by the various DSMSs present
some differences, it is still possible to identify several similarities. Indeed, all
available systems support projection and selection over streams, as well as
window-based operations, such as join and aggregation. The aim of the core
query model is to capture these similarities. However, before presenting the
core query model, we need to introduce some preliminary notions on streams.

We model a stream as an append-only sequence of tuples with the same
schema. In particular, in addition to standard attributes, denoted as A1, . . . , An,
the stream schema contains a further attribute, denoted in the following as ts.
Attribute ts stores the time of origin of the corresponding tuple, thus it can
be exploited to monitor attributes values over time. In the following, given a
stream S, we denote with Att(S) the set of attributes in S’s schema, and with
S.A j , attribute A j of stream S.

ACM Transactions on Information and System Security, Vol. 13, No. 3, Article 28, Publication date: July 2010.

28:6 • B. Carminati et al.

As introduced in Section 2, we adopt the data-flow paradigm to model
queries. Therefore, we present the query model by introducing the set of sup-
ported operators, that is, supported nodes in the query graph. In particular,
the core query model supports the well-know relational operators, like selec-
tion and projection, plus additional operators defined to handle window-based
operations. Moreover, it contains two further operators, useful for modeling a
query as a graph, that is, the IN and OUT operators.

In the following text, we provide a description of the supported operators.
In particular, each operator has an associated set of parameters, conveying
the information needed to evaluate the operator (e.g., the predicates to be
evaluated in case of a selection operator). In addition to their descriptions,
with some operators, we also associate an algebraic expression.

Input: IN operator. The IN operator models the streams entering in the query.
As such, the IN operator has no entering edges and only one exiting stream. The
IN operator has two associated parameters: Name, containing the name of the
input stream, and ATTs, storing the name of the attributes of the input stream.

Output: OUT operator. This operator generates the stream resulting from the
evaluation of the query. It has only one entering edge and has no exiting edges,
since it is assumed that all incoming tuples are passed directly to some external
application, like in real DSMSs. The OUT operator has an associated parameter,
called Name, containing the name of the resulting stream.

Projection: π operator. The projection operator performs the projection of
streams according to selected attributes. We define the projection of a stream
S over a set of attributes {A1,. . . ,An}∈ Att(S) as a stream S’ consisting of
all tuples of S from which attributes not belonging to {A1,. . . ,An} have been
pruned. In a query graph, the projection operator π has a unique entering edge,
representing the stream over which the projection is performed, and generates
a unique exiting edge, that is, the stream resulting from the projection. The π

operator has a parameter ATTs, containing the set of attributes {A1,. . . ,An} to
be extracted. The expression corresponding to the projection of a stream S over
a set of attributes {A1,. . . ,An}∈ Att(S) is π (A1,. . . ,An)(S).

Selection: σ operator. This operator selects specific tuples within a stream.
More formally, given a stream S and a predicate P over attributes in Att(S), we
define the selection of S with respect to P as a stream S’ consisting of all and only
those tuples in S that satisfy predicate P. Thus, the selection operator σ has a
unique entering edge and a unique exiting edge, that is, the stream containing
only the input tuples satisfying the selection predicate. The selection predicate
is contained into the σ parameter EXPs, and it is expressed through an SQL-like
syntax. The corresponding expression is σ (P)(S).

Example 3.1. Throughout this article, we consider examples from
the military domain. We assume that the streams are used to monitor
positions and health conditions of platoon’s soldiers. Hereafter, we con-
sider two data streams, Position and Health, with the following schemas:
Position(ts,SID,Platoon,Pos), Health (ts,SID,Platoon,Heart,BPressure),

ACM Transactions on Information and System Security, Vol. 13, No. 3, Article 28, Publication date: July 2010.

A Framework to Enforce Access Control over Data Streams • 28:7

Fig. 2. An example of query graph.

where the SID and Platoon attributes store soldier’s and platoon’s identifiers,
respectively, both in the Position and Health streams, the Pos attribute
contains the soldier position, the Heart attribute stores the heart beats,
whereas the BPressure attribute contains the soldier’s blood pressure value.
Figure 21 represents a query graph returning the id of those soldiers whose
blood pressure is greater than 160. The query graph consists of an IN operator
modeling the input stream Health, connected with the σ operator, evaluating
the condition BPressure >160. The result of the σ operator enters the π

operator, which projects attribute SID. This operator is connected to the OUT
operator, which generates the resulting stream.

Aggregation: # operator. The core query model also provides an aggregate
operator #, by which it is possible to apply aggregate functions over data
streams. In DSMSs, the common strategy to implement aggregate operations
as well as join over potentially infinite streams is to exploit sliding windows.
Sliding windows are defined on the basis of two parameters: the size of the
window, and the offset according to which the window is shifted. Therefore,
the aggregate operator # is applied over a sequence of windows. Thus, given a
stream S, an aggregate function F over an attribute A ∈ Att(S), and two natural
numbers s and o, the aggregate operator # returns a stream containing a
different aggregate value for each distinct sliding window generated with size s
and offset o. The # operator has a unique entering and exiting edge. The exiting
edge contains the result of the aggregate operation over the defined sliding
windows. The aggregate operator, therefore, has the following parameters: F,
A, s, and o, which model the aggregate function, the attribute over which the
aggregate function is computed and the size and offset according to which
the aggregate function is evaluated. We consider as aggregate functions only
the standard SQL-style functions, that is, min, max, count, avg, and sum. The
algebraic expression corresponding to the # operator is #(F, A, s, o)(S).

Join: Join operator. This operator performs join over streams. In data stream
engines, join is implemented by means of sliding windows. More precisely, given
two streams S1 and S2, the join is evaluated by performing the relational join
between windows generated over S1 and S2. Thus, given two streams S1 and S2,
the natural numbers s1, o1, and s2, o2, and a join predicate P expressed through
an SQL-like syntax, the Join operator generates a stream S’ containing the tu-
ples resulting by the relational join between the sliding windows computed over
S1 and S2, with s1, o1, s2, o2, as size and offset, respectively. The join operator,
therefore, has two entering edges, that is, S1 and S2, and one existing edge,
that is, S’. The join predicate is contained into parameter EXPs. The algebraic
expression corresponding to the Join operator is Join(P,s1,o1,s2,o2)(S1,S2).

1For simplicity, here and in the following, we omit the ATTs parameter of the IN operator.

ACM Transactions on Information and System Security, Vol. 13, No. 3, Article 28, Publication date: July 2010.

28:8 • B. Carminati et al.

Fig. 3. An example of query graph.

Table I. Core Query Model Operators

Operator Algebraic expression Semantics
IN - Stream entering the query graph
OUT - Stream resulting from the query graph
π π (A1,. . . ,An)(S) Projection of stream S over attributes

{A1,. . . ,An}∈ Att(S)

σ σ (P)(S) Selection of stream S with respect to predicate P

#(F, A, s, o)(S) Aggregation of attribute A of stream S according to
function F over sliding windows generated
with size s and offset o

Join Join(P,s1,o1,s2,o2)(S1,S2) Join with respect to predicate P over tuples of sliding
windows of stream S1 (i.e., S2) generated with size
s1 (i.e., s2) and offset o1 (i.e., o2)

Since s1, o1, s2, o2 are not relevant from an access control point of view, in the
following, we omit them by using the simplified syntax: Join(P)(S1,S2).

Example 3.2. A query graph generating the average of heart beats of those
soldiers, which are across some border k (modeled as Pos ≥ k), is repre-
sented in Figure 3. Since the position of a soldier is stored in the Position
stream, whereas health information is stored in the Health stream, calculating
the heartbeat average requires to perform a join of the Position and Health
streams, with predicate Position.SID = Health.SID, and then to select only
those tuples with Pos ≥ k. Thus, the graph contains two IN operators, repre-
senting the Health and Position streams, which enter into the Join operator,
whose predicate in EXPs is equal to Position.SID = Health.

SID. The result of the Join operator enters into a σ operator having the
predicate Pos ≥ k. Over the result of the selection, an aggregate operator # is
evaluated.2 The resulting tuples flow directly into the OUT operator.

A summary of the operators supported by the core query model is reported
in Table I.

4. ACCESS CONTROL MODEL

In this section, we introduce the access control model on which our framework
relies [Carminati et al. 2007b]. Our access control model is a role-based access
control model specifically tailored to the protection of data streams. Privileges

2Here and in the following, for simplicity, parameters related to sliding windows are omitted from
the query graph.

ACM Transactions on Information and System Security, Vol. 13, No. 3, Article 28, Publication date: July 2010.

A Framework to Enforce Access Control over Data Streams • 28:9

supported by the model are of two different types, which correspond to the two
different classes of operations provided by the core query model: a read privilege
that authorizes a user to apply the π , σ , and # operators on a stream, that is,
all operations that require to read tuples from a data stream. Additionally, it
authorizes to apply the Join operator if the read privilege is granted on both
the operand streams. The other class of privileges supported by our model,
called aggregate privileges, corresponds to the aggregate functions allowed
by the core query model. Such privileges are provided to grant a user the
authorization to perform an aggregate operation, without having the right to
access all the tuples over which the operation is performed. Thus, the aggregate
privileges are: min, max, count, avg, and sum.

Privileges can be specified for whole streams, as well as for a subset of
their attributes and/or tuples, where the set of authorized tuples is specified
by defining a set of conditions on the values of stream attributes. Additionally,
the model allows the security administrator (SA) to restrict the exercise of the
read privilege only to a subset of a stream resulting from the join operator.
This is a useful feature, since sometimes a user should be allowed to access
only selected attributes in a joined stream (as shown in Example 3.2). To model
such a variety of granularity levels, we borrow some ideas from how access
control is enforced in traditional RDBMSs, where different granularity levels
are supported through views. The idea is quite simple: Define a view satisfying
the access control restrictions and grant the access on the view instead of on
base relations. In a RDBMS, a view is defined by means of a CREATE VIEW
statement, where the SELECT clause of the query defining the view specifies
the authorized attributes, the FROM clause specifies a list of relations/views,
and the WHERE clause states conditions on attributes’ values to be satisfied by
the tuples contained into the view. We adopt the same idea to specify protection
objects to which an access control policy applies. However, since a standard
query language for data streams has not yet emerged, we give a language
independent representation of protection objects. Basically, we model a protec-
tion object by means of three components, which correspond to the SELECT,
FROM, and WHERE clauses of an SQL query statement. The formal definition
of protection object specification is given in the following text.

Definition 4.1 (Protection Object Specification [Carminati et al. 2007b]).
A protection object specification p obj is a triple (STRs,ATTs,EXPs), where:

—STRs is a set of names or identifiers of streams {S1, . . . ,Sn};
—ATTs denotes a set of attributes A1, . . . , Al, where A j , j ∈ {1, . . . , l}, belongs to

the schema of the stream resulting from the Cartesian product (S1 × · · ·×
Sn) of the streams in STRs. If ATTs is equal to symbol “*”, it denotes all the
attributes belonging to the schema of the stream resulting from (S1×· · ·× Sn).

—EXPs is a boolean formula, built over predicates of the form: Ai ⊕ valuei or
Ai ⊕ A j , where Ai, A j are attributes belonging to the schema of the Cartesian
product (S1 × · · ·× Sn), ⊕ is a comparison operator, and valuei is a value
compatible with the domain of Ai. If EXPs is omitted, it denotes all the tuples
in (S1 × · · ·× Sn).

ACM Transactions on Information and System Security, Vol. 13, No. 3, Article 28, Publication date: July 2010.

28:10 • B. Carminati et al.

The access control model also allows the SA to specify two different types
of temporal constraints, that is, general and window-based constraints. Gen-
eral constraints state limitations on the time during which users can exercise
privileges on protection objects. They are expressed in the form: [begin,end],
where begin and end are the lower and upper bounds of the interval, begin ≤
end, and end can assume the infinite value.3 The begin and end values can be
explicitly specified by the SA, or they can be returned by a predefined set of sys-
tem functions SF . For instance, we assume a function start(), which receives
as input an action and returns the time when the action starts, and a function
end(), which receives as input an action and returns the time when a given ac-
tion ends. Since, by definition, a stream always contains a temporal attribute,
that is, the timestamp ts, a general time constraint gtc identifies all and only
those tuples satisfying the predicate: ts ≥ begin ∧ ts ≤ end. Window-based
constraints are related to window-based aggregate operators supported by the
core query model. In particular, these constraints are used to limit the sliding
windows over which an aggregate operator can be evaluated. This allows the
SA to constrain the accuracy of the returned aggregated values on the basis
of the confidentiality of raw data. A window time constraint wtc is, therefore,
defined by a pair: [s,o], denoting the minimum size (s) and offset (o) allowed in
an aggregate operation. The value 0 for size and/or offset denotes that the cor-
responding aggregate operation can be performed with any size and/or offset.

The formal definition of access control policies for data streams is given in
the following text.

Definition 4.2 (Access Control Policy for Data Streams [Carminati et al. 2007b]).
An access control policy for data streams is a tuple: (sbj, obj, priv, gtc, wtc),
where: sbj is a role, obj is a protection object specification defined according
to Definition 4.1, priv∈{read, min, max, count, avg, sum} is an access privilege,
gtc is a general time constraint, and wtc is a window time constraint.

Given an access control policy acp, we denote with acp.sbj, acp.obj,
acp.priv, acp.gtc, and acp.wtc the sbj, obj, priv, gtc, and wtc component,
respectively. Moreover, given a protection object specification acp.obj, we use
the dot notation to refer to its components. We assume that all the specified
access control policies are stored into a unique authorization catalog, called
SysAuth. SysAuth contains a different tuple for each access control policy, whose
attributes store the access control policy components, as illustrated by the fol-
lowing example.

Example 4.1. Table II presents an example of SysAuth catalog con-
taining four access control policies defined for the Doctor role and refer-
ring to the Position and Health streams introduced in Example 3.1. The
first access control policy authorizes doctors to access the position and
id of soldiers belonging to their platoons (this condition is modeled as:
Position.Platoon=self.Platoon).4 The second access control policy authorizes
doctors to compute the average of the positions of those soldiers not belonging

3We assume that begin and end values are specified by means of an SQL-like syntax.
4We assume that each user has an associated profile, that is, a set of attributes modeling his/her

ACM Transactions on Information and System Security, Vol. 13, No. 3, Article 28, Publication date: July 2010.

A Framework to Enforce Access Control over Data Streams • 28:11

Table II. Examples of Access Control Policies for Data Streams

sbj Protection Object priv gtc wtc
Streams Attributes Expressions s o

Doctor Position Pos, SID Position.Platoon=self.Platoon read - - -
Doctor Position Pos Position.Platoon(=self.Platoon avg [start(a), 1 1

end(a)]
Doctor Health * Health.Platoon=self.Platoon read - - -
Doctor Health, BPressure, Health.Platoon(=self.Platoon ∧ read - -

Position SID,Pos Position.SID=Health.SID ∧ - -
Pos ≥ target(a)- δ ∧ - -
Pos ≤ target(a)+ δ

to their platoons. This privilege is granted only during the time of action a.
Moreover, this policy states that the average can be computed only with win-
dows of minimum 1 hour and with 1 as minimum offset. By the third policy,
doctors are authorized to monitor the health conditions (i.e., all attributes of
Health stream) only of those soldiers belonging to their platoons. Finally, the
fourth access control policy allows doctors to monitor blood pressure, position,
and id of those soldiers not belonging to their platoons, but whose position is
near to the target of action a, that is, whose position is at most δ distant from
the target position of action a (Pos ≥ target(a) - δ∧Pos ≤ target(a) + δ).5

Finally, in the remainder of the article, we need to formally denote the tuples
identified by the protection object specification of an access control policy acp.
These are defined by function β(), presented next.

Definition 4.3. (Protection Object Specification Semantics). Given an access
control policy acp, the protection object specification semantics of acp is given
by function β, defined as follows.

—if |acp.obj.STRs| = 1, then β(acp) = π (A1, . . . , An)(σ (acp.obj.EXPs ∧ ts ≥
acp.gtc.begin ∧ ts ≤ acp.gtc.end)(acp.obj.STRs)), otherwise

—β(acp) = π (A1, . . . , An)(σ (acp.obj.EXPs ∧ ts ≥ acp.gtc.begin ∧ ts ≤
acp.gtc.end)(Cartesian(S1, . . . , Sn))), S j ∈ acp.obj.STRs, ∀ j ∈ [1, n];

where Cartesian() takes as input a set of streams and returns their Carte-
sian product; whereas {A1, . . . , An} = acp.obj.ATTs. If acp.obj.ATTs = ∗, then
{A1, . . . , An} are all the attributes of streams belonging to acp.obj.STRs.

Example 4.2. Let us consider the protection object specification of the
fourth access control policy in Table II. According to Definition 4.3, this
denotes the tuples returned by the algebraic expression π (BPressure, SID,
Pos)(σ (Position.SID = Health.SID ∧ Pos ≥ target(a)-δ ∧ Pos ≤ target(a) +
δ)(Cartesian(Health,Position))), that is, those tuple resulting from the Carte-
sian product of Position and Health, where only BPressure, SID, and Pos at-
tributes are projected. The condition expressed by the EXPs component ensures
that only tuples having Position.SID = Health.SID (i.e., join predicate) and

characteristics, such as the platoon one belongs to.
5We assume a function target() that returns the position of the target of a given action.

ACM Transactions on Information and System Security, Vol. 13, No. 3, Article 28, Publication date: July 2010.

28:12 • B. Carminati et al.

referring to soldiers whose position is close to the target position are considered
(i.e., Pos ≥ target(a) − δ ∧ Pos ≤ target(a) + δ).

5. QUERY REWRITER

As introduced in Section 2, the Query Rewriter module enforces the access
control policies, specified according to the access control model presented in
Section 4, over query graphs, expressed according to the core query model
presented in Section 3. In particular, given a query graph G and a user u, the
Query Rewriter rewrites G such that the evaluation of the obtained graphs,
called authorized graphs, generates only tuples answering the original query
graph G and for which there exists an access control policy authorizing u the
access. On support of the Query Rewriter, we design a set of novel secure
operators, which filter out from the result of the corresponding (not secure)
operators all unauthorized tuples. In the following, we first introduce the secure
operators. Then, we show how these operators are used for query rewriting.

5.1 Secure Operators

Secure operators applied over a stream in a query graph filter out all unau-
thorized tuples. To do this, it is first necessary to identify the access control
policies that apply to a stream in a query graph. Due to the flexibility of our
access control model in defining protection objects, the task of retrieving the
access control policies that apply to an internal stream, that is, a stream gen-
erated by a portion of a query graph, is more complicated than in conventional
RDBMs. Usually, in a RDBMS users can submit queries over base relations
or predefined views. Thus, in RDBMs the task of retrieving policies is very
simple. It is only necessary to retrieve the access control policies that apply to
the target relations/views. In contrast, to allow for more flexibility and to make
easier query specification, we have decided to provide the user the ability to
define its own graph, without the need of referring to predefined views. How-
ever, this makes the retrieval of access control policies applicable to a stream
more difficult. The difficulty relies on the fact that the protection object in an
access control policy and the streams in a graph have different representations.
Indeed, the first is specified according to Definition 4.1, whereas the second is
modeled as a (portion of) query graph. To simplify policy retrieval, we assume
that all streams in a query graph (i.e., input, output, and internal streams) are
denoted by means of a specification similar to the one given by Definition 4.1.
Thus, we denote each stream S in a query graph from means of three compo-
nents: S.STRs, S.ATTs, and S.EXPs. According to this stream specification, an
input stream S can be denoted by simply setting the ATTs component to * and
omitting the EXPs component. In contrast, since an internal and output stream
S is defined in terms of (the portion of) the graph G by which it results, its
representation can be defined in terms of the operators contained into G. More
precisely, given a graph G defined over a set S in of input streams, we can define
the stream S’ resulting from graph G, as the Cartesian product of streams in
S in, where all attributes specified in the π and # operators of the graph G are
projected, and all predicates specified in the σ and Join operators are applied
(see Algorithm 1 for more details).

ACM Transactions on Information and System Security, Vol. 13, No. 3, Article 28, Publication date: July 2010.

A Framework to Enforce Access Control over Data Streams • 28:13

Denoting streams with a protection object like representation greatly helps
in retrieving the access control policies applying to a stream. In the following,
this task is performed by function Pol(), properly defined for each secure
operator.

Let us now introduce the first operator, called secure view. It takes as input
an input stream and an access control policy, and it returns the “view” of the
stream that can be accessed according to the policy. This view may contain
only selected attributes and/or tuples of the input stream, on the basis of the
protection object specification contained into the access control policy. The view
is represented by the corresponding algebraic expression.

Definition 5.1 (Secure View). Let S be an input stream, and acp be an
access control policy that applies to S, such that acp.obj.STRs = S.STRs. The
secure view, Sec View of S with respect to policy acp is defined as follows:

Sec View(S,acp) = π (att)(σ (P)(S))
where:

att =
{
S.ATTs ∩ acp.obj.ATTs if acp.obj.ATTs (= ∗
S.ATTs otherwise

P = exp ∧ window
where:
exp6 =

{
(acp.obj.EXPs) if acp.obj.EXPs is not omitted
true otherwise

window =
{

(ts ≥ acp.gtc.begin ∧ ts ≤ acp.gtc.end) if acp.gtc is not null
true otherwise

Based on the Sec View operator, we next define the Sec Read operator, which
takes as input a user u and an input stream S, and returns the view of S over
which u can exercise the read privilege according to the policies in SysAuth. Note
that, since more than one policy can apply to the same user on the same stream
(referring for instance to different attributes and/or with different conditions
over tuples) the result of Sec Read is actually a set of views, each of which
denoted by the corresponding algebraic expression. Given a user u, in the
following, we denote with Role(u) the set of roles u is authorized to play.

Definition 5.2 (Secure Read). Let S be an input stream and u be a user. Let
Pol(S,u) be the set of read access control policies in SysAuth specified for S
and which apply to u, that is, Pol(S,u) = {acp∈SysAuth| acp.obj.STRs = S.STRs,
acp.sbj ∩ Role(u) (= ∅, acp.priv = read}. The secure read operator, Sec Read,
is defined as follows.

Sec Read(S,u) =
⋃

acpj∈Pol(S,u){Sec View(S, acpj)}

Example 5.1. Let us consider the access control policies in Table II,
and suppose that there exists a user, say Paul, belonging to platoon X and
authorized to play the doctor role. Let us see the view resulting from the
evaluation of Sec Read(Position,Paul), denoted in what follows as AuthView.
According to Definition 5.2, AuthView is defined as the union of the views

6True denotes a predicate that is always satisfied.

ACM Transactions on Information and System Security, Vol. 13, No. 3, Article 28, Publication date: July 2010.

28:14 • B. Carminati et al.

returned by the secure view operator, for each policy in Pol(Position,Paul).
Pol(Position,Paul) returns only the first access control policy of Table II,
say acp1. Thus, AuthView consists of Sec View(Position,acp1). According
to Definition 5.1, Sec View(Position,acp1) returns the following expression:
π(Pos,SID)(σ(Position.Platoon=X)(Position)). Thus, the view of the
Position stream on which Paul has the read privilege consists of the position
and id of soldiers belonging to his platoon.

Our access control model allows one to specify policies for aggregate privi-
leges. We, therefore, need to define a further operator, called secure aggregate,
which, given an aggregate operator over a stream S and a user u, considers
the policies applying to u and specified over S for the requested aggregate op-
eration, and returns the result of the aggregate operation only over the “view”
authorized by these policies. As for the previously defined operators, the view
may actually be a set of views, each of which denoted by an expression of the
adopted core query model. Since, in the case of aggregate operations, both poli-
cies and operations may have some associated temporal constraints (i.e., the
window size and step), these must be considered when determining the result
of secure aggregate.

Definition 5.3 (Secure Aggregate). Let S be a stream, u be a user, F be an
aggregate function, A be an attribute of S. Let s and o be two natural num-
bers, representing the size and the offset, respectively, according to which the
aggregate operation is required. Let Polagg(S, u) be the set of access control
policies in SysAuth to be considered to evaluate u request to perform F over at-
tribute A. More formally, Polagg(S, u) = {acp ∈ SysAuth|acp.obj.STRs = S.STRs,
A ∈ acp.obj.ATTs, acp.sbj ∩ Role(u) (= ∅, acp.priv = F, ∀exp ∈ S.EXPs, ∃exp′ ∈
acp.obj.EXPs, such that exp ⊆ exp′7}. The secure aggregate operator, Sec Aggr
is defined as follows.

Sec Aggr(S,F,A,s,o,u) =
⋃

acpj∈Polagg(S,u){#(F,A,maxsize,maxof f set)(π (A)(σ (P)(S)))}

where:
maxsize = max(acpj.wtc.size,s),
maxof f set = max(acpj.wtc.offset,o), and

P = exp ∧ window
where:

exp =
{

(acpj.obj.EXPS) if acpj.obj.EXPs is not omitted
true otherwise

window=
{

(ts ≥ acpj.gtc.begin ∧ ts ≤ acpj.gtc.end) if acpj.gtc is not null
true otherwise

Let us explain how policies are selected by function Polagg(). According to
the proposed access control model, if there exists an access control policy acp
granting user u the aggregate privilege F over the protection object acp.obj,
this implies that F can be computed over all and only the tuples denoted by

7The ⊆ operator verifies whether the expressions exp and exp′ generate two streams S′ and S,
respectively, such that S is included in S′.

ACM Transactions on Information and System Security, Vol. 13, No. 3, Article 28, Publication date: July 2010.

A Framework to Enforce Access Control over Data Streams • 28:15

acp.obj. Indeed, since the aggregate operator returns statistical data, allowing
a user to evaluate the aggregate function over a subset of the tuples denoted by
acp.obj might return more precise statistical data, which could be potentially
confidential. Thus, retrieving the access control policies specified over S for the
aggregate function F to be considered by the secure aggregate operator requires
to determine all the policies acp such that the stream S includes the stream de-
noted by the protection object specification of acp, that is, such that the tuples
in β(acp) (see Definition 4.3) are a subset of the tuples produced by S. Then, the
selected access control policies are enforced by the secure aggregate operator,
by pruning from stream S the not authorized tuples, thus ensuring that the ag-
gregation is evaluated only on tuples denoted by acp.obj. Since S could be an
internal stream generated by a graph G, verifying whether S includes the tuples
in β(acp) requires to check a set of conditions. A first condition is that the names
of the streams over which acp is specified (i.e., acp.obj.STRs) are equal to the
names of the streams over which S is generated (i.e., S.STRs). Furthermore, in
order to ensure that stream S includes the tuples in β(acp), it is required that,
for each expression in exp S.EXPs, there exists a corresponding expression exp′

in the EXPs component of the protection object specification of acp, such that
tuples satisfying exp′ are a subset of tuples satisfying exp. As a final condition,
the attribute A over which the aggregate function has to be evaluated must be
included among the attributes authorized by acp (i.e., acp.obj.ATTs).

Example 5.2. Suppose that Paul wishes to calculate the average of
soldiers’ position with windows of 5 hours and 5 as offset. Moreover, let
us assume that action a, with starting time 105000, is currently taking
place. Let us consider the view returned by the secure aggregate opera-
tor. In this case, Polagg(Position,Paul) consists only of the second access
control policy of Table II. According to this access control policy, Paul is
authorized to perform avg on the Pos attribute only during action a and
for the soldiers not belonging to his platoon. Moreover, the average can be
performed with at minimum a window of size 1 hour and 1 as offset. Thus,
Sec Aggr(Position,avg,Pos,Paul,5,5) is equal to #(avg,Pos,5,5) (π(Pos)
(σ(Position.Platoon (= X ∧ ts ≥ 105000 ∧ ts ≤ ∞)(Position))), since
5 is the maximum size (resp. offset) between the size (resp. offset) specified
in the access control policy and the required one. Thus, the secure aggregate
operator considers only the Pos attribute of those tuples in the Position
stream satisfying predicate: Position.Platoon (= X, that is, tuples of soldiers
not belonging to Paul’s platoon, and such that: ts ≥ 105000 ∧ ts ≤ ∞, that
is, tuples generated during action a. Then, for those values, it calculates the
average with windows of size 5 hours and with 5 as offset.

The last operator we need to define, called secure join, is used to manage
join operations. Indeed, according to our access control model, it is possible to
specify policies that apply to the joining of two or more streams, by authorizing
the access only to selected attributes and/or tuples in the joined stream. These
policies have more than one stream in the obj.STRs component. Similarly to
Sec Aggr, the secure join operator returns the set of “views” over the joined
stream corresponding to the authorized attributes and/or tuples.

ACM Transactions on Information and System Security, Vol. 13, No. 3, Article 28, Publication date: July 2010.

28:16 • B. Carminati et al.

Definition 5.4 (Secure Join). Let S1 and S2 be two streams, P a join pred-
icate over S1 and S2, and u be a user. Let Poljoin(S1,S2,u) be the set of
read access control policies in SysAuth applying to u specified for joins over
S1 and S2. Let Att be the set of attributes over which predicates in S1.EXPs
and S2.EXPs are defined. More formally, Poljoin(S1,S2,u) = {acp ∈ SysAuth|
acp.obj.STRs = S1.STRs∪ S2.STRs, P ∈ acp.obj.EXPs, Att ∈ acp.obj.ATTs,
acp.sbj ∩ Role(u) (= ∅, acp.priv = read}. The secure join operator, Sec Join, is
defined as follows.

Sec Join(S1,S2,P,u) =
⋃

acpj∈Poljoin(S1,S2,u){Sec View(Join(P)(S1, S2), acpj)}.

Similarly to the secure aggregate operator, Poljoin(S1,S2,u) selects the access
control policies that need to be evaluated for the requested join operation. In
particular, it considers only those access control policies acp whose protection
object specification includes the predicate P of the required join. Then, it checks
that the streams’ names over which acp is specified (i.e., acp.obj.STRs) are
equal to the streams’ names over which S1 and S2 are generated. Moreover, it
verifies whether the attributes over which predicates of streams S1 and S2 are
defined are contained into the authorized attributes (i.e., acp.obj.ATTs). This
check avoids possible inferences. Indeed, without this condition, a malicious
user could insert predicates over unauthorized attributes (by means of σ oper-
ator) just before the join operator. In this way, even if the secure join operator
returns only the authorized attributes, since the predicates over unauthorized
attributes are evaluated before the secure join operator, the user could infer
sensitive data, for instance, values of not authorized attributes.

Example 5.3. Suppose now that Paul is interested to monitor the health
conditions of those soldiers which are across some border k (modeled as Pos ≥ k).
Since the position of a soldier is stored in the Position stream, whereas health
information is in the Health stream, the first operation he needs to perform
is the join of the Position and Health streams, with predicate Position.SID =
Health.SID. Let us now see how the secure join operator evaluates over
the requested query, that is, Sec Join(Position,Health,Position.SID =
Health.SID,Paul). According to Definition 5.4, the secure join operator
first generates the joined stream, say S, resulting from Join(Position.SID =
Health.SID)(Position, Health). Then, for each policy acp in Poljoin(Position,
Health, Paul), it evaluates the secure view operator over S and acp. By Defi-
nition 5.4, Poljoin(Position, Health, Paul) contains only the fourth policy in
Table II, say acp4. According to this access control policy, the required join is
possible only for those tuples referring to soldiers whose positions are near to
the target of action a. Let us assume that action a is not currently undergoing,
that is, target(a) returns null. Sec Join returns the view generated by
Sec View(S,acp4). By Definition 5.1, this view is given by the following expres-
sion: π(BPressure,SID,Pos)(σ(Position.SID=Health.SID ∧ Pos ≥ null -
δ∧ Pos ≤ null + δ)(Position, Health)). Since the last predicate in the
above σ operator evaluates to null, no tuples are selected, thus the authorized
view is empty.

ACM Transactions on Information and System Security, Vol. 13, No. 3, Article 28, Publication date: July 2010.

A Framework to Enforce Access Control over Data Streams • 28:17

Fig. 4. Authorized graph ag1.

5.2 Secure Query Rewriting

We recall that given a query graph G and a user u, the Query Rewriter
rewrites G into a set of authorized graphs AG, on the basis of the access
control policies applicable to u. In what follows, we refer to this task as secure
query rewriting. In particular, secure query rewriting has to ensure that each
authorized graph ag∈AG generates only tuples that: (a) answer the original
query graph G and (b) there exists an access control policy authorizing u
the access on the information contained into the tuple. In this section, we
illustrate our approach for secure query rewriting, which makes use of the
secure operators introduced in Section 5.1. Moreover, we prove the correctness
and completeness of the proposed secure query rewriting algorithm.

A naı̈ve way to rewrite the input query is to rewrite G by simply prepro-
cessing all entering tuples in order to filter out unauthorized tuples. Thus, the
graph processes only authorized tuples and, as a consequence, it generates only
authorized tuples. This preprocessing enforcement can be easily implemented
by means of the secure read operator introduced in Section 5.1. Indeed, the se-
cure read operator takes as input an input stream S and a user u and returns
only those tuples of S to which u has the read access. Thus, by simply inserting
the secure read operator just after each IN operator contained into the query
graph, we are able to ensure that the graph is flowed only by authorized tuples.

However, as also discussed in the introduction, this simple preprocessing
strategy is not enough, in that it is not able to correctly enforce all the access
control policies supported by our access control model. The main problem is
that preprocessing works well only for access control policies granting the
read privilege on input streams, whereas it can prevent authorized accesses
for access control policies granting aggregate privileges or applying to a join
result. The following example clarifies the point.

Example 5.4. Suppose once again that Paul is interested to monitor the
health conditions of those soldiers, which are across some border k (modeled
as Pos ≥ k). Thus, he needs to perform the joining of Health and Position
streams with predicate Health.SID = Position.SID, and then to select from
the resulting stream those tuples with Pos ≥ k. To perform this query, he
submits a query graph similar to the one in Figure 3, without the # operator.
According to the preprocessing strategy, the authorized graph ag1 (see Figure 4)
is obtained by inserting the secure read operators just after the IN operators

ACM Transactions on Information and System Security, Vol. 13, No. 3, Article 28, Publication date: July 2010.

28:18 • B. Carminati et al.

in G (i.e., Sec Read(Health,Paul) and Sec Read(Position,Paul)). According to
Definition 5.2, they filter out all the tuples of Health and Position streams
that Paul is not authorized to read. More precisely, Sec Read(Position,Paul)
and Sec Read(Health,Paul) filter out all tuples referring to those soldiers not
belonging to Paul’s platoon (see the first and the third access control policies in
Table II). Moreover, they filter out unauthorized attributes. As a consequence,
the join is evaluated only over those tuples of Position and Health streams re-
ferring to soldiers belonging to Paul’s platoon. However, according to the fourth
access control policy in Table II, under some conditions, Paul is authorized to
evaluate the join operation also over tuples referring to soldiers not belonging to
his platoon. The resulting tuples are not contained by the authorized graph ag1.

The problem pointed out by Example 5.4 is due to the fact that in our access
control model, a join operation can be authorized by two different kinds of
access control policies. Indeed, a user u is authorized to apply a join over two
streams S1, S2 if: (i) u has the read privilege over both the streams, or (ii) there
exists an access control policy acp granting the read privilege over a set of
tuples that includes those contained into the stream resulting from the join
operation. Case (i) can be easily handled by preprocessing. In contrast, case
(ii) can not be enforced by preprocessing, since the secure read operator could
filter out from S1 and/or S2 some tuples/attributes authorized by acp.

Similar considerations are also applicable to aggregate operations. Indeed,
according to the proposed access control model, a user is authorized to evaluate
an aggregate operation on a stream if: (i) he/she has a read privilege over
the stream, or (ii) there exists an access control policy acp granting the aggre-
gate privilege such that tuples in β(acp) are included into the target stream.
Case (i) is easily handled by preprocessing approach, that is, by inserting the
secure read operator just after the IN operator of the target stream. However,
similarly to what happens for the join operator, preprocessing does not work
for case (ii). Therefore, to correctly enforce access control policies granting the
right to perform join and aggregate operations, we make use of secure join and
secure aggregate introduced in Section 5.1. Thus, in addition to the authorized
graphs created according to the preprocessing strategy, we create further
authorized graphs, obtained by complementing the join and the aggregate
operators in the original graph G with the corresponding secure operators.
More precisely, to correctly enforce access control policies granting the right to
perform a join, the authorized graph is obtained by inserting into the original
graph G the secure join operator just after the join operator. In contrast, to
enforce access control policies granting the privilege to perform aggregate
operations, the authorized graph is generated by replacing the aggregate
operator with the corresponding secure version, which, by definition, evaluates
the aggregation only on authorized tuples.

Example 5.5. Let us consider again Example 5.4. To correctly enforce the
fourth policy in Table II, it is necessary to define a further authorized graph ag2
by exploiting the secure join operator (see Figure 5). This is obtained by insert-
ing into G Sec Join(Health,Position,Health.SID = Position.SID,Paul) just

ACM Transactions on Information and System Security, Vol. 13, No. 3, Article 28, Publication date: July 2010.

A Framework to Enforce Access Control over Data Streams • 28:19

Fig. 5. Authorized graph ag2.

after the join operator. By Definition 5.4, the secure join filters from the result
of the join of Health and Position with predicate Health.SID = Position.SID,
the tuples for which Paul does not have the read privilege, that is, tuples that
do not satisfy the protection object specification of the fourth policy in Table II.

Algorithm 1 implements the proposed secure query rewriting strategy. The
algorithm takes as input a query graph G and the user u submitting the query
and returns a set of authorized graphs AG and the protection object like rep-
resentation of graph G. As it will be clarified later on, the second output is
needed during the recursive evaluation of graph containing join and aggre-
gate operators. In general, the authorized graphs are obtained by recursively
traversing G from the end of the graph, that is, the OUT operator, till the in-
put streams, that is, the IN operators. Each time the algorithm encounters an
operator OP(=IN, it recursively calls itself by passing as input the subgraph G
generating the stream entering into OP and by performing over the authorized
graphs returned from the recursion, denoted as Ret AG, different operations,
on the basis of OP. In contrast, when Algorithm 1 encounters the IN operator,
it makes use of the secure read operator (see lines 3 through 10) to filter out
unauthorized tuples. More precisely, it evaluates the secure read operator on
the stream represented by the IN operator (line 4). The operator returns a set of
expressions denoting the authorized views, that is, the tuples for which u has
the read privilege. Note that, since the secure read operator may return more
authorized views on the basis of the specified access control policies, the algo-
rithm generates a different authorized graph ag for each returned authorized
view (line 5). To insert the authorized view returned by the secure read operator
into the authorized graph ag, the algorithm exploits function Insert() (line 7).
This function takes as input a graph ag and the expression representing the
authorized view av returned by the secure read operator, and generates a new
graph by replacing into ag the OUT operator with a subgraph whose operators
encode av. The Insert() function also inserts the OUT operator at the end of the
resulting graph.

We now illustrate the steps performed by Algorithm 1 when it encounters
an operator OP(=IN. In case OP = π or OP = σ , the algorithm recursively calls
itself by passing the subgraph G generating the stream entering OP. Then, G is
recursively evaluated and, as result, the algorithm returns a set of authorized
graphs Ret AG. Since these graphs are defined in such a way that they generate
only tuples for which u has the read privilege, it is no more necessary to apply
the secure operators. Thus, Algorithm 1 has to simply evaluate OP directly over

ACM Transactions on Information and System Security, Vol. 13, No. 3, Article 28, Publication date: July 2010.

28:20 • B. Carminati et al.

Algorithm 1: Sec Rewr(G,u)
1 Let OP be the operator directly connected to the OUT operator;
2 Initialize AG, AGj, AGsj, AGa, AGsa to the empty set;
3 case OP = IN
4 AuthViews = Sec Read(IN.Name,u);
5 for each av ∈ AuthViews do
6 Let ag be a copy of G;
7 ag = Insert(ag, av);
8 AG = AG∪ag;
9 obj.STRs = IN.name, obj.ATTs= IN.ATTs;

10 Return 〈AG,obj〉;
11 case OP = π or OP = σ

12 Let G be a copy of G;
13 Delete from G the OUT operator, and replace OP with OUT;
14 〈Ret AG,obj〉 = Sec Rewr(G,u);
15 for each ag ∈ Ret AG do
16 Replace OUT in ag with OP and add OUT at the end of ag;
17 AG = AG∪ag;
18 if OP = π then
19 obj.ATTs = obj.ATTs∩ OP.ATTs;
20 if OP = σ then
21 obj.EXPs = obj.EXPs∪ OP.EXPs;
22 Return 〈AG,obj〉;
23 case OP = join
24 Let G1 and G2 be two copies of G;
25 Delete OUT from G1 and G2;
26 Delete OP and the whole subgraph generating the first operand of OP from G1, add OUT at the end of

G1;
27 Delete OP and the whole subgraph generating the second operand of OP from G2, add OUT at the end of

G2;
28 〈Ret AG1,obj1〉 = Sec Rewr(G1,u);
29 〈Ret AG2,obj2〉 = Sec Rewr(G2,u);
30 for each ag1 ∈ Ret AG1 do
31 for each ag2 ∈ Ret AG2 do
32 Delete OUT from ag1 and ag2;
33 Create a new graph agj consisting of OP applied over ag1 and ag2, add OUT at the end of agj ;
34 AGj = AGj ∪ agj ;
35 AuthViews = Sec Join(obj1,obj2,OP.EXPs,u);
36 for each av ∈ AuthViews do
37 Let agsj be a copy of G;
38 agsj = Insert(agsj , av), AGsj = AGsj ∪ agsj ;
39 AG= AGj ∪ AGsj;
40 obj.STRs = obj1.STRs∪ obj2.STRs; obj..ATTs = obj1.ATTs∪ obj2ATTs; obj.EXPs = obj1.EXPs∪

obj2.EXPs∪ OP.EXPs;
41 Return 〈AG,obj〉;
42 case OP = #

43 Let G be a copy of G;
44 Delete OUT from G and replace OP with OUT in G;
45 〈Ret AG,obj〉 = Sec Rewr(G,u);
46 for each ag ∈ Ret AG do
47 Replace OUT with OP in ag, Add OUT to ag;
48 AGa = AGa∪ag;
49 AuthViews = Sec Aggr(S,OP.F,OP.A,OP.s,OP.o,u);
50 for each av ∈ AuthViews do
51 Let ag be a copy of G;
52 Delete OP from ag, ag = Insert(ag, av);
53 AGsa = AGsa∪ag;
54 AG = AGa ∪ AGsa, obj.ATTs = obj.ATTs∩ OP.A;
55 Return 〈AG,obj〉;

ACM Transactions on Information and System Security, Vol. 13, No. 3, Article 28, Publication date: July 2010.

A Framework to Enforce Access Control over Data Streams • 28:21

the streams generated by graphs in Ret AG. This implies that it has to insert
the OP operator just at the end of the graphs in Ret AG (lines 15 through 17).

In case OP = Join (lines 23 through 41), the algorithm has to consider two
different kinds of access control policies. Indeed, a user is authorized to perform
a join operation if: (a) he/she is authorized to read the tuples over which the join
is performed, or (b) there exists one or more access control policies granting
the user the right to perform the required join. To handle both these cases,
the algorithm generates two distinct set of authorized graphs, namely, AG j and
AGsj , respectively. In particular, the steps performed to create graphs in AG j are
similar to those of case OP = π and OP = σ . Therefore, the algorithm recursively
calls itself twice by passing the subgraphs G1 and G2, generating the first and
the second stream entering in the Join operator, respectively. The results are
collected into variables Ret AG1 and Ret AG2, respectively. Then, it applies the
Join operator to each possible combination of graphs in Ret AG1 and Ret AG2
(lines 30 through 34). In contrast to manage case (ii), Algorithm 1 makes use
of the secure join operator, by applying it over the streams entering the Join
operator (line 35). Note that, by definition, the secure join receives as input the
protection object like representation of the operand streams (see Section 5.1).
To obtain this representation, through the entire algorithm, we make use of
variable obj, which contains the protection object like representation of the
stream resulting by graph G, generated during the recursive traversal of the
graph. In particular, the STRs component contains the input stream names
(lines 9 and 40), whereas the EXPs component is set as the union of all predicates
specified in the σ and Join operators (lines 21 and 40). In contrast, the ATTs
component is given by collecting all attributes of the input streams (lines 9 and
40) and recursively intersecting them with attributes specified in the π or #

operators (lines 19 and 54). Thus, the secure join operator is evaluated over
variables obj1 and obj2, which are returned by the inner recursion (see line
35). Then, similarly to the case OP = IN, the expressions returned by the secure
join operator are inserted into graph G by means of the Insert() function (lines
36 through 38), obtaining AGsj .

The case OP = # is very similar to the case OP = Join (lines 42 through 55).
Indeed, also in this case, the algorithm has to consider two different kinds of
access control policies, since a user is authorized to perform an aggregate oper-
ation if: (i) he/she is authorized to read the tuples over which the aggregation is
performed, or (ii) there exists one or more access control policies granting the
user the required aggregate privilege on the target stream. Thus, Algorithm 1
generates two distinct set of authorized graphs, namely, AGa and AGsa, accord-
ing to a procedure very similar to the one adopted in case (i) and (ii) when
OP = Join.

Example 5.6. Suppose Paul submits the query graph in Figure 3. We now
show the authorized graphs returned by Algorithm 1, assuming that Paul is a
doctor and that the only specified access control policies are those in Table II.
We recall that the algorithm generates the authorized graphs by recursively
calling itself. The algorithm starts to evaluate the last operator, that is, OP = #.
Then, it calls recursively itself by passing G, that is, the graph consisting of

ACM Transactions on Information and System Security, Vol. 13, No. 3, Article 28, Publication date: July 2010.

28:22 • B. Carminati et al.

the IN operators, the Join operator, the σ operator, and the OUT operator. As
second recursion, Algorithm 1 calls itself again by passing G consisting of
the IN operators and the Join operator. Thus, during the third recursion, the
algorithm elaborates the case OP = Join. In this case, it doubly calls itself by
passing G1 and G2, where G1 (G2, respectively) consists only of the IN operator
modeling Position (resp. Health) (lines 28 and 29). When the algorithm
evaluates G1, it performs the steps referring to OP = IN. Therefore, it evalu-
ates Sec Read(Position,Paul), and inserts into G1 the operators encoding the
unique authorized view returned by the secure read operator (see Example 5.1).
Then, the recursion halts by returning an authorized graph Ret AG1 consisting
of the IN operator modeling the Position stream and a set of operators encod-
ing the expressions returned by the secure read operator. Similarly, during the
evaluation of G2, Algorithm 1 performs the steps referring to OP = IN. Thus,
it evaluates Sec Read(Health,Paul). This operator enforces the unique access
control policy granting the read privilege to doctors over the Health stream,
that is, the third policy in Table II. Thus, it returns the following expression:
π(SID, Platoon, Heart, BPressure)(σ(Platoon = X))(Health). Therefore,
this recursion returns an authorized graph Ret AG2 consisting of the IN
operator modeling the Health stream and a set of operators encoding the above
expression.

Then, Algorithm 1 evaluates the Join operator. The authorized graphs to
be returned are given by the union of AG j and AGsj (line 39). In particular,
AG j contains a unique graph consisting of the Join operator applied to graphs
Ret AG1 and Ret AG2 (see lines 30 through 34). This is similar to the authorized
graph ag1 obtained in Example 5.4 and represented in Figure 4, without
the σ operator. Then, Algorithm 1 evaluates Sec Join(Position, Health,
Position.SID = Health.SID, Paul). This returns a unique expression (see
Example 5.3). The authorized graph AGsj obtained by inserting the operators
encoding this expression is equal to the authorized graph ag2 obtained in
Example 5.5 and represented in Figure 5, without the σ operator.

Then, the algorithm evaluates the σ operator, by inserting into each autho-
rized graphs in Ret AG = {ag1,ag2} the σ operator. Finally, as last recursion, the
algorithm evaluates the # operator on graphs in Ret AG. Algorithm 1 generates
the authorized graphs as the union of AGa and AGsa (line 54). AGa consists of two
authorized graphs obtained by applying the # operator over ag1 and ag2 (lines
46 through 48). In particular, the first authorized graph in AGa returns the
average of the heartbeats only of those soldiers belonging to platoon X. Whereas
the second graph does not return any tuple in that the π operator applied after
the secure join operator projects only the BPressure attribute. Note that, even
if the algorithm returns this graph as a result, it will be not be deployed in
the data stream engine, since its corresponding query is syntactically wrong.
To generate the authorized graphs in AGsa, Algorithm 1 evaluates the secure
aggregate operator. However, there does not exist an access control policy
granting doctors the avg privilege over the stream resulting from the join of
Health and Position streams. Thus, the secure aggregate operator does not
return any expression, which implies that AGsa is empty. Thus, the authorized
graphs returned by Algorithm 1 are those reported in Figures 6 and 7.

ACM Transactions on Information and System Security, Vol. 13, No. 3, Article 28, Publication date: July 2010.

A Framework to Enforce Access Control over Data Streams • 28:23

Fig. 6. First authorized graph returned by Algorithm 1.

Fig. 7. Second authorized graph returned by Algorithm 1.

Finally, the following theorems prove the correctness and completeness of
our secure query rewriting algorithm.

THEOREM 5.5 (CORRECTNESS PROPERTY). Let G be a query graph submitted by
a user u, and AG be the set of authorized graphs returned by Algorithm 1. Let
AS be the set of streams generated by graphs in AG. The correctness property
ensures that for each tuple t ∈AS, there exists an access control policy in SysAuth
authorizing u to access t.

THEOREM 5.6 (COMPLETENESS PROPERTY). Let G be a query graph submitted
by a user u, and OS be the stream generated by G. Let AG be the set of authorized
graphs returned by Algorithm 1. The completeness property ensures that for
each tuple t∈OS such that there exists an access control policy authorizing u to
access t, t is included into one of the streams generated by AG.

Formal proofs are reported in Carminati et al. [2008].

6. PROTOTYPE EVALUATION

In this section, we present some performance results of the prototype system
we have developed, implementing our framework [Cao et al. 2009]. Currently,
the prototype supports the most relevant modules of the architecture illus-
trated in Figure 1, that is, the Query Rewriter and the Deployment Module.
To overcome the current lack of the GUI, users submit queries by means of
a textual interface. In particular, we use the XML query encoding adopted by
StreamBase to represent query graphs. The operators that can be used when
defining the query graphs are restricted to those supported by our core query
model. Thus, each query graph is stored into an XML document.

When the Query Rewriter receives the XML document encoding the user
query, it parses the document and obtains the corresponding query graph. The
query graph is then rewritten according to the rewriting strategy defined in

ACM Transactions on Information and System Security, Vol. 13, No. 3, Article 28, Publication date: July 2010.

28:24 • B. Carminati et al.

Table III. Queries Complexity

Query Streams Operators
Q1 2 IN, 1 OUT 5 operators: 2 π , 2 σ , 1 Join

Q2 3 IN, 1 OUT 10 operators: 4 π , 3 σ , 2 Join, 1 #

Q3 6 IN, 1 OUT 20 operators: 8 π , 7 σ , 4 Join, 1 #

Q4 9 IN, 1 OUT 30 operators: 12 π , 9 σ , 7 Join, 2 #

Q5 18 IN, 1 OUT 60 operators: 24 π , 18 σ , 14 Join, 4 #

Fig. 8. Secure query rewriting overhead.

Algorithm 1. The resultant authorized graphs are then converted into distinct
XML documents and passed to the Deployment Module. The current version of
the Deployment Module translates the received query graphs into StreamSQL
only. Translation into CCL is currently under development.

The current prototype is implemented in Java and the experiments were run
on a Core 2 Duo 2.33GHz CPU machine, with 4G RAM, running windows XP.
We have carried out two main kinds of experiments. The first aims to evaluate
the overhead of secure query rewriting, whereas the second class of experiments
compares the proposed access control enforcement against the postprocessing
approach.

6.1 Overhead of Secure Query Rewriting

To evaluate the overhead of secure query rewriting, we have performed a set
of experiments to measure the time required by the Query Rewriter. We first
measure the CPU time required by secure query rewriting by varying the query
complexity (in terms of number of operators). Table III shows the five queries
that we used in the experiments—query Q1 is the less complex with 5 operators,
whereas query Q5 is the most complex involving 60 operators. Figure 8(a) shows
the results. As expected, when the query complexity increases, rewriting takes
more time. However, in all the considered cases, the time required is less than
0.2 seconds. Note that this overhead is negligible compared to the lifespan of the
query—as DSMSs queries are continuous and long running, query rewriting
is performed once before the long running query is registered into the system
and continuously executed on the target streams.

In the next experiments, we evaluate the effect of the number of policies
that are simultaneously applied to a query. Figure 8(b) illustrates the required
CPU time as we vary from 10 to 50 the number of policies applied to query
Q3 of Table III. When the number of policies increases, more CPU time is
needed to rewrite the query. However, even with 50 access control policies being

ACM Transactions on Information and System Security, Vol. 13, No. 3, Article 28, Publication date: July 2010.

A Framework to Enforce Access Control over Data Streams • 28:25

simultaneously applied to Q3, the time required is less than 0.12 seconds. From
the previously described results, it is clear that the proposed framework is quite
scalable. The overhead of query rewriting is small even for complex queries and
large number of policies.

6.2 Comparative Analysis

In this section, we compare the performance of our query rewriting algorithm
with the postprocessing access control enforcement. In particular, we compare
our approach with the postprocessing strategy proposed in Lindner and Meier
[2006]. The approach described in Lindner and Meier [2006] does not rewrite a
query on the basis of the specified access control policies. Rather, the output of
a query graph is given as input to a SecFilter operator, which prunes unautho-
rized tuples from the result. In particular, before a tuple enters the query graph,
SecFilter marks it with a label, which indicates from which source stream this
tuple comes from. Then, SecFilter checks each output tuple of the query graph,
and verifies, by exploiting its label, whether or not the tuple can be delivered
to the user, that is, whether or not the user has the read privilege over it.

In order to empirically evaluate the benefits of secure query rewriting, given
a query Q and a set of access control policies ACP, we compare the compu-
tational cost of evaluating the corresponding rewritten query RQ (generated
by Algorithm 1), against that of evaluating Q with postprocessing. To do that,
we generate synthetic streaming data to simulate a military drill. In particu-
lar, we create the soldiers’ Position stream by the generator of moving objects
[Brinkhoff 2002]. Moreover, to simulate the stream of soldiers’ health condi-
tions, we create two Health streams, namely, uniHealth and normHealth. In
uniHealth, heartbeats and blood pressures are uniformly distributed, whereas
normHealth is generated assuming that heartbeats and blood pressures are
normally distributed. For simplicity, we consider a query Q containing only one
join operator. In this case, the computational cost is due to the cost of evaluating
the join predicate over each pair of tuples entering the join operator. We intro-
duce the relative joins measure. In particular, let nump(join) be the number of
times that the join predicate is evaluated by the postprocessing scheme and
numr(join) be the number of times that the join predicate is evaluated using
the query rewriting approach, the relative joins is defined as: numr (join)

nump(join) × 100.
We calculate the relative joins by varying the selectivity of access control

policies.8 Figure 9(a) reports the result. In Figure 9 the rewrite-norm line is
the result when source stream normHealth and source stream Position are
tested, whereas the rewrite-uni line is the result when uniHealth and Position
streams are tested. The number of join evaluations under the postprocessing
scheme does not change with the variation of selectivity, since all the pruning
work is done after the join operator. The number of joins required by the query
rewriting scheme increases when selectivity increases because the number of
pruned tuples is smaller with higher selectivity. Therefore, as expected when

8The selectivity of an access control policy is given by the percentage of tuples satisfying that policy.
For example, selectivity equal to 0.1 means that only 10% of the tuples satisfy the access control
policy.

ACM Transactions on Information and System Security, Vol. 13, No. 3, Article 28, Publication date: July 2010.

28:26 • B. Carminati et al.

Fig. 9. Comparison with respect to relative joins, relative CPU time, and relative memory usage.

the selectivity increases, the relative joins value increases. However, the rela-
tive joins value is always less than 100%, which shows that the rewritten query
always requires a lower number of joins than the postprocessing method.

We also compare secure query rewriting and postprocessing with respect to
the required CPU time. We define relative CPU time as the ratio between the
CPU time required by secure query rewriting and that required by postprocess-
ing. In the experiments, we set the policy selectivity to 0.5 and vary the join win-
dow size. Secure query rewriting prunes some tuples before they enter the join
window, so it can save some CUP time. When the window size increases, each
arriving tuple of one input stream is compared with more tuples of the other
input stream. Thus, the saving of CPU time is more effective when the window
size increases. Figure 9(b) illustrates the result. As expected, when the window
size increases, the relative CPU time reduces, that is, secure query rewriting
saves more CPU time than postprocessing. Finally, we compare secure query
rewriting and postprocessing with respect to memory usage. The definition of
relative memory usage is similar to that of relative CPU time. Figure 9(c) reports
the relative memory usage when the window size varies. It is always less than
100%, so secure query rewriting always uses less memory than postprocessing.

7. RELATED WORK

Data stream management systems have been the subject of intensive research
in the context of different projects, for example: Tapestry [Terry et al. 1992],
Alert [Schreier et al. 1991], Tribeca [Sullivan 1996], OpenCQ [Liu et al. 1999],
NiagaraCQ [Chen et al. 2000], Telegraph [Chandrasekaran et al. 2003], Au-
rora [Abadi et al. 2003], STREAM [Arasu et al. 2003], Nile [Hammad et al.
2003], and CAPE [Zhu et al. 2004]. As a consequence, literature offers a huge
amount of work investigating a variety of data stream management issues
[Babcock et al. 2002; Golab and Özsu 2003]. Some of them are, for example,
related to data models and languages (see, e.g., Law et al. [2004] for a survey),
continuous query processing problems, that is, load shedding, join problems,
efficient window-based operators (see Babcock et al. [2004] and Bai and Zaniolo
[2008]), data stream mining (see Gaber et al. [2005] for a survey), clustering
and classification methods for data stream (e.g., Aggarwal et al. [2003, 2004]).
Among these issues, the ones that are most related and/or most affect our work
are those on data models and the operators defined on that. Indeed, since our
access control framework relies on its own core query model, it is interesting
to discuss how this is related to existing models and operators.

ACM Transactions on Information and System Security, Vol. 13, No. 3, Article 28, Publication date: July 2010.

A Framework to Enforce Access Control over Data Streams • 28:27

As pointed out in Golab and Özsu [2003] and Muthukrishnan [2005], a
common model to represent a data stream is as a sequence of data items
arriving from several sources. In particular, based on the arrival order and
on whether items have been preprocessed before arrival, four different types
of data stream models can be identified [Gilbert et al. 2001; Muthukrishnan
2005]: unordered cash register, where items of different sources arrive without
a particular order and preprocessing; ordered cash register, which implies that
items arrive with a given order, but without any preprocessing; unordered
aggregate, where, in no particular order, only one item per source arrives, whose
value is computed according to a given preprocessing, that is, by aggregating
different items from the same source; ordered aggregate, which is similar to
the previous one but items arrive with some given order. With respect to these
models, we have to note that the proposed core model represent streams as
append-only sequence of tuples with the same schema, which contains the
additional attribute ts storing the time of origin of the corresponding tuple.
Thus, any possible arrival order and preprocessing can be implemented by the
core model, making it able to support all of the four types of data models.

Regarding the operators, all the considered data stream management
systems support the basic relational operators (i.e., selection, projection, ag-
gregate, join), plus additional operators to handle windows (see Golab and Özsu
[2003] for more details). Note that some of them also support operators to han-
dle items order (e.g., the Bsort operator in Aurora). However, since the purpose
of the adopted core model is to be suitable to as many data stream management
systems as possible, it has been defined to handle only relational and window-
based operations. More precisely, it supports all relational operators, thus it is
able to represent all relational queries specified by data stream management
systems. Regarding the type of windows, these can be classified according to
three main criteria [Golab and Özsu 2003]. The first is the direction of move-
ments of the window endpoints, which gives rise to the following window types:
two fixed endpoints (fixed windows), two sliding endpoints (sliding endpoints),
and only one sliding endpoint (i.e., landmark, window). The second criteria is
about the size of the window, that is, whether it is specified in terms of time in-
tervals (time-based windows) or in terms of the number of tuples (count-based
windows). Another criteria is the frequency of updating a window (i.e., update
upon each tuple arrival or by means of a batch process). Among these criteria,
the ones relevant for our query model are the first two, since the last one is
more related to execution, that is, to the data stream engine. In particular, the
core query model is able to specify both fixed windows and sliding windows, by
properly setting the size and offset value (in the fixed window the offset is set
null). The core query model can also be easily extended to support landmark
windows. Also time-based and count-based windows can be specified by simply
specifying the number of tuples or time interval in the size parameter. There-
fore, the core model is flexible enough to support existing window-based query
operators. The previous discussion shows how the proposed access control
framework can be easily deployed into different data stream management
systems, since the underlying core model fits the existing data stream models.

ACM Transactions on Information and System Security, Vol. 13, No. 3, Article 28, Publication date: July 2010.

28:28 • B. Carminati et al.

Other work related to our proposal are those on streaming data protection.
This problem has not yet been investigated so deeply as the other DSMS issues
mentioned above. Thus, the literature offers few proposals. We can classify
them in two main categories: those aiming to ensure authenticity, integrity,
and confidentiality of data streams during transmission [Papadopoulos et al.
2007; Ali et al. 2005], and those related to access control [Lindner and Meier
2006; Nehme et al. 2008]. An example of the first category is the work by Ali,
ElTabakh, and Nita-Rotaru [Ali et al. 2005], which proposes an extension of the
RC4 algorithm, that is, a stream cipher encryption scheme, to overcome possible
decryption fails due to desynchronization problems. The proposed encryption
scheme has been developed in the Nile [Hammad et al. 2003] stream engine.
Another example of these proposals is Papadopoulos et al. [2007]. Here, authors
address the authenticity problem of outsourced data streams. More precisely,
Papadopoulos et al. [2007] consider a scenario where a data owner constantly
outsources its data streams, complemented with additional authentication in-
formation, to a service provider. Then, instead of querying the data owner,
clients register continuous range queries directly to the service provider. The
proposal enables clients to verify the authenticity and the completeness of the
results received from the service provider, by using the authentication infor-
mation provided by the data owner. Recently, the problem of access control for
data streams has been investigated by Lindner and Meier [2006] and by Nehme
et al. [2008]. Lindner and Meier propose an owner-extended RBAC (OxRBAC)
model to protect data streams from unauthorized accesses [Lindner and Meier
2006]. The basic idea is to apply a newly designed operator, called SecFilter, at
the stream resulting from the evaluation of a query to filter out output tuples
that do not conform to the access control rules. As mentioned in Section 1, this
postprocessing approach has the drawback of wasting computation time, when
unauthorized queries are performed. Indeed, as noted in Lindner and Meier
[2006], it is possible for a user to remain “connected” to an output stream though
he/she may not receive any output tuple (e.g., because his/her access rights have
been revoked). This is not desirable (see experiments in Section 6). Finally, be-
cause the proposed framework is not intrusive, SecFilter cannot handle certain
access control policies on views on data from multiple streams.

Access control for data streams has also been investigated in Nehme et al.
[2008]. Here, authors consider access control from a different point of view
with respect to our proposal. Indeed, in our scenario, we assume that access
control policies are specified by the SA, whereas in Nehme et al. [2008] policies
on a data stream are stated by the user owning the device producing the data
stream itself. This makes the user able to specify how the DSMS has to access
his/her personal information (e.g., location, health conditions). As such, their
approach is more related to privacy protection, whereas our focus is on access
control. Moreover, in Nehme et al. [2008], access control policies are not stored
in the DSMS, rather they are encoded via security constraints (called security
punctuations) and embedded directly into data streams. A set of operators is
also defined, able to enforce security punctuations, and implement them into
the CAPE engine [Zhu et al. 2004]. In contrast, we propose a framework able
to work on top of different DSMSs.

ACM Transactions on Information and System Security, Vol. 13, No. 3, Article 28, Publication date: July 2010.

A Framework to Enforce Access Control over Data Streams • 28:29

8. CONCLUSIONS

In this article, we have proposed a framework to enforce access control into
different DSMSs. The framework exploits an expressive role-based access
control model and a set of novel secure operators (namely, Secure Read, Secure
View, Secure Join, and Secure Aggregate), defined on support of secure query
rewriting. Preliminary performance evaluations showed the effectiveness of
the proposed techniques.

We plan to extend the work reported in this article along several directions.
First, we plan to develop a complete prototype and to carry out a more exten-
sive performance study. Additionally, we plan to investigate how queries can
be further optimized on the basis of the optimization techniques in place in the
target stream engines. We will also extend the model (and hence the enforce-
ment strategies) to deal with updates. The support for sharing of queries among
multiple users is also a topic we would like to investigate in the future. Finally,
it is important to remark that our access control model is a discretionary access
control model, as most of the models adopted by current commercial data man-
agement systems. As such, it prevents explicit accesses to data, but leaving
the responsibility to the SA of correctly assigning access rights in such a way
that inference of unauthorized information is prevented [Farkas and Jajodia
2002]. An interesting direction we plan to investigate is how our system can
be complemented with inference control techniques (e.g., Biskup and Lochner
[2007] and Rizvi et al. [2004]).

REFERENCES

ABADI, D., AHMAD, Y., BALAZINSKA, M., CETINTEMEL, U., CHERNIACK, M., HWANG, J., LINDNER, W., MASKEY,
A., RASIN, A., ET AL. 2005. The design of the borealis stream processing engine. In Proceedings
of the Conference on Innovative Data System Research (CIDR’05). Online Proceedings, 277–
289.

ABADI, D., CARNEY, D., CETINTEMEL, U., CHERNIACK, M., CONVEY, C., LEE, S., STONEBRAKER, M., TATBUL,
N., AND ZDONIK., S. 2003. Aurora: A new model and architecture for data stream management.
VLDB J. 12, 2, 120–139.

AGGARWAL, C. C., HAN, J., WANG, J., AND YU, P. S. 2003. A framework for clustering evolving
data streams. In Proceedings of the 29th International Conference on Very Large Data Bases
(VLDB’03). Morgan Kaufmann, San Francisco, CA, 81–92.

AGGARWAL, C. C., HAN, J., WANG, J., AND YU, P. S. 2004. On demand classification of data streams.
In Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD ’04). ACM, New York, 503–508.

ALI, M., ELTABAKH, M., AND NITA-ROTARU, C. 2005. FT-RC4: A robust security mechanism for data
stream systems. Tech. rep. TR-05-024, Purdue University.

ARASU, A., BABCOCK, B., BABU, S., DATAR, M., K. ITO, I. N., ROSENSTEIN, J., AND WIDOM., J. 2003.
Stream: The stanford stream data manager. In Proceedings of the ACM SIGMOD International
Conference on Management of Data (SIGMOD ’03). ACM, New York, 665.

BABCOCK, B., BABU, S., DATAR, M., MOTWANI, R., AND THOMAS, D. 2004. Operator scheduling in data
stream systems. VLDB J. 13, 4, 333–353.

BABCOCK, B., BABU, S., DATAR, M., MOTWANI, R., AND WIDOM, J. 2002. Models and issues in data
stream systems. In Proceedings of the 21st ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems (PODS’02). ACM, New York, 1–16.

BAI, Y. AND ZANIOLO, C. 2008. Minimizing latency and memory in dsms: a unified approach to
quasi-optimal scheduling. In Proceedings of the 2nd International Workshop on Scalable Stream
Processing System (SSPS’08). ACM, New York, 58–67.

ACM Transactions on Information and System Security, Vol. 13, No. 3, Article 28, Publication date: July 2010.

28:30 • B. Carminati et al.

BISKUP, J. AND LOCHNER, J.-H. 2007. Enforcing confidentiality in relational databases by reducing
inference control to access control. In Proceedings of the 10th International Conference on Super
Computing (ISC’07). ACM, New York, 407–422.

BRINKHOFF, T. 2002. A framework for generating network-based moving objects. GeoInformat-
ica 6, 2, 153–180.

CAO, J., CARMINATI, B., FERRARI, E., AND TAN, K.-L. 2009. Acstream: Enforcing access control
over data streams, demo. In Proceedings of the International Conference on Data Engineering
(ICDE’09). IEEE, Los Alamitos, CA.

CARMINATI, B., FERRARI, E., AND TAN, K. 2007a. Enforcing access control policies on data streams.
In Proceedings of the 12th ACM Symposium on Access Control Models and Technologies (SAC-
MAT’07). ACM, New York.

CARMINATI, B., FERRARI, E., AND TAN, K.-L. 2007b. Specifying access control policies on data
streams. In Proceedings of the 12th International Conference on Database Systems for Advanced
Applications (DASFAA ’07). Springer, Berlin, 410–421.

CARMINATI, B., FERRARI, E., TAN, K.-L., AND CAO, J. 2008. A framework to enforce access control
over data streams. Tech. rep., University of Insubria.
http://www.dicom.uninsubria.it/˜barbara.carminati/TR/TR Framework AC stream.pdf.

CHANDRASEKARAN, S., COOPER, O., A. DESHPANDE, M. F., HELLERSTEIN, J., W. HONG, S. K., MADDEN, S.,
V.RAMAN, REISS, F., AND SHAH., M. 2003. Telegraphcq: Continuous dataflow processing for an
uncertain world. In Proceedings of the Conference of Innovative Data System Research (CIDR’03).
Online Proceedings.

CHEN, J., DEWITT, D. J., TIAN, F., AND WANG, Y. 2000. Niagaracq: a scalable continuous query
system for internet databases. In Proceedings of the ACM SIGMOD International Conference on
Management of Data (SIGMOD’00). ACM, New York, 379–390.

CORAL8. 2008. Coral8 homepage. http://www.coral8.com/.
CRANOR, C., GAO, Y., JOHNSON, T., SHKAPENYUK, V., AND SPATSCHECK, O. 2003. Gigascope: A stream

database for network applications. In Proceedings of the ACM SIGMOD International Conference
on Management of Data (SIGMOD’03). ACM, New York.

FARKAS, C. AND JAJODIA, S. 2002. The inference problem: A survey. SIGKDD Expl. Newsl. 4, 2,
6–11.

GABER, M. M., ZASLAVSKY, A., AND KRISHNASWAMY, S. 2005. Mining data streams: A review. SIGMOD
Record 34, 2, 18–26.

GILBERT, A. C., KOTIDIS, Y., MUTHUKRISHNAN, S., AND STRAUSS, M. 2001. Surfing wavelets on streams:
One-pass summaries for approximate aggregate queries. In Proceedings of the 27th International
Conference on Very Large Data Bases (VLDB’01). Morgan Kaufmann, San Francisco, CA, 79–88.

GOLAB, L. AND ÖZSU, M. T. 2003. Issues in data stream management. SIGMOD Record 32, 2,
5–14.

HAMMAD, M. A., FRANKLIN, M. J., AREF, W. G., AND ELMAGARMID, A. K. 2003. Scheduling for shared
window joins over data streams. In Proceedings of the 29th International Conference on Very
Large Data Bases (VLDB’03:). Morgan Kaufmann, San Francisco, CA, 297–308.

LAW, Y.-N., WANG, H., AND ZANIOLO, C. 2004. Query languages and data models for database
sequences and data streams. In Proceedings of the 30th international Conference on Very Large
Data Bases (VLDB’04). Morgan Kaufmann, San Francisco, CA, 492–503.

LINDNER, W. AND MEIER, J. 2006. Securing the borealis data stream engine. In Proceedings of
the International Database Engineering and Application Symposium (IDEAS’06). IEEE, Los
Alamitos, CA.

LIU, L., PU, C., AND TANG, W. 1999. Continual queries for internet scale event-driven information
delivery. IEEE Trans. Knowl. Data Eng. 11, 4, 610–628.

MUTHUKRISHNAN, S. 2005. Data streams: algorithms and applications. Found. Trends Theor. Com-
put. Sci. 1, 2, 117–236.

NEHME, R. V., RUNDENSTEINER, E. A., AND BERTINO, E. 2008. A security punctuation framework for
enforcing access control on streaming data. In Proceedings of the 24th International Conference
on Data Engineering (ICDE’08). IEEE, Los Alamitos, CA, 406–415.

PAPADOPOULOS, S., YANG, Y., AND PAPADIAS, D. 2007. Cads: continuous authentication on data
streams. In Proceedings of the 33rd International Conference on Very Large Data Bases
(VLDB’07). Morgan Kaufmann, San Francisco, CA, 135–146.

ACM Transactions on Information and System Security, Vol. 13, No. 3, Article 28, Publication date: July 2010.

A Framework to Enforce Access Control over Data Streams • 28:31

RIZVI, S., MENDELZON, A., SUDARSHAN, S., AND ROY, P. 2004. Extending query rewriting techniques
for fine-grained access control. In Proceedings of the ACM SIGMOD International Conference on
Management of Data (SIGMOD’04). ACM, New York, 551–562.

SCHREIER, U., PIRAHESH, H., AGRAWAL, R., AND MOHAN, C. 1991. Alert: An architecture for trans-
forming a passive dbms into an active dbms. In Proceedings of the 17th International Conference
on Very Large Data Bases (VLDB’91). Morgan Kaufmann, San Francisco, CA, 469–478.

STREAMBASE. 2008. StreamBase homepage. http://www.streambase.com/.
SULLIVAN, M. 1996. Tribeca: A stream database manager for network traffic analysis. In Pro-

ceedings of the 22th International Conference on Very Large Data Bases (VLDB’96). Morgan
Kaufmann, San Francisco, CA, 594.

TERRY, D., GOLDBERG, D., NICHOLS, D., AND OKI, B. 1992. Continuous queries over append-only
databases. In Proceedings of the ACM SIGMOD International Conference on Management of
Data (SIGMOD’92). ACM, New York, 321–330.

TRUVISO. 2008. Truviso homepage, http://www.truviso.com/.
ZHU, Y., RUNDENSTEINER, E. A., AND HEINEMAN, G. T. 2004. Dynamic plan migration for continuous

queries over data streams. In Proceedings of the ACM SIGMOD International Conference on
Management of Data (SIGMOD’04). ACM, New York, 431–442.

Received January 2008; accepted February 2009

ACM Transactions on Information and System Security, Vol. 13, No. 3, Article 28, Publication date: July 2010.

