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We have studied the stability of mixed 3He=4He clusters in L � 0 states by the diffusion Monte Carlo
method, employing the Tang-Toennies-Yiu He-He potential. The clusters 3He4HeN and 3He2

4HeN are
stable for N > 1. The lighter atoms tend to move to the surface of the cluster. The minimum number of
4He atoms able to bind three 3He atoms in a L � 0 state is nine. Two of three fermionic helium atoms
stay on the surface, while the third one penetrates into the cluster.
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however, the current experiments are not yet able to
investigate the problem of the critical size of 3He clusters.

however, introduces a node in the ground state wave
function. The DMC energy is exact only if the nodal
In recent years weakly bound helium clusters and
droplets have attracted the attention of a growing number
of experimentalists and theoreticians. The combination of
the extremely weak interaction between helium atoms
and the small atomic masses makes helium clusters very
weakly bound and by far the most intriguing van der
Waals clusters with highly quantum features. The
helium-helium interaction potential does not distinguish
between the two isotopic species, the fermion 3He and the
boson 4He, and this allows one to study effects entirely
due to the zero-point motion of the species and to the
different obeying statistics. The most interesting feature
of these clusters is with no doubt the possibility to attain a
superfluid state with a relatively small number of 4He
atoms [1]. The superfluidity and the low temperature of
helium clusters can be fruitfully exploited to perform
high-resolution spectroscopy on impurities and to study
the chemical reaction dynamics of species absorbed into
the clusters.

Initial investigations were devoted to pure 4He clusters
and droplets [2]. More recently, however, a growing num-
ber of studies have focused on pure 3He clusters and
droplets [3–6]. While all 4He clusters, starting from the
dimer, are bound, it is not yet known what is the mini-
mum number of 3He atoms necessary to form a stable
cluster. In an early investigation, Pandharipande et al. [7]
found that eight 3He atoms would form a bound state if
they were bosons, despite the lighter mass, and eight 4He
atoms would be bound even if they were fermions, but
eight 3He fermions do not form a bound state. Their
variational Monte Carlo (VMC) calculations indicated
that systems with more than 40 3He are bound, while
20 atoms are unable to ensure the binding. Recently this
bound has been greatly improved by Guardiola and
Navarro [3] who established at 35 a stricter upper bound
to the minimum number of 3He atoms needed to form a
stable cluster. On the experimental side, Schöllkopf and
Toennies [8] introduced the diffraction techniques from a
transmission grating to study small clusters that allowed
the detection of the helium dimer [8,9] and trimer [10,11];
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The information on the mixed 3He=4He systems is even
poorer. The stability of the clusters 3He4HeN for N > 1
was predicted by Bressanini et al. [12] and later shown
experimentally [13]. In the same paper, Bressanini et al.
examined the stability of a cluster containing two 3He.
They showed that the system 3He2

4He is unstable, while
the trimer 3He4He2 is very weakly bound with a total
energy an order of magnitude smaller than the pure trimer
4He3. Nevertheless, it is possible to add a second 3He atom
and form the stable species 3He2

4He2 with the odd feature
of having five out of six unbound pairs.

The stability of pure 3HeM and mixed 3HeM
4HeN clus-

ters is a delicate balance between the fermionic nature of
the 3He that introduces nodes in the ground state wave
function, the weakly attractive He-He potential, and the
kinetic energy effects due to the lighter mass of the
fermionic isotope. A first attempt to study mixed clusters
with more than three 3He has been recently published by
Guardiola and Navarro [14]. They studied small mixed
3He=4He clusters keeping fixed the number of bosonic
atoms to 2, 3, 4, and 8, and increasing the number of 3He
to investigate the stability of the clusters. They found that
a single 4He cannot bind less than 20 3He, two 4He can
bind 18 or more 3He, three 4He form a metastable cluster
with 3,4,5,9 3He, while the only unbound cluster with
four 4He is the one with nine 3He. These interesting
results, however, are preliminary and need to be con-
firmed, due to the incomplete convergence of their calcu-
lations. The exploration of the stability diagram of
3HeM

4HeN is just at the beginning and very complicated,
due to the fact that for each cluster it is not even known
what are the preferred spin multiplicity and angular
momentum.

The simulation of the ground state of 3He4HeN and
3He2

4HeN poses no particular problems to diffusion
Monte Carlo (DMC) [15]: the wave function is positive
everywhere, even when there are two fermionic atoms
forming a singlet state. This is sufficient to ensure that the
DMC method is able to compute the exact energy, within
the statistical error. The addition of further 3He atoms,
2003 The American Physical Society 133401-1



FIG. 1. Radial distribution functions of 3He and 4He in
3He2

4He10 with respect to the center of mass.

TABLE I. Energies (cm�1) of the clusters 3HeN
4HeM

in L � 0 states.

M N � 0 N � 1 N � 2 N � 3

8 �3:493�1� �4:133�1� �4:813�1� Unbound
9 �4:633�1� �5:352�5� �6:102�1� �6:168�3�
10 �5:897�2� �6:675�2� �7:500�2� �7:644�3�
12 �8:743�2� �9:632�1� �10:553�2� �10:833�2�
14 �11:932�3� �12:915�5� �13:925�5� �14:339�5�
17 �17:233�6� �18:329�3� �19:483�3� �20:036�6�
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surface is exact; otherwise DMC simulations give an
upper bound to the exact energy. Past experience with
electronic systems nevertheless suggests that using ap-
proximate nodes from approximate trial wave functions
can lead to very good energies.

In this preliminary work, we explore the stability dia-
gram in a different way than Guardiola and Navarro [14]:
they kept fixed the number of bosons and increased the
number of fermions, while we ask ourselves what is the
minimum number of 4He atoms able to bind three 3He
atoms fixing the angular momentum to L � 0 and the
spin momentum to S � 1=2. The constraint L � 0 allows
us to write the trial wave function as a function of the
interparticle distances only and to avoid the problem of
the center of mass separation. If a cluster is bound, more
stable states with higher L can stress only its stability.
Furthermore, we use the Tang-Toennies-Yiu (TTY) po-
tential [16] instead of the HFD-B(HE) potential [17], as
in better agreement with the most accurate calculated
values [18].

We approximate the wave function of the cluster
3HeM

4HeN with the product form

�T�R� � �BB�BF�FF: (1)

The subscripts B and F stand for boson and fermion,
respectively. When there is only a single fermionic atom,
�FF is missing. Each many-body wave function � is
written as a product of the two-body functions [19]

f�r� � exp

�
�
p5

r5
�

p2

r2
� p0 ln�r� � p1r

�
: (2)

This two-body wave function has been widely used in
helium clusters simulations by quantum Monte Carlo
methods [2,19,20] and has proved to give accurate results.
�FF includes an antisymmetrizer operator chosen to gen-
erate a pure doublet state. While the parameters of the
pair functions for 4He-4He are all the same, implying that
the corresponding �BB is symmetric (and the same is true
for �BF), the 3He-3He pair functions are all different, in
order to have a non-null antisymmetrized product. The
explicit action of the antisymmetrizer on the product of
these pair functions generates the node. Such a trial
function, when used in a DMC simulation within the
fixed-node approximation, gives an upper bound to the
exact energy. The accuracy of the results depends on
the quality of the nodes of the trial wave function. For
few electron atomic and molecular systems the computed
energies are very accurate. To our knowledge, there have
been no systematic studies on the quality of the nodes of
the trial wave functions for fermionic clusters.

�T�R� has a pure space-spin symmetry, and represents
a doublet state with L � 0 angular momentum. States
with higher angular momentum and different spin multi-
plicity will be the subject of a future exploration of the
stability diagram.
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The simulations have been performed using the diffu-
sion Monte Carlo [15] method, with 5000 walkers and a
time step of 100 hartree�1. The trial wave functions have
been optimized minimizing the absolute deviation of the
local energy [21], a procedure we found numerically more
robust than the usually adopted variance minimization
[22]. In Table I we report the energies for the systems
3HeN

4HeM for N � 0, 1, 2, 3, and M up to 17. For N � 0,
1, and 2, the only error present is the time step bias, which
we checked is of the same order of magnitude of the
statistical uncertainty, and so it should not modify the
conclusions of this work. For N � 3 an additional error,
due to the approximate nodal surface of the trial wave
function, is present, so our results are an upper bound of
the exact energies. However, as discussed above, we ex-
pect these energies to be very close to the exact values.

Our simulations confirm that the systems 3He4HeN for
N > 1 are stable [12]. The stability is not spoiled by the
addition of a second 3He atom. As to the 3He2

4HeN
structure, in Fig. 1 we report the radial distribution func-
tions of 4He and 3He with respect to the center of mass of
the system. The plot is for N � 10, but the features of the
plot are the same for all the explored values of N.
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The lighter 3He atoms tend to stay on the surface of the
cluster, although they are free to penetrate into the cluster
core. The addition of the third 3He destabilizes the sys-
tem, and we found that nine bosonic atoms are necessary
to bind three fermionic atoms in a L � 0 state. We have
not been able to perform a stable simulation with eight or
less bosons. In these cases, the simulations ended with a
fermionic atom leaving the cluster. This result is sup-
ported also by the observation that the energy gap be-
tween 3He2

4HeN and 3He3
4HeN progressively decreases

upon reducing N and is nearly zero for N � 9. As to the
structure of these clusters, we present in Fig. 2 the radial
distribution functions with respect to the center of mass
for 3He3

4He10. Given our choice to simulate a doublet
state, we assigned, as usual in DMC simulations, spin
labels to the fermionic atoms. We plot separately the two
distributions of the two � 3He to gain more insight;
however, only the average of the two has physical mean-
ing. Figure 2 reveals that the third fermionic impurity is
pushed inside the cluster, while the other two stay on the
surface and move farther out with respect to the situation
in 3He2

4He10.
This is rather unexpected, in the light of the results of

the systems with one or two 3He. This outcome, however,
can be rationalized by looking at the nodal structure of
the system: it is not difficult to see that �FF is zero
whenever the two �-spin 3He are at the same distance
from the �-spin 3He. For this reason, the three 3He atoms
are not free to move on the surface of the 4He cluster, and
one of the two �-spin 3He is pushed inside the boson
cluster, in order to stay away from the nodal surface.

Although closely related, the interesting study recently
published by Guardiola and Navarro [14] cannot be di-
FIG. 2. Radial distribution functions of 3He and 4He in
3He3

4He10 with respect to the center of mass. For the two �
spin 3He distributions see the text.
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rectly compared with ours since they used the HFD-
B(HE) potential [17] instead of the slightly less binding
TTYone [16] we employed. A comparison of the binding
properties of these two potentials was performed by
Lewerenz [20]. Furthermore, Guardiola and Navarro
fixed the angular momentum to the one predicted by
the harmonic oscillator shell model. They studied small
mixed 3He=4He clusters keeping fixed the number of
bosonic atoms to 2, 3, 4, and 8, and increased the number
of 3He to investigate the stability of the cluster. They
found that the cluster 3He3

4He4 with L � 1 is stable,
having a lower energy than 3He2

4He4. We note, however,
that their calculations are not converged. This can be
evidenced by comparing the literature numbers on 4He4
and 4He8: in a previous paper Guardiola, Portesi, and
Navarro [23] obtained lower energies than in the most
recent one (see Table II), while Lewerenz [20], with the
same potential and using DMC, obtained even lower
estimates of the exact energies.

A similar case happens for the 4He8 system. Since the
difference between the exact DMC result and VMC for
the pure 4He cluster is of the same order of magnitude of
the difference between the 3He2

4HeN and 3He3
4HeN sys-

tems, a more thorough investigation is needed before a
definitive conclusion can be reached.

In order to further check the convergence of their
calculations, we simulated the 3He2

4He4 and 3He2
4He8

clusters by the diffusion Monte Carlo method and the
HFD-B(HE) potential. The ground state wave function of
these systems is positive everywhere, so the DMC method
is able to give a statistically exact ground state energy. For
3He2

4He4 we obtain �0:978�1� cm�1, an energy lower
than Guardiola and Navarro, but even lower than their
value for 3He3

4He4, so it is no longer possible to conclude
that this system is stable, since its energy is above the
exact 3He2

4He4. We reach the same conclusions for
3He2

4He8, with an exact energy of �4:918�1� cm�1, be-
low both the energy they obtained for 3He2

4He8
and 3He3

4He8. The conclusion is that it is certainly
possible that 3He3

4He4 and 3He3
4He8, with L � 1, are

stable species, but more calculations are necessary to
TABLE II. Comparison with previous results. Energies
in cm�1.

3He 4He VMC [14] VMC [23] DMC

0 4 �0:371�1� �0:388�4� �0:4012�5� [20]
1 4 �0:614�1�
2 4 �0:925�1� �0:978�1�a

3 4 �0:956�2�
0 8 �3:351�4� �3:496�7� �3:568�2� [20]
1 8 �3:927�5�
2 8 �4:542�6� �4:918�1�a

3 8 �4:879�9�
aPresent work.
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substantiate this statement. In order to resolve the matter,
we are in the process, as a natural following of the present
work, to apply DMC to L � 1 states of mixed 3He=4He
clusters.

We thank Marius Lewerenz for providing us the
Fortran code to compute the HFD-B(He) helium pair
potential. This work was supported by Italian MIUR
Grant No. MM03265212.
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