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Abstract
The estimation of the accuracy of predictions is a critical problem in QSAR modeling. The 
“distance to model” can be defined as a metric that defines the similarity between the 
training set molecules and the test set compound for the given property in the context of a 
specific model. It could be expressed in many different ways, e.g., using Tanimoto 
coefficient, leverage, correlation in space of models, etc. In this paper we have used mixtures 
of Gaussian distributions as well as statistical tests to evaluate six types of distances to 
models with respect to their ability to discriminate compounds with small and large 
prediction errors. The analysis was performed for twelve QSAR models of aqueous toxicity 
against T. pyriformis obtained with different machine-learning methods and various types of 
descriptors. The distances to model based on standard deviation of predicted toxicity 
calculated from the ensemble of models afforded the best results. This distance also 
successfully discriminated molecules with low and large prediction errors for mechanism-
based model developed using log P and the Maximum Acceptor Superdelocalizability 
descriptors. Thus, the distance to model metric could also be used to augment mechanistic 
QSAR models by estimating their prediction errors. Moreover, the accuracy of prediction is 
mainly determined by the training set data distribution in the chemistry and activity spaces 
but not by QSAR approaches used to develop the models. We have also showed that 
incorrect validation of a model may result in the wrong estimation of its performance and 
suggested how this problem could be circumvented. The toxicity of 3182 and 48774 
molecules from the EPA High Production Volume (HPV) Challenge Program and EINECS 
(European chemical Substances Information System), respectively, was predicted and the 
accuracy of prediction was estimated. The developed models are available on-line at 
http://www.qspr.org site.
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Introduction

Toxic environmental chemicals may be damaging to the environment and human 
health and therefore they represent a considerable danger to the society. Unfortunately, there 
is a great gap in the number of chemical compounds for which experimental physico-
chemical properties and toxicity data is available and those for which such information is 
needed.1 In 1990’s the EPA Office of Toxic Substances (OTS) listed approximately 70000 
industrial chemicals, and about 1000 chemicals have been added each year. However, even 
simple experimental properties have been measured only for a small fraction of these 
compounds.2 Moreover, for some important environmental pollutants, such as DDT, there 
are still no reliable data on their basic physico-chemical properties, e.g. water solubility and 
lipophilicity,3 despite more than 60 years of studies and more than 7500 articles dealing with 
the toxicity of this pesticide.3,4

The European Union has recently approved a new regulation, called REACH -
Registration, Evaluation and Authorization of Chemicals, that will create a database of 
chemicals used in the EU (see
http://ec.europa.eu/environment/chemicals/reach/reach_intro.htm). This law requires 
assessment of physico-chemical properties and adverse effects (e.g., carcinogenic and 
mutagenic properties) of all compounds, which are produced in excess of 1 ton/year, which 
will lead to the registration of more than 30000 compounds. The implementation of REACH 
requires demonstration, by means of experimental tests, of the safe manufacturing of 
chemicals and their safe use throughout the supply chain. The total cost of tests required for 
the registration of compounds is estimated to be 5 billion € during the next 11 years 
(http://news.bbc.co.uk/2/hi/europe/4444550.stm).

The REACH advocates the use of non-animal testing methods and, in particular 
QSAR/QSPR approaches in order to decrease the number and costs of animal tests. For 
example, the REACH system requires that non-animal methods should be used for the 
majority of tests in the 1-10 ton band of chemicals produced in large volumes. In November 
2004, the OECD member countries agreed on the principles for validating (Q)SAR models 
to enable their use in regulatory assessment of chemical safety. An OECD Expert Group on 
(Q)SARs was established for this purpose and a first version of the OECD (Q)SAR 
Application Toolbox has been released (http://toolbox.oasis-lmc.org). In February 2007, the 
OECD published a "Guidance Document on the Validation of (Q)SAR Models" that 
summarized the (Q)SAR model validation principles accepted by the OECD: 
http://www.oecd.org/document/23/0,2340,en_2649_34365_33957015_1_1_1_1,00.html.

When using in silico predictions, one should have clear understanding and knowledge of the 
applicability domain of the developed models, which is defined according to the OECD 
guidelines as “the response and chemical structure space in which the model makes 
predictions with a given reliability”.5,6 Thus, methods to estimate the accuracy of prediction 
and development of practical protocols for the implementation of REACH are very 
important. Considering the volume of measurements and lack of experience with the 
implementation of such global test policies, EU has launched a number of projects, e.g. 
OSIRIS (Optimized Strategies for Risk assessment of Industrial Chemicals through 
integration of non-test and test information), CAESAR (Computer Assisted Evaluation of 
Substances According to Regulations), NOMIRACLE (NOvel Methods for Integrated Risk 
Assessment of CumuLative stressors in Europe), MODELKEY (MODELs for assessing and 
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forecasting the impact of environmental KEY pollutants on marine and freshwater 
ecosystems and biodiversity), and CADASTER (CAse studies on the Development and 
Application of in-Silico Techniques for Environmental hazard and Risk assessment) to meet 
these goals.

In our previous study7 we have developed several models using different QSAR 
modeling approaches to predict aqueous toxicity of molecules against Tetrahymena 
pyriformis and demonstrated that consensus models yielded both the highest chemical space 
coverage and prediction accuracy. The growth inhibition of the ciliated protozoan T. 
pyriformis is a commonly accepted toxicity screening tool that has been under development 
and implementation by Schultz and co-workers for many years.8-12 In the past ten years, this 
group has published the results from the standard T. pyriformis toxicity test protocol for 
more than 1000 different compounds providing a unique dataset for modeling aquatic 
toxicity. All these data were measured in one laboratory under strict experimental control 
and thus represent a valuable source for benchmarking QSAR models to access toxicity of 
chemical compounds.

In the previous study, we have analyzed the performance of both individual and 
consensus models taking into consideration their applicability domains (ADs).7 It was shown 
that there was an increase of the accuracy of predictions for compounds that were within 
ADs of all models where the AD was defined. The ADs were identified using threshold 
values of similarities between test and training set molecules using different metrics of 
distances to molecules (DM) functions. The threshold values were selected according to our 
previous individual experiences. However, due to the size limitation of the manuscript and 
its primary focus on model development and validation we did not discuss the quantitative 
aspects of the AD nor did we investigate the respective DM functions in details. The goal of 
this study is to expand upon the previous one in terms of most suitable quantitative estimates 
of model prediction accuracy and to provide a quantitative analysis of different types of DM. 
In particular, we posed the following questions. Are DM defined for one method/set of 
descriptors could be used with other approaches? How can we benchmark different DM 
approaches? Is there a best definition for the DM? Can we predict errors of property 
prediction for molecules in the external sets? Following our analysis we have established 
best practices for model development and validation. Furthermore, we have developed an 
on-line server, which predicts aquatic toxicity of chemical compounds from their structure 
using both individual and consensus models as well as provides robust estimates of the 
accuracy of predictions.

Methods

Dataset

The data for our analysis were compiled from several publications of the Schultz 
group8-12 and from the website of Tetratox database (http://www.vet.utk.edu/TETRATOX/) 
as described in our previous study.7 T. pyriformis toxicity of each compound was used as the 
logarithm of 50% growth inhibitory concentration (pIGC50) values. For the modeling 
purpose, the dataset was divided into three parts: 1) the training set that consisted of 644 
compounds; 2) the validation set that consisted of 339 compounds; 3) the second validation 
set, which included 110 unique compounds from the most recent publication of the Schultz 
group.13 None of the compounds was included in more than one set.
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Experimental accuracy of data
The experimental analysis of reproducibility of toxicity against T. pyriformis was performed 
by Schultz et al11 for 51 molecules. The authors divided all molecules into two groups 
according to the expected mechanism of their action: chemicals considered as reactive and 
those thought to have a narcosis mode of action. The authors reported higher variability of 
measurements for the molecules from the former group. Using their data we estimated 
σ=0.38 (Mean Absolute Error, MAE=0.24, N=27) and σ=0.21 (MAE=0.13, N=24) for 
molecules with reactive and narcosis modes, respectively.

QSAR approaches

Table 1 summarizes QSAR approaches used and Table 2 summarizes the statistical 
parameters for all models. In total, eleven models differing in the types of descriptors and 
modeling techniques have been applied. Full computational details of each approach as well 
as analysis of results can be found elsewhere.7 All QSAR toxicity models were first 
developed based on the training set only and their accuracy was estimated using the Leave-
One-Out (LOO) cross-validation. Following this analysis we performed “blind prediction” of 
molecules from both validation sets. The performances of the individual models for the 
validation sets were used to compare the prediction ability of the models.

Consensus model

The predicted toxicity for test set molecules using the consensus ensemble model was 
calculated as a simple non-weighted average of individual predictions with all eleven models 
listed in Table 1. The statistical parameters of both individual and consensus models are 
summarized in Table 2. The consensus model had similar prediction ability to that of the 
ASNN model for all three sets for 100% coverage.7

Distances to Models

Model AD is an active area of modern QSAR research. Generally, there is no universal 
technique of defining the AD.6,14,15 Each AD definition is usually based on some arbitrarily 
defined distance (or similarity) of the analyzed molecule to the training set compounds 
and/or model for the given property. In our previous study7 each participating group adopted 
its own definition of the distance of a molecule to the model/training set in the context of the 
respective QSAR methods. Below, we described these definitions in details.

University of North Carolina at Chapel Hill in the United States (UNC) This group 
used the ensemble of variable selection k Nearest Neighbors (kNN) and Support Vector 
Machine (SVM) methods,16 which were applied to descriptors calculated with Dragon17 and 
MolconnZ18 software packages.

The AD for models derived using kNN approach was calculated from the distribution 
of similarities between each compound and its k nearest neighbors in the training sets. The 
similarities were defined as distances between a molecule i and a training set Ω.  They were 
computed as the average Euclidean distance to the k nearest neighbors of this molecule in the 
training set using only a subset of variables identified by the modeling procedure as 
optimal15,19
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j
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where dj is the distance of a query compound to its kth nearest neighbor and m is index 
of the model.

The distribution of distances (pairwise similarities) between each compound and its k 
nearest neighbors in the training set is computed to produce an applicability domain 
threshold, DT, calculated for each kNN model as follows:

DT = y  + Zσ (2)

Here, y  is the average Euclidean distance of the k nearest neighbors of each compound 
within the training set, σ is the standard deviation of these Euclidean distances, and Z is an 
arbitrary parameter to control the significance level. Typically, the default value of this 
parameter is set at 0.5, which formally places the boundary for which compounds will be 
predicted at one-half of the standard deviation (assuming a Boltzmann distribution of 
distances between each compound and its k nearest neighbors in the training set). Thus, if the 
distance of the external compound from all of its nearest neighbors in the training set 
exceeds this threshold, the prediction is considered unreliable.

In total M=192 and M=542 individual models were calculated using MolconnZ and 
Dragon descriptors, respectively. The average values of the distances to each individual 
model m=1,…,M

mUEEUCLID = (3)

was used to estimate a distance of a molecule to the final ensemble of models. Notice, 
that the minimal value of EUCLID is observed when the training set model was built with 
k=1. The same definition of DM was also used for models built with the SVM method.

University of Louis Pasteur in France (ULP). This group used kNN, SVM and 
Multiple Linear Regression (MLR) methods and fragmental descriptors calculated with 
ISIDA software.20-22

Applicability domains in ISIDA-MLR and ISIDA-kNN models were estimated with an 
approach similar to that of the UNC with an exception that only one ISIDA-MLR and one 
ISIDA-kNN model were calculated. Thus there was no averaging over models. For both 
approaches the distances were calculated using k=3, which was an optimal number of nearest 
neighbors for the kNN model. The minimal and maximal occurrences of fragments (which 
were selected by the regression) within compounds in the training set were also retrieved for 
the ISIDA-MLR model. These values defined an allowed range for each fragment. For a 
validation compound, the distance to the training set was considered as infinite if one of its 
fragment descriptors was outside the corresponding range defined for the training set.

University of Insubria in Italy (UI). This group used Ordinary Least Squares regression 
(OLS) and genetic algorithm to calculate the best linear model using descriptors available 
within the Dragon17 software.
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Hat values from the leverage matrix representing the “distance” of the molecule to the 
model structural space were calculated as

LEVERAGE=xT(XTX)-1x (4)

where x is the vector of descriptors of a query compound and X is the matrix formed 
with rows corresponding to the descriptors of molecules from the training set. In linear 
modeling, the leverage, which is frequently notated as h, ranges between 1/N and 1, and 
averages (K+1)/N for the N compounds in the learning data set, where K is the number of 
model variables. The residual of a compound in the data set has a variance σ2(1 - h) but if an 
external compound has a leverage h, its prediction error has variance σ2(1 + h). Once the 
leverage of an external compound gets big, one starts to extrapolating outside the range of 
the learning data and can no longer have much faith that the model itself is valid. The 
molecules with

LEVERAGE=h>3(K+1)/N (5)

were identified as structurally outlying in the original model as proposed by us 
earlier.15

University of Kalmar in Sweden (UK). This group used Partial Least Squares (PLS) 
method and Dragon17 descriptors. Two distances in space of descriptors were used. The first 
one was LEVERAGE, which was also employed by the UI group. However, since different 
descriptors were selected in OLS and in PLS models, the nominal DM values in both models 
were different. The second DM was a distance to the PLS model, PLSEU, which is 
calculated using the UNSCRAMBLER program as described in its manual or in the book.23

This distance corresponds to the error in calculation (back-projection) of the vector of input 
variables from the latent variables and PLS weights.

Virtual Computational Chemistry Laboratory in Germany (VCCLAB) The Associative 
Neural Networks24-26 were applied to analyze E-state indices. The ASNN model was based 
on ensemble of 100 neural networks. Thus, for any molecule each model calculated one 
predicted value, i.e. we had 100 predicted values calculated with the ensemble. These 100 
values were used to form a vector Ycalc. This vector corresponded to a new representation of 
a molecule in the property-based model space for both training and test set molecules. For 
each analyzed molecule, i, in the validation set we determined a molecule, z, in the training 
set with a maximum correlation coefficient

CORREL(i,z)=max R2(Yi
calc,Y

j
calc) (6)

between them.14 R2 corresponds to 1-Euclidian distance, if Ycal are normalized to zero 
mean and unit variance (the normalization does not influence R2). Thus, this similarity 
measure corresponded to the minimal Euclidian distance between the validation and training 
set molecules in the space of activities predicted from models. In the previous study7 a cut-of 
value CORREL>0.7 was used to define the applicability domain (AD) of the ASNN model.

Thus, in total four types of distances to models were used in our previous publication.7

In addition, we have also applied the range of descriptors and that of predicted experimental 
values to estimate the AD. However, for the current study we have considered only the 
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distance-based approaches and excluded the range-based approaches, which can be difficult 
to quantify due to the “empty space” problems.14

Other distances

The target property predictions for external set molecules in the UNC and VCCLAB 
approaches were calculated as an average resulting from the application of the ensembles of 
models. Several studies27-30 have indicated that standard deviation of predictions of models 
correlate with the accuracy of predictions. Thus, we also considered standard deviation of 
model predictions,

STD =
1

N −1
Ycalc −Y calc( )∑ 2

(7)

as an additional metric characterizing the distance of molecules from the ensemble of 
models.

Tanimoto index is frequently used in chemoinformatics to measure similarity of 
molecules. In our study we used Jaccard/Tanimoto correlation between molecules a and b
defined as

∑ ∑∑
∑

−+
=

ibiaibibiaia

ibia

xxxxxx

xx
baTANIMOTO

,,,,,,

,,),( (8)

where xa,i and xb,i are fragment counts, i=1,…,F, in each molecule. A maximal value of 
this index can be considered as a similarity of a validation molecule to the training set. We 
calculated this index with the ISIDA fragments. The different sets of descriptors were used 
in the kNN and MLR models, thus contributing two Tanimoto similarities. Both CORREL 
and TANIMOTO serve to measure similarity between molecules. Their complements to 1, 
i.e. 1-CORREL and 1-TANIMOTO, were used as DM in our study.

Thus, our study included 14 DMs of 6 different types (EUCLID, LEVERAGE, PLSEU, 
CORREL, STD and TANIMOTO). The DM was named by combining its type (STD, 
EUCLID, etc) and abbreviation of the method (see Table 1) in which the DM was calculated.

Comparison of DMs

An objective analysis requires some statistical tests, which can be used to rank 
different DMs. Let us assume that the calculated errors, ei=Yi

exp-Y
i
calc, i=1,…,N follow the 

Gaussian distribution

N 0,σ 2(e)( )=
1

σ 2π
exp −

e2

2σ 2









 (9)

where σ is a standard deviation of the errors. The simplest hypothesis is to consider 
that all errors are generated with only “One Gauss” distribution with some σ0, which can be 
estimated as standard deviation of errors in the dataset. Under this assumption there is no 
dependency of the accuracy of prediction of molecules upon any DM. It is also possible that 
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the calculated errors are generated from more than one Gaussian distributions σq, q=1,…,Q.
In general, we do not know which Gaussian distributions were used to generate each 
particular error. However, it may happen that some DMs correlate with the σq, used to 
generate the data. In this case molecules with smaller DM value will have smaller errors and 
vice versa (Figure 1). We can, e.g., bin all errors in several intervals according to the DM 
values and try to estimate within each bin the parameters of the original Gaussian 
distributions used to generate the errors. As a result of this analysis we calculate a Mixture of 
Gaussian Distributions (MGD) σg, g=1,…,G, which in the ideal case will help restoring the 
initial Gaussian distributions, σq, q=1,…,Q, used to generate the data (see Figure 1). Since 
the original Gaussian distributions σq, q=1,…,Q that were used to generate the data are 
generally not known (except for simulated data), we need some statistical criteria to measure 
success of our analysis, i.e. whether the use of a given DM does allow to discriminate 
molecules with small and larger errors. As an alternative hypothesis we can assume that DM 
does not discriminate such molecules. Thus the use of the MGD calculated using this DM 
does not provide any significant advantage in comparison to the assumption that all errors 
are generated with only “One Gauss” distribution. The statistical tests described in the next 
sections discriminate between both these situations.

Likelihood score

The N(0,σ2(ei)) corresponds to a probability that a given error ei is generated according 
to the given Gaussian distribution. A probability to observe k errors, e1,e2,…,ek, is given by a 
product

Π N(0,σ2(ei)) (10)

of individual probabilities that is known in statistics as a likelihood function. The 
maximization of this function corresponds to the calculation of the most probable 
distribution, which describes the data. From a computational point of view, it is more 
convenient to work with the log transform of the probabilities. Let us define log score 
functions

S(Gg)=Σlog N(0,σg
2(ei))

S(G0)=Σlog N(0,σ0
2(ei)) (11)

where Gg, and G0, correspond to the MGD and “One Gauss” distribution, respectively. 
Here σg is selected for each analyzed molecule depending on its DM while σ0 is the same for 
all molecules. The increase of these functions corresponds to the increase of probability that 
the observed errors are produced with MGD or “One Gauss” distribution, respectively. In 
case if difference in log scores

D(Gg,G0)= Σ(log N(0,σg
2(ei)) - log N(0,σ0

2(ei)))= S(Gg)- S(G0) (12)

is significantly higher than 0, we can conclude that a use of the MGD provides a better 
description of calculated errors (and thus the corresponding DM significantly correlates with 
the errors of molecules) compared to the assumption that all errors are produced with only 
“One Gauss” distribution. Let us refer to score S(Gg) calculated for the MGD as “MGD 
score” and to score S(G0) calculated for “One Gauss” distribution as “One Gauss” score.

Estimation of MGD
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To calculate the MGD for a given DM we first ordered all molecules according to the 
distance. Then we subdivided the data into groups with the same number of molecules, L, 
which varied in range L=30, 40, 50,…, N/2. For each group we calculated standard deviation, 
which was used as σg in the MGD. We also required that σg were monotonically increasing 
with the DM. The number L, which minimized the S(Gg) score was selected as the optimal 
one.

Estimation of significance

The bootstrap test with k=10000 replicas was used to estimate whether the score S(Gg)
of MGD distribution was significantly higher than the score S(G0) of “One Gauss” 
distribution. To do it we calculated for each analyzed molecule, i=1,..., N a difference in 
scores dif(ei) = log N(0,σg

2(ei)) - log N(0,σ0
2(ei)), where σg was selected for the molecule 

according to its DM value. Then we selected with replacement N values from the distribution 
of all values dif(ei) by chance and summed them together. The selection was repeated k 
=10000 times and the number of runs, C, when the sum was negative, i.e., when the MGD 
score S(Gg) was smaller or equal to the “One Gauss” score S(G0), was counted. The p-values 
reported in Tables S1-S2 (see Supporting Information) are the ratios of the counts C to the 
total number 10000 of replicas.

Cumulative Fraction Plot

Assuming that the errors are generated according to the Gaussian distribution, one can 
easily estimate the theoretical number of molecules which should have their errors within the 
given prediction interval.31,32 For example, 68%, 95% and 99% of errors should be within σ, 
2σ and 3σ intervals, respectively. Notice that this estimation does not change in case if not 
one but several Gaussian distributions are used to generate the errors. At least three different 
plots will be provided for each dataset in our article. The first plot, “Optimal”, will be a line 
with identical estimated and theoretical numbers. The second plot, “One Gauss”, will be 
calculated under the assumption that all errors are generated with “One Gauss” distribution. 
A difference in “One Gauss” and “Optimal” plots may indicate that the errors are generated 
with several Gaussian distributions (e.g., see Figures 2D, 2F). The third MGD plot will show 
whether the use of a mixture of Gaussian distributions and given DM helps detecting 
Gaussian distributions used to generate the errors. In the ideal case, when a use of a MGD 
detects the underlying distributions, both the MGD and “Optimal” plot will coincide (Figure 
2D), while in the worst case, when the analyzed DM is not correlated with errors, the MGD 
and “One Gauss” plots will be very similar (Figure 2F). Finally, all three plots will coincide 
for a trivial case, when the data are generated with only one Gaussian distribution (Figure 
2B).

EPA High Production Volume (HPV) and EINECS (European chemical Substances 
Information System) datasets
The HPV Challenge database33 was downloaded from 
http://www.epa.gov/ncct/dsstox/sdf_hpvcsi.html. The EINECS dataset was downloaded 
from http://ecb.jrc.it/qsar/information-sources.  Composite and metal-containing molecules 
were filtered out leaving 3182 and 48774 molecules in the HPV and EINECS datasets, 
respectively. These data were used to demonstrate how our models could be employed for 
the toxicity predictions against T. pyriformis for a diverse set of molecules.
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Results

Describing the errors

The first analysis evaluated whether analyzed DMs correlated with the accuracy of 
predictions for training and validation sets. To better understand the results of this section let 
us consider three simulated examples.

Theoretical examples

In all these examples the position of a data case ei in the set, i, is used as its DM.

1) The data cases ei, i=1,…, 100 were generated according to one Gaussian 
distribution, N(0,σ2), and σ=1 (Figure 2A).

2) The data cases were generated with three Gaussian distributions with σ1=0.3, 
i=1,…,33, σ2=1, i=34,…, 66 and σ3=3, i=67,…, 100 (Figure 2C).

3) The same data from example 2 were used. However, we randomly shuffled 
the position of the data cases in the dataset (Figure 2E).

No significant MGD (i.e., MGD that has score S(Gg) significantly higher (p<0.05) than 
“One Gauss” score S(G0) according to the bootstrap test) could be expected for the first 
example, since all data cases were generated with one Gaussian distribution. The other two 
examples had the data generated with three different Gaussian distributions. However, the 
DM, i.e., position of the sample in the set, was correlated with the Gaussian distributions 
only in the second example. Thus, we can expect to find significant MGD only for this 
dataset.

The analysis of data for the first example detected a mixture of 2 Gaussian 
distributions (Fig 2A) with σ1=0.71 (i=1...26) and σ2=1.1 (i=27…101). The difference in σ-
values was very small and was a chance effect of data sampling. The MGD score S(Gg)=134
was not significantly different (p>0.05) from the “One Gauss” score S(G0)=135. Thus, as 
expected, no significant correlation of DM with errors was detected for these data. The 
“Optimal”, “One Gauss” and MGD plots were all very similar and practically coincided (Fig 
2B). Indeed, these plots were originated from the same Gaussian distribution.

The analysis of the data from the second example (Fig 2C) revealed a different picture. 
Firstly, there was a significant deviation of “One Gauss” plot compared to the “Optimal” plot 
(Fig. 2D). The “One Gauss” predicted larger fraction of small errors and lower fraction of 
large errors compared to the theoretical numbers. Thus, estimation of errors with “one 
Gauss” distribution will predict smaller than observed number of cases with large errors, i.e. 
will result in a number of outliers. The estimation of a MGD calculated 3 Gaussian 
distributions (Fig 2C). The MGD score, 141, and “one Gauss” score, 189, were significantly 
different at p<0.0001. The fraction plot using MGD coincided with that of “Optimal” plot. 
Thus, the use of the MGD correctly predicted the experimental errors and the position of the 
molecules in the dataset allowed to discriminate errors generated with different Gaussian 
distributions.

The “one Gauss” plot for the third example was exactly the same as in the second 
example. Indeed, exactly the same data were used to produce it. Only a mixture of two MGD 
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was found (Fig 2E). The MGD score, 186, was non-significantly different (p>0.05) from 
“one Gauss” score and fraction plots for both these distributions practically coincided. 
Indeed, the shuffling of the positions of the cases in the dataset made impossible the 
discrimination of data points generated with the different Gaussian distributions.

Thus, as it was expected, MGD detected significant dependency between DM, position 
of the error in the sample, and the errors for the second example only. The use of MGD was 
of no advantage for errors generated with one Gaussian distribution in the first example 
(Figure 2A). Indeed, if all observed errors are generated with just one Gaussian distribution 
no DM can discriminate molecules with small and large errors. The “One Gauss” and 
“Optimal” plot for such data are practically the same (Figure 2B). Contrary to that, large 
differences between “Optimal” and “One Gauss” plot indicate examples where a use of 
MGD could be advantageous. However, this is only a necessary condition, since one should 
also have appropriate DM, which is able to differentiate molecules with low and larger errors. 
Therefore, although both Figure 2D and 2F demonstrated the same deviation, only in the 
second example there was a correlation of DM and errors. The bootstrap test was important 
to distinguish significant MGD from those that could be calculated by chance as an effect of 
data sampling. Notice, that instead of bootstrap test one can also employ statistical tests to 
directly compare the fraction plots, using e.g. Kolmogorov-Smirnov test32 and to draw 
similar conclusions on significant differences. However, we preferred to use the bootstrap 
test, which in our opinion affords a more simple interpretation.

Analysis of experimental data

For this analysis we joined both validation sets in order to improve statistical results. 
The DM defined with one model can be applied to estimate the accuracy of predictions for 
any other model. Thus we applied 14 DM to all 12 models and the results are summarized in 
Table S1. The results for all methods and DM were ranked according to their S(Gg) scores.

Examples of analyses

ASNN model

An example of analysis of results in the ASNN model (Figure 3) demonstrates that 
“one Gauss” plot was significantly different from the “Optimal” plot. Thus the observed 
errors were, presumably, generated with several Gaussian distributions. The use of MGD 
confirmed this result.

The STD-CONS and STD-ASNN calculated the lowest S(Gg) scores for the training 
and validations sets of the ASNN method. The MGD calculated using STD-CONS DM 
allowed the best separation of molecules with small and large errors for the training set. For 
example, molecules from the training set with STD-CONS<0.19 and STD-CONS>0.73 had 
average errors of 0.19 and 0.78 log units, respectively. Thus, the most and least reliably 
predicted molecules had errors, which differed by the factor of four. The EUCLID-kNN-MZ 
distance had smaller S(Gg) score and provided worse discrimination of molecules with small 
and large errors for the same set. The most reliable predictions according to this measure had 
the average error of 0.31 log units while the least reliable predictions had the average error of 
0.57 log units for EUCLID-kNN-MZ distances <0.23 and >0.75, respectively. Figures 3A,B 
demonstrate that the ASNN model errors correlated better with the STD-CONS distance and 
not with the EUCLID-kNN-MZ for the training set (red line). This difference, however, is 
not so obvious for the validation set (black line on Figures 2A,B), for which both DMs 
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demonstrated similar performances. The fraction plots for the STD-CONS was closer to the 
“Optimal” plot compared to the EUCLID-kNN-MZ (Figure 3D) thus indicating the higher 
discrimination of the former DM. The LEVERAGE OLS, as well as several other DM 
(Table S1), did not calculate MGD with significant score and thus did not discriminate 
molecules with small and large errors for the training set. This result was also apparent from 
an absence of apparent correlations between this DM and errors (Figure 3C).

For the joint validation set the minimum score was calculated with the STD-ASNN, 
which corresponded to the standard deviation of models in the ensemble of neural networks. 
The scores S(Gg) provided a correct ordering of bootstrap probabilities (Table S1): indeed, 
by minimizing score S(Gg) we minimized the probabilities implicitly.

OLS model

The OLS model included six Dragon descriptors

log(IGC50
-1)=-18(±0.7) + 0.065(±0.002)AMR-0.50(0.04)O-056

-0.30(0.03)O-058-0.29(0.02)nHAcc +0.046(0.005)H-046+16(0.7)Me (13)

N=664, R2=0.75, RMSE=0.53

In our previous work7 we used LEVERAGE-DM to determine AD of the model. The 
Figure 4 shows that MGD calculated using this DM discriminated molecules with low and 
large errors. However, the use of CONS-DM provided significantly better results. Indeed, 
the former DM calculated MGD with σ=0.5 and σ=0.66 for molecules with lowest and 
largest errors from the joint validation set. The MGD calculated with CONS-DM for the 
same set had minimum σ=0.36 and maximum σ=1.2, respectively. Thus, the second DM 
better discriminated molecules with reliable and non-reliable predictions. Depending on the 
purpose of the analysis, the latter metric could be used to identify molecules that are 
predicted either accurately (e.g., registration within REACH) or inaccurately (e.g., selection 
of new molecules to extend the model AD. The small discrimination power of the 
LEVERAGE-DM does not allow performing such selection efficiently.

Mechanism based model

Schultz et al13 analyzed simple model

log(IGC50
-1) = 0.545 log P + 16.2Amax - 5.91 (14)

N=392, R2=0.83, RMSE=0.31
which was developed using N=384 molecules (8 outlying molecules were excluded). This 
model is base only on two descriptors, namely octanol-water partition coefficient (log P) and 
Maximum Acceptor Superdelocalizability (Amax). This equation predicted molecules from 
the test set (second validation set in our study) with RMSE=0.54 log units. The authors 
pointed that distance to the descriptor centroid did not allow them to differentiate molecules 
with low and large errors.13 However, the MGD calculated using, e.g. STD-ASNN DM 
(Figure 5), successfully accomplished this goal for molecules from both training and 
validation datasets. Interestingly, five out of eight outlying molecules (Benzoyl 
isothiocyanate, Pentafluoronitrobenzene, Pentafluorobenzyl alcohol, α,α,α-4-Tetrafluoro-o-
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toluidine, 4-Chloro-3,5-dinitrobenzonitrile, 1,5-Difluoro-2,4-dinitrobenzene), which were 
excluded from the original equation, in fact had large STD-ASNN deviations (>0.27) and 
contributed to the Gaussian distribution with the largest σ=0.49. Thus, the low prediction 
ability of eq 14 for these five outlying molecules could be due to their structural diversity as 
compared to other molecules in the training set.

The “Universal” DMs

As mentioned above, all twelve analyzed DMs were applied to estimate MGD and 
calculate their scores for the training and the joint validation sets. The STD-CONS provided 
the lowest scores for all twelve and for eleven models (Table S1, Table 3) for the training 
and the joint validation set, respectively. The STD-ASNN calculated the minimal score for 
the ASNN-ESTATE model in the joint validation set. When the STD-CONS was excluded 
from consideration, the STD-ASNN became the best DM for all models from the training set 
and for ten models from the joint validation set.

To better compare the DMs, we ranked their scores (Table S1). The DM contributing 
the MGD with the lowest score received rank 1, and so on. The DM with scores non-
significantly different compared to the S(G0) score, i.e. DM which failed to differentiate 
molecules with small and large errors, were not used in the scoring. The averaged ranks of 
the DM as well as a number of times the DM failed to find significant MGD are summarized 
in Table 3. The STD-CONS and STD-ASNN are, as expected, topped the list. Only these 
two DMs found significant Gaussian distributions for all analyses. The STD-kNN-DR, 
which corresponded to the standard deviations in the ensembles of the kNN models, was the 
third best approach.

Thus, three STD-based models provided the best differentiation of molecules with 
small and large prediction errors for all analyzed models. This result is surprising since the 
14 models considered in this study were developed with different sets of descriptors and 
machine learning approaches. One may expect that DMs directly developed for the analyzed 
model should provide better results for it. However, this was not the case and these DMs 
appeared as “the universal DMs” for this dataset. Since, e.g., STD-CONS always ranked the 
molecules in the same order, we can conclude that error of predicting new molecule did not 
depend on the descriptors or machine learning method used but on their similarity to the 
model, i.e., to the training set molecules. Notice that of course different models developed 
with different descriptors and methods had different performances. However, all these 
models provided the highest, intermediate, and lowest prediction accuracies for the same 
molecules on average. Similar results were also reported by Sheridan et al34 who observed 
that accuracy of predictions in their analysis of several QSAR sets practically depended 
neither on the used set of descriptors nor on the used QSAR method. These results can be 
related to the “neighborhood behavior” principle asserting that similar molecules in general 
have similar activities.35

Predicting errors

Our analysis was so far only descriptive. We estimated Gaussian distributions for the 
training and validation set data separately and then analyzed whether they provided better 
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description of errors compared to one Gaussian distribution. However, the DM calculated 
with the training set data could be used to predict errors for molecules from the validation set. 
To perform this prospective study, we estimated the MGD (i.e., calibrated them) using the 
training set and then applied the obtained MGD to predict errors of the molecules in the 
validation sets.

Overfitting of LOO results by variable selection

Before doing this study let us critically examine the results of Table 2. As it was 
discussed in our previous paper the training and first validation sets were sampled from the 
same initial dataset. Thus, one would expect that LOO results calculated for the training set 
should provide a reliable estimation of the performance of the analyzed models for the 
validation set.

However, validation set errors of eight models (including the CONS model) were 
significantly higher at p<0.05 compared to the results of the same models for the training set. 
Thus, for these models the LOO results for the training set provided a biased estimation of 
the performance of the method. However, other methods, e.g. ASNN-ESTATE, kNN-FR, 
MLR-COD, OLS-DR calculated similar errors for both the first validation and the training 
set as expected.

These significant differences in performance of methods are, in fact, a consequence of 
implicit differences in the LOO calculation procedures employed by different groups in our 
first joint publication. Indeed, the main focus of the previous study was to compare all 
methods according to their blind predictions of both validation sets. However, despite all 
groups formally using the same LOO procedure, majority of groups applied the LOO after 
the variable selection, and some groups did not use variable selection at all. Moreover, in 
some cases the LOO q2 (UI) was used in the Genetic Algorithm for variable selection. The 
variable selection procedures resulted in a different degree of overfitting (from no overfitting 
to a strong one) and provided significant differences in results for the training and first 
validation sets for some models.

For example, the SVM-FR method calculated the lowest LOO RMSE of 0.24 log units 
for the training set. The RMSE of this method for the first validation set was 0.51 log units, 
i.e. two times bigger. As was indicated in our previous article, the SVM-FR LOO results for 
this method were calculated after the variable selection. The initial set of variables included 
more than 1000 descriptors, many of which were correlated, and only 109 descriptors were 
selected for the final model. The use of variable selection for this method resulted in a 
significant overfitting of LOO procedure and its results did not reflect the predictive power 
of the model. On the other hand, the ASNN approach did not use any variable selection. The 
LOO RMSE = 0.42 log units for this method corresponded to the RMSE = 0.44 calculated for 
the first validation set.

5-fold cross-validation of data

To overcome the problem of overfitting due to variable selection we performed 5-fold 
cross-validation with variable selection in each step of the analysis. For each fold, we first 
selected variables using the corresponding training set, developed the model and then applied 
it to predict molecules, which were excluded from the training set. The RMSE calculated 
using the 5-fold CV were non-significantly different between the training and the first 
validation set for all analyzed methods (Table 2). Thus, for all these methods the 5-fold CV 
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RMSE provided a correct estimation of the performance of the methods for the validation set, 
which was generated from the same distribution of molecules. The MGD fitted for 5-fold 
cross-validated data again identified STD-ASNN and STD-CONS as two best DMs (Table 
3). However, in this study the STD-ASNN provided the lowest scores in 10 out of 12 
analyses and thus became the top-ranked approach. The STD-kNN-DR was the third best 
DM again.

It is interesting that the analysis of 5-CV data resulted in just three non-significant 
MGDs, and all of them were for EUCLID-kNN-FR. This number was much smaller 
compared to 47 non-significant MGD calculated with the overfitted LOO data. Thus the 
overfitting made the errors more unpredictable, i.e. the errors did not correspond to the 
property of data but rather reflected noise in the dataset due to selected variables and the 
method.

Use of MGD to predict errors

The MGD fitted to the distances and 5-fold cross-validation (5CV) errors was used to 
predict the RMSE errors for the molecules from the validation sets. An example of MGD 
calculated using 5CV procedure is shown at Figure 3A as a blue line. This MGD mapped the 
STD-CONS distances to values σg. For example, minimal STD-CONS distances in the range 
of [0,0.15] corresponded to σg=0.25, while distances larger than 1.1 corresponded to σg=0.80. 
These ranges and values σg were used to predict errors for molecules from the validation sets. 
To do this we, firstly, calculated STD-CONS for each new molecule and, secondly, 
estimated its error using the ranges and MGD values σg calculated by the 5CV procedure. 
Thus for molecule with STD-CONS=0.1, belonging to the interval [0,0.15], we predicted its 
average square of the error as (σg(d=0.1))

2=0.25*0.25=0.0625. We made such predictions for 
all molecules from the validation set, i=1,…, M, and estimated the RMSE error for the 
validation set as

RMSE =
1

M
σ g(di )

2

i=1,K,M

∑ (15)

where σg(di) is the MGD value corresponding to the STD-CONS distance di. The 
predicted RMSE were compared with the calculated values.

Table S2 shows performance of analyzed DMs for all models, while Table 4 
summarizes all results similar to Table 3. Firstly, all DMs correctly recognized higher 
complexity of validation set 2 and predicted higher errors for this set compared to the 
validation set 1. Thus, all DMs were useful to discriminate datasets of different complexity 
on the qualitative basis. Secondly, the STD-ASNN DM calculated the highest number, 6, of 
significant MGD for the validation set 1. The LEVERAGE-PLS and EUCLID-kNN-MZ also 
calculated significant MGDs for 3 and 1 dataset, respectively.

It is interesting that using the STD-CONS MGD we predicted higher errors of models 
for both validation sets than the calculated ones (compare “RMSE” vs. “RMSE pred” in 
Table S2). This decreased its S(Gg) scores. The same effect was also observed for the STD-
ANN. This DM predicted larger than observed average errors for 11 and 9 out of 12 models 
for the validation set 1 and 2, respectively. However, the errors estimated with the latter 
approach were more close to the observed errors. On average the absolute differences 
between predicted and calculated errors were 0.06-0.05 (set 1-2) and 0.16-0.12 (set 1-2) log 
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units for the STD-ASNN and STD-CONS DM, respectively. Other DMs also tended to 
predict higher than actually calculated errors of models for the validation set 1 but not for the 
validation set 2. Because of the tendency to overestimate errors some STD-ASNN MGDs 
were not significant.

It was also possible to calibrate the MGD on one of the validation sets. We performed 
such analysis and fitted the MGD using results calculated for the first validation set (Table 
S2). The errors predicted with these MGDs were similar to those calculated for MGDs fitted 
on 5-fold cross-validation results.

Prediction of toxicity of molecules in the HPV and EINECS databases

The ASNN-ESTATE model and STD-ASNN DM provided one of the most accurate 
predictions of the toxicity values7 and estimation of the errors. Therefore we decided to 
evaluate a performance of this method for prediction of molecules from both industrial 
databases. For this analysis we redeveloped the ASNN model using all 1093 molecules and 
calculated R2=0.86, RMSE=0.39 using LOO. The 5-fold cross-validation analysis yielded 
similar results, i.e., R2=0.85 and RMSE=0.41.

The MGD calibrated 5CV data was used to estimate prediction errors for molecules 
from the training dataset and the HPV and the EINECS databases. The distributions of 
molecules according to the expected errors for both sets are shown at Figure 6. There is a 
dramatic difference in distributions of the molecules in the training set compared to the both 
industrial datasets, which have remarkable similarity. While about 24% (67%) of molecules 
from the training set had predicted errors on the order of experimental measurements, i.e. 
<0.21 (<0.38) log units, only 5% (17%) and 2% (10%) of molecules had similar predicted 
errors in the HPV and EINECS datasets, respectively. Moreover, above 25% of molecules in 
each industrial dataset had STD > 1 log unit, while there were only 2 molecules with such 
large STD-ASNN distances in our training set. Thus it is possible that the accuracy of 
prediction for these molecules in the HPV and EINECS datasets could be even lower than 
predicted by the MGD.

On-line implementation

The models developed by all groups are available for on-line calculations at 
http://www.qspr.org site. The users can upload data or draw molecules using the JME editor 
of Peter Ertl. In case if molecules are submitted in 2D format a conversion of 2D=>3D 
structure is performed using the CORINA program36 provided by the Molecular Network 
GmbH. The calculation of descriptors is done with the DRAGON software,17 Fragmentor 
program developed by the ULP22 and E-state descriptor program implemented in the 
PCLIENT.26 The server estimates accuracy of prediction using the STD DM.

Discussion

Our results indicate that the standard deviation of models in the ensemble provided the 
best estimation of the accuracy of predictions of models for the calculation of compound 
toxicity against T. pyriformis. The standard deviation measures the degree of disagreement 
or divergence of models for a new molecule. The larger is the disagreement, the lower 
accuracy of predictions is expected for this molecule. The disagreement appears due to 
structural features that are underrepresented in the training set or do not cover the same range 
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of values in the training and validation sets. The more different is the analyzed molecule to 
the training set molecules, the higher variation of predictions of models is expected for it.

We have also shown that DM developed with one method and one set of descriptors 
could be also used to estimate the accuracy of models developed with different set of 
descriptors or/and machine learning methods. For example DM developed with neural 
networks, STD-ASNN, or k-Nearest Neighbors (STD-kNN-DR) or consensus model (STD-
CONS), in most cases provided better discrimination of molecules with low and large errors 
for all analyzed models, even if these models were developed with different sets of 
descriptors and different machine learning methods.  Moreover, we have also demonstrated 
that STD-ASNN DM successfully discriminated molecules with low and large errors for 
model based on log P and the Maximum Acceptor Superdelocalizability descriptors.13

Considering that the distance to the descriptor centroid did not allow the authors to 
differentiate molecules with low and large errors,13 our approach can significantly 
complement methods based on the mechanism of action of molecules by estimating the 
prediction errors of molecules in such models. This could be particular useful for prediction 
of new scaffolds of molecules, for which determination of the mechanism can be difficult. It 
is also important to mention that experimental log P values required in eq 14 may not be 
known for some chemicals. The use of predicted log P values can introduce additional errors. 
Indeed RMSE>1 were calculated for each of 18 public and commercial programs 
benchmarked on more than 96000 molecules.37 Such large errors could invalidate model of 
Schultz13 when it will be applied to a diverse set of molecules.

 Thus, the diversity and distribution of data in the training set but not the computational 
approaches and descriptors of molecules are the limiting factors determining the accuracy of 
predictions and applicability domain of the models. This conclusion is in tune with similar 
results for prediction of physico-chemical parameters, namely lipophilicity38 and aqueous 
solubility4 of molecules as well as it further confirm similar conclusions of Sheridan and co-
workers.34

The limited diversity of molecules in the training set naturally limits the applicability 
of models developed in our study (see Figure 6). Indeed, our estimations suggest that the 
developed models are able to predict only about 17% of HPV and 10% of EINECS 
molecules with accuracy comparable to the experimental one. The efforts of EU REACH 
program to register about 30000 compounds during the next ten years will challenge models 
built using datasets of similar chemical diversity. An application of our models to this set is 
unlikely to cover greater fractions of molecules compared to those we reported for the HPV 
and EINECS datasets. New experimental measurements of some compounds will be still 
required. The toxicity of molecules against of T. pyriformis has been studied over twenty 
years.8-12 Despite this fact the amount of data, but what is even more important, the chemical 
diversity of the dataset remains critically low. Moreover, considering results of Sheridan et 
al34 and our studies there is absolutely no reason why any other models developed with this 
training set and other descriptors will have significantly better accuracy of prediction. 
Considering that this property is one of the most extensively studied the situation with 
availability of data for other end-points can be even worse and consequently even less 
predictable models can be expected.

From a practical point of view, the experimental efforts should be focused not on the 
very detailed analysis of a congeneric set of molecules but on screening as many different 
scaffolds as possible. This could help to develop better models with larger applicability 
domains. The compounds, which would provide the highest improvement in the accuracy of 
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models, could be selected following D-optimal design or similar space-filling design 
algorithms to cover underrepresented scaffolds of molecules. Multivariate characterization to 
select compounds, before chemical and biological testing, which differ substantially in the 
chemical descriptor space provides an example of such a coherent strategy to ensure 
diversity in the training set.39 In other words, a more detailed analysis of congeneric series is 
much less valuable than wider screening of different scaffolds. This is particular true for 
methods, which are facing prediction of large and diverse series of molecules, such as HPV, 
EINECS or REACH dataset.

Another important conclusion of our study concerns overfitting of models by variable 
selection procedure. Indeed, the statistical QSAR/QSPR models have received a lot of 
criticism during last years, in particular because of incorrect validation of methods and, as a 
consequence, misinterpretation of the results. A very similar problem of overfitting has been 
addressed by us for the neural network method.40 For example, some LOO results (Table 2) 
were overfitted by variable selection. Thus they provided incorrect estimation of the 
accuracy of models even for the validation set that was sampled from the same distribution 
of data, as it was discussed in the Result section.

To avoid this problem some authors suggested to leave a part of data as an external set, 
which can be used to estimate the performance of the model.15,41 We used this approach in 
our previous study. This procedure is well justified for large dataset, like the one we used in 
our studies. However, Hawkins42 correctly pointed out that it does not use all available data 
and thus may result in a lower prediction ability of models compared to those developed with 
all data. This problem is critically important for small datasets, as it was demonstrated, e.g. 
for the multivariate modeling by Martens and Dardenne.43

The cross-validation with variable selection on each validation fold used in this study 
(see also other papers21,42,44) actually re-used the whole dataset for the external validation. 
Indeed, since all optimizations were performed inside of the validation step, this procedure 
does perform a blind external prediction of the validation sub-set on each validation fold. 
Thus, it does not at all contradict the idea to use the external set,15,41 but extends its to whole 
training set. In the end one can develop a model using the whole data and this model (since it 
is developed with more data than used in the cross-validation procedure) will perform at 
least as accurate as estimated using the n-fold cross-validation procedure.

Of course, the cross-validation will result in the selection of different variables for each 
validation set and in different models. This is not a drawback but a considerable advantage 
of this procedure, since the cross-validation does estimate the impact of the variable 
selection on the final model. Neglecting the variable selection could result in a serious 
overfitting as shown in Table 2 and discussed above. Considering the importance of accurate 
toxicity prediction of environmental chemicals, or in fact any biologically significant 
property in general we summarize the data modeling procedure advocated in this paper as 
follows.

1) Model development. Develop your model using your favorite method(s), and all 
available data. When this study is completed estimate the accuracy of your final 
model as follows.

2) Model validation.
a. Divide your initial set on n-subsets (e.g., n=5 was used in this study, larger n or 

LOO can be recommended for small datasets).
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b. Select one subset as the validation set.
c. Use remaining n-1 sets to develop a model using exactly the same approach as in 

the step 1.
d. Apply the model to validation set and store the predictions.
e. Go to step b) and repeat analysis until all subsets are used as the validation sets.
f. Estimate the performance of your model using values calculated on step d).

This procedure estimates the expected accuracy of the model, which was built using all 
data. The validation should be performed only once. Multiple runs of this procedure with an 
attempt to improve the cross-validation results will again lead to the overfitting. Non-
satisfactory results will mean that there is not enough data or/and the data are not accurate 
enough and/or used descriptors are not adequate to model the analyzed property. Instead of 
n-fold cross-validation one can also use bootstrap aggregation (bagging) procedures.45 Like 
with n-fold cross-validation the variable selection should be applied on each bootstrap run. 
The prediction of data not used for the variable selection (out-of-bag samples) provides an 
unbiased estimation of the method performance.46

Abbreviations and Terms
DM – distance to a model
LOO – Leave-One-Out
RMSE – Root Mean Squared Error
STD – DM calculated as standard deviation of models in the ensemble
MAE – Mean Absolute Error

“One Gauss” – Gaussian distribution parameterized with σ equal to the standard deviation of 
all error in the analyzed dataset

“One Gauss” plot – fraction plot calculated in assumption that all errors are generated with 
“One Gauss”

“One Gauss” score – “One Gauss” score S(G0) calculated using eq 11
“Optimal” plot – diagonal line corresponding to equal theoretical and estimated confidence 

intervals
MGD – Mixture of Gaussian Distributions
MGD score – MGD score S(Gg) calculated using eq 11
significant MGD – MGD that has MGD score significantly higher (p<0.05) than “One 

Gauss” score according to the bootstrap test (see Methods)
“MGD” plot – fraction plot estimated using MGD
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Table 1. Overview of contributing QSAR modeling approaches and distances to 
models

distance to models nn group modeling 
techniques

descriptors abbreviation
descriptor space property-

based space
1 UNC ensemble of 192 

kNN models
MolconnZ kNN-MZ EUCLID STD

2 UNC ensemble of 542 
kNN models

Dragon kNN-DR EUCLID STD

3 VCCLAB ensemble of 100 
neural networks

E-state indices ASNN-
ESTATE

CORREL, 
STD

4 ULP kNN ISIDA Fragments kNN-FR EUCLID, 
TANIMOTO

5 ULP MLR ISIDA Fragments MLR-FR EUCLID, 
TANIMOTO

6 UI OLS Dragon OLS-DR LEVERAGE
7 UK PLS Dragon PLS-DR LEVERAGE PLSEU
8 UNC SVM MolconnZ SVM-MZ
9 UNC SVM Dragon SVM-DR

10 ULP SVM ISIDA Fragments SVM-FR
11 ULP MLR Molecular 

properties 
(CODESSA-Pro)

MLR-COD

12 Average of all models - CONS STD
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Table 2. Statistical parameters of the calculated models
training set validation 

internal LOO 5-CV set 1 set 2nn
R2 RMSE R2 RMSE R2 RMSE R2 RMSE

ASNN-ESTATE 0.84 0.42 0.82 0.44 0.85 0.41 0.66 0.52
kNN-DR 0.92 0.30** 0.80 0.50 0.84 0.41 0.59 0.57
kNN-FR 0.77 0.51 0.73 0.55 0.71 0.56 0.37 0.71
kNN-MZ 0.91 0.32** 0.76 0.53 0.83 0.43 0.49 0.64
MLR-COD 0.72 0.55 0.69 0.59 0.71 0.57 0.58 0.58
MLR-FR 0.94 0.26*** 0.74 0.55 0.49 0.56 0.43 0.67
OLS-DR 0.75 0.53 0.77 0.51 0.77 0.50 0.58 0.58
PLS-DR 0.88 0.36* 0.79 0.48 0.81 0.46 0.59 0.57
SVM-DR 0.93 0.28*** 0.81 0.46 0.70 0.57 0.53 0.61
SVM-FR 0.95 0.24*** 0.80 0.48 0.76 0.51 0.38 0.70
SVM-MZ 0.89 0.35* 0.77 0.51 0.77 0.50 0.58 0.58
CONS 0.92 0.31* 0.83 0.44 0.85 0.40 0.67 0.51

R2 is coefficient of determination and RMSE is Root Mean Squared Error. *,**,*** 
correspond to significant differences in RMSE for the training and validation set 1 at the 
significance level p<0.05, p<0.01 and p<0.001, respectively.
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Table 3. The performances of MGDs on the training and on the joint validation sets

average rank highest rank1 non significant MGD2
DM

LOO 5-CV Valid. LOO 5-CV Valid. LOO 5-CV Valid.
STD-CONS 1 1.8 1.1 12 2 11
STD-ASNN 2 1.2 2.5 10 1
STD-kNN-DR 6.6 4.3 4.1 2
STD-kNN-MZ 9.2 8.3 5.3 3
EUCLID-kNN-DR 7.1 4.9 5.4 3
LEVERAGE-PLS 8.4 5 6.3 4
EUCLID-kNN-MZ 7.5 7.1 6.4 3
TANIMOTO-kNN-FR 7 6.1 6.8 2
TANIMOTO-MLR-FR 8.3 8.3 9 2 1
CORREL-ASNN 10.7 10.8 9.4 4 1
LEVERAGE-OLS-DR 12.3 12.6 11.1 6 2
EUCLID-MLR-FR 7 9.3 11.5 2 7
PLSEU-PLS 11.1 11.8 11.5 6 7
EUCLID-kNN-FR 12.1 13.3 12.1 10 3 11

The ranks of DM were calculated as following: each DM (14 in total) was used with 
each model (12) to calculated MGD. For each model the DM with lowest MGD S(Gg) score 
(eq 11) received rank 1. The DM with the second lowest score received rank 2, etc. The 
average ranks of each DM (over all 12 models) are show in first three columns. 1the number 
of times when the DM provided the MGD with the lowest score; 2the number of times when 
no significant MGD was calculated. See also Table S1 (Supporting Information).
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Table 4. Analysis of validation set errors predicted with the MGDs 
calibrated on 5-CV set on validation set 1

validation set 1 validation set 2
rank RMSE1 ∆err2 RMSE ∆err RMSE ∆err

STD-ASNN 5 0.53 0.06 0.62 0.05 0.58 0.07
LEVERAGE-PLS 5.7 0.50 0.04 0.54 0.07 0.52 0.09
EUCLID-kNN-MZ 7.9 0.45 0.05 0.51 0.10 0.57 0.06
EUCLID-kNN-DR 8.4 0.45 0.05 0.52 0.09 0.57 0.07

LEVERAGE-OLS-DR 10 0.50 0.04 0.52 0.09 0.51 0.09
TANIMOTO-kNN-FR 10.4 0.50 0.04 0.54 0.07 0.52 0.08

STD-kNN-DR 11.2 0.46 0.05 0.52 0.09 0.56 0.07
TANIMOTO-MLR-FR 11.2 0.51 0.04 0.53 0.07 0.52 0.09

CORREL-ASNN 11.4 0.49 0.04 0.54 0.07 0.53 0.08
STD-CONS 12 0.65 0.16 0.72 0.12 0.54 0.07

EUCLID-MLR-FR 12 0.49 0.04 0.52 0.09 0.52 0.09
PLSEU-PLS 12 0.49 0.04 0.5 0.10 0.5 0.11

STD-kNN-MZ 12 0.48 0.04 0.56 0.05 0.59 0.06
EUCLID-kNN-FR 12 0.50 0.04 0.52 0.09 0.5 0.10

average error3 0.49 0.6 0.6

1 – average predicted RMSE (e.g., using STD-ASNN DM we predicted RMSE for all 12 analyzed 
models and averaged them) 2 – average absolute differences between predicted and actual RMSE for 
all methods (e.g., using STD-ASNN DM we predicted RMSE for all 12 models and calculated 
average absolute difference between predicted and RMSE errors for all models) 3 - average RMSE of 
all methods for the given set. See also Table S2.
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Figure legends

Figure 1. A cartoon illustration of the Mixture of Gaussian distributions. The errors of 
prediction are ordered according to the distance to models (DM). The molecules with 
larger values of DM have larger errors on average compared to molecules with smaller 
DM values. A probability of an error is proportional to the heights of the Gaussian 
distribution curves shown on the right side of the figure. The Mixture of two Gaussian 
distributions calculates higher probabilities for three molecules represented by colored 
circles. A wider distribution implies a higher probability of large errors (blue and red 
points), while narrower Gaussian distribution corresponds to higher probabilities of small 
errors (green points).

Figure 2. Distribution of data points and calculated MGD for three simulated examples are 
shown on the left panel. The corresponding fraction plots are shown on the right panel. (A) 
Data points were generated with one Gaussian distribution. (C,E) Data points were 
generated with three Gaussian distributions. (E) The data points were shuffled.

Figure 3. Analysis of the ASSN-ESTATE model. The MGD for the training and joint 
validation sets are shown for STD-CONS (A) and EUCLID-kNN-MZ (B) DMs. Each 
horizontal span covers L molecules with close distances. The numbers L were optimized 
for each DM. The Y-values of the span correspond to the standard deviation of errors of 
molecules and are used as σg for the MGD. The distribution of errors for the 
LEVERAGE-OLS-DR, which did not calculate significant MGD, is shown at (C). (D) 
plots estimated vs. theoretical confidence intervals.

Figure 4. Analysis of the OLS-DR model given by the eq 13. The STD-CONS DM provides 
better discrimination of molecules with low and large errors compared to that of 
LEVERAGE-OLS DM. The vertical line at panel (A) corresponds to the leverage 
threshold 3(K+1)/N = 3*7/664 =0.33 used to identify outliers in our previous study.7

Figure 5. MGD for the model given by the eq 14. The use of STD-ASNN DM allowed to 
discriminate molecules with low and large errors in both training and validation sets.

Figure 6. Analysis of molecules from T. pyriformis (N = 1093 molecules), EINCES (N = 
48774) and HPV Challenge datasets (N = 3182 molecules). The ASNN model errors for 
the training dataset ordered vs. STD-ASNN DM are shown as red crosses. MGDs 
calculated using these data are shown as black line. The cumulative percentages of 
molecules as function of the STD-ASNN distance to model for the HPV (green), EINECS 
(magenta) and T. pyriformis (blue) datasets are also shown. The HPV and EINECS 
datasets have much smaller percentage of molecules with short distances (reliably 
predicted) to the model.
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