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Variational and exact estimators for the positron-electron annihilation rate in bound states of systems con-
taining a positron in the framework of quantum Monte Carlo methods are presented. The modification needed
to compute the effective number of electrafigs when scattering states are concerned is also discussed. The
algorithms are tested against four cases for which close to exact results are available, finding an overall good
agreement. The systems are P®sH, and the-wave scattering component ef H ande*He.
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[. INTRODUCTION systems containing a positr¢i—12].
The main goal of this paper is to present an exact estima-

One of the most intriguing features of the physics oftor for the annihilation rate in bound states and in low-energy
positronic systems is, with no doubts, the possibility of anscattering processes in the stochastic framework of Monte
annihilation event. The two or more photons emerging fromCarlo methods. The paper is organized as follows. In Sec. ||
this process carry information about the electronic structuréhe basic definition of the annihilation rate and the notation
of the system under study and can be analyzed by means ofed throughout the paper are introduced. In Sec. Il the
different experimental techniquésee Ref[1] for a general form of the estimators used in simulations are reported and
discussion of these techniques in Sec. IV they are applied to bound and scattering states.

In gases, some of the salient features of this phenomendBpecifically we considered the ground state of PsH and Ps
have been recently clarified from the experimental as well aand thes-wave component for the scattering of a positron off
the theoretical side. For example, the possibility of produchydrogen and helium. In Sec. V the algorithm is briefly com-
ing highly monochromatic positron beams has allowed topared with other approaches.
directly observe the role played by Feshbach resonances in
the annihilation process in molecular gaggs Even more
recently the behavior of the annihilation cross section close
to the positronium formation threshold has been clarified cor- Let us first introduce a functionaV defined as
recting it for the finite lifetime of P$3]. The most important

II. DEFINITIONS AND NOTATION

consequence of this correction is that the annihilation cross N

section does not diverge at the Ps formation thresfi, w[\If]:_E drdr,- - -dry

but instead interpolates smoothly between the values it =1

would get from a purely nonrelativistic treatment. This be- X|W(ry,ry, Tiv ,rp=ri)|2, 1)

havior has been also confirmed by Igarashial. [5] who

investigated the effect by introducing an absorbing pcJtemia\'/vhere\lf is a many-body eigenfunction of the nonrelativistic
into the scattering Hamiltonian to take positron annihilation . y-body €ig
into consideratior6]. Hamiltonian describing a Coulomb system composedNof

The annihilation properties of bound states of electroni electrons (,rp, ....ry) and one positron r). When

systems containing a positron can also be relevant to unde ound states are concernad,is related to the two-photon

stand the experimental results in those cases where the ”fg_nmhllatlon ratel’z, by [13]

time of the antiparticle is longer than the time required for it 4

to thermalize. In this respect quantum Monte CaQ@MC) [ =ma’caw[ V], @

methods have already proved themselves to be an easy and

powerful way to get accurate properties for many-electrorwhere« is the fine-structure constartthe light speed, and
a, the Bohr radius. ¥ is normalized according to

fdu|¥(x)|?=1, du being the measure in the entire con-

*Electronic address: chiesa@uiuc.edu figurational space arnxithe set of all particle coordinates. Let
"Electronic address: Massimo.Mella@chem.ox.ac.uk us define asx, the set of all electron coordinates,
*Electronic address: Gabriele.Morosi@uninsubria.it =(Xelp), anddv the measure in the electronic subspace,
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the two measures being related )y =dvdr,. To shorten AR AL LR LR RN R
the formulas we define a new function 3_0;_0_0029423(2) 4
DD (Xg) =W (XeiiTp=T7). 28 ]

With this notationw can be rewritten as

N
MWFZ% do|®D)2, 3

1.8-“..I....I....I....I....I..

0 0.1 02 03 04 05

In Sec. IV results will be presented in terms of the average s (au)

value of the Diracs operator(d,,) which can be defined as
(8ep)=WIN for the simple systems treated here. FIG. 1. Comparison of the variational estimaf&q. (7), arrow]
Possible ways to calculate this quantity in the computawith a technique based on the extrapolation from a sequence of
tional framework of QMC methods have been already pro-Gaussians of decreasing widt{ 14] (circles; the continuous line is
posed[14]. They range from a direct computation of the & second-order polynomial fitted to these vajudhe system con-
integral in Eq.(3) [15] to techniques based on extrapolation sidered ise™H with R=10 bohr(see text for the definition dR).
[14] of a nonlocal estimator of the Diragfunction[16]. The The two estimates were.compu.ted during the same simulation. The
latter have the great advantage of being computationally ver§"™r bar of the new estimator is smaller than the line used to rep-
light and straightforward to implement, but are plagued by d€Sent the arrow.
large variance of their estimator. To avoid this problem, the
present method is close in spirit to the first of these ap-
proaches. To illustrate how to get an efficient estimator farlet us
As for scattering experiments, the quantity of interest isbegin with introducing a functio such that
the effective number of electroi’g, which is defined asv
in Eq. (1), ¥ being a scattering eigenstate describing an —£S2 2
) ; ; , . 1=N fg(rp) drp. (6)
asymptotic density of one positron per unit volume. This
condition is sometimes expressed by the relation

A. Variational estimate

Multiplying Eq. (3) by Eq.(6) and rearranging the numerator
W(X) =W o(x)€X e, 1y, (4  oftheright-hand side of the obtained expression allows us to
rewrite the variational expectation value of the annihilation
whereW, is the normalized electronic wave function akd rate as
is the positron momentum. The annihilation cross section

2
is related to the effective number of electrahg through the j du % |2
relation[17 T
[17] W[V ]=N? . (7)
mer3 fdM|‘I’T|2

= Z
g v eff» (5)

This quantity can be easily computed during a VMC simu-
wherev is the positron velocity and, the classical electron lation. It is important to note that we could have chosen as
radius. well a normalizable functio’(r,,) (i.e., a function of the
relative positron-electron positions instead of a function of
the positron positionwithout spoiling the exactness of the
approach. As commented later, both functiof(s,) and

This section contains the technical description of the¢’'(r,,) were found adequate for scattering states, but
QMC estimate ofv. The algorithm necessary to extract this £'(r,,) leads to much smaller error bars in ground-state cal-
quantity for bound states by variational Monte CaNGvIC) culations. The precise form @f and ¢’ is specified in Sec.
and diffusion Monte CarlgDMC) within the fixed-node ap- V. It is worth stressing that and ¢’ are functions of three
proximation(Secs. Ill A and 1ll B are presented. The neces- coordinates, so an accurate computation of the normalization
sary modifications for scattering states are discussed in SeconstantV is always feasible. This allows for a certain free-
[IC. In the following we will refer to the fixed-node ap- dom in the choice of their analytical form and this freedom
proximation as exact, meaning that the Sclimger equation can be exploited to lower the variance of this estimator.
is solved exactly within the nodal boundary defined by the As an introductory example of the usage of KEd), for
trial wave function . Indeed, for the one- and two- thee"H system in Fig. 1 this estimator is compared with the
electron systems treated in this paper the wave functions atechnique based on the extrapolation of the average value of
nodeless and therefore no fixed-node approximation has ta set of Gaussians over the sampled distribufiiod].
be invoked. For the sake of brevity only one of the addends Let us finally remark that an accurate variational estimate
of Eq. (3) will be considered andv will be defined conse- of any property normally involves the extensive optimization
qguently. The extension to the whole sum is straightforward.of the parameters defining the wave function. However, the

. QMC ESTIMATE
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extremely local character of the computed quantity poses se-
rious problems on the quality of the final results. Optimiza- ey
tion is usually carried out minimizing the variance or the

energy of the trial wave function. These properties as well as

any linear combination of them are global properties which -
depend on the entire distribution and not on the details of the @‘%V

wave function in small regions of the configurational space
[18]. These are scarcely weighted and somehow neglected by
the optimization process.

B. Exact estimate FIG. 2. Schematic representation of the algorithms to compute

_ _ _ A . T onal : )
It is for the reasons outlined at the end of the precedmg%ndu two bodies one-dimensional system is considexahdy

. h M Carl . b f an be regarded as the coordinates of the electron and the positron.
section that an exact Monte Carlo estimate can be usefu imulation is carried out with a single walker. Thick lines are varia-

Because the analytical form of the exact eigenfuncignis  {i5na) paths, while the thin ones are diffusion paths. The left graph
not known, there is no way to exploit directly the simple schematizes the case when one samplgs the right graph the
estimator provided in Eq(7). However,w[¥,] can be de- case when one samplds;, that is, positron and electron are al-

composed as ways on top of each other in the variational random walk.
de|®o|2 JdV|®T|2 fdM|WT|2 tional integral form of the importance sampling Green’s
W[Wy]= . ® function[19] in Eqg. (10). This leads to
[ avtrd? [ autwel? [ ool
DX W(X)=P(y), (13)
Ve

where one recognizes the central ratio as the one provided by
the variational calculation. So, the exact estimate achn be
obtained as long as the remaining ratios are exactly co
puted. The quantityu(x)=Wy(x)/¥+(x), routinely com-
puted in the forward walking algorithm, provides a straight-
forward solution to this problem. Using it, the product of the
two ratios can be rewritten d¢) !, where

whereX has been used to indicate a path’X represents the
mfunctional measure associated withy andV is defined by
W=exp(—[E,.dx). The notation Yy~»" stands for “all
paths generating frony.” In principle ¥o/W+ should be
computed as the average weightover the set of infinitely
long paths generating from In practice the weight over a

single long enough chain provides an unbiased estimate.
f dvu?|d+|? f duu?(W+l? The algorithm for the computation of the two ratios con-
U=—"———, V="—F———. (9)  sists therefore irfa) sampling|¥ |2 or |®+|? and (b) com-
J dv|d|? f du| Wyl puting the ratiou at any of the sampled points by means of a
DMC side walk. It can be provef®20] that the naive way of

For the sake of completeness a brief explanation of the stepssquarlng the weight leads to a biased estimate and that, to

. 2 . _
leading to the estimator far is presented. First let us define correctly estimater”, two |ndeper_1dent paths have to be gen
P,(y) as erated. A schematic representation of the method for the two

quantities) and/ is given in Fig. 2. The core of this algo-
rithm is the imaginary time projection via short-time ap-
PB(y)=f dx G'(y,x,8), (10 proximation employed in normal DMC simulations. Without
introducing any ambiguity, we will therefore refer to the

whereGT, the importance sampling Green's function, is de-method using the acronym DMC. Examples of this kind of
fined starting from the imaginary time Green's function &lgorithm can be found in Ref§21-23.

G(y,x,B) as As far as the computation &f in Eq. (9) is concerned, we
notice that the initial position of the walker, corresponding to
T V1(X) an electron and the positron sitting on top of each other,
G (y,x,B)= TL(y) G(y.x,B). (1D represents a particularly pathological point for the short-time

approximation of the Green’s function normally employed in
ExpandingG in its normalized eigenstates, and takingg  DMC [24]. There, the use of this approximation supple-
>1 leads to mented with the detailed balance condition is accurate only if

the chosen time step is very small. Indeeg we found, employ-

—ae—g DoY) ing various time steps (0.001—0.02 hartrég that using the
Pyy)=e FlEom&) \pT(y)J dxdo(X)¥r(x), (12 large ones has a dramatic effect on the valué/d$ee Fig.

3). In the limit of exact wave functioty is identically 1 and
where ¢, is the ground-state wave function. Henegy) is  this suggests that a good choice of the wave function can, as
simply proportional tdP5(y) for large values ofs. Finally, a  usual, largely improve the situation. When a good function is
way to computeP; becomes manifest inserting the func- not available, it is possible to avoid the use of an extremely
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20 —— — where Q can be any domain in configurational space. This
15- ggg§§§§§§§§§§§§§§§§§§§§§§§ leads to a possible correct estimator foas
L s ]
ﬁﬂ 7 2
10+ S oQQ!}G{}i}§§§§§§§§§§§§§§§§§§§ f|([)| dv
° Ooooo [ePYel Yol Yol ol Tol Jof Jci W[lII]: —f( Q'k)’ (16)
r ceCeCe0e0e 2
5_<>ioo°°o.o. A 1-0.02 hartree™ - J'Q|\P| d,u
|© ¢ 1=0.01 har’(ree'11
© 1=0.001 hartree’ . . :
o s ;0_02,0&;??,2,‘,96-1 1 where 7(Q,k) = [ ol Y|?du. Equation(8) is thus straightfor-
L | L 1 L 1 L
o 10 20 30 0 wardly modified to the close analog
Imaginary time (hartree™)
| - - jection ti dv|dof? | dy|dq|? fdul%lz
FIG. 3. Behavior ot/ V! as a function of the projection time. Pi%o vi%T 0
The system i®"He with R=10 bohr(see text for the meaning of ~ W[ ¥]= F(Q,K).
R). Black circles were obtained settingo 0.001 hartree! for the J' dv|®q|? f du|¥ql? f du|Pol?
first 100 steps and then to 0.02 hartrée Q Q
17

small time step throughout the whole simulation by simply 2 N1
using a short-time step for the first few hundreds of steps) "¢ Second factof dv|®+|*(fodu|W+[") " is computed

and increasing it after that the pathological coalescence pdj_uring a normal VMC gimulqtion estimqting the den_ominator
sition has been abandoned. An example of the benefit assf® the number of configurations fallgn in the QOm@mThe

: b e e : third factor [ odu|W1|2(f odu|Wol?) "1 is estimated con-
ciated with this trick is shown in Fig. 3 where a particularly QUM T U UKo

inaccurate trial function was used in order to enhance th&raining the paths of the variational random walk in the
effect. domain @ (a move is rejected when a walker exify. Of

course, the DMC side paths must not obey this constraint.
It is only left to find a suitable domain wherg Q,k) can

be computed analytically. Choosing this domain such that the
The basic ideas for the application of QMC methods tos-wave asymptotic fornfobtained partial-wave expanding

scattering problems can be found elsewhere in the literaturgq. (4)]

[25-28. For the purpose of this paper it is enough to men-

tion that the system can be viewed as enclosed in a spherical

box of radiusR which, in turns, specifies the form of the

s-wave component of the wave function according to

sink(r,—R)]
o '

C. Scattering states

sinfkr,+ (k)]

Y (X) =Y el Xe)) kr,

(18

holds at every point, makes this task extremely simple& If
is chosen as the direct product of the entire three-
dimensional space for each electron and a spherical crown,
whose external and internal radii are, respectiv&®yand
The diffusion Monte Carlo method is particularly tailored to R — AR, for the positron, one gets
deal with low-energy processes for which tkgave com-
ponent gives the only relevant contribution. Our discussion 2 i
therefore is centered on this particular partial wave. F(Q.k)= F[kAR— sinfkAR)cogkAR)], (19
The only issue in extending the algorithm introduced in
the preceding section to scattering states is represented Qyhich completes the computation of every term in Eij).
the unusualfor QMC simulation$ boundary condition im-
posed on the wave function. The standard QMC normaliza-
tion corresponds to considering a state normalized to one
inside the simulation box and it is clearly useless when the The wave functions used in the calculations were mainly
expectation value requires a different constraint like that oforoducts of exponentials of Pade’s approximafits),
Eq. (4).
To illustrate how this difficulty can be easily overcome let
us call the correctly normalized function and the function
sampled during the simulatiofr. We need to find the factor

N such thaty = AY2¥ . A can be more usefully expressed Wherea was fixed in order to exactly satisfy the particle-
as particle cusp condition ankd was sometimes set to 0. When

this latter constraint is applied, the function will be called

W(X) =W e Xe)) (14

IV. TESTS

ar+br?

Tvor | 20

j(r)zexp{

J'. The following results are obtained without extensively
2
Q|Y| du optimizing the variational parameters of the wave functions.
Ne——k—, (15  Our aim in doing this is to estimate the performance of the
f 1P [2d proposed DMC estimator in general cases where accurate
Q wave functions might not be available.
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TABLE 1. (3, values. LI LT e —
[ o o yy _
VMC/DMC? Other 1.08; Sae, a0 | ]
g @
1.06f 29 .
Ps 0.0150782)/0.020815) 0.020733198 1.046(3) %0 %0mn, ]
PsH 0.02367)/0.024766) 0.024461% 1.04F PSoonnmmmmnppnnnnoog
8DMC refers to the technique exposed in the text where DMC paths g2 ]
originate from a backbone VMC path. 10000, B
PReference§29—31], exact value from three independent calcula- . SesmRAsE AR AR AR ALY
tions. 0985 5 10 i5 20
‘Referencd33], SVM calculation with 1600 basis functions. Imaginary time (hartree ')
1 . o
A Bound states timEIG. 5.U, V, andU/ V"~ for PsH as a function of the projection
As test cases, we chose to compute the annihilation prop-
erties for the ground state of the Pand the PsH systems. WV
- =(1+P r r r
The properties of these two systems have been computed pst=( 12[T1(r1) To(r2) TiAr 1)
using explicitly correlated wave functions by several groups lep(rlp)jép(rzp)jp(rp)]_ (22)

[29-31] and, nowadays, are known with sufficient accuracy
to be used as a reference. Table | summarizes the value[shiS wave function has a variational energy of

obtained for these two systems together with the reference 0.784620(3) hartree, to be compared with the best varia-

ValIL;]eZil considered cases the variational estimate was corriqonaI estimate of~0.7891967 hartre¢32]. This energy
: . : value is also very close to the value that one gets using a
puted using the simple and exactly normalizatler )

— exp(—0.51,). Using a similar form for(r.) leads o a linear 'expansion of fivg cqrrelated fu_nctio[rkﬁ], but with a
Xp=U. I 1p). 9 . &(rp) more immediate physical interpretation and less parameters.
var'&ange_o'ne order ofg]ar?mtgdle Iarge;. S The behavior o/, V, andi/ V! as a function of the pro-

s Ps Is concerned, the trial wave function is jection time is reported in Fig. 5. Thg5,e) value computed

L using DMC is 1.2% higher than that of R¢B3]. This last
Wes =(1F P12 T1d112) T1p(F19) Top(T2p): - (21 estimate,d,,=0.024 461 1, seems converged up to the fifth

whereP, is the exchange operator between electron 1 andecimal place and suggests that our value is likely to be
2. Our wave function has a variational energy ofaffected by time step bias. As for Psno time step bias
—0.252360(5) hartree to be compared with the best varia@nalysis was performed in this work.
tional estimate of-0.262 005 hartreg29]. The behavior of
Uyt is reported in Fig. 4 and the VMC and DM@, B. Scattering states
values are reported in Table I. Reference valueg &f,) - . . .
[29-31 agree up to eight digits and for the accuracy of our The variational estimate for the scattering calculations

. . _ _1 -
calculation can be considered as exact. Our final value of/@S carried out employing(r)=r""sin(m/R)(r —R)] for
(Sep) is 0.37% higher than the exact one, the difference pePoth hydrogen and helium. It must be pointed out that the

ing within a 2o interval centered on the mean value. This projection time required to eliminate all the excited-state

estimate can be considered statistically exact even though %:mp?nent; fqr rt}ht;se systems Sca'?s pTIO portlona!IR%o
this level of accuracy the time step bias could play a role in' N€refore, it might become computationally expensive to run

determining small discrepancies. A time step bias analysi&n entire simulation with a small time step whnis large.
was not pursued in this work. For this reason we employed the fairly large=0.02

For the case of PsH the wave function was chosen as hartree ! to compute momenta ands. The effect that this
large 7 has on the value dff (see Sec. Ill B was mitigated
1 —— — performing the first 100 steps of the simulations using

1.411.380(3) vvee 3 =0.001. To see if this procedure was affected by time step
15 ooggggnDnnnnnnnunnnnnnnnnunng bias, the simulation was repeated this time with a constant
- -] 7=0.001 hartree’ for one of the small boxes R
1.2F ¢° c gV ] =15 bohr). The results of the two simulations were found
Fe sV ] statistically equal. At this point it is also worth stressing that
1 ] an accurate value for the momentum can be obtained only if
B ] the energy of the.targetl is computed With the same time step
TLTAAsMsAANAAAAAAAANAAAANAAANAAAAA S used during the simulation of the scattering state. In all cases
0.9 t - 3 aio the normalization coefficientV' was computed using\R

=TR/2 (see the end of Sec. Il C for the definition AfR).

The results were always found statistically equivalent to
FIG. 4.1, V, andi{/V ! for Ps as a function of the projection those obtained employing a small&R.

time. Error bars are smaller than the symbol size. The trial wave function foe™H was

Imaginary time (hartree™)
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- T TABLE lll. Z. and phase shifs for e"He.
8.0 ‘R (bohn k (a.u) Zet )
-5 10 0.311525) 3.162) 0.02644)
5 15 0.206766) 3.5003) 0.04028)
N s 20 0.155178) 3.705) 0.0381)
30 0.10361) 3.875) 0.0323)
5.0 40 0.07771) 3.917) 0.0305)
4.0
0 0.1 0.2 0.3 two distinct contributions. The first describes the asymptotic

it t u. : ] ; )
RO MU (ki form of the scattering wave functidwhen the positron is far

FIG. 6. Scattering of a positron off Hsfwave componeftZ,;  from the helium atom The second is a 502-terms expansion
as a function of the positron momentum. Circles represent our edidentical to that employed in Ref39]) that aims to describe
timates. The continuous line is taken from Réf4,35. The inset  the short-range correlation between the positron and the par-
reports the corresponding phase shifts and the continuous line ticles constituting the helium atom. Our estimates and those

taken from Ref[36]. of Ref. [37] are in good agreement even though at small
momenta ours suffer for a quite large statistical noise. The
sink(r,=R)] inset in Fig. 7 reports the phase shifts in the same range of
lPe*H:jl(rl)jip(rlp)‘j;)(rp)r—p1 (23)  energies, while the continuous line was taken from IR38].

This highlights, such as for the scattering of the positron off
wherek was fixed to the free-particle valie= 7/R. In Fig. 1 the good agreement of our phase shifts with very accurate
6 the dependence &, as a function of the momentum is lltérature data.

reported. Values are also reported in Table Il together with

the radius of the boxes employed. In thg: graph the line V. CONCLUSIONS

represents the values given in RE34] combined with the . _
In this work, an exact scheme to evaluate the positron-

low-momentum values of Ref35]. Referencd34] reports L ; .

an extensive study of this system using close coupling exglectron annihilation rate in bound and scattering states has
pansions for anguiar momentum uple-4. Referenc3s] been introduced. It has been tested using four small systems
presents a semiempirical method that provides a twofor which accurate results computed by other methods are

parameter description of scattering and annihilation. We use@2ilable. In every case the agreement between those values

the values of this model to represent the low-energy part of"d OUr estimates is quite good. .
Z.s (k<0.06 a.u.). Points d@t>0.09 a.u. are those of Ref. . When compa_red W'th algebraic approache; employing ba-
[34]. In this range of energy these data are consistent wit§iS S€t €xpansions, this Monte Carlo algoritiies every

our QMC values. Figure 6 contains also an inset with phasé/Ionte Carlo'algorlthmhas _the advantage of .b‘?'”g immedi-
shifts computed in the same range of energy, while the Congtely extensible to dea_l with systems containing more par-
tinuous line is taken from Ref36] ticles than those used in these present test calculations. For
Finally we consider the case éﬁHe The trial function instance, DMC calculations on 12 electrons and a positron
employed had the form ' have already been performgt?] and, as far as we know, no

other method is capable of treating explicitly this number of
Vet he= (14 P1o)[J1(r1) Jo(r 2) T1oF 12) T1p(F 1p)

P E— .

imk(ro—R - coodl ]
x jép(VZP)%(rp)]%z)]. (24) 40 £o04 ]
3.8 §0.02_— 1]

The results are reported in Table 11l and plotted in Fig. 7 00 07 05 03 04,

3.6

where they are compared to those of R&7]. The latter N |
values were computed using a wave function that includes 3.4F .

TABLE Il. Zs and phase shif for e*H. 3.2_— .
R (boh k z 5 9 i

(bohp @uw il 0 01 02 0.3 0.4

10 0.297%2) 4.21) 0.1662) positron momentum (a.u.)
15 0.19692) 5.6(2) 0.1883) FIG. 7. Scattering of a positron off Hs-{vave componentZ 4
20 0.14882) 6.32) 0.1764) as a function of the positron momentum. Circles represent our es-
30 0.09981) 7.213) 0.1483) timates. The continuous line is taken from RE37]. The inset
40 0.07541) 7.8(4) 0.1264) reports the corresponding phase shifts and the continuous line is

taken from Ref[38].
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particles with comparable accuracy. This fact paves the wapf going beyond the mixed estimate typical of DMC simula-
to accurately estimate the annihilation rate of systems suctions. This, of course, at the price of a more computationally
as PsF and PsCI. We expect the present algorithm to perforesemanding algorithm. Unfortunately the nonlocal estimator
well without changes for the aforementioned systems. for the § function [16] involves differential operators and
Compared to other estimators already proposed in théherefore cannot be combined with the forward walking or
context of VMC, the one introduced here is free from thethe reptation algorithrp40]. Techniques based on extrapola-
“divergent variance” feature that plagues some of them. Thetion could instead benefit from the possibility of sampling
central quantity, the rati® (/¥ can be seen as the ratio of the square of the exact wave function as done in the reptation
the wave function after and before the maye-r;. Rou-  algorithm. This possibility remains to be explored.
tines for an efficient computation of this ratio are already Finally we want to comment the general performance of
present in QMC codes moving one electron at a time. Théhe DMC algorithm for scattering states. As already stated
computation of the whole sum in E@3) requires therefore DMC is tailored to work with low-energy processes. How-
an effort that scales linearly with the number of particlesever, as clearly shown by Fig. 7, the performance of the
because of the requirement of moving the positron on top omethod degrades at very low momenta because of the neces-
each electron. Often one can exploit the permutational symsity of employing large radiiR. This pathological behavior
metry of the problem and indeed reduce the sum to the contcan be cured through the usage of more sophisticated sam-
putation of only one or few more of the addends in E). pling techniques. Of particular benefit should be the possi-
For the case of a wave function built starting from a re-bility of imposing different boundary condition oR [i.e.,
stricted Hartree-Fock determinant, a correct estimate can béing the logarithmic derivative to any desired value instead
always computed using only one electron provided that thef imposing W(R)=0] and of employing correlated sam-
sampling is allowed also in regions where the wave functiorpling to determine more precisely the value of the momen-
is negative. Of course time can also be saved if this quantittum. Both these topics will be the subject of future investi-
is not computed at each step. It remains to understand if thgations.
simple choices made in this work for the functiohgand &’
will remain a valid possibility for larger sys_tems. More gen- ACKNOWLEDGMENTS
erally it is left to prove that, for many particle systems, it is
indeed possible to fing or ¢’ such that the variance of the S.C. would like to thank David Ceperley for pointing out
estimator will continue to remain as small as that observed ithe possibility of changing the time step during the DMC
this work. projection runs. M.M. would like to thank Jim Mitroy for
As far as the exact algorithm is concerned, the main imimany useful discussions on positron scattering off atomic
provement with respect to other approaches is the possibilitiargets.
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