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Quantum Monte Carlo estimators for the positron-electron annihilation rate
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Variational and exact estimators for the positron-electron annihilation rate in bound states of systems con-
taining a positron in the framework of quantum Monte Carlo methods are presented. The modification needed
to compute the effective number of electronsZeff when scattering states are concerned is also discussed. The
algorithms are tested against four cases for which close to exact results are available, finding an overall good
agreement. The systems are Ps2, PsH, and thes-wave scattering component ofe1H ande1He.
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I. INTRODUCTION

One of the most intriguing features of the physics
positronic systems is, with no doubts, the possibility of
annihilation event. The two or more photons emerging fr
this process carry information about the electronic struct
of the system under study and can be analyzed by mean
different experimental techniques~see Ref.@1# for a general
discussion of these techniques!.

In gases, some of the salient features of this phenome
have been recently clarified from the experimental as wel
the theoretical side. For example, the possibility of prod
ing highly monochromatic positron beams has allowed
directly observe the role played by Feshbach resonance
the annihilation process in molecular gases@2#. Even more
recently the behavior of the annihilation cross section cl
to the positronium formation threshold has been clarified c
recting it for the finite lifetime of Ps@3#. The most important
consequence of this correction is that the annihilation cr
section does not diverge at the Ps formation threshold@3,4#,
but instead interpolates smoothly between the value
would get from a purely nonrelativistic treatment. This b
havior has been also confirmed by Igarashiet al. @5# who
investigated the effect by introducing an absorbing poten
into the scattering Hamiltonian to take positron annihilati
into consideration@6#.

The annihilation properties of bound states of electro
systems containing a positron can also be relevant to un
stand the experimental results in those cases where the
time of the antiparticle is longer than the time required fo
to thermalize. In this respect quantum Monte Carlo~QMC!
methods have already proved themselves to be an easy
powerful way to get accurate properties for many-elect
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systems containing a positron@7–12#.
The main goal of this paper is to present an exact esti

tor for the annihilation rate in bound states and in low-ene
scattering processes in the stochastic framework of Mo
Carlo methods. The paper is organized as follows. In Sec
the basic definition of the annihilation rate and the notat
used throughout the paper are introduced. In Sec. III
form of the estimators used in simulations are reported
in Sec. IV they are applied to bound and scattering sta
Specifically we considered the ground state of PsH and2

and thes-wave component for the scattering of a positron
hydrogen and helium. In Sec. V the algorithm is briefly co
pared with other approaches.

II. DEFINITIONS AND NOTATION

Let us first introduce a functionalw defined as

w@C#5(
i 51

N E dr1dr2•••drN

3uC~r1 ,r2 , . . . ,r i , . . . ,r p5r i !u2, ~1!

whereC is a many-body eigenfunction of the nonrelativist
Hamiltonian describing a Coulomb system composed oN
electrons (r1 ,r2 , . . . ,rN) and one positron (r p). When
bound states are concerned,w is related to the two-photon
annihilation rateG2g by @13#

G2g5pa4ca0w@C#, ~2!

wherea is the fine-structure constant,c the light speed, and
a0 the Bohr radius. C is normalized according to
*dmuC(x)u251, dm being the measure in the entire co
figurational space andx the set of all particle coordinates. Le
us define asxel the set of all electron coordinates,x
5(xel ,r p), and dn the measure in the electronic subspa
©2004 The American Physical Society01-1
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the two measures being related bydm5dndr p . To shorten
the formulas we define a new function

F ( i )~xel!5C~xel ;r p5r i !.

With this notationw can be rewritten as

w@C#5(
i 51

N E dnuF ( i )u2. ~3!

In Sec. IV results will be presented in terms of the avera
value of the Diracd operator̂ dep& which can be defined a
^dep&5w/N for the simple systems treated here.

Possible ways to calculate this quantity in the compu
tional framework of QMC methods have been already p
posed@14#. They range from a direct computation of th
integral in Eq.~3! @15# to techniques based on extrapolati
@14# of a nonlocal estimator of the Diracd function@16#. The
latter have the great advantage of being computationally v
light and straightforward to implement, but are plagued b
large variance of their estimator. To avoid this problem,
present method is close in spirit to the first of these
proaches.

As for scattering experiments, the quantity of interest
the effective number of electronsZeff , which is defined asw
in Eq. ~1!, C being a scattering eigenstate describing
asymptotic density of one positron per unit volume. Th
condition is sometimes expressed by the relation

C~x!→Cel~xel!e
ik•rp, r p→`, ~4!

whereCel is the normalized electronic wave function andk
is the positron momentum. The annihilation cross sectios
is related to the effective number of electronsZeff through the
relation @17#

s5
pcr0

2

v
Zeff , ~5!

wherev is the positron velocity andr 0 the classical electron
radius.

III. QMC ESTIMATE

This section contains the technical description of
QMC estimate ofw. The algorithm necessary to extract th
quantity for bound states by variational Monte Carlo~VMC!
and diffusion Monte Carlo~DMC! within the fixed-node ap-
proximation~Secs. III A and III B! are presented. The nece
sary modifications for scattering states are discussed in
III C. In the following we will refer to the fixed-node ap
proximation as exact, meaning that the Schro¨dinger equation
is solved exactly within the nodal boundary defined by
trial wave function CT . Indeed, for the one- and two
electron systems treated in this paper the wave functions
nodeless and therefore no fixed-node approximation ha
be invoked. For the sake of brevity only one of the adde
of Eq. ~3! will be considered andw will be defined conse-
quently. The extension to the whole sum is straightforwa
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A. Variational estimate

To illustrate how to get an efficient estimator forw let us
begin with introducing a functionj such that

15N 2E j~r p!2dr p . ~6!

Multiplying Eq. ~3! by Eq.~6! and rearranging the numerato
of the right-hand side of the obtained expression allows u
rewrite the variational expectation value of the annihilati
rate as

w@CT#5N 2
E dmUFTj

CT
U2

uCTu2

E dmuCTu2
. ~7!

This quantity can be easily computed during a VMC sim
lation. It is important to note that we could have chosen
well a normalizable functionj8(r1p) ~i.e., a function of the
relative positron-electron positions instead of a function
the positron position! without spoiling the exactness of th
approach. As commented later, both functionsj(r p) and
j8(r1p) were found adequate for scattering states,
j8(r1p) leads to much smaller error bars in ground-state c
culations. The precise form ofj and j8 is specified in Sec.
IV. It is worth stressing thatj andj8 are functions of three
coordinates, so an accurate computation of the normaliza
constantN is always feasible. This allows for a certain fre
dom in the choice of their analytical form and this freedo
can be exploited to lower the variance of this estimator.

As an introductory example of the usage of Eq.~7!, for
thee1H system in Fig. 1 this estimator is compared with t
technique based on the extrapolation of the average valu
a set of Gaussians over the sampled distribution@14#.

Let us finally remark that an accurate variational estim
of any property normally involves the extensive optimizati
of the parameters defining the wave function. However,

FIG. 1. Comparison of the variational estimator@Eq. ~7!, arrow#
with a technique based on the extrapolation from a sequenc
Gaussians of decreasing widths @14# ~circles; the continuous line is
a second-order polynomial fitted to these values!. The system con-
sidered ise1H with R510 bohr~see text for the definition ofR).
The two estimates were computed during the same simulation.
error bar of the new estimator is smaller than the line used to
resent the arrow.
1-2
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extremely local character of the computed quantity poses
rious problems on the quality of the final results. Optimiz
tion is usually carried out minimizing the variance or t
energy of the trial wave function. These properties as wel
any linear combination of them are global properties wh
depend on the entire distribution and not on the details of
wave function in small regions of the configurational spa
@18#. These are scarcely weighted and somehow neglecte
the optimization process.

B. Exact estimate

It is for the reasons outlined at the end of the preced
section that an exact Monte Carlo estimate can be use
Because the analytical form of the exact eigenfunctionC0 is
not known, there is no way to exploit directly the simp
estimator provided in Eq.~7!. However,w@C0# can be de-
composed as

w@C0#5

E dnuF0u2

E dnuFTu2

E dnuFTu2

E dmuCTu2

E dmuCTu2

E dmuC0u2
, ~8!

where one recognizes the central ratio as the one provide
the variational calculation. So, the exact estimate ofw can be
obtained as long as the remaining ratios are exactly c
puted. The quantityu(x)5C0(x)/CT(x), routinely com-
puted in the forward walking algorithm, provides a straig
forward solution to this problem. Using it, the product of t
two ratios can be rewritten asU V21, where

U5

E dnu2uFTu2

E dnuFTu2
, V5

E dmu2uCTu2

E dmuCTu2
. ~9!

For the sake of completeness a brief explanation of the s
leading to the estimator foru is presented. First let us defin
Pb(y) as

Pb~y!5E dx GT~y,x,b!, ~10!

whereGT, the importance sampling Green’s function, is d
fined starting from the imaginary time Green’s functio
G(y,x,b) as

GT~y,x,b!5
CT~x!

CT~y!
G~y,x,b!. ~11!

ExpandingG in its normalized eigenstatesfn and takingb
@1 leads to

Pb~y!5e2b(E02Er )
f0~y!

CT~y!
E dxf0~x!CT~x!, ~12!

wheref0 is the ground-state wave function. Henceu(y) is
simply proportional toPb(y) for large values ofb. Finally, a
way to computePb becomes manifest inserting the fun
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tional integral form of the importance sampling Green
function @19# in Eq. ~10!. This leads to

E
y 

D TX W~X!5P~y!, ~13!

whereX has been used to indicate a path.D TX represents the
functional measure associated withCT andW is defined by
W5exp(2*Elocdx). The notation ‘‘y ’’ stands for ‘‘all
paths generating fromy.’’ In principle C0 /CT should be
computed as the average weightW over the set of infinitely
long paths generating fromy. In practice the weight over a
single long enough chain provides an unbiased estimate

The algorithm for the computation of the two ratios co
sists therefore in~a! samplinguCTu2 or uFTu2 and ~b! com-
puting the ratiou at any of the sampled points by means o
DMC side walk. It can be proved@20# that the naive way of
squaring the weight leads to a biased estimate and tha
correctly estimateu2, two independent paths have to be ge
erated. A schematic representation of the method for the
quantitiesV andU is given in Fig. 2. The core of this algo
rithm is the imaginary time projection via short-time a
proximation employed in normal DMC simulations. Witho
introducing any ambiguity, we will therefore refer to th
method using the acronym DMC. Examples of this kind
algorithm can be found in Refs.@21–23#.

As far as the computation ofU in Eq. ~9! is concerned, we
notice that the initial position of the walker, corresponding
an electron and the positron sitting on top of each oth
represents a particularly pathological point for the short-ti
approximation of the Green’s function normally employed
DMC @24#. There, the use of this approximation supp
mented with the detailed balance condition is accurate on
the chosen time step is very small. Indeed we found, emp
ing various time steps (0.001–0.02 hartree21), that using the
large ones has a dramatic effect on the value ofU ~see Fig.
3!. In the limit of exact wave functionU is identically 1 and
this suggests that a good choice of the wave function can
usual, largely improve the situation. When a good function
not available, it is possible to avoid the use of an extrem

FIG. 2. Schematic representation of the algorithms to compuV
andU. A two bodies one-dimensional system is considered.x andy
can be regarded as the coordinates of the electron and the pos
Simulation is carried out with a single walker. Thick lines are var
tional paths, while the thin ones are diffusion paths. The left gra
schematizes the case when one samplesCT , the right graph the
case when one samplesFT , that is, positron and electron are a
ways on top of each other in the variational random walk.
1-3



ly
p
p
ss
ly
th

to
tu
n
ri
e

to

io

in
d

iza
on
th
o

let

r
d

his

tor

he

t.

the
g

ee-
wn,

nly

e-
n
d
ly
ns.
the
rate

.
f
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small time step throughout the whole simulation by simp
using a short-time step for the first few hundreds of ste
and increasing it after that the pathological coalescence
sition has been abandoned. An example of the benefit a
ciated with this trick is shown in Fig. 3 where a particular
inaccurate trial function was used in order to enhance
effect.

C. Scattering states

The basic ideas for the application of QMC methods
scattering problems can be found elsewhere in the litera
@25–28#. For the purpose of this paper it is enough to me
tion that the system can be viewed as enclosed in a sphe
box of radiusR which, in turns, specifies the form of th
s-wave component of the wave function according to

C~x!5Cel~xel!
sin@k~r p2R!#

r p
. ~14!

The diffusion Monte Carlo method is particularly tailored
deal with low-energy processes for which thes-wave com-
ponent gives the only relevant contribution. Our discuss
therefore is centered on this particular partial wave.

The only issue in extending the algorithm introduced
the preceding section to scattering states is represente
the unusual~for QMC simulations! boundary condition im-
posed on the wave function. The standard QMC normal
tion corresponds to considering a state normalized to
inside the simulation box and it is clearly useless when
expectation value requires a different constraint like that
Eq. ~4!.

To illustrate how this difficulty can be easily overcome
us call the correctly normalized functionY and the function
sampled during the simulationC. We need to find the facto
N such thatY5N 1/2C. N can be more usefully expresse
as

N5

E
Q

uYu2dm

E
Q

uCu2dm

, ~15!

FIG. 3. Behavior ofU V21 as a function of the projection time
The system ise1He with R510 bohr~see text for the meaning o
R). Black circles were obtained settingt to 0.001 hartree21 for the
first 100 steps and then to 0.02 hartree21.
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whereQ can be any domain in configurational space. T
leads to a possible correct estimator forw as

w@C#5

E uFu2dn

E
Q

uCu2dm

F~Q,k!, ~16!

whereF(Q,k)5*QuYu2dm. Equation~8! is thus straightfor-
wardly modified to the close analog

w@C0#5

E dnuF0u2

E dnuFTu2

E dnuFTu2

E
Q

dmuCTu2

E
Q

dmuCTu2

E
Q

dmuC0u2

F~Q,k!.

~17!

The second factor*dnuFTu2(*QdmuCTu2)21 is computed
during a normal VMC simulation estimating the denomina
as the number of configurations fallen in the domainQ. The
third factor *QdmuCTu2(*QdmuC0u2)21 is estimated con-
straining the paths of the variational random walk in t
domainQ ~a move is rejected when a walker exitsQ). Of
course, the DMC side paths must not obey this constrain

It is only left to find a suitable domain whereF(Q,k) can
be computed analytically. Choosing this domain such that
s-wave asymptotic form@obtained partial-wave expandin
Eq. ~4!#

Y~x!5Yel~xel!
sin@krp1d~k!#

krp
~18!

holds at every point, makes this task extremely simple. IfQ
is chosen as the direct product of the entire thr
dimensional space for each electron and a spherical cro
whose external and internal radii are, respectively,R and
R2DR, for the positron, one gets

F~Q,k!5
2p

k3
@kDR2sin~kDR!cos~kDR!#, ~19!

which completes the computation of every term in Eq.~17!.

IV. TESTS

The wave functions used in the calculations were mai
products of exponentials of Pade’s approximantsJ(r ),

J~r !5expS ar1br2

11cr D , ~20!

where a was fixed in order to exactly satisfy the particl
particle cusp condition andb was sometimes set to 0. Whe
this latter constraint is applied, the function will be calle
J8. The following results are obtained without extensive
optimizing the variational parameters of the wave functio
Our aim in doing this is to estimate the performance of
proposed DMC estimator in general cases where accu
wave functions might not be available.
1-4
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A. Bound states

As test cases, we chose to compute the annihilation p
erties for the ground state of the Ps2 and the PsH systems
The properties of these two systems have been comp
using explicitly correlated wave functions by several grou
@29–31# and, nowadays, are known with sufficient accura
to be used as a reference. Table I summarizes the va
obtained for these two systems together with the refere
values.

In all considered cases the variational estimate was c
puted using the simple and exactly normalizablej8(r 1p)
5exp(20.5r 1p). Using a similar form forj(r p) leads to a
variance one order of magnitude larger.

As Ps2 is concerned, the trial wave function is

CPs25~11P12!@J128 ~r 12!J1p~r 1p!J2p~r 2p!#, ~21!

whereP12 is the exchange operator between electron 1
2. Our wave function has a variational energy
20.252 360(5) hartree to be compared with the best va
tional estimate of20.262 005 hartree@29#. The behavior of
U V21 is reported in Fig. 4 and the VMC and DMĈdep&
values are reported in Table I. Reference values of^dep&
@29–31# agree up to eight digits and for the accuracy of o
calculation can be considered as exact. Our final value
^dep& is 0.37% higher than the exact one, the difference
ing within a 2s interval centered on the mean value. Th
estimate can be considered statistically exact even thoug
this level of accuracy the time step bias could play a role
determining small discrepancies. A time step bias anal
was not pursued in this work.

For the case of PsH the wave function was chosen as

FIG. 4. U, V, andU V21 for Ps2 as a function of the projection
time. Error bars are smaller than the symbol size.

TABLE I. ^dep& values.

VMC/DMCa Other

Ps2 0.015078~2!/0.02081~5! 0.020733198b

PsH 0.023678~3!/0.02476~6! 0.0244611c

aDMC refers to the technique exposed in the text where DMC pa
originate from a backbone VMC path.
bReferences@29–31#, exact value from three independent calcu
tions.
cReference@33#, SVM calculation with 1600 basis functions.
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CPsH5~11P12!@J1~r 1!J2~r 2!J128 ~r 12!

3J1p~r 1p!J2p8 ~r 2p!Jp~r p!#. ~22!

This wave function has a variational energy
20.784 620(3) hartree, to be compared with the best va
tional estimate of20.789 196 7 hartree@32#. This energy
value is also very close to the value that one gets usin
linear expansion of five correlated functions@16#, but with a
more immediate physical interpretation and less parame
The behavior ofU, V, andU V21 as a function of the pro-
jection time is reported in Fig. 5. Thêdpe& value computed
using DMC is 1.2% higher than that of Ref.@33#. This last
estimate,dep50.024 461 1, seems converged up to the fi
decimal place and suggests that our value is likely to
affected by time step bias. As for Ps2 no time step bias
analysis was performed in this work.

B. Scattering states

The variational estimate for the scattering calculatio
was carried out employingj(r )5r 21sin@(p/R)(r 2R)# for
both hydrogen and helium. It must be pointed out that
projection time required to eliminate all the excited-sta
components for these systems scales proportionally toR 2.
Therefore, it might become computationally expensive to
an entire simulation with a small time step whenR is large.
For this reason we employed the fairly larget50.02
hartree21 to compute momenta andV’s. The effect that this
larget has on the value ofU ~see Sec. III B! was mitigated
performing the first 100 steps of the simulations usingt
50.001. To see if this procedure was affected by time s
bias, the simulation was repeated this time with a cons
t50.001 hartree21 for one of the small boxes (R
515 bohr). The results of the two simulations were fou
statistically equal. At this point it is also worth stressing th
an accurate value for the momentum can be obtained on
the energy of the target is computed with the same time s
used during the simulation of the scattering state. In all ca
the normalization coefficientN was computed usingDR
5R/2 ~see the end of Sec. III C for the definition ofDR).
The results were always found statistically equivalent
those obtained employing a smallerDR.

The trial wave function fore1H was

FIG. 5. U, V, andU V21 for PsH as a function of the projectio
time.

s
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Ce1H5J1~r 1!J1p8 ~r 1p!Jp8~r p!
sin@k~r p2R!#

r p
, ~23!

wherek was fixed to the free-particle valuek5p/R. In Fig.
6 the dependence ofZeff as a function of the momentum i
reported. Values are also reported in Table II together w
the radius of the boxes employed. In theZeff graph the line
represents the values given in Ref.@34# combined with the
low-momentum values of Ref.@35#. Reference@34# reports
an extensive study of this system using close coupling
pansions for angular momentum up toJ54. Reference@35#
presents a semiempirical method that provides a t
parameter description of scattering and annihilation. We u
the values of this model to represent the low-energy par
Zeff (k,0.06 a.u.). Points atk.0.09 a.u. are those of Re
@34#. In this range of energy these data are consistent w
our QMC values. Figure 6 contains also an inset with ph
shifts computed in the same range of energy, while the c
tinuous line is taken from Ref.@36#.

Finally we consider the case ofe1He. The trial function
employed had the form

Ce1He5~11P12!@J1~r 1!J2~r 2!J128 ~r 12!J1p8 ~r 1p!

3J2p8 ~r 2p!Jp8~r p!#
sin@k~r p2R!#

r p
. ~24!

The results are reported in Table III and plotted in Fig.
where they are compared to those of Ref.@37#. The latter
values were computed using a wave function that inclu

FIG. 6. Scattering of a positron off H (s-wave component!. Zeff

as a function of the positron momentum. Circles represent our
timates. The continuous line is taken from Refs.@34,35#. The inset
reports the corresponding phase shifts and the continuous lin
taken from Ref.@36#.

TABLE II. Zeff and phase shiftd for e1H.

R ~bohr! k ~a.u.! Zeff d

10 0.2975~2! 4.2~1! 0.166~2!

15 0.1969~2! 5.6~2! 0.188~3!

20 0.1483~2! 6.3~2! 0.176~4!

30 0.0998~1! 7.2~3! 0.148~3!

40 0.0754~1! 7.8~4! 0.126~4!
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two distinct contributions. The first describes the asympto
form of the scattering wave function~when the positron is far
from the helium atom!. The second is a 502-terms expansi
~identical to that employed in Ref.@39#! that aims to describe
the short-range correlation between the positron and the
ticles constituting the helium atom. Our estimates and th
of Ref. @37# are in good agreement even though at sm
momenta ours suffer for a quite large statistical noise. T
inset in Fig. 7 reports the phase shifts in the same rang
energies, while the continuous line was taken from Ref.@36#.
This highlights, such as for the scattering of the positron
H, the good agreement of our phase shifts with very accu
literature data.

V. CONCLUSIONS

In this work, an exact scheme to evaluate the positr
electron annihilation rate in bound and scattering states
been introduced. It has been tested using four small syst
for which accurate results computed by other methods
available. In every case the agreement between those va
and our estimates is quite good.

When compared with algebraic approaches employing
sis set expansions, this Monte Carlo algorithm~as every
Monte Carlo algorithm! has the advantage of being immed
ately extensible to deal with systems containing more p
ticles than those used in these present test calculations
instance, DMC calculations on 12 electrons and a posit
have already been performed@12# and, as far as we know, n
other method is capable of treating explicitly this number

s-

is

FIG. 7. Scattering of a positron off He (s-wave component!. Zeff

as a function of the positron momentum. Circles represent our
timates. The continuous line is taken from Ref.@37#. The inset
reports the corresponding phase shifts and the continuous lin
taken from Ref.@38#.

TABLE III. Zeff and phase shiftd for e1He.

R ~bohr! k ~a.u.! Zeff d

10 0.31152~5! 3.16~2! 0.0264~4!

15 0.20676~6! 3.50~3! 0.0402~8!

20 0.15517~8! 3.70~5! 0.038~1!

30 0.1036~1! 3.87~5! 0.032~3!

40 0.0777~1! 3.91~7! 0.030~5!
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particles with comparable accuracy. This fact paves the w
to accurately estimate the annihilation rate of systems s
as PsF and PsCl. We expect the present algorithm to per
well without changes for the aforementioned systems.

Compared to other estimators already proposed in
context of VMC, the one introduced here is free from t
‘‘divergent variance’’ feature that plagues some of them. T
central quantity, the ratioF ( i )/C, can be seen as the ratio o
the wave function after and before the mover p→r i . Rou-
tines for an efficient computation of this ratio are alrea
present in QMC codes moving one electron at a time. T
computation of the whole sum in Eq.~3! requires therefore
an effort that scales linearly with the number of partic
because of the requirement of moving the positron on top
each electron. Often one can exploit the permutational s
metry of the problem and indeed reduce the sum to the c
putation of only one or few more of the addends in Eq.~3!.
For the case of a wave function built starting from a
stricted Hartree-Fock determinant, a correct estimate ca
always computed using only one electron provided that
sampling is allowed also in regions where the wave funct
is negative. Of course time can also be saved if this quan
is not computed at each step. It remains to understand if
simple choices made in this work for the functionsj andj8
will remain a valid possibility for larger systems. More ge
erally it is left to prove that, for many particle systems, it
indeed possible to findj or j8 such that the variance of th
estimator will continue to remain as small as that observe
this work.

As far as the exact algorithm is concerned, the main
provement with respect to other approaches is the possib
ys

tt

.

A

02270
y
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rm
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e

e

f
-
-

-
be
e
n
ty
he

in
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ty

of going beyond the mixed estimate typical of DMC simul
tions. This, of course, at the price of a more computationa
demanding algorithm. Unfortunately the nonlocal estima
for the d function @16# involves differential operators an
therefore cannot be combined with the forward walking
the reptation algorithm@40#. Techniques based on extrapol
tion could instead benefit from the possibility of samplin
the square of the exact wave function as done in the repta
algorithm. This possibility remains to be explored.

Finally we want to comment the general performance
the DMC algorithm for scattering states. As already sta
DMC is tailored to work with low-energy processes. How
ever, as clearly shown by Fig. 7, the performance of
method degrades at very low momenta because of the ne
sity of employing large radiiR. This pathological behavior
can be cured through the usage of more sophisticated s
pling techniques. Of particular benefit should be the pos
bility of imposing different boundary condition onR @i.e.,
fixing the logarithmic derivative to any desired value inste
of imposing C(R)50] and of employing correlated sam
pling to determine more precisely the value of the mom
tum. Both these topics will be the subject of future inves
gations.

ACKNOWLEDGMENTS

S.C. would like to thank David Ceperley for pointing o
the possibility of changing the time step during the DM
projection runs. M.M. would like to thank Jim Mitroy fo
many useful discussions on positron scattering off atom
targets.
ons
re-

ut.

m.

m.

ys.
@1# O.E. Mogensen,Positron Annihilation in Chemistry~Springer-
Verlag, Berlin, 1995!.

@2# S.J. Gilbert, L.D. Barnes, J.P. Sullivan, and C.M. Surko, Ph
Rev. Lett.88, 043201~2002!.

@3# G.F. Gribakin and J. Ludlow, Phys. Rev. Lett.88, 163202
~2002!.

@4# P. Van Reeth and J.W. Humberston, J. Phys. B31, L231
~1998!.

@5# A. Igarashi, M. Kimura, and I. Shimamura, Phys. Rev. Le
89, 123201~2002!.

@6# I.A. Ivanov and J. Mitroy, J. Phys. B33, L831 ~2000!.
@7# D. Bressanini, M. Mella, and G. Morosi, J. Chem. Phys.108,

4756 ~1998!.
@8# D. Bressanini, M. Mella, and G. Morosi, J. Chem. Phys.109,

1716 ~1998!.
@9# D. Bressanini, M. Mella, and G. Morosi, J. Chem. Phys.109,

5931 ~1998!.
@10# M. Mella, G. Morosi, and D. Bressanini, J. Chem. Phys.111,

108 ~1999!.
@11# M. Mella, G. Morosi, D. Bressanini, and S. Elli, J. Chem

Phys.113, 6154~2000!.
@12# M. Mella, M. Casalegno, and G. Morosi, J. Chem. Phys.117,

1450 ~2002!.
@13# A.M. Frolov, S.I. Kryuchkov, and V.H. Smith, Jr., Phys. Rev.

51, 4514~1995!.
.

.

@14# M. Mella, S. Chiesa, and G. Morosi, J. Chem. Phys.116, 2852
~2002!.

@15# S.A. Alexander and R.L. Coldwell, J. Chem. Phys.103, 2572
~1995!.

@16# D. Bressanini, M. Mella, and G. Morosi, Phys. Rev. A57, 1678
~1998!.

@17# P.A. Fraser, Adv. At. Mol. Phys.4, 63 ~1968!.
@18# The region considered in this case is the set of configurati

where the positron is on top of one of the electrons. This
gion has null measure.

@19# M. Caffarel and P. Claverie, J. Chem. Phys.88, 1088~1988!.
@20# P.J. Reynolds, J. Chem. Phys.92, 2118~1990!.
@21# R.N. Barnett, P.J. Reynolds, and W.A. Lester, Jr., J. Comp

Phys.96, 258 ~1991!.
@22# R.N. Barnett, P.J. Reynolds, and W.A. Lester, Jr., J. Che

Phys.96, 2141~1992!.
@23# D.M. Ceperley and B.J. Alder, Phys. Rev. A31, 1999~1985!.
@24# C.J. Umrigar, M.P. Nightingale, and K.J. Runge, J. Che

Phys.99, 2865~1993!.
@25# Y. Alhassid and S.E. Koonin, Ann.Phys.155, 108 ~1984!.
@26# J. Carlson, V.R. Pandharipande, and R.B. Wiringa, Nucl. Ph

A 424, 47 ~1984!.
@27# J. Shumway and D.M. Ceperley, Phys. Rev. B63, 165209

~2001!.
1-7



and

CHIESA, MELLA, AND MOROSI PHYSICAL REVIEW A69, 022701 ~2004!
@28# S. Chiesa, M. Mella, and G. Morosi, Phys. Rev. A66, 042502
~2002!.

@29# A.M. Frolov, Phys. Rev. A60, 2834~1999!.
@30# R. Krivec, V.B. Mandelzweig, and K. Varga, Phys. Rev. A61,

062503~2000!.
@31# G.W.F. Drake, M.M. Cassar, and R.A. Nistor, Phys. Rev. A65,

054501~2002!.
@32# Z.-C. Yan and Y.K. Ho, Phys. Rev. A59, 2697~1999!.
@33# J. Usukura, K. Varga, and Y. Suzuki, Phys. Rev. A58, 1918

~1998!.
@34# G.G. Ryzhikh and J. Mitroy, J. Phys. B33, 2229~2000!.
02270
@35# J. Mitroy and I.A. Ivanov, Phys. Rev. A65, 042705~2002!.
@36# J. Mitroy, L. Berge, and A. Stelbovics, Phys. Rev. Lett.73,

2966 ~1994!.
@37# P. Van Reeth, J.W. Humberston, K. Iwata, R.G. Greaves,

C.M. Surko, J. Phys. B29, L465 ~1996!.
@38# P. Van Reeth and J.W. Humberston, J. Phys. B32, 3651

~1999!.
@39# A.M. Frolov and V.H. Smith, Jr., Phys. Rev. A56, 2417

~1997!.
@40# S. Baroni and S. Moroni, Phys. Rev. Lett.82, 4745~1999!.
1-8


