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The computational performance of two different variational quantum Monte Carlo estimators for
both the electron and spin densities on top of nuclei are tested on a set of atomic systems containing
also third-row species. Complications due to an unbounded variance present for both estimators are
circumvented using appropriate sampling strategies. Our extension of a recently proposed estimator
�Phys. Rev. A 69, 022701 �2004�� to deal with heavy fermionic systems appears to provide
improved computational efficiency, at least an order of magnitude, with respect to alternative
literature approaches for our test set. Given the importance of an adequate sampling of the core
region in computing the electron density at a nucleus, a further reduction in the overall simulation
cost is obtained by employing accelerated sampling algorithms. © 2008 American Institute of
Physics. �DOI: 10.1063/1.2982930�

I. INTRODUCTION

Quantum Monte Carlo �QMC� is a set of powerful tools,
useful for solving the Schrödinger equation for atoms and
molecules.1 Requiring the least computational resources,
variational Monte Carlo �VMC� represents the “workhorse”
of this family. Armed with the recently acquired capability of
optimizing a correlated trial wave function �TWF� �T by
minimizing its energy,2–5 VMC has been shown to provide
accurate estimates for the ground state properties of elec-
tronic systems.5–9

Not being constrained to the use of Gaussian atomic ba-
sis sets, VMC may also represent a valuable tool in comput-
ing nondifferential properties such as electron and spin den-
sities on top of nuclei. The latter quantities are, respectively,
defined as a function of the expectation values ���ri��� and
����ri���, where � is the Dirac delta, ri� is the distance be-
tween the ith electron of spin � �either � or �� and the
nucleus �. In practical applications, accurate values for
���r��� and ����r���− ����r��� are needed to compute the iso-
tropic Fermi contact term of the electron spin resonance
�ESR� hyperfine coupling in systems containing heavy
atoms.10 In this context, VMC may serve either as a stand-
alone technique or as a prerequisite for the use of diffusion
Monte Carlo �DMC� when highly accurate results are
needed. In this latter case, VMC results are combined with
DMC computed weights to obtain true ground state proper-
ties, although within the framework of the fixed node
approximation.11

When using QMC to compute the properties of elec-
tronic systems, a good level of accuracy may be expected
thanks to the fact that electron correlation is to a large extent
included. In dealing with electron-nucleus coalescence prob-

ability, however, one must also tackle the difficulty of esti-
mating this infinitely local property with a method that pro-
vides only a statistical representation of the wave function
�or, for what matters, of the electron density ��. Thus, initial
attempts at estimating ���r��� were carried out by enclosing
the nucleus of interest ��� within spheres of decreasing ra-
dius, computing the probability density of finding an electron
within each sphere, and finally extrapolating this set of re-
sults to zero radius.12 While practical, this approach is, how-
ever, flawed by an inherently unbounded variance. A more
sophisticated variant of this approach exploited the weak
limit properties of a set of Gaussian functions as a possible
way to improve the precision of ���ri���, but the variance
was shown to be unbounded for this method also.13

Due to the importance of estimating the Dirac delta ex-
pectation value, several researchers have sought more effi-
cient and better behaving QMC estimators addressing the
problem with the infinite variance. In this respect, a possible
way forward is represented by the use of the differential
identity 4���R�=−�2�1 / �R��, the latter leading to a global
estimator for ���r��� that is easily implemented using pre-
computed quantities. Such an estimator, however, still suffers
from an unbounded variance due to the presence of a term
proportional to 1 / �R�2, a difficulty that can be circumvented
by sampling the alternative distribution �T

2��i1 /ri�
2 �.14,15

This, however, assures a bounded variance only for the
nucleus �. More recently, Assaraf et al.16 introduced the use
of an auxiliary function f�ri�� to regularize the differential
identity without modifying the sampling distribution. In their
proposal, one computes the contribution to the density on top
of the nucleus � due to the ith electron using 4���ri��
=−��i

2�f�ri��� /ri��, where f satisfies the condition
limri�→0 f�ri��=1. With a suitable choice of f , the variance
of the differential estimator becomes bounded apparently
eliminating the necessity of using alternative sampling dis-
tributions.

A completely different approach to the task of comput-
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ing ���ri��� was proposed by Alexander et al.17 In the latter,
M independent electronic configurations are generated from
an analytically normalizable distribution g�R� and used to
estimate the normalization of �T by means of

�NT
2�−1 = M−1�

i

M

	T
2�Ri�/g�Ri� . �1�

The Dirac delta expectation value is subsequently computed
by using the normalized �T and sampling a subset of the
configuration space with one of the electrons sitting on top of
a nucleus. Although original, this method was found to have
serious shortcomings for many electron atoms, these being
mainly due to the lack of importance sampling. The latter
was introduced in a later work,18 with the sampling of the
region near a nodal surface being de-emphasized by selecting
a single configuration from a small subset of points obtained
from a Hartree–Fock wave function. The insufficient sam-
pling at short electron-electron rij and electron-nucleus dis-
tances was subsequently addressed in Ref. 19 by introducing
a weight that approaches infinity for rij ,ri�→0. Despite all
these improvements, this technique has never been applied to
heavy atoms and appears to be useful only for first row at-
oms and ions.

An alternative scheme for evaluating the expectation
value of the Dirac delta operator, one which is, in principle,
exact as the approaches discussed above, was introduced by
Chiesa et al.20 to compute the electron-positron annihilation
probability. This method, based on an analytical transforma-
tion of the original expectation value that does not require
the use of a differential identity, makes also ���rij�� suitable
for computation using a straightforward VMC simulation.
Bearing in mind the relevance of ���ri��� for the calculation
of the hyperfine coupling constants in open shell systems, the
aim of this work is to extend the “local” VMC estimator
introduced in Ref. 20 for a possible application in the field
and to test its computational efficiency. In doing this, our
long term goal would be to build a robust approach capable
of tackling first-row transition metal compounds free of the
difficulties introduced by the use of Gaussian basis sets and
spin contaminated wave functions.

Due to the good performance shown in computing the
electron density of systems containing light atoms, the renor-
malized “differential” estimator introduced in Ref. 16 could
also represent a suitable approach to the same task. Thus, a
numerical comparison between the two estimators has been
carried out in this work, aiming also to gain a better under-
standing of the computational effort involved in estimating
���r��� and ����r��� by means of VMC.

During the preliminary test stage, however, it was dis-
covered that a straightforward implementation of both esti-
mators is plagued with variance-related problems due to the
presence of fermionic nodal surfaces in the core electron
region. The numerical characterization of this difficulty �de-
scribed in Secs. II and IV� allowed us to suggest the use of
alternative sampling distributions to circumvent the problem
and to meaningfully compare the renormalized differential
estimator16 with the one proposed in this work, demonstrat-
ing a better efficiency for the latter.

The outline of the manuscript is as follows. In Sec. II,
the approaches presented in Refs. 16 and 20 to estimate ���
are revised. We also discuss the origin of the difficulty that
forces one to use sampling distributions different from the
traditionally employed �T

2. Section III presents our numeri-
cal results, starting with a discussion on the robustness and
performance of the straightforward implementation of both
estimators while using the standard Metropolis Monte Carlo
as a sampling scheme. The results obtained using some al-
ternative sampling distributions and algorithms are discussed
in Sec. IV. Finally, Sec. V contains our conclusions and the
outlook for future work.

II. METHODS

As mentioned in Sec. I, the aim of this work is to pro-
vide efficient strategies for computing the electron density on
top of heavy nuclei with VMC. We therefore begin extending
the local estimator approach introduced in Ref. 20 and revis-
ing the theory of the renormalized differential estimator pre-
sented by Assaraf et al.16

As suggested in Ref. 20, one may write the expectation
value ���r��� of the Dirac delta measuring the density of an
N electron system on top of nucleus � as

���r����2

=
�i=1

N 	 �
i�r1, . . . ,ri−1,ri+1,rN��2dr1, . . . ,dri−1dri+1drN

	 ���r1, . . . ,rN��2dr1, . . . ,drN
,

�2�

with


i�r1, . . . ,ri−1,ri+1, . . . ,rN�

=
 ��r� − ri���r1, . . . ,rN�dri.

�3�

Here, ��r1 , . . . ,rN� is the ground state molecular wave func-
tion. The electron spin density takes the usual form
�i

N�����ri����2 −� j
N�����rj����2 where N� and N� are the

number of spin up and down electrons, respectively. Equa-
tion �2� is made suitable for VMC estimation restoring an
identical dimensionality for the denominator and numerator
multiplying each term of the latter by

N2
 ��ri�2dri = 1, �4�

where ��ri� is a square integrable auxiliary function whose
analytical form should be chosen to reduce the variance of
the MC estimator. Introducing the TWF �T�r1 , . . . ,rN� ap-
proximating ��r1 , . . . ,rN�, Eq. �2� can be rewritten as
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���r����2 = N2�
i=1

N 
 �
T
i �

�T
�2��T�2dr1, . . . ,drN


 ��T�2dr1, . . . ,drN

�
N2

M
�
j=1

M

�
i=1

N �
T
i �

�T
�2

, �5�

where M configurations, sampled according to �T
2, are used

for the estimate. Equation �5�, the main result of this section
and henceforth referred to as “local estimator,” is straightfor-
wardly implemented in any VMC code by moving, in turn,
each electron on top of nucleus � to estimate the various 
T

i .
As a linguistic note, we mention here that the adjective local
for the estimator defined in Eq. �5� is meant to indicate the
absence of terms depending on first or higher order deriva-
tives of the trial wave function.

As an alternative to the use of Eq. �5�, one could employ
the renormalized differential estimator by Assaraf et al.16

This was originally introduced with the broader aim of im-
proving the performance of computing the electron density at
a generic position rg in space. This differential estimator
reads

���rg�� = −
1

4�
�
i=1

N

�
 1

�ri − rg�
�i

2�f�ri,rg��T
2�r1, . . . ,rN��

�T
2�r1, . . . ,rN� �

�T
2
, �6�

where f�ri ,rg� is a smooth auxiliary function fulfilling
limri→rg

f�ri ,rg�=1 and �T is a trial wave function approxi-
mating �. In this work, we closely follow the suggestion
provided in Ref. 16 and use the specialized form

f�ri,r�� = 1 + 2ZA�ri − r�� �7�

to reduce the statistical error in the nuclear cusp region.
Although the implementation of both Eqs. �5� and �6� in

a VMC code is fairly straightforward, we need to stress that
difficulties are going to be encountered simulating fermionic
systems due to the presence of large and unbounded fluctua-
tions in regions surrounding a nodal surface. Even though
these fluctuations have no direct effect on the expectation
value itself, they violate the hypothesis of the central limit
theorem, so that it becomes impossible to estimate the statis-
tical uncertainty associated with ���. Perhaps, the simplest
way to appreciate the origin of this problem is to recognize
that the nodal surfaces of �T

2 do not coincide with the ones
of �2�f�ri ,r���T

2�r1 , . . . ,rN�� and �
T
i ��2. Computing the

variance of both estimators with respect to the sampling den-
sity �T

2, one easily realizes that the second order divergence
on a node becomes fourth order and hence not integrable �in
the Appendix, we exemplify this problem using a determi-
nantal model for the 3S state of He�.

A possible way of circumventing this problem would be
to modify the conventional walker density p�R�
=	T

2 /	�	T�2dR using

p�R� =

�R�w�R�

	 
�R�w�R�dR
. �8�

Here, the weighting function w�R�= �	�R�T�2 /
�R� corrects
for the sampling bias introduced by using a shifted distribu-
tion of the kind


 = �D�r1, . . . ,rN�2 + cE�r1, . . . ,rN��exp�J�2 �9�

rather than �T
2. In the above equation, c�0 is a constant, D

is the determinant part of �T, E is a semipositive symmetric
function of the electronic coordinates, and exp�J� is an ex-
plicitly correlated factor. With this substitution, the general
form of the two estimators becomes

�Ô� =
	 Ôw
dr1, . . . ,drN

	 w
dr1, . . . ,drN
=

�Ow�


�w�


�
D
W , �10�

with O=N2�i=1
N ��
T

i �� /�T�2 �cf. Eq. �5�� and O=−�1 /4��
�i=1

N 1 / �ri����i
2�f�T

2� /�T
2� �cf. Eq. �6�� for the local and dif-

ferential estimators, respectively. The advantage of using Eq.
�10� comes from the fact that it has a bounded variance
var��� provided that E does not go to zero on the node faster
than a first order function. In this work, we propose the use
of the following analytical forms for the distribution 
:


abs = �D�r1, . . . ,rN�2 + c�D�r1, . . . ,rN���exp�J�2, �11�


 f = �D�r1, . . . ,rN�2 + c�
i=1

N

�1 + exp���rc − ri���−1�
�exp�J�2, �12�


abs,f = �D�r1, . . . ,rN�2 + c�D�r1, . . . ,rN��

��
i=1

N

�1 + exp���rc − ri���−1�exp�J�2. �13�

Notice that both 
abs and 
abs,f go to zero linearly with re-
spect to the magnitude of a vector perpendicular to the nodal
surface, whereas 
 f includes the strictly positive Fermi
function.

When using the 
 distributions in Eqs. �11�–�13� to
guide the sampling, a population bias is introduced in the
estimate provided by Eq. �10�.21 Different from what hap-
pens in DMC simulations, such bias is not due to the corre-
lation between configuration introduced by controlling the
population size but rather by the fact that D and W must be
independently estimated before computing the ratio that pro-
vides one with the desired expectation value. When only a
limited number of samples are available �e.g., when comput-
ing the expectation value over a single simulation block�, the
statistical error of the denominator W translates into a sys-
tematic error of the average over the block mean values.21

We found it sufficient, however, to compute the VMC results
using 1000 walkers and a large number of steps ��1000� per
block to eliminate this population bias.
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III. RESULTS

In this section, the performances of Eqs. �5� and �6� are
tested, computing the electron and electron spin nuclear den-
sities for several first, second, and third row atoms. To sim-
plify the presentation of our results, we begin considering the
calculation of restricted Hartree–Fock �RHF� densities22 in
some detail. Exploiting the fact that RHF densities are
known analytically, this approach allows us to assess the
presence of possible unexpected problems in the Monte
Carlo simulations. Unless otherwise mentioned, the latter
were carried out with a standard implementation of the Me-
tropolis Monte Carlo algorithm, which attempts single-
electron displacements with uniform probability within a cu-
bic box centered on the initial Cartesian position of the
electron itself. Results for correlated electrons are presented
at a later stage.

A. Testing the performances of the estimators
with �T

2 sampling

Let us start by considering the Metropolis Monte Carlo
results obtained using RHF wave functions for He, Li, C, Ne,
Ar, and K provided in Tables I and II for Eqs. �6� and �5�,
respectively. All data have been obtained using simulations
sampling an identical number of configurations. In the cal-
culations using the local estimator �Eq. �5��, we opted to use
the auxiliary function ��r�=exp�−Zeffr�, with Zeff being cho-
sen by comparing the standard errors obtained using several

equispaced Zeff values centered around the atomic number Z
during a single simulation. We shall return to discuss alter-
native forms for auxiliary function below.

From Tables I and II we note, in particular, that both
estimators provide accurate results, the difference between
the exact HF density ��HF� and the simulation result ��� be-
ing well within the associated statistical error err��� as indi-
cated by the relative deviation dev���= ��−�HF� /err���. The
electron density and the spin density are sampled from the
same Markov chain and are seen to have similar statistical
errors, a result independent of the estimator used. Indeed,
sampling the spin density ����− ���� from the same Markov
chain is necessary in order to keep the statistical error low.
Despite these similarities, the advantage provided by the lo-
cal estimator �Eq. �5�� is clearly apparent, particularly for the
nodeless ground state of He. For this system, Eq. �5� pro-
vides a standard error 29 times lower than Eq. �6� when
using simulations of identical length.

For the remaining atoms, the standard error obtained
with the local estimator is roughly an order of magnitude
smaller than the one obtained using the differential counter-
part.

Two details are perhaps worth mentioning at this stage.
First, there is the fact that we have made some attempts at
optimizing the ZA value used in Eq. �7� to minimize the
variance of Eq. �6� and to provide one with a fairer compari-
son between the two estimators. Our attempts, though, sug-
gested that using the atomic number as ZA is an almost op-
timal strategy and that only minimal improvements are

TABLE I. Average electron and spin densities ���� and ����− ����, a.u.� for first, second, and third row atoms
obtained using the differential estimator and sampling �T

2. � is the time step, err�·� is the standard error
associated with a mean value, and dev�����= ����−�HF� /err��� is the relative statistical deviation from the exact
restricted Hartree–Fock density.

Metropolis results � ��� err��� ����− ���� err���−��� dev���

He 0.0800 3.5970 1.07�10−3 −0.000 004 1.1�10−3 −0.24
Li 0.0200 13.8336 4.16�10−3 0.1676 4.2�10−3 −0.16
C 0.0100 127.5010 5.81�10−2 0.0515 5.7�10−2 −0.9
Ne 0.0050 620.1368 5.53�10−1 0.3378 5.4�10−1 −0.16
Ar 0.001 3845.5 2.1�100 1.8 2.2�100 2.5
K 0.0005 4547.2 2.5�100 6.6 2.7�100 3.0
Langevin results
Ar 0.001 3845 3.38�100 −1.8000 3.06�100 1.6
K 0.0005 4541 6.46�100 −1.8295 3.06�100 0.22

TABLE II. Average electron and spin densities ���� and ����− ����, a.u.� for first, second, and third row atoms
obtained using the local estimator and sampling �T

2 with the Metropolis algorithm. � is the time step, err�·� is
the standard error associated with a mean value, Zeff is the parameter of the auxiliary function �, and
dev�����= ����−�HF� /err��� is the relative statistical deviation from the exact restricted Hartree–Fock density.

� ��� err��� ����− ���� err���−��� dev��� Zeff

He 0.4 3.597 21 2.7�10−5 −0.000 007 2.8�10−5 −1.16 1.6
Li 0.08 13.834 3.2�10−4 0.167 3.1�10−4 −1.32 2.69
C 0.04 127.562 8.7�10−3 −0.026 9.5�10−3 1.02 6.88
Ne 0.004 620.23 4.9�10−2 0.017 5.1�10−2 0.12 12.14
Ar 0.004 3839.1 3.5�10−1 0.2 3.4�10−1 −3.30 23.7
K 0.0020 4540.0 7.2�10−1 1.17 7.4�10−1 0.48 26.33
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obtained by means of a complete optimization. Second, we
found simulations employing the differential estimator to be
slightly faster than the ones using the local estimator �e.g.,
20% faster for C when a HF plus two-body correlation func-
tions is used�, due to the need to compute a few additional
terms in the latter. Despite such increase in the computa-
tional cost, Eq. �5� still appears to provide one with a more
efficient algorithm when �T

2 is sampled.
In an attempt at characterizing and rationalizing the dif-

ferent performances of the two estimators, we decided to
study their local variance var���1

+��2
�= ����r�1

�+��r�2
��2�

− ���r�1
�+��r�2

��2 as a function of the distance r�i
from

which the ith electron is moved on top of the nucleus. In the
previous equation, ��r�i

� indicates one of the two estimators
defined in Eqs. �5� and �6�. Figure 1 shows the results ob-
tained for the Li atom when var���1

+��2
� is plotted as a

two-dimensional function of the distance between the each
identical spin electrons and the nucleus. We notice a large
variance in the region where r�1

�r�2
�i.e., the location of the

nodal plane of the RHF wave function� in both cases. How-
ever, Eq. �6� also presents a large variance at short distances
from the nucleus �r→0, panel B�, whereas the local estima-
tor behaves more smoothly in the same region �panel A�.
Considering the weighting provided by �T

2 in computing the
expectation values, one arrives at the conclusion that the
range of electron-nucleus distance 0�r�0.5 bohr provides
a substantial contribution to the variance of the differential

estimator in the case of Li. Similar conclusions can also be
reached plotting var��� for Li as a function of a single
electron-nucleus distance �panel A, Fig. 2�. Also, notice that
the histograms present a fairly rough shape despite the long
simulations employed to collect the data, an outcome that
may also be due to the fluctuations of the variance close to
the nodal surface.

Although somewhat different in shape, a similar trend is
observed also for Ne �panel B, Fig. 2�, with the highest value
of var��� being located in the range of distances 0�r
�1 bohr. In this case, however, the fluctuations of the dif-
ferential estimator in the valence region are expected to con-
tribute to the total variance due to the higher valence electron
density than in the case of lithium. Interestingly, a vastly
different behavior of var��� is displayed by the local estima-
tor for Ne, with fluctuations in the core regions being re-
duced by roughly two orders of magnitude and being negli-
gible in the valence. This latter effect is likely to be due to
the short range exponential form of the auxiliary function �,
for which the value Zeff=12.5 was used in order to minimize
the variance of the estimator.

Taken together, the results shown in Figs. 1 and 2 sug-
gest that the lower standard error obtained using the local
estimator with respect to the current implementation of the
differential one is likely to be due to reduced fluctuations in
both the core and the valence region. Nevertheless, the large
fluctuations close to the node found for both Eqs. �5� and �6�

FIG. 1. Logarithm of the local variance log10�var���1
+��2

�� as a function of the distance �in bohr� from the nucleus for identical spin electrons in the Li atom.
Results obtained using the Metropolis algorithm. Panel A: Local estimator �Eq. �5� with Zeff=2.69�; panel B: Differential estimator �Eq. �6��.

FIG. 2. Logarithm of the local variance log10�var���� as a function of the electron-nucleus distance �in bohr� obtained using the Metropolis algorithm. Panel
A: Li atom; panel B: Ne atom. The solid and dashed lines correspond to the local �Eq. �5�� and differential �Eq. �6�� estimators, respectively.
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�see Fig. 1� are an important source of concerns and must be
addressed to obtain robust estimates. As a matter of fact, one
can easily prove that both Eqs. �6� and �5� have an un-
bounded variance as discussed in Sec. I; the effect of the
latter, however, can be hidden by the finite simulation length
and by the fact that the density is vanishingly small around a
nodal surface. This point is exemplified in Fig. 3, which
shows the behavior of the standard error as a function of the
number of blocks when using �T

2 as sampling density.
Clearly, the sudden “jumps” �roughly a factor of 2–5� in the
standard error highlighted in Fig. 3 are rare but catastrophic
events that spoil the robustness of the MC estimate. This is
particularly apparent for explicitly correlated wave functions
and for the local estimator due to its lower standard error.
Needless to say, one would hope that both estimators may
enjoy a higher statistical efficiency for heavier systems once
the problem of unbound variance is eliminated.

B. Improved sampling densities

In order to address the complications due to the unbound
variance and to obtain reliable results and error estimates, we

tested the performance of the sampling distributions pro-
vided in Eqs. �11�–�13�. These distributions, however, re-
quire few parameters ��c� or �c ,rc ,��� to be chosen/
optimized in order to obtain the highest possible statistical
efficiency from the VMC simulations. In our attempt at se-
lecting those parameters, we devised a different strategy for
each distribution.

In the simplest case provided by 
abs �Eq. �11��, the pa-
rameter of the distribution was roughly optimized by means
of relatively short simulations �each sampling 4�107 con-
figurations� with values for c a factor of 5 apart from each
other. For the long production runs, we selected the value of
c that gave the lowest standard error for ���. As for 
 f, one
should note that the Fermi function makes it strictly nonzero,
thus eliminating the presence of nodes. However, the param-
eters must be chosen so that its value is high enough around
a node to remedy the problem while still obtaining a low
variance. To this end, we found that the parameters �� ,rc�,
i.e., respectively, the parameters for the decay and extent of
the “flat” region of �exp���rc−ri���−1, could be chosen from
the radial electron density � obtained sampling �T

2. This is

FIG. 4. Evolution of the standard error associated with ��� for carbon as a function of the number of simulation blocks �2�106 configurations each� for an
explicitly correlated �T. Panel A: Local estimator �Eq. �5��; panel B: Differential estimator �Eq. �6��. The dashed lines represent the results obtained with a
direct sampling of �T

2. The solid lines in panel A have been obtained using 
abs �top�, 
 f �middle�, and 
abs,f �bottom�. The solid line in �B� represents the
results obtained using 
abs,f.

FIG. 3. Evolution of the standard error associated with ��� for carbon as a function of the number of blocks �2�106 configurations each� in a simulation
sampling �T

2. Panel A: Local estimator �Eq. �5��; panel B: Differential estimator �Eq. �6��. Solid line: RHF wave function; dashed line: Explicitly correlated
wave function. Notice the different ordinate scales in the two plots.
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done by matching the decay of the Fermi function ��� to the
exponentially decaying tail of � and determining the onset of
the exponential tail region �rc� by visual inspection. A value
of c=1�10−7 was found adequate to fully eliminate the
nodal problem and was kept identical for all atoms. We
found, however, that this way of choosing the parameters for

 f generates a sampling distribution requiring a large number
of MC steps to equilibrate for atoms heavier than Ne; to
correct for this deficiency, a slightly higher � and a shorter rc

were used.
As for 
abs,f �Eq. �13��, this combines the properties of


abs and 
 f and shows no problem with the equilibration of
the distribution for large atoms. In an attempt at obtaining
the best possible performance out of this analytical form, we
tried to optimize its parameters by minimizing the standard
deviation ��

2 using a fixed set of walkers distributed accord-
ing to �T

2. The form of the cost function used in this ap-
proach reads

��
2 =

�D
2

W2 +
D2�D

2

W4 − 2
D�DW

2

W3 , �14�

where D and W are defined in Eq. �10� and �X
2 and �XY

2 are
their variance and covariance, respectively. A full optimiza-
tion of the parameters for 
abs,f turned out to be unfruitful,
with unphysical values obtained at the end of the minimiza-
tion procedure. We found, however, that optimizing c with
Eq. �14� and choosing �� ,rc� as indicated above for 
 f is
indeed a useful approach.

Panel �A� of Fig. 4 displays the behavior of the standard
error err����� as a function the number of blocks during a
simulation obtained using the local estimator for the carbon
atom and the three distributions discussed above. Also
shown, there are results from a direct sampling of �T

2

�dashed line�. From this figure, one notices that the weighted
sampling eliminates the pathological “jumps” in the standard
error, a result confirmed in several long realizations. A simi-
lar outcome was obtained also for the differential estimator

�Panel �B�, Fig. 4�, where the results for a simulation using

abs,f are shown. Notice, however, that the differential esti-
mator still presents a substantially larger statistical error than
the local estimator despite the improvements introduced by
the different sampling densities. Quantitatively, the results
shown in Fig. 4 indicate the efficiency of Eq. �5� as being
100 times higher than the one of Eq. �6� when using 
abs,f for
the carbon atom. We therefore feel that this comparison high-
lights a substantially better performance for the local estima-
tor in computing the electron density on top of nuclei and,
consequently, the following discussion will focus mainly on
the performance of Eq. �5�.

Tables III–V provide the final quantitative results ob-
tained using Eqs. �11�–�13� as sampling densities, the local
estimator with ��r�=exp�−Zeffr�, and the Metropolis algo-
rithm for a larger set of atoms. Quantitatively, the largest
standard error is obtained using 
abs, which also presents an
unfavorable scaling of err����� with respect to the nuclear
charge �compare Tables II and III�. This finding is likely to
be due to a slower decay of 
abs as a function of r than �T

2

and the associated broadening of the electron density. For
this reason, we limited our tests on 
abs only to the Li, C, and
Ne atoms. Conversely, the results obtained with 
 f �Table
IV� have standard errors similar to the ones obtained during
a “fortunate” realization of the direct �T

2 sampling, suggest-
ing therefore that it is free from the rapid increase in standard
error presented by 
abs. As for 
abs,f, the latter clearly pro-
vides us with the best statistical precision out of the three
modified sampling densities 
. Indeed a comparison between
Tables V and II indicates that the weighted sampling ap-
proach is of comparable accuracy to a fortunate realization of
the direct �T

2 sampling �i.e., when no sudden jumps are wit-
nessed during a simulation�.

In an attempt at further improving the performance of
the local estimator, we also investigated the effect of more
general forms for the auxiliary function �, whose only re-
striction is that it must be a three-dimensional normalizable

TABLE III. Average electron and spin densities for first row atoms ���� and ����− ����, a.u.� obtained using the local estimator and sampling 
abs with the
Metropolis algorithm. � is the time step, err�·� is the standard error associated with a mean value, Zeff is the parameter of the auxiliary function �, is the relative
statistical deviation from the exact restricted Hartree–Fock density, c the parameter in Eq. �11�, and W is the average configuration weight.

� ��� err��� ����− ���� err���−��� dev��� Zeff c W

Li 0.08 13.8349 5.3�10−4 0.168 4.6�10−4 −1.3 2.58 0.1 0.02
C 0.04 127.5371 1.2�10−4 −0.005 1.2�10−4 1.38 5.75 0.01 0.01
Ne 0.038 619.9105 1.1�10−1 −0.03 1.19�10−1 2.92 11.5 0.0002 0.14

TABLE IV. Average electron and spin densities for first, second, and third row atoms ���� and ����− ����, a.u.� obtained using the local estimator and sampling

 f with the Metropolis algorithm. � is the time step, err�·� is the standard error associated with a mean value, Zeff is the parameter of the auxiliary function �,
dev�����= ����−�HF� /err��� is the relative statistical deviation from the exact restricted Hartree–Fock density, �c ,� ,rc� the parameters in Eq. �12�, and W is
the average configuration weight.

� ��� err��� ����− ���� err���−��� dev��� Zeff c � rc W

Li 0.08 13.8341 4.88�10−4 0.16 730 5.9�10−4 −0.2673 2.69 1.0�10−7 1.11 4.5 0.12
C 0.04 127.553 5.34�10−3 −0.0096 5.38�10−3 0.0250 5.88 1.0�10−7 2.04 1.5 0.46
Ne 0.004 620.031 8.98�10−2 0.15 9.6�10−2 −2.1425 11.3 1.0�10−7 2.87 1.3 0.13
Ar 0.004 3839.53 3.9�10−1 0.47 4.09�10−1 −1.9311 23.7 1.0�10−7 2.3 0.7 0.996
K 0.002 4538.71 5.7�10−1 −0.13 5.97�10−1 −1.6996 28.33 1.0�10−7 2.77 1.1 0.58
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function �see Eq. �4��. As a preliminary test, a sum of two
exponentials fitted to the radial electron density was used for
He obtaining ���=3.597 253�9�10−6, i.e., factor of 2
lower standard error than the single exponent auxiliary func-
tion and 86 times lower than the differential estimator. Un-
fortunately, the biexponential form did not provide us with
any improvement over the single exponential for larger sys-
tems with nodal surfaces, this outcome prompting us to test
even more flexible auxiliary functions. Among those tested,
we mention only ��r�=a exp�−Zeffr�+ �1−a�F�r�, where F�r�
is the Fermi function. The latter form mimics the 
abs,f single
electron density for first row atoms significantly better than a
single exponential, but it provided no reduction in the stan-
dard error associated with ��� for Li. Similar results were
obtained for other model �’s, suggesting therefore that the
use of the density as weighting function is not likely to give
any improvement. In the end, the good results obtained using
the single exponential auxiliary function and the simplifying
matter of a single parameter optimization strongly motivates
its general use in computing ���.

To conclude this section, we report in Table VI the re-
sults obtained using explicitly correlated TWFs built as a
product between the seven term total symmetric correlation
factor suggested by Schmidt and Moskowitz23 and a RHF
function, 
abs,f as distribution and the local estimator. In
these cases, the parameters of the correlation factor were
optimized by minimizing the variance of the local energy
over a fixed sample of configurations. Notice that the ana-
lytical form chosen for the correlated TWFs prevents us from
comparing our data for ����− ���� either with experiments or
results obtained using more accurate model wave functions.
Given this fact and that the aim of this work is only to de-
velop efficient estimators for the Dirac delta expectation
value, we restrict our comments, mentioning only that no
substantial changes in the computational procedure were

needed and that we obtained standard errors similar to the
ones obtained using a simpler determinant function.

IV. OPTIMAL MARKOV CHAINS

In VMC simulations, configurations sampling the appro-
priate target density are usually generated by means of a
Markov chain. Although convenient in terms of code com-
plexity and flexibility, the usage of Markov chains produces
samples that are sequentially correlated especially in the core
region.24–27 One should therefore strive to reduce the corre-
lation time for the specific observable of interest �e.g., the
density�, finding optimally efficient Markov chains by cor-
rectly choosing the sampling algorithm and the step size used
to propagate the configurations in space. The aim of this
section is thus to provide a short discussion of our efforts
toward an appropriate selection of those two variables.

Let us start by mentioning that we found it convenient to
use the weighted mean square electron displacement
��r2����exp�−2Zeffr�, a function of the electron-nucleus dis-
tance �r�, as an indicator of the overall sampling efficiency
and to select an almost optimal step size �. ��r2����exp�
−2Zeffr� reflects the average walker displacement in the core
region, of special importance for the local estimator, and it is
an inexpensive way of selecting � that scores as well as the
correlation function for �. The results shown in Fig. 5, all
obtained using the Metropolis algorithm, give an indication
of the longest and shortest weighted mean square displace-
ment obtained for neon over a broad range of step lengths
when sampling either 
abs,f or �T

2. Notice that the value of
���r2����exp�−2Zeffr� close to the nucleus is at least an or-
der of magnitude smaller than � for the Metropolis algo-
rithm, suggesting that a substantial amount of rejection is
indeed taking place. Interestingly, it appears that the
weighted mean square displacement obtained using 
abs,f is

TABLE V. Average electron and spin densities for first, second, and third row atoms ���� and ����− ����, a.u.� obtained using the local estimator and sampling

abs,f with the Metropolis algorithm. � is the time step, err�·� is the standard error associated with a mean value, Zeff is the parameter of the auxiliary function
�, dev�����= ����−�HF� /err��� is the relative statistical deviation from the exact restricted Hartree–Fock density, �c ,� ,rc� the parameters in Eq. �13�, and W
is the average configuration weight.

� ��� err��� ����− ���� err���−��� dev��� Zeff c � rc W

Li 0.08 13.8343 1.70�10−4 0.1672 1.65�10−4 0.04 2.69 0.01 1.11 4.50 0.37
C 0.04 127.5578 3.92�10−3 −0.004 29 3.91�10−3 1.21 5.875 0.01 2.036 80 1.5 0.83
Ne 0.004 620.2153 3.58�10−2 −0.000 744 3.73�10−2 −0.22 10.97 0.1 2.872 18 1.3 0.67
Ar 0.004 3839.5391 3.22�10−1 0.09 3.33�10−1 −2.29 23.7 0.016 2.296 92 2.0 0.71
K 0.002 4538.6754 4.44�10−1 0.41 4.23�10−1 −2.29 27 0.1 0.842 55 2.0 0.73

TABLE VI. Average electron and spin densities for first, second, and third row atoms ���� and ����− ����, a.u.� obtained using the local estimator and sampling

abs,f with the Metropolis algorithm. � is the time step, Zeff is the parameter of the auxiliary function �, err�·� is the standard error associated with a mean value,
�c ,� ,rc� the parameters in Eq. �13�, and W is the average configuration weight. Explicitly correlated �T.

� ��� err��� ����− ���� err���−��� Zeff c � rc W

Li 0.5 13.7836 2.3�10−4 0.1656 3.3�10−4 3.8 0.3 2.11 4.5 0.02
C 0.08 127.6793 2.6�10−3 −0.1110 3.2�10−3 6.0 2.1 2.04 1.5 0.02
Ne 0.2 613.71 3.0�10−2 −0.0047 3.0�10−2 10.14 3.9 2.87 1.5 0.01
Ar 0.08 3724.6753 8.0�10−1 −1.87 8.9�10−1 19.2 1.6 2.3 2.0 0.02
K 0.04 4395.1288 7.2�10−1 0.35 7.5�10−1 20.3 1.6 0.84 2.0 0.12
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substantially larger �up to five times� than the same quantity
obtained sampling �T

2. This could be understood by recalling
that 
abs,f is written as a linear combination between D2 and
�D�, which is expected to generate a smoother behavior of the
sampling density. When using 
abs,f as sampling distribution
for Ne, the largest weighted mean square displacement over
the important range of r is obtained with �=0.2, a fact that
translates into a 25% lower standard error than for the �
=0.01 case. Considering the analytical form �Eq. �14�� of the
statistical error associated with the weighted sampling �Eq.
�10��, one would expect that a larger variance should be ob-
tained than in the case where �T

2 sampling is carried out due
to weight fluctuations and the presence of a positive covari-
ance. Figure 5 shows, however, that 
abs,f provides one with
a more efficient sampling and an explanation for the lower
standard error discussed earlier. As for the direct sampling of
�T

2, �=0.01 appear to produce longer displacements and
smaller standard errors than obtained using larger time steps,
in good agreement with what was previously obtained.27 It is
important, however, to remember that using only the simula-
tion’s standard error to gauge the best step length with �T

2 is
an inherently flawed procedure due to the possibility of
events such as the ones depicted in Fig. 3.

Turning to the issue of selecting an appropriate sampling
algorithm, it is common lore that using a single electron
move implementation of the Langevin algorithm11 provides a
more precise mean value of the local energy than the equiva-
lent Metropolis scheme, and that electron density histograms
obtained with the two methods closely overlap. In this work,
the Langevin algorithm was implemented in the standard
way11 for single electron moves, with a sequence of drift
�based on the quantum velocity �i ln �T

2�, Gaussian diffu-
sion, and acceptance/rejection steps. Similarly to what is
usually reported in the literature, we found that the Langevin
algorithm provides one with a 40% higher efficiency while
using both Eqs. �5� and �6� and directly sampling �T

2 for the
ground state of He. However, we also found that biased re-
sults may appear for systems whose wave function contains
nodal surfaces. For instance, ��� obtained using Eq. �5� was
found to deviate substantially from the exact RHF density in
the case of carbon and lithium �6 and 16 times the standard
error, respectively�. Similar results were obtained using the
differential estimator for carbon. This, however, is different
from the unbounded variance problem discussed previously
for the Metropolis algorithm, which produces unbiased �T

2

densities. An explanation for these results is obtained by con-
sidering the diagonal part of the two-body density matrix
around a nodal surface. Figure 6 shows the histogram ob-
tained with a long simulation for the two electrons of iden-
tical spin in Li. From this, one can easily notice that the
Langevin algorithm �panel �B�� generated persistent configu-
rations around the node, therefore spoiling the quadratic
shape of the two-particle density matrix. Conversely, the Me-
tropolis distribution appears smooth and displays the ex-
pected quadratic behavior around the node �panel �A��. The
situation is largely improved sampling 
abs,f with the Lange-
vin algorithm, the numerical results for ��� obtained with Eq.
�5� differing from the exact RHF value by less than three
times the standard error. This finding is most likely con-
nected to a weaker divergence of the quantum force
� ln 
abs,f due to the presence of �D�. err�����, however,
turned out to be substantially larger than the one obtained
with the Metropolis algorithm. In this respect, a possible
avenue of improvement may be represented by the improved
Langevin algorithm introduced in Refs. 28 and 26. Given the

FIG. 6. Histogram of the two-body diagonal density matrix for identical spin electrons in Li as a function of their distance from the nucleus �bohr�. Panels
A and B show the results obtained using the Metropolis and Langevin algorithms, respectively. In panel B, notice the relatively high peaks due to the presence
of persisting configurations around the nodal region �r�1

�r�2
� that are absent in the distribution generated with the Metropolis scheme.

FIG. 5. Weighted mean square displacement ��r2����exp�−2Zeffr� �bohr2� as
a function of the electron-nucleus distance r �bohr�. Shown are the highest
and lowest weighted mean square displacements obtained with the Metropo-
lis algorithm over the range of step lengths 0.01���0.4 for 
=
abs,f

�� ,�� and 
=�T
2 �� ,��. Notice the higher ��r2�exp�−2Zeffr� values ob-

tained using the alternative sampling distributions 
abs,f.
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overall satisfactory performance provided by the Metropolis
algorithm, we decided, however, not to pursue this avenue of
exploration further.

Concluding this section, we also mention the possibility
of using “accelerated sampling” algorithms24,26,27,29 to in-
crease the efficiency in computing ���. In this work, we
implemented the delayed rejection scheme proposed by
Bressanini et al.27 for the Metropolis algorithm, an approach
where an initial electron displacement attempted with a step
length suitable for the valence region is followed by a second
shorter one upon rejection of the first movement. With the
appropriate normalization of the acceptance probability, the
second displacement is more likely to be accepted in the core
region, thus producing a more efficient Markov chain. In-
deed, we found that the delayed rejection method led to an
overall increase in the average accepted displacement, with
the larger improvements being obtained in the nuclear region
for both 
abs,f and �T

2. A twofold improvement in efficiency
was obtained using 
abs,f selecting the ratio between long and
short step lengths in accord with the suggestion made in Ref.
27. In our view, this illustrates that accelerated algorithms
may be a way to improve efficiency when sampling 
abs,f.
On the other hand, no consistent reduction in standard error
was seen when sampling �T

2 with the delayed rejection
scheme, a finding suggesting again the presence of problems
generated by the nodal surface.

V. CONCLUSIONS

Starting from earlier work on the interparticle contact
density in small systems,20 we introduced a local estimator
�Eq. �5�� for the electron and spin density on top of heavy
nuclei suitable for electronic structure QMC simulations. Ex-
tensive numerical simulations carried out on the latter and
with the scheme proposed in Ref. 16 highlighted numerical
issues related to the presence of an unbounded variance.
This, due to a second order divergence of the integrand in
both Eqs. �5� and �6� on the nodes of �T, was circumvented
with a weighted sampling approach based on alternative
sampling densities 
 �Eqs. �11�–�13��. Using the sampling
density in Eq. �13�, the local estimator �Eq. �5�� features a
smaller computational cost, at least an order of magnitude
for heavy atoms, than its differential counterpart �Eq. �6��.
Using appropriate accelerated sampling algorithms for the
core region �e.g., the delayed rejection scheme tested in this
work� the total cost of evaluating ��� with Eq. �5� is further
reduced. According to these results, the local estimator ap-
pears therefore as the method of choice when computing
contact electron and spin densities, quantities that bear strong
relevance in the interpretation of electron paramagnetic reso-
nance spectra. As usual, further improvements in efficiency
may be expected using sampling algorithms that reduce even
more the serial correlation in the VMC Markov chain pro-
vided that persistent configurations are completely elimi-
nated �for example, see Ref. 28�.

As mentioned in Sec. I, an alternative to the two estima-
tors benchmarked in this work would be represented by the
method proposed by Alexander and Coldwell.19 Unfortu-
nately, a direct comparison of the three methods is hampered

by the different sampling techniques. Notwithstanding this
hurdle, we notice that the magnitude of the statistical error
quoted in Ref. 19 is similar to the one obtained using Eq. �6�
when first row atoms are studied and a comparable number
of independent samples used. In turn, this suggests that the
local estimator should perform better in terms of overall ef-
ficiency. Besides, one would expect the sampling of indepen-
dent configurations with the method in Ref. 19 to become
highly problematic for third row species due to the large
number of electron-electron pairs to account for.

Although not attempted in this work, the local estimator
presented in Eq. �5� may be extended to deal with electron-
electron coalescence probabilities following the suggestions
provided in Ref. 20. At the current stage, however, the dif-
ferential estimator proposed by Toulouse et al.30 appears to
provide one with a sufficient statistical precision to cope with
all the foreseeable tasks, and it is therefore deemed as not
necessary. Instead, a more pressing issue is represented by
the spin contamination that plagues the calculation of accu-
rate spin densities for open shell systems containing heavy
atoms. We expect this to become especially important when
using nonsymmetric correlation factors,31 the latter being
used to satisfy the different cusp conditions for identical and
different spin electron pairs. To solve this issue, we are cur-
rently trying to reduce the spin contamination in VMC trial
wave functions using a projection technique. In principle, the
impact of spin contamination on the accuracy of ����− ����
may be reduced by exploiting DMC simulations to project
out, although partially, the contaminant states. Even though it
appears straightforward to extend the DMC scheme in Ref.
20 to the case of electron-nuclear coalescence probabilities,
it is our belief that employing spin projected trial wave func-
tions to guide DMC simulations would lead to more accurate
results for ��� and ����− ����. Testing this idea is left as a
future avenue of exploration.
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APPENDIX: UNBOUNDED VARIANCE OF Š�‹

To exemplify the problem with the unbounded variance
of ��� due to the presence of fermionic nodal surfaces, we
use the simple case of the lowest 3S state for the He atom. A
determinant model for the wave function of this state reads

�T�r1,r2� = M��1�r1��2�r2� − �2�r1��1�r2�� , �A1�

where M is the normalization constant and the �i’s are
spherical orbitals. Despite the fact that the above function
has a node for r1=r2, ��� is well defined as can easily be
shown by inserting �T in the expression for the expectation
value. To show that the variance �var���� of the density esti-
mator presented in Eq. �5� is indeed unbounded, let us start
by noticing that a term of the form
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 dr1dr2��T�0,r2���r1�
�T�r1,r2�

�4

��T�r1,r2��2

=
 dr1dr2
��T�0,r2���r1��4

��T�r1,r2��2
�A2�

is present in the expression for var���. From the equation
above, one easily recognizes that the numerator is always
positive apart from when r2=0, whereas the denominator has
a second order zero as the original trial function on the mani-
fold r1=r2. In principle, this would not be a problem if it was
possible to find a coordinate transformation with a Jacobian
contrasting the second order divergence on this manifold. A
typical application of this idea in the context of VMC simu-
lations is provided by the calculation of �1 /ri���T

2. In this

case, the variance of �1 /ri���T
2 is bound, thanks to the fact

that the divergence in the integrand of �1 /ri�
2 ��T

2 is eliminated

by the factor ri�
2 dri� in the spherical coordinates Jacobian.

For the 3S state of helium, it would be natural to use the
Hylleraas coordinate set �s , t ,u�= �r1+r2 ,r1−r2 ,r12�, due to
which the nodal surface assumes the simple form t=0. The
volume element in Hylleraas coordinates is proportional to
�s2− t2�udsdtdu, which unfortunately, contains the
t-independent term s2u conserving the second order diver-
gence in the integrand. A similar conclusion is easily reached
for the differential estimator in Eq. �6�.
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