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Intermolecular forces and fixed-node diffusion Monte Carlo: A brute force
test of accuracies for He 2 and He–LiH
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The accuracy of the fixed-node approximation and diffusion Monte Carlo method in computing the
interaction energy of van der Waals systems was investigated. Tests were carried out by simulating
the electronic structures of He2 and He–LiH. These two systems were chosen as representative of
two fundamentally different interactions, namely the weak dispersion forces in He2 and the dipole/
induced–dipole interaction in He–LiH. The results for both systems are in excellent agreement with
‘‘state of the art’’ calculations, thereby indicating a high accuracy for the fixed-node approximation.
Also, our interaction energies for He–LiH indicate that the coupled cluster single double triple
method@Taylor and Hinde, J. Chem. Phys.111, 973 ~1999!# gives an accurate prediction of the
interaction potential for that system. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1612479#
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The accurate description of interaction potentials is
paramount importance in rationalizing and predicting
physical chemistry of gas phase reactions, molecular c
ters, and bulk systems. For such descriptions quantum ch
ists have developed various approaches delivering diffe
levels of sophistication and predictive power. These meth
usually fall into one or the other of two conceptual familie
supermolecular or perturbative. In the supermolecular
proach one computes the interaction potential between
or more chemically relevant fragments by subtracting
energy of the separate species from the energy of the su
system, while in the perturbative approach one exploits
fact that only small changes in the electronic structures of
fragments are induced by their mutual interaction.

However, independent of the method of choice, t
main difficulties are invariabily encountered. These are~1!
the necessity of introducing the electronic correlation in
description of the molecular forces and~2! the dependence o
the predicted forces on the quality of the basis set employ
Although one could always circumvent the first difficulty b
selecting a correlated method such as Møller–Ple
(MPn), coupled cluster~CC!, or one of the variants of the
explicit electron interaction family~R12!,1 the issue of the
basis set dependence of the results is quite complicated
delicate. While on one hand there is the need to use
largest possible basis set in order to describe the su
changes in the electronic structure of the fragments, on
other hand one is faced with the issue of the computatio
effort required to carry out the calculation. Usually, the mo
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accurate the computational method the higher the comp
tional effort for the basis set.

To make the issue even more complicated, the finite s
of the basis set invariabily produces an overestimate of
interaction energy with respect to the complete basis set l
when size-consistent methods are employed. This erro
usually called ‘‘basis set superposition error’’~BSSE!2 and it
is generated by one of the fragments using the basis set o
other one to stabilize itself.3 Although various schemes hav
been proposed to reduce or eliminate this problem in
framework of the standard quantum chemis
approaches,4–6 no definitive solution to the problem is cur
rently available for large systems. It is this that has led us
the direction of developing and testing alternative metho
for predicting accurate potential energy surfaces for interm
lecular interactions.

Among the possible alternatives, the different variants
quantum Monte Carlo~QMC!7 used in electronic structure
calculations possess distinctive advantages with respec
the more frequently employedab initio methods. We special
ize in describing the diffusion Monte Carlo metho
~DMC!,8–11 but similar remarks can be made for the oth
members of the family. First, by using the position repres
tation in configurational space the DMC method employ
complete basis set. Thus, it is BSSE free. Second, electr
correlation is directly introduced in the treatment by simul
ing the exact Born–Oppenheimer electronic Hamilton
without referring to any model system, wave function
Hamiltonian as the starting point. This avoids the slow co
vergence toward the exact energy upon improving the qua
of the basis set which is typical of CC and CI. Third, give
any accurate, although approximate, description of a syst
DMC always improves the average energy in a si
consistent way.

ry,
5 © 2003 American Institute of Physics
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Using both DMC or Green’s function Monte Carl
~GFMC!, a method closely related to DMC, highly accura
results have been obtained for He2 ,12–14 HeH,16 He3 ,17,18

H3 ,19,20 H2
2 , and H–PsH.21 The results of these calculation

represent the most accurate values to date for the intera
energy of the aforementioned systems. In fact, ‘‘exact’’ QM
solutions with no extrapolations, no interpolations, and
corrections are available for many of these. This sugg
that the QMC methods have the potential to contribute to
field of intermolecular forces for larger systems.

Whereas GFMC can be made exact by using a canc
tion procedure to sample the ground state of small fermio
systems, the DMC method usually relies on the fixed-no
~FN! approximation to satisfy the antisimmetry requireme
for an electronic wave function.9 This implies that the com-
puted energy is an upper bound of the exact energy of
system.10 However, the weak interaction due to the van d
Waals force is usually long range. For instance, the He2 equi-
librium distance is 5.6 bohr. This large distance makes
overlap between the electron density of the two interact
systems very small so that the nodal surfaces of the w
function for the two interacting fragments may be almo
identical to the one obtained by multiplying the wave fun
tion of the two isolated systems. To be more specific, let
assumeCT

(a) andCT
(b) to be the two antisymmetric trial func

tions for the fragmentsa andb. A simple antisymmetric trial
wave function for the interacting systems could be written

CT
~ab!5A@CT

~a!CT
~b!#5(

P
~2 !pP@CT

~a!CT
~b!#, ~1!

where the antisymmetrizerA contains only permutation op
eratorsP that exchange the electrons ofa with the electrons
of b including the identity operatorI. The net effect of a
single use of the operatorP can be visualized as the move
ment of theCT

(a)CT
(b) product to a different region of the

electronic configuration space. This movement can place
centroid ofCT

(a)CT
(b) and P@CT

(a)CT
(b)# far away from each

other if the distance between the center of mass ofa andb is
large. SinceCT

(a) andCT
(a) decay exponentially with the dis

tance between an electron and the center of mass, the co
bution due to the permuted term to the value, and hence
effect on the node location, ofI @CT

(a)CT
(b)# should be ex-

pected to be small. If this is exactly the case, one would a
expect to achieve an accurate nodal error cancellation
tween the noninteracting fragments and the supermolec
complex. This should also occur if the two wave functio
CT

(a) andCT
(b) are relaxed at the interaction geometry, es

cially if the systems are different.
Since the above-presented arguments indicate FN-D

is a possible candidate for accurate predictions of van
Waals interaction energies, we feel it is worth to test t
approach on small and medium systems in order to be
understand its applicability and limitations.

As a first test case, the helium dimer He2 in its equilib-
rium geometry (Req55.6 bohr) for the ground state is cho
sen. The interaction potential of this system was intensiv
investigated both for its importance in low temperature c
densed matter and cluster physics and as a prototype
Downloaded 11 Oct 2003 to 163.1.35.98. Redistribution subject to AIP
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system with van der Waals forces. The calculation of
potential curve with an accuracy of better than 0.1% h
been a long-standing goal of modern quantum chemistry~see
the list of modern references in Ref. 14! recently met with
‘‘exact’’ QMC calculations.15

Since the ground state of the He atom is nodeless,
DMC method would give the exact result for the energy
separated atoms. However, instead of using DMC to co
pute the total energy of He, we rely on the alternate calcu
tions presented in Ref. 22,22.903 724 377 034 hartree, fo
this value.

The trial wave function chosen to guide the simulati
for He2 and compute the value of the energy is written as
antisymmetrized product of two Hylleraas-type wave fun
tions multiplied by a many-body Jastrow factor containi
dipole–dipole and similar cross terms.23 This function has a
variational total energy of25.807 484~2! hartree and an es
timate root-mean-square fluctuation of the local energy eq
to 0.0015 hartree. This model wave function has alrea
been employed to compute the He2 interaction energy curve
by means of the GFMC method including exa
cancellation.12 Using a target population of 5000 walkers, th
difference between the FN-DMC energies computed at v
ous time stepst and twice the ground state energy of He a
shown in Table I. Each calculation required roughly 2600
of CPU time on an SP2 machine of the Center for Academ
Computing of the Pennsylvania State University. Table I a
presents the extrapolatedt50 value,211.07~8! K, obtained
by fitting the finitet results with a linear function, and th
most recent GFMC value,15 210.998~5! K. Being based on
the sampling of the exact Green’s function, the latter do
not require extrapolation of any sort. As evident, the F
DMC~t50! result is in accurate agreement with the GFM
value, differing from the last one only by 0.07~8! K. Both
values are also in accurate agreement with the most recenab
initio estimates of the same quantity, namely210.947 K~a
variational upper bound!,24 210.978 K,25 211.00 K,26

210.947 K,27 211.02 K,28 210.95 K,29 and 211.059 K.30

This suggests that the nodal surfaces are quite accurat
this system.

Motivated by the accurate results obtained for the
dimer, we applied the FN-DMC method to another test ca
A particularly interesting and useful one is that of the inte
action between the He atom and the LiH molecule. State
state cross sections for collisions between these two spe
are important in modeling the energy transfer in ou
space.31 Further, the interaction energy between these t

TABLE I. FN-DMC interaction energy of He2 at Req55.6 bohr. Energies in
K and time stepst in a.u.s indicates the statistical error of the results.

t E(t) s

GFMCa 210.998 0.005
0.000 211.07 0.08
0.007 211.08 0.11
0.010 211.16 0.11
0.012 211.10 0.10
0.015 211.13 0.10

aReference 15.
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Downloaded 11 
TABLE II. VMC total energies and root-mean-square fluctuations, FN-DMC total energies, DMC@DE~DMC!#
and CCSD~T! interaction energies for He–LiH at various geometries. Total energies and flustuations in h
and interaction energies in cm21. Distances in bohr. A positive value forRHeCM indicates that He is located a
the Li end of LiH.

RHeCM E(VMC) s E(DMC) DE(DMC) CCSD~T!a

15.50 210.959 83~15! 0.369~7! 210.974 086~41! 264~9! 276.08
14.25 210.960 87~14! 0.359~8! 210.974 610~65! 2179~14! 2176.59
13.50 210.956 46~15! 0.359~7! 210.972 511~65! 1282~14! 1312.51
27.25 210.947 94~19! 0.459~9! 210.972 343~66! 1318~14! 1337.52
` 210.973 800~66! 0

aReference 33.
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fragments has already been investigated by using
coupled-valence bond~SC-VB! theory32 and coupled cluste
single double triple CCSD~T! calculations.33 An interesting
feature of the interaction potential is the presence of t
different minima, one as the He atom approaches LiH at
Li end of the molecule and another as the He atom
proaches the H end of the molecule. Each minimum co
sponds to a collinear configuration. These minima are in
preted as deriving from a relatively strong dipole/induce
dipole interaction between the dipolar LiH and the wea
polarizable He. The minimum at the Li end of the molecu
is predicted to be deeper and to lie at shorter distance
the one at the H end. This behavior can be rationalized by
strong ionic character of the LiH molecule which is acc
rately described as Li1H2 at the equilibrium distance. Thus
while approaching the Li end of the molecule an He at
can experience the bare molecular field even at short dist
due to the compact electronic structure of the Li1 ion. Con-
versely, the electronic distribution on the H end is quite d
fuse due to the strong H2 character. So, the repulsive inte
action due to the electron overlap starts early and reduce
binding interaction energy at long distance. Although p
ducing overall similar interaction potentials, the SC-VB a
CCSD~T! methods differ in predicting the relative locatio
and magnitude of the two minima. More specifically, t
SC-VB procedure predicts interaction energies only ab
one-third of those predicted by CCSD~T! as well as some-
what larger equilibrium separations. These quantitative
crepances give rise to qualitatively different results for
ground state of the LiH–Hen complexes. Whereas th
CCSD~T! potential predicts binding even for He–LiH,34

nuclear DMC simulations using the SC-VB potential ener
surface~PES! suggest LiH–Hen to dissociate into LiH and
Hen .35 Differences in the state-to-state cross section in
inelastic scattering of He from LiH are also seen.36

We carried out FN-DMC calculations for four differen
geometries of the interacting supermolecular complex H
LiH. The LiH bond distance was fixed at the equilibriu
value for the isolated molecule~3.01397 bohr!, and a simu-
lation was carried out to estimate the LiH total energy o
taining E528.070 075(66) hartree. This value compar
well with the lowest-energy variational result,28.070 449
hartree.37 Using the latter it is possible to obtain an estima
of the LiH fixed-node error for the DMC simulation, name
0.000 374~66! hartree. All the DMC simulations employe
the time step sizet50.001 a.u. and a walker ensemble co
Oct 2003 to 163.1.35.98. Redistribution subject to AIP
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posed of 5000 configurations. These parameter values re
sent in our experience an adequate choice to reduce the
bined time step and population bias in the calculated ener
to a values smaller than the statistical error in the energ
After the equilibration phase, each simulation consum
roughly 240 h of CPU time on a two year old single proce
sor Pentium III 800 MHz.

As a trial wave function for both LiH and He–LiH we
employed the widely used expression written as a deter
nant times a Jastrow factor.38 The molecular orbitals used in
the determinantal part of the trial wave function were o
tained using theGAUSSIAN 98 suite39 and the restricted
Hartree–Fock procedure. The Slater type orbital basis se
Li and H was taken from the work by Liuet al.40 on the
LiH2 anion, while the HF basis set for He from Ref. 41 w
supplemented with a 2p function whose exponent was opt
mized using MP2 calculations. The Slater basis set was
proximated as a linear combination of Gaussian orbitals~ei-
ther STO-10G or STO-8G! in all the GAUSSIAN 98

calculations. The Jastrow part of the trial function was op
mized by using a robust estimator approach recen
introduced.42 The variational results of the optimization pro
cedure for the total energyE(VMC) and the root-mean-
square fluctuation of the local energys are presented in
Table II. Comparing the fluctuation of the local energy f
these wave functions with the one of the He–He trial wa
function, it can be clearly seen that the latter is orders
magnitude more accurate than the ones derived by the
strow times determinant’’ model.

The DMC results obtained using the optimized tr
wave functions for the He–LiH systems are shown in Ta
II. In the table,RHeCM represents the distance between the
atom and the LiH center of mass. The He atom lies on
LiH bond axis, and a positive sign ofRHeCM indicates it is
located at the Li end of the molecule. The system geomet
were chosen to probe different parts of the potential surfa
namely the bottom of the well of the strong He–Li1 inter-
action and the repulsive walls at both ends. Together with
DMC results we show also the interaction energy obtain
by using counterpoise corrected CCSD~T! calculations.33

Comparing the values in Table II, it may be seen that the t
different techniques produce good agreement with e
other. This is especially true forRHeCM514.25 and15.50
bohr, points that are located inside the attractive well of
potential. Despite their uncertainties, the DMC results
RHeCM513.50 and27.25 bohr seem to indicate that th
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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repulsive part of the CCSD~T! potential is steeper than th
DMC one. A direct comparison of the DMC results wi
SC-VB results cannot be made because of differing ge
etries. However, in Ref. 36 a comparison between CCSD~T!
and SC-VB results was carried out for geometries that o
slightly differ from the ones employed in the present wo
The results highlighted the much less attractive behavio
the SC-VB potential with respect the CCSD~T! one, roughly
a factor of 3 in terms of the well depth, and hence also w
respect to the DMC results.

In summary, in this work we used the FN-DMC metho
to compute accurate values for the interaction energie
He–He and He–LiH. The computed values are in excell
agreement with those of prior ‘‘state of the art’’ electron
structure calculations available for these systems. This s
gests that the fixed-node approximation does not introd
any important bias in FN-DMC calculations for these a
similarly interacting systems. In using the FN-DMC metho
we were able to confirm the accuracy of prior CCSD~T! cal-
culations for He–LiH.

We note that the computational effort required for a F
DMC calculation to reach a chosen statistical accuracy in
energy is expected to scale asN3, the cube of the system
size. This could reduce the usefulness of this approac
calculating intermolecular forces for larger systems. Ho
ever, we expect that statistical errors in the energies given
such calculations might be greatly reduced by an effec
implementation of correlated sampling7 procedures.
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