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Annihilation rate in positronic systems by quantum Monte Carlo:
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An accurate method to compute the annihilation rate in positronic systems by means of quantum
Monte Carlo simulations is tested and compared with previously proposed methods using simple
model systems. This method can be applied within all the quantum Monte Carlo techniques, just
requiring the accumulation of the positron—electron distribution function. The annihilation rate of
e"LiH as a function of the internuclear distance is studied using a model potential approach to
eliminate the core electrons of Li, and explicitly correlated wave functions to deal with all the
remaining particles. These results allow us to compute vibrationally averaged annihilation rates, and
to understand the effect of the ‘Lielectric field on positron and electron distributions. 2002
American Institute of Physics[DOI: 10.1063/1.1436464

I. INTRODUCTION Not requiring the analytical calculation of integrals,
_ o _ _ QMC allows one to use any physically sensible wave func-

In positron and positroniunPs chemistry and physics, tion. This possibility increases the chances to obtain an ac-
the annihilation ratel’,, plays an important role since it curate description of any class of systems once all the rel-
correlates with many aSpeCtS of the local environment Whergvant physica| information is included in the chosen
the positron annihilates. For instance, “pick-off” annihila- analytical form of the wave function. Having defined a trial
lation in atomic and molecular gases, and bound state annjy compute the differential and nondifferential properties of
hilation of positronic compounds are just few of the i, system by samplin@'?r VL, or\Ifg. Here, W, is the
experiments wherd’,, can be measured and successivelygyact ground-state function of the system. This task is usu-
mterplrﬁted.h . _ I both tech ally accomplished by creating a distribution of poirtédso

Although these experiments are relevant both technog. . a5 configurations or walkéris configurational space

logically and scientifically;? only few theoretical studies whose density is proportional to the aforementionla‘@
have been devoted to accurately compute annihilation ratey o w2 '
TY¥O0 0"

for realistic systems like atoms and molecules in order to - N
. . : _ Keeping in mind the above remarks, it might appear that
compare with experimental data or to predict trefids. . . .
. . the QMC methods should accurately predict any interesting
Moreover, these have been restricted to deal with at mos o N
observable for positronic systems. This is indeed correct ex-

four active electrons, so that only a bunch of systems have . .
y y éept for extremely local operators like Dirac’s de(td, and

been studied so far. We believe this scarceness of results ﬁ forl hich i tional to it tati |

be primarily due to the intrinsic difficulty in obtaining accu- encehlorr] 2y WNICN 1S propor |?na Of' S exlf)ec afllon va ue,l

rate wave functions for larger systems, and to the computaf—Or which an a_ccurate sampling of small configurationa
space volumes is needed. These operators are well known to

tional effort requested with respect to ordinary matter com X
represent a challenge for QMC due to the discrete nature of

pounds when standa@b initio methods are employéd. : i - :
For these reasons, quantum Monte Caf@MC) the configuration ensemble and the finite length of the simu-

method&® represent an alluring alternative to these methods/ations. _

to density functional theory, and to explicitly correlated wave ~ AS far as the mean value of the Dirac’s delléh operator
functions in computing energies and properties of realistidS concerned, one faces an additional difficulty when trying
positronic systems. QMC techniques are well described 0 estimate its mean value. Even admitting a perfect sam-
the literature, so we avoid burdening this paper with the dePling in the regions where two particles are close to each
tails of the methods and constrain ourselves to discuss on§ther, the primitive method of counting the number of times

the technical issues relevant for the specific problem. the interparticle distanceis smaller than a given radius,
(i.e., counting the ones that fall into a spherical well of radius

Electronic mail: Massimo.Mella@unimi.it ry)° has an associated statistical error that diverges for
bEjectronic mail: Simone.Chiesa@unimi.it — 0. This fact means that the_ estimation of the statistical
Electronic mail: Gabriele.Morosi@uninsubria.it error of the extrapolated value is based on shaky grounds.
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Although not a solution, a slightly better approach wasr, =r,, is employed to guide the simulation and to compute
devised by substituting the simple sphere with a Gaussian$ in Eq. (3), then(&(r _.)) can be easily estimated by the
function centered at the coalescence pbiht: The variance (N$/Nq)?2 ratio.
of this estimator also goes to infinity upon decreasing of the  Although these three methods represent a step towards
Gaussian width, but it diverges less fast than the one of théhe solution of this complicated problem in the VMC frame-
spherical well, therefore allowing a statistically more accu-work, and are currently used for ordinary electronic com-
rate estimation of 5(r - ,))=2i((r;)). pounds with success, the situation still remains far from sat-

Due to the interest in computing3(r)) for many sys- isfactory for positronic systems. For these systems beyond
tems, efforts have been made to solve these problems, amde problem of the method used to compy#, there is
remedies have been suggested in the framework of all thgnother difficulty: as far as we know, nobody has been able
QMC techniques. to optimize an accurat&V’; for a positronic system with

As far as variational Monte Carle/MC) is concerned, more than four electrons. More specifically, for large systems
different methods have been proposed that may solve thigxplicit correlation between the electrons and the positron
difficulty, allowing one to compute the needed quantities.has been difficult to introduc. This means that the
One of these methods starts from the distribution differentiakpileup” of the electron density over the positron is not cor-

identity rectly described, therefore giving rise to annihilation rates
1 that are too small® Possible sources of this unwanted out-
Ve—=—475(r), (1) come are the lack of knowledge about the complicated ana-
r Iytical form that such an accurate wave function should have,
which allows one to write, after specializing for the and some drawbacks of the optimization method uSed.
electron—positron palif In order to go beyond these difficulties, the diffusion
Monte 2%aglzo(DMC) method is usually employed to sample
_ 2 V¥ ,. 7" "““This technique is able to project the contribution
(8(r1))r= f or1)¥r(R)dR of the excited states from the startifity, allowing the exact

1 calculation of the ground-state energy. Unfortunately, the
=— _J \I/?l_(R) S(r _ ) operator does not commute with the Hamiltonian of

2m the system, so the simulation results are only an approxima-
tion to the exact mean value when computed by means of the

2 1 mixed estimator
+[Vrlln\IfT(R)] idR'

[Vrzlq’T(R)
X
1

V(R)
N s oy @

whereR=(rq,r,,...,r,) is a point in configuration space, Althouah thi | ¢ ¢ timate of
and the trial wave functiof’; is normalized. Although this ough this value represents a more accurate estimate o

integral has a well-defined value that can be computed sanﬁEe exaﬁ( 5(][ t*h+)> thal?wt(r**)l)Td’ it has bee?] found tha; |
pling \P% it is well known that its variance diverges over the € quaiity of the results strongly depends on how accurately

same distributiod This fact implies that no error bound Yy \TV'E"CS thi Ct%”t?ft |nt(ra]rp§rt|lcle (Tllstnk()jutéons. . thod
(i.e., standard deviatigrcan be associated with its value, a ereas bo € spherical well and Laussian metho

dangerous situation one would like to avoid. cag tée r:am(;:)éoyeq todestimaéé(rHJr))M in quh' (4()1,_ﬁ\]iang. |
Langfelderet al’* proposed a possible way to circum- M9 =>¢hra rpointed out that the use of the dilierentia

vent this problem based on a modified importance sampliné{;dentlty Eq.(l) In a DM.C S|mulat!on requires some uncon-
transformation, Wherdfiiillriﬂ is sampled instead 0P-2|—. rolled approximation, sinc# ¥, is not known analytically

; : but only sampled.

Always starting from Eq(2), one could also exploit the . .
approach proposed by Assaraf and Caffarel compute the Ne\f/egrtheless, It ht? S bbe en Sgd@m?t t? " acl;: uratgﬂgzrs t-
expectation value needed to obtain nuclear forces by mealﬂ‘gatlée 0 <2(r*t[)h> (igane 0 _ftalge S|mpytl yzu st!t)uu th
of the Hellman—Feynmann theorem. They showed that aju'-n q. (2) wi Vo0, | T correctly describes the

dicious choice of a renormalized operator, whose mean Valu@osfon—e!gftronl dt',St”tEUtl{?]n' difficulty that DMC s i
is equal to the original one, can reduce the infinite variance . possible solution to the difticuty that meets in
to a finite valuel® estimating the exact expectation values is represented by

. 2 . .
A completely different approach was pursued by Alex-s""_“nplmgXPO |_nstead OTWTWO' and cc_)m_putmg< A(r—-))
ander and Coldwell” They proposed to compute all the without resorting to¥ 1 in any way. This idea rules out the

mean values sampling an analytically normalizable distribupoz‘e’s'_b”'t.y Of using Eq(1), since one Just samplgs the gxact
tion functiong(R), so that the normalizatiohly of W is WV distribution and no analytical information is available

: ; bout its form.
easily estimated by means of a )
y y In order to overcome this problem, Langfelderall*

. ) proposed to correc{S(r))r by accumulating the walker
=M ;1 YH(R)/G(Ri), (3 weights in a small sphere around the coalescence point. Al-
T though this way may look promising, we noticed in our work
where theM points sample the normalizegl If a second on positron complexé3that long decaying times are needed
normalizable distributiog.(R), constrained on the subspace in order to project all the excited-state contributions and to

M
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correctly build the pileup of the electron density over the 0.25 T T T T

positron if ¥ poorly describes this feature. This fact pro- 2 0.20 _

duces large fluctuations in the weight values, therefore in- s

creasing the statistical noise of the results. > 0.15 |- ]
A better approach may be represented by the use of the S o010} -

tagging algorithm proposed by Barnettal?* in connection ke 0.05 L i

with the branching step usually employed in DMC. Here, the < v

ratio W, /¥, needed to sampl#2, is computed by means 0.00 S —

of the number of daughters of each configuration. 0 1 2 3 4 5
Moreover, Baroni and Morofii have recently proposed r (bohr)

an alternative algorithm that appears to be well suited for this
task. This is based on a “path integral” view of the DMC
algorithm, where the branching step has been substituted by
an accept/reject step in order to exactly samb@a
Unfortunately, these approaches do not solve the prob- [f(R)S8(r_,)dR
lem of the scarce sampling in the volume around0, a (5(f—+)>=w- )
problem that is present even for small simulation time steps.
As stated previously, this comes from the finite length andRecalling thatf(R) is symmetric under any exchange be-
discrete nature of the QMC simulations. As an attempt tdween electrons, Ed5) can be rewritten as
overcome this difficulty, Langfeldeet al* implemented in Fp(r_r)s(r_.)dr_dr,
their algorithm the correct sampling of the electron—nucleus  (§(r_,))= ,
cusp region as proposed by Umriggtral ;2° this adaptation, Jp(r—,ry)dr_dr.
however, does not appear straightforward to correct the samyhere p(r_,r.)=Ngeff(R)dr,,...,dry. Introducing the
pling of both the electron—electron and electron—positromew coordinate®_ . =r_+r_, andr_, =r_—r_, after in-
Cusps. tegration oveR_ | and spherically averaging over , , one
Keeping in mind all the aforementioned problems in es-gets
timating (&), we believe the Monte Carlo practitioners are
left only with the hope of devising an approximate, but hope- (8(r_))= JQ(r_)o(r_)dr_
fully solid and accurate, method to compute this observable. - JQ(r_p)dr_
The main aim of this paper is to discuss and test the FO(r )8 2. dr
accuracy of computings) using some simple methods based — - S
only on the sampling of the positron—electron distribution fQ(r_+)r2_+ dr_,
function without any usage of the differential identity Eq. 0(0)
(1). These methods will be compared with the Gaussian ap- = > ,
proximation discussing relative merits and applicability. JQr—rédry

Moreover, we apply them to the realistiClsH model case  \yhere(r ) is the spherically averaged positron—electron
in order to study the annihilation rate as a function of thegjstribution. Although these manipulations are quite straight-
internuclear distanc®. Thel',, versusR results will allow  ¢5\wvard they highlight that in order to compu{é(r__))

us to compute the vibrationally averaged annihilation rate folyne must have accurate values for beXi0) and the denomi-
this system and to discuss molecular environment effects OHatoer(r_+)r2_+ dr_. . Therefore, both the coalescence

the annihilation rate itself and on contact distribution func'region and the tail of the distribution must be correctly de-

tions. , _ scribed.
The' outline of this work foI.Iows. In Sep. Il we .preser.1t In order to thoroughly present the complexity of the cur-
the basis of the methods. Section IIl describes their applicargpt problem, Fig. 1 shows a typical behavior®fr _.) as

tions to model systems for which the exaéy's are known.  sampjed from the model wave function for one electron and
As an application of this technique, we deal in Sec. IV with 5,4 positron

the model €LiH. Our conclusions and proposals for future

FIG. 1. Behavior ofQ)(r _,) sampled front¥, .

6

)

work are then presented in Sec. V. Wi(r_,ry)=exd—r_—-025,-025_,], 8
by means of a standard VMC simulation using the Langevin
Il. METHODS algorithm and the accept/reject st€pThis simulation was

carried out sampling a grand total of 3:7%0° configura-
Since we want to develop a method that can be applietions and using a time step of 0.01 harfrea fairly small
to any QMC technique, henceforth we will u§éR) to in-  time step for this simple wave function. The sampled distri-
dicate cumulatively W2(R), ¥1(R)¥o(R), or Vi(R). bution ofr _, =r was collected on a grid with a bin width of
Here,R=(rq,r,,...,r.) is a point in configuration space,  6r=0.025 bohr, and then the number of times, was
andr , being, respectively, thith electron and positron po- found inside a given bin was divided by the volume of the

sitions. spherical crown[r—&r,r], V(r,or)=4x/3[3r?sr —3r or?
We are interested in computing the expectation valuet+ 6r%]. The values so obtained were attributed to the mean
(8(r_.)) over the distributiorf (R), i.e., radius of the spherical crowm= 7 8r[4r3—6r25r +4r 6r2
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—&3)V(r,ér). This is equivalent to approximatin@(r) asa collision probability between two particles. In turn, this will

straight line inside each spherical crown, a fairly good ap-allow us to compute the annihilation rate in positronic sys-

proximation in such a small bin. tems, therefore presenting the chance to directly compare
We want to stress that the shape of the distribution wasvith the experimental results.

found independent of the time step over a broad range of In order to show that this is exactly the case, in the next

values. This ensures that no systematic bias is present due $ection we present the results obtained computis(g _ . ))

the finite time step. From Fig. 1 one can easily notice thedor some model systems whose exact values are easily ob-

abrupt decrease of the distribution in the region close to tained using different methods.

=0. This represents the aforementioned inability of Monte  Methods similar to ours, although quite different in

Carlo simulations to correctly sample the distribution closemany details, have been applied by Gitiand by Mairi

to a coalescence point in spite of the large number ofrasef® to the case of a positron embedded in the jellium.

sampled configurations. It also seems to indicate that, due tdheir methods were somehow tailored to the specific system

this inability, any well-based methageé.g., both the spherical under study, so that no direct comparison with our proposals

well and Gaussian methodshould return an inaccurate an- can be made. Nevertheless, the results they extracted from

swer for r, smaller than a certain threshold. Conversely, allthe simulations can be useful to seek possible correlations

the regions withr > 0.5 bohr seem to be adequately describedbetween the magnitude of the pileup effect and the local

by the sampled distribution, and therefore we propose to analectron density.

lytically continue their shape extrapolatingrte 0 by means

of a suitable functional form. This idea allows one to exploitlll. TEST OF THE METHODS USING MODEL

the knowledge about the exact form ©Of to improve the SYSTEMS

local description in the small radius regions. For instance, if

2 "
one samples =WV, the exact value of the cusp condition puted the(S(r_,)) expectation value for simple model sys-

can be u_sed_as a way to constra!n the model to behave “Yems containing only one electron and one positron. More
rectly. This trick can also be used in both the VMC and DMCspecificaIIy, some model wave functiols were chosen in

simulations, since it is often easy to obtain the cusp conditiorg)rder to represent the variety of electron, positron, and

of trr]]e dsampllgdt‘) kqow:ng the 3nglyt|cal df?frm oy Th';. electron—positron distributions that could be found in a pos-
method could be implemented in two difterent ways. First.,, aiomic system. Then, thbiz’s were sampled by means

one could choose an analytical functiarr) to fit ) for all of VMC simulations similar to the one discussed above, in
the electron—positron distances. This function should b?rder to collect the electron—positron distribution

flexible enough t(.) properly describ_e_ both short-range an We selected three model systems as representative of a
long-range behavior of). More specifically, close to=0 fairly large class of positron complexes. The first one is

Q(r) behaves like expfar), wherea is strictly related to ; by th functiol’ Ea/8)1. Th dh
the cusp condition. Differently, in the large r regiofigr) '?r:\e/:egna)llyticea}Nv?/;\e;euf:z::ct)ionl [see Eq(®)]. The second has
follows exp(gr), whereg is dependent on the positron af-

To test the accuracy of the proposed methods, we com-

finity (PA) of the system. A possible choice far(r) is the B 0.15+—0.5r?F
Pade-Jastrow form Waor—,ry)=exg—r_+ 1+, 0.5 |,
ar + Br? (10)
w(r)=N,expg — 1+—yr ) (9 where the simple exponential in. of ¥, is substituted by a

Pade-Jastrow type, and the exact cusp condition between
wherea can be chosen to have(r) satisfy the correct local electron and positron has been introduced.
behavior close ta =0. The fitted form can successively be To mimic the presence of core and valence shells, we
used to estimate botf}(0) and the denominator in Eq7). chose as a third function

Second, if the form of)(r) is more complicatede.g., it +or?
has multiple maximp it is possible to resort to a local fit by Wa(r_,r,)= ex;{ - 1}

. . . 3 -+

w(r) in the region close to the cusp in order to get h@) 1+r_

value. Then, the normalization integral could be split in two 15 —3r2

parts, one computed using(r) and the other directly using +0.001 ex%;H

the sampled distribution. Specifically for the distribution in 47

Fig. 1, one could fit the sampled values in the rangg0.5, 0.15,—0.52

1.0] bohr constrainingo(r) to have both the exact cusp be- xexp{ 177 -0.5_ . (11
+

havior and to have the same value of the samgketbr r
=1.0 bohr. Then, the normalization integral can be esti- To compute the exact valyeS(r . )) for these models,
mated integrating numerically(r) for 0<r<1.0, and em- we used its definition
ploying the trapezoidal formula for the remaining sampled 2
values. We would like to mention that this necessity is al- ¢ s5(r__))= A (r,z,r+)5(r,+)dr+ dr
ready present for small systems likéRe 2’ JWi(r_,ro)drdr_

JW(r_,r_)dr_

Although the two proposed methods are approximate,
allowing the Monte Carlo practitioner to easily estimate the (o rdrdr

they might prove themselves to be quite accurate in practice,

(12
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TABLE I. (8(r_.)) expectation values for the three model systelhs approximations to the exact results usif@(r _, ,y)) with

W5, andWs. The “exact’ values are computed by EQ2). (3(r_+))eass 5, smaller than some threshold value. This simple idea is

are computed fitting Eq9) to the sampled distribution as explained in the . . .

text. yis the width of the Gaussian used to comp{B{r_. ,7)). based on the incorrect sampling of the density close to
=0 shown in Fig. 1, so the good agreement found in this and

(8(r-Dexact  {(8(r-+))pade Y (G(r—+.7) previous works calls for an explanation. This is easily ob-
v, 0.0100 0.02161) tained superimposingG(r _, ,y)r?, to the sampled
0.0033 0.021@) Q(r_,), i.e., comparing the behavior of the two factors that
0.0020 0.0222) form the function whose integrals must be estimated. It turns
0.0010 0.0223) out thatG(r_, ,y)r?, for y=0.001 has its largest values
v 0.0226027) 0.02229 00(')01%%0 006%27%3 whereQ(r_ ) still behaves correctly, therefore allowing a
’ 0.0033 0:10263) correct estimate of the integrals. Tests carried out using
0.0020 0.104@) smaller values ofy gave much worse results than the ones
0.0010 0.105@) reported, so we believe it is safer to limit the values of this
0.109 811) 0.11052 0.0000 0.1099) parameter to the range 0.001—0.01 in order to obtain a mean-
Vs 8'8322 8'82;% ingful extrapolation. Although this may look problematic in
0.0020 0.0904) some way due to the aforementioned difficulties, from the
0.0010 0.0916) results in Table I(G(r_,,0)) appears to be a good first
0.093 991) 0.09382 0.0000 0.09%D) estimate of the exadté(r_.)). In conclusion, we suggest

Monte Carlo practitioners always carry out both estimations,
i.e., extrapolatindG(r _. ,v)) and fitting the samplef®, as

The simple radial integral in the numerator was computed by Wy to safely estimates(r_.)). _
numerical integration on a grid, while the denominator was A3 far as diffusion Monte Carlo and the exact sampling
estimated by means of Eq3) using g(r_,r.)=A3B3 of ¥y are concerned, the application of these methods is

X exd —2Ar, —2Br_ /2. straightforward, and no more complications are expected

The two distributions sampled as a function rofrom than in the VMC case.
V¥, andWV; turned out to possess a behavior quite similar to
V¥, . Therefore, we avoid showing all of them and refer to
Fig. 1 as a template for such distributions. Due to their
smoothness, we fitted them using E®) over the range Having verified the accuracy of the proposed method in
0.3-10 bohr constraining the Padkastrow form to have the computing Dirac’s delta mean values, we applied it to the
exact cusp condition, i.e5-0.5, —1.0, and—-1.0, for the calculation of the annihilation rafe,, of e"LiH for various
threeW,, respectively. To test the correctness of the choseinternuclear distanceR.
fitting range, we slightly modified the lower limit without Although this system has already been carefully studied
finding statistically meaningful differences. Then, the fitied employing both QMC methods®* and explicitly corre-
was used to estimate bofh(0) and the denominator in Eq. lated GaussiafECG) functions®’3? a description ofl',

(7) by means of numerical integration. The computed resultsas a function of the molecular geometry is still lacking.
shown as(8(r_.))page, are presented in Table | together Up to now, there are onlys(r _,))=(8(r.,))+{(8(r»4))
with the “exact” values computed using E¢L2). +(8(rz4))+{8(rs.)) results atR=3.015 bohr[0.024@8)

During the simulations we also computed the mean valfrom DMC simulations™* and 0.024 992 form ECG calcula-
ues{G(r_,,v)), whereG(r_, ,y)= Nyex;{—r2_+/y] isa tions®), at the estimated equilibrium distanBe= 3.348 bohr
normalized Gaussian function, for=0.01, 0.0033, 0.002, (0.027252," and the nonadiabatic results of Mitroy and
and 0.001. This technique was proposed by Keehgl®*  Ryzhikh, 0.034016 and 0.032 588These last values were
and successively applied in Refs. 9 and 11. TGér _ . ,vy)) obtained using ECG in connection, respectively, with the sto-
values were extrapolated tp=0 by fitting them with the chastic variational minimizatiodSVM) and the frozen-core
simple functionay/y+b, the extrapolation law deduced in SVM (FCSVM) methods, and are roughly 15%—20% larger
Ref. 11 using model systems. The fitting was quite accuratéhan the EC&’ and DMC' clamped-nuclei ones. This un-
for all three cases, and the results for (G(r_,,0)) are  expected result led Strasbur§jes consider the possibility of
also shown in Table I. the flattening of the potential energy curve dfLéH with

Comparing (5(r _ ,))page With the exact results, it respect to the LiH one, a feature that may allow the
strikes a very good agreement between these two sets pbsitronic molecule to visit the large internuclear distance
values, the relative error being 1% at most for all the modelstegion where the Dirac’s delta mean value is expected to be
It must be pointed out that this level of relative accuracy islarger. However, Mitroy and Ryzhikh pointed out that
sufficient to thoroughly compare with the experimental datasimple ECGs may not represent the best basis functions to
It is also noted that the application to other model systemslescribe vibrational nuclear motion, and that their vibrational
gave a similar or better relative accuracy, therefore showingveraged nuclear distances are probably too large.
the wide applicability of the method. In a previous work! we computed the complete curve

As already pointed odt? the extrapolatedG(r __,0)) using the DMC technique, showing that the flattening is in-
values are also in good agreement with the exact resultsleed present, and that a strong redshift of the vibrational
Nevertheless, one should expect to obtain really inaccuratgpectrum with respect to LiH must be expected. Unfortu-

IV. THE e*LiH SYSTEM
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nately, due to the high computational cost of our highly cor-hartree smaller than the best estinfafthese discrepancies
related trial wave functions, at that time we did not computemight be due to the absence of polarization effects of the
the behavior of8) as a function ofR. In this work we still  core electrons due to the two active electrons and the posi-
adopt the Born—OppenheiméBO) approximation, so we tron, and to a relatively inaccurate representation of tse 1
predict the annihilation rate for each vibrational state of theelectron density by means of a single ST®s function.
system and compare our values with the nonadiabatic resultevertheless, since we are primarily interested in obtaining a
of Mitroy and Ryzhikh?? semiquantitative description of the changeslip, for this

In order to study the effect of the molecular geometry onsystem, we believe the approximations introduced in the
the annihilation rate without using the computationally ex-model Hamiltonian to be small enough to allow for a correct
pensive wave function used in Ref. 11, we decided to employrediction of the trend for this important observable.
a model potential approach to eliminate the “core” electrons  In order to accurately describe the wave function of the
of the Li* fragment. We believe such an approach to bethree active particles at the VMC level, we employed a trial
physically well grounded, as explained by the following sup-wave function form similar to the one used in Ref. 11, but
porting reasons. First, the ECG calculations carried out bylightly modified to include the polarization of the electron
Strasburgér’ on the € LiH system show that the annihila- and positron density of the PsH fragment due to thé Li
tion takes place primarily with the two electrons that may bepotential. Specifically, the analytical form in E() of Ref.
attributed to the H fragment. Second, the frozen core ap-11 has been multiplied by a Pad#astrow factor depending
proximation developed by Mitroy and Ryzhikthas been on thez coordinate of each particle: tizaxis was chosen as
found to describe accurately the annihilation process inhe LiH bond axis, the H nucleus being located at the origin
e’Li, e"Be, LiPs, and éHe®S when compared with the and the Li on the negativeaxis. The wave function param-

corresponding all-electron calculations. eters were fully optimized for every nuclear distafmini-
In order to reduce the number of active electrons, wemizing the variance of the local energy over a fixed sample
used for €LiH the model Hamiltonian of configurations®>%® This procedure is already well de-

1 1 scribed in the literatur&® so we will skip unnecessary de-

Himod= — E[V§+ V3+V2]1+VE (1) + Ve {ra)— —  tails. The ensemble of walkers used in the optimization was

H1 generated by DMC simulations in order to bias the walkers’

1 1 1 1 1 . distribution towards the exact density. Usually, four or five

Tt + r_12+ for 1 Tar +Vinod r+)- optimization steps were carried out for eaRh
We started the optimization process of the wave function
(13 atR=201 At the end of the optimization procedur® was

Here, ther;; are interparticle distances, 1 and 2 being thedecreased and the wave function reoptimized for the new
electrons, + the positron, andH the hydrogen nucleus. distance. This procedure gives the chance to monitor the

Moreover, the Bardsley’s model potential changes of the wave function witR but might increase the
~1+10exj—2.202;,] possibility of remaining stuck in a local minimum in the
VE )= el LEN (14)  parameter space during the optimization.
FiLi Having optimized at VMC level the approximate wave

wherer,; is the distance between thth electron and the Li functions for various distances, these were employed in long
nucleus, has been used to represent tsieli™ core elec- DMC simulations to project the remaining excited-state con-
trons. To model the interaction of the positron with the fro-tributions and to compute more accurate mixed expectation
zen Li* fragment, we simply added to the repulsive Cou-values. For all the simulations, a time step of 0.005 hartree
lomb potential of the nucleus the potential of the two frozenwas used, together with a population of 9000 walkers. These
core electrons as described by an ST orbital with Z  two simulation parameters were found adequate to make sta-

=3, obtaining tistically negligible both the time-step bias and the popula-
tion effect in the DMC simulations.
Vi )= 3 +6 exd—6r.] . The DMC results for the energy and for thé(r _ . )) of
MLi+ this model system are shown in Table Il. There, the energy
1—exg —6r,. ] values represent the ground-state energy of the model Hamil-
22—, (15  tonian EQ.(13), (8(r - +))page are the total collision prob-
FLi+ abilities estimated using the electron—positron distribution,
wherer ;. is the Li—positron distance. i.e., (8(ri1))+{8(ro4)), while (G(r_,,0)) are the ex-

To test the accuracy of this model potential, we com-trapolated Gaussian values. Here, the electron—positron dis-
puted the energy for the ground state of the three systentsibutions were fitted with the function in E¢9), constrain-
Li, Li7, and LiPs. The energy values are, respectivelyjng its cusp to be-0.5+cusp'y).
—0.19532) hartree, —0.21913) hartree, and—0.448%3) The energy values obtained in Ref. 31, after having sub-
hartree. They give an electron affinity of 0.028Bhartree, a  tracted the repulsion R/between the H nucleus and the'Li
positron affinity(PA) of 0.22944) hartree, and a Ps binding core and the total energy of the ‘Lifragment(—7.279 913
energy(BE) of 0.00324) hartree. While the electron affinity hartreé) to estimate the leptonic energy of the PsH moiety,
turns out to be in fair agreement with the experimental valueare shown in Fig. 2 together with the DMC results obtained
namely 0.023 hartre¥, both PA and BE are roughly 0.009 in this work.
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TABLE II. Lepton energies{ 8(r _.))paqs » and(G(r _,,0)) mean values 0.05 ——— —T—— e
for the € LiH model system. All quantities in atomic units. /,,g—"é" """""
0.04 /¥ Pade o -
R (E) (8(r—+))pade (G(r—..0)) é Gaussians ---x---
2.0 ~1.164 379) 0.018 84 0.0182) 0.03 BO_EFSI\C/;I(CE ® S
25 —1.159 367) 0.02178 0.021@) PsH =
3.0 —1.131 966) 0.026 84 0.025@) 0.02 | g; SH - -
35 —1.097 985) 0.030 00 0.028@) i
4.0 —1.064 85%5) 0.033 34 0.032®) 0.01 - i' | | | T
6.0 —0.969 8%4) 0.041 66 0.04002)
8.0 —0.919 9%3) 0.045 44 0.043®) 0 S 10 15 20
10.0 —0.891 6@3) 0.046 66 0.044@®) R (bohr)
15.0 —0.856 342) 0.047 54 0.045@8)
20.0 —0.839 3%22) 0.047 94 0.0468) FIG. 3. Computed ) results for € LiH system at various internuclear dis-
® —0.789 181) 0.048 60 0.048®) tances.

timation to slightly degrade going towards smRllwithout

For R=4, the results from the model system follow pecoming embarrassingly inaccurate to create concerns about
closely the more accurate all-electron FN-DMC valuesne ysefulness of this model system.

showing that the model potential correctly describes the po- e gverall trend of the collision probability shows a net

larization of PsH due to the interaction with™Li For shorter decrease going towards sh&ta feature already suggested
distances the approximation_of considering lffozen is no by Mitroy and Ryzhikh?2 This can be easily understood re-
longer accurate, so that a discrepancy between the two S&{$smpering that the Li model potential repels the positron,
of results is e,xpected.. It is also important to remember thafhije attracting the two electrons. It is not easy to infer any
the Bardsley's potential was tailored only to describe theysssible analytical model to describe these joined effects,
atom in its ground-and valence excited states, not to desc”b&though for largeR one could propose a limiting B form
bonds correctly in molecules. due to the polarization of the two distributions by the electric
Figure 3 shows the two computed(r ,)) values as a fig|q of Lj*. We show in the Appendix that this reasoning is
function of the mternuclg?r distand, together with the  j qeeqd correct for any observable by means of first-order
ECG results of Strasburger and the DMC result of Ref. 11.  herqyrhation theory. “Experimental” evidence that this is the
The latter results can be used to evaluate the total accuragyse is given by the fairly good fitting of the) results at
of our computed collision probabilities. R=10, 15, and 20 bohr with the simple form 0.0486
From Fig. 3 it is clear that both th@(r _,))page aNd | p/R2 where b= —0.204 48.
the (G(r _,,0)) are in good agreement, the second differing  \/arious other mean values were computed during the
from the f!rst by at most two standard dewgtlon.s. This aIIqWSDMC simulations in order to obtain some physical insight on
us to believe that we are accurately estimating the mixeghe glectron and positron density behavior. Figure 4 reports
distribution mean value obtained by the standard DMC teChghe mean value of the coordinate for the two particles giv-
nique. Improved results could be obtained only by samplingg information on the polarization of the two lepton densi-

q,(z)_ ] ties. It is clear that the positronic distribution is polarized by
As far as the total accuracy is concernedRat3.015  he model potential in the direction opposite to the electronic
bohr both all-electron ECE and DMC resultS' appear e, Moreover, it appears to be more easily polarized than
to be smaller than the model ones by roughly 7%. Insteadye electronic one always showing largervalues. This fact
on going towards larg& the mean value seems to correctly ¢an pe easily explained by noticing that the positron distri-
converge to the very accurate  ECG value, namely, ion is more diffuse than the electron one, so that it is more
(&(r—1))pst=0.048 747 and to the new DMC 0.0486 esti- gongly repelled by the electric field. Interestingly,Ret 2
mate carried out in this work using the electron—positronyng 2 5 pohr the electron distribution reverses its polariza-
distribution. From this comparison, one could expect our esgjgy showing(z)>0. We believe this effect is due to the

_08 T 1 T i T II T T
x ® | % electron v |
- -0.9 | X.x' . —_ 2 positron X
g o0 KM - 5 *
@ . £ 1 x .
£ -11F Model e+LiH  m+ A x
w e+LiH Ref. [31]  x v X i
-12 F % n 0 _"“"W"'v'“"'"' ........ - SR ¥
_13 1 | | | 1 | 1 1
0 5 10 15 20 0 5 10 15 20
R (bohr) R (bohr)

FIG. 2. Energy of the PsH moiety computed from E&3) and from the
e"LiH results of Ref. 31 as explained in the text.

FIG. 4. Electron and positron mean value of theoordinate as a function
of the internuclear distance.
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55 —x— | : . TABLE lIl. Vibrational state energyE),, averaged 6(r _.)), and(R),
N <f——> + values for the €LiH model system. All quantities in atomic units.
_ 5F <—+> 4o 7
% 4.5 A L[fm=> PSH """" v <E>V <5>V <R>V
. B A T
<f—t> PsH oo

= A *>Fs 0 -8.105 0.0295 3.423
A 4r A N 1 —8.102 0.0305 3.571
Viogg btk ek y S : 2 -8.098 0.0315 3.732
’ e 3 —8.095 0.0325 3.906
3 L L L 4 —8.092 0.0334 4.094
0 5 10 15 20 5 —8.089 0.0344 4.294
6 —8.087 0.0352 4.503
R (bOhr) 7 —8.085 0.0361 4,718
FIG. 5. Electron—electron and electron—positron mean distances as functio% —8.083 0.0369 4.938
of the internuclear distance. 9 —8.081 0.0376 5.166
10 —8.079 0.0383 5.408
11 —8.077 0.0390 5.675
12 —8.076 0.0397 5.985
. . . 13 —8.074 0.0405 6.356
repulsive region of the Li core potential that pushes away 1 _8.073 0.0414 6.503
the electrons for such small nuclear distances, therefore moé5 ~8.072 0.0421 7.243

eling the exchange effect created by an antisymmetric wave
function.
Figure 5 shows the average values for the electron—

electron and electron—positron distances. While thegrrectly represent the charge-induced dipole interaction be-
electron—positron mean distange._, ) increases monotoni- tween Li* and PsH. The nuclear Schiiager equation for
cally upon decreasingR, the electron—electron distance thjs potential was then solved using the grid method pro-
(r—_) shows a shallow maximum arourRi=8 bohr and a  posed by Tobin and Hinz&,and the numerical wave func-
deep minimum aroundk=2.5 bohr. We believe the maxi- tjons ¢ ,(R) were then used to compute vibrationally aver-

mum is due to the competition between the positron and thgged mean values for zero total angular momentum. More
Li* model potential to bind an electron. More specifically, specifically, we computed

although polarized towards positi the positron still at- )

tracts one of the two electrons to form the Ps subcluster, (0) _JdR4,(R)O(R) 17
increasing the distance from the second electron that is free v JdR ¢§(R) '

to be polarized in the dlrgcnon. of the Licore. On going whereO(R) is A(R) or any other function oR

towards smalleR, the positron is pushed far out the bond In Table Il we show the results fofE),, (8),, and
region, losing its ability to polarize the electrons that are now<R> computed over the first 16 bound vibra;iénnal ;t,ates The
both strongly attracted by the model potential. This interac- 5>” values increase in an almost linear fashion oin. to-
tion leads them to move in the small volume between H ané v ! going
Li*™, therefore decreasing their mean distance. ThenRfor wards largey, as expected by the steady increaseRji, due

i to the vibrational excitation. Comparings),=0.0295 with
smaller than 2.5 bohr, the electror_1—core_ repulsion pushes tr}ﬁe value ofA(R) at the equilibrium distance of our fitted
electrons out from the bond region, with the net effect of

B_Otential, namely 0.0291 at 3.353 bohr, it appears that the
served by plotting the intracule electron distributions ob—ground level vibrational motion only slightly increases the
tained during the DMC simulations probability of collision between the electrons and the posi-
It is Worgt]h mentioning that sim.ilar conclusions can be tron with respect to the one at the equilibrium distance. This
drawn analysing the VMC results obtained as a by-producpnding is in line with the small difference between the equi-
of the optimization stages ibrium distance and the average nuclear distarRg
P ges. =3.42 bohr. We relate these outcomes to the almost linear

Having studied the overall behavior @), (z), and(r), . 2 12/ .
we now turn to compute the vibrationally averaged annihila-behawor OfA(R), and to the shape 6t"¢(R) in the region

. - . - : round the potential minimum, where it resembles a Gauss-
tion probabilities. To obtain these quantities, we interpolate S :

. lan. Here, we stress that the shorter equilibrium distance ob-
our (5 results by means of the analytical form(R)

. tained in this work(3.353 bohy, with respect to the one
=0.0486-2aR/(1+bR+cR?+dR®). The fitted parameters : . L )
are a—1.05945 b=97.5779, c=—37.9705 and d obtained in Ref. 313.458 bohy, is just a side effect of the

—12.2715. Then, the potential energy curve SLiH ob- fitting process and of the analytical form in E46). In turn,

; . . . e this means that the energies for the vibrational states could
:;&;lned in Ref. 31 was fitted with the modified Morse poten-be, and indeed are, slightly different from the ones published

in Ref. 31, which we believe to be more accurate.
Vu(R)=—8.0699+A{1—exd —B(R—C)]}>—A Although our vibrationally averaged result far=0
0)o=0.0295 appears to be roughly 8% larger than the ECG
~D{1-exi —(RIF)I°}(2RY), (16) ﬁez‘,ult (0.027 252 at the equilibrium distance 3.348 bdhr,
obtaining A=0.03444 hartree, B=0.72030 bohr!, C  suggesting a fairly large effect of the nuclear motion, we
=3.3060 bohr,D=21.1796 bohr®, andF=5.88217 bohr. believe this outcome is primarily due to the 7% larger colli-
The last term in Eq(16) has been introduced in order to sion probabilities computed using our model system. These
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two evidences seem to rule out Strasburger’s suggéstfam  the distance decreases. This effect is due to the electron
large increase of the collision probability due to the quantuntransfer from Be to O that creates the large molecular dipole
nuclear motion for thev=0 state. They indicate that ap- moment. From our experience on these systems we expect
proximating the averaged collision probability for the vibra- (5(r _,)) for €"Be to be smaller than the one for the polar
tional ground state simply by using its value at the equilib-molecule, so the vibrationally excited states close to the dis-
rium distance could be a fairly accurate proceduresociation threshold may have smaller annihilation rates than
Moreover, these conclusions agree with Mitroy andthe ground vibrational state.

Ryzhikh’s*?> warnings that both the SVM and FCSVM re- It is also interesting to speculate on the behavior of the
sults, although proving the overall stability ofleiH, are not  annihilation rate versus the vibrational quantum number for
well converged to the exact ones. For instance, thRix other simple systems like*&i, and € Be,. Here, the sym-
values, respectively, 4.182 and 3.964 bohr, are larger than thaetry of the systems can play an important role in defining
minimum of the ECG and DMC potential curves by more the annihilation rate. For instance, decreasing the nuclear
than 0.5 bohr. This discrepancy cannot be accounted for bglistance one may expect to find the positron localized be-
the zero-point motion of the positron complex. These largetween the two atomic fragments due to its ability to polarize
distances between the two fragments land PsH in the the two atomic electron densities: in this situation the anni-
nonadiabatic treatment imply a reduced distortion of the lephilation rate could be quite different from the atomic one.
ton densities of PsH with respect to the one at the Born-Although it is easy to infer the existence of a bound state for
Oppenheimer equilibrium, and therefore too large an annihithese complexes at large nuclear distances employing the
lation rate. However, it is interesting to notice that bothbasic valence bond resonance idea

FCSVM (0.032588 and SVM (0.034 016°2 collision prob-

abilities are really close to our Born—Oppenheimer one at  e*A;+A,—A;+e"A,, (18)
R=4.0 bohr. In our view, this agreement stresses, again, the

importance of the local electric field in defining the collision jt still remains to demonstrate the stability of these systems
probability and the overall accuracy of the SVM approach infor nuclear distances close to the equilibrium geometry of the
describing the relative densities in a positronic complex.  neutral parent molecules.

As far as the behavior of5(R)), is concerned, the As a rule of thumb to predict the stability of a nonpolar
steady increase on going towards langindicates that the molecule, one can use the adiabatic ionization potential
annihilation rate does depend on the quantum vibrationala|p) as proposed by Mitrogt al*® For the X 1zg ground
state of the mqlecule. fxlt.hough the trend of these result$state of L the experimental AIP is 0.189 hartr&eslightly
could be specific to the'd.iH system and perhaps of other lower than the atomic one, 0.198 14 hartfédlso, for the

fpolar Pﬁ;)lgctulzs as .\E)vel‘l‘, I ?:‘ro?lg!,y 'nd.'ﬁ.?t?s thaftgjny ttheoryx IEJ ground state of Bg one might expect a similar low-
ormulated to describe “on the Tly anniniiation ot'edué to ering of the AIP with respect to the atomic one, 0.343

Feshbac“h resonances must include t.his effect in order to Kartree®? so that a value of around 0.335 hartree could be
beyond “order of m?gthde compansqﬁ“ anql to predict regarded as a safe upper bound to the true AIP. Both these
accurately the anmhllat_lon rate. In our VIeW, this OPENS a NeW;a1ues fall inside the upper and lower I.P. limits for positron
avenue of epr(_)rat|0n in pqsnro_n physmgl chemistry Wher_eoinding obtained by Mitroyet al“° for one- and two-valence
the undgr;tandmg of the vibrational mot_lon effe_ct ON POSlg|actron atoms, therefore suggesting that the two complexes
tron annihilation by molecular systems is of prime impor- should be stable. We understand that this model is just a
tance. rough approximation for our molecular systefisleverthe-
less, a positron bound to an atom or a molecule is always
characterized by a quite diffuse density. This allows one to
In this work we have critically compared methods thatneglect some of the real features of the electron density close
may be useful to compute the annihilation rate in positronido the nuclei as a first approximation, and focus only on the
systems in the framework of the QMC methods. Moreoverasymptotic properties of the electron cloud that are correlated
we have presented a simple, but nevertheless solid and acdwe-the 1.P. and to the polarizability.
rate, method based only on the interparticle distribution sam- As far as Bg is concerned, the AIP larger than the Ps
pling. After having tested it using model systems, we em-binding energy(0.25 hartreg suggests a mechanism based
ployed the method to computes(r_.)) for e*LiH for on the electron cloud polarization as responsible for the bind-
several internuclear distances. These results allowed us tog. Moreover, the lowering of the AIP with respect to the
discuss many interesting features of this positronic complexatomic one, and the large polarizability of this molecule
and to predict that the annihilation probability increases uporgroughly twice the atomic oneseem to indicate its ability to
increasing the vibrational quantum numbeM/e notice that form a stronger bond with the positron than the Be atom
a similar behavior of 8(r _,)) may be expected also for alone?* Conversely, Lj has an AIP smaller than the Ps bind-
e"LiF due to the polarization of the positronic density of the ing energy, suggesting that the polarization of the Ps cluster
PsF fragment by the ['i core. The situation could be quite may be held responsible for the positron binding. However,
different for the € BeO case where the positron density isLi is close to the lower stability threshold of the positron—
expected to be centered on Be at large nuclear distdttees atom complexes, and we do not feel confident in proposing
two fragments €Be and O have lower total energy than'Be the stability of the molecular complex with respect to the
and Ps®), and to move on the O side of the molecule whenPs+ Li, dissociation pathway.

V. CONCLUSIONS
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Right now, QMC methods are the best-suited computa-
tional techniques to carry out such a study since six- andO)=c'0c=(O)go+ 220 Ci(0)<o>0i+,zo ¢”¢%(0y);
eight-electron systems are too large to be studied with ECGs ' "
unless the frozen core approximation is used. With the addi- 0
tion to the QMC “bag of tricks” of a robust method for =(0)oot 2;0 ¢ (O (A3)
computing annihilation rates, such a study could become ) ] ) )
routine in molecular physical chemistry, allowing the eXp|0_showmg that the first-order change in the expectation value
ration of many interesting features of these “exotic” com- (O is linearly dependent on thet”'s.
pounds. For our specific case, namely PsH interacting with the
Moreover, many more other technically oriented appli-Coulomb potential of Li at distanceR, for R—e the per-
cations could be devised. Positronium annihilation in poly-turbing interaction potential can be written as

mers and membranes, positron annihilation in silicon nano- Ok 1z

cluster, nanodevices, fullerenes, and carbon nanotubes are V=2, R =2 qk(ﬁ_ ﬁz) (A4)
just a few that could be quite easily interpreted with the help K ol k

of such a method. where the molecular geometry is as in the main text, while

Our hope is that this work will help this kind of appli- g, are the leptonic charges. This approximation is equal to
cation to blossom and to lead to a better understanding of theonsider the electron and positron densities constant in a
basic interaction schemes that a positron has with ordinarglane parallel to they plane. Introducing this approximation
matter. in the integrals in Eq(Al), one gets

1
J VOV dR=3 a j PO dR
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