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In this work, we investigate the possibility of describing gas phase atomic cluster dissociation by
means of variational transition state theory �vTST� in the microcanonical ensemble. A particular
emphasis is placed on benchmarking the accuracy of vTST in predicting the dissociation rate and
kinetic energy release of a fragmentation event as a function of the cluster size and internal energy.
The results for three Lennard-Jones clusters �LJn , n=8,14,19� indicate that variational transition
state theory is capable of providing results of accuracy comparable to molecular dynamics
simulations at a reduced computational cost. Possible simplifications of the master equation
formalism used to model a dissociation cascade are also suggested starting from molecular
dynamics results. In particular, it is found that the dissociation rate is only weakly dependent on the
cluster total angular momentum J for the three cluster sizes considered. This would allow one to
partially neglect the J-dependency of the kinetic coefficients, leading to a substantial decrease in the
computational effort needed for the complete description of the cascade process. The impact of this
investigation on the modeling of the nucleation process is discussed. © 2009 American Institute of
Physics. �DOI: 10.1063/1.3078449�

I. INTRODUCTION

The nucleation of a new phase is of fundamental interest
in several fields of science, spanning a range including the
study of atmospheric phenomena, the possible application to
building nanostructures via chemical vapor deposition and
the formation of critical germs during crystallization. Even
though the thermodynamics of the process seems to have a
robust conceptual basis, the phenomenon appears less clear
at the molecular level. In fact, the relevant time scales in-
volved in the process of phase formation are still under in-
tense investigation.

In this field, the condensation of a liquid phase starting
from a homogeneous supersaturated vapor has received con-
siderable attention from the theoretical chemical physics
community during the past few years, perhaps because it
might be considered as a simple �but not trivial� representa-
tive case of this family of processes. As a consequence, the
past decade has witnessed a surge of contributions devoted to
improving the understanding of the process time scales, with
many studies focusing on the large scale calculation of
nucleation rates by means of molecular dynamics �MD�,1–4

on the benchmark of currently available theories �e.g., clas-
sical nucleation theory, extended liquid drop model-
dynamical nucleation theory, and other semiphenomenologi-
cal models�,1,2,5 and on the calculation of the work necessary
to build a cluster from the supersaturated vapor.6,7

Despite these efforts, the routine application of compu-
tational approaches to the calculation of nucleation rates for
experimentally relevant systems still appears as a distant
goal, the exception being perhaps the prediction of the criti-

cal cluster size that can be done by means of thermodynamic
integration.6 As far as MD simulations are concerned, the
main reason for the currently limited applicability is the ne-
cessity of simulating large systems with a high degree of
supersaturation to witness a condensation event within a rea-
sonable time span. It is therefore in this context that the
framework provided by dynamical nucleation theory �DNT�,
introduced by Schenter et al.,8 represents an appealing pos-
sibility to tackle the same task. In doing so, DNT follows
closely the ideas provided by the Szilard model and deals
only with two events, namely, the dissociation and conden-
sation of single particles from and to a cluster at constant
temperature T

Mn →
kn

d�T�

Mn−1 + M , �1�

Mn−1 + M →
kn−1

c �T�

Mn, �2�

where kn
d�T� and kn−1

c �T� are the dissociation and condensa-
tion rates, respectively. If this was known for the relevant
cluster sizes, the time evolution of a nucleating vapor at con-
stant temperature could be predicted using a set of coupled
kinetic equations describing N�n ,T�, the time dependent Mn

cluster population. In the case of single monomer
evaporation/condensation, this set reads

dN�n,T�
dt

= kn−1
c �T�N�1,T�N�n − 1,T� + kn+1

d �T�N�n + 1,T�

− kn
d�T�N�n,T� − kn

c�T�N�1,T�N�n,T� , �3�

where we have explicitly indicated the dependency on the
temperature T of the system and deviated from the usual
convention of using the dissociation ��� and condensationa�Electronic mail: mellam@cf.ac.uk.
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��� coefficients in order to be consistent with the standard
chemical kinetics notation. A more general framework than
Eq. �3� would be represented by the master equations �MEs�
approach,9 which would be better suited to follow the time
dependent evolution of N�n ,T� in more complex cases �e.g.,
when the single moiety dissociation-association process con-
straint is lifted9�, or whenever additional variables are re-
quired to describe the system. Starting from Eq. �3�, DNT
focuses mainly on computing the dissociation rate kn

d�T� of
the n molecule cluster Mn by means of canonical variational
transition state theory �vTST�. The equilibrium cluster popu-
lations N�n ,T� �or the free energy difference �Fn,n−1=Fn

−Fn−1� and detailed balance are then used to estimate the rate
kn−1

c �T� for the inverse condensation process.
In term of its emphasis, DNT differs substantially from

other methods that compute kn−1
c by means of simple colli-

sion theory arguments and successively estimate kn
d using the

former quantity and the relevant equilibrium constant �for
instance, see Ref. 10, and references therein�. Unfortunately,
methods relying on collision theory are forced to assume a
radius rn for Mn in order to estimate the monomer-cluster
cross section in a simple and computationally inexpensive
way. Clearly, this introduces a degree of arbitrariness that is
not present in DNT, where rn is instead derived directly from
vTST arguments as the location rn

‡ of the spherical separatrix
that minimizes the reactive flux. This theoretical advantage,
however, is obtained at the price of an increased computa-
tional cost �i.e., the one required to estimate kn

d�, a fact per-
haps suggesting the need for the development of efficient
simulation methods to tackle the task of computing cluster
dissociation rates. As a support for this idea, we mention the
fruitful attempt made by Crosby et al.11 to speed up the cal-
culation of kn

d within the DNT framework.
In considering the usage of Eq. �3� to describe the sys-

tem time evolution, it is easy to realize that both kn
d and kn−1

c

could, in principle, be exactly computed using molecular
dynamics12,13 �MD� without employing statistical theories.
The latter, however, provides a computational advantage
with respect to MD, which becomes inefficient in computing
kn

d for low temperature �T� or energy �E� clusters. Notice that
the choice of the ensemble �i.e., constant T or E�, first, de-
pends on the specific details of the process one wishes to
simulate and, second, it has an impact on the computational
effort needed to study the process as will be discussed in the
following. As to the former issue, the use of a constant T
ensemble would be justified only for nucleating systems
where a sufficiently high number of monomer-cluster colli-
sions take place between two subsequent condensation/
dissociation steps, a situation that appears likely only in pres-
ence of a sufficiently high bath gas pressure. Besides, both
Harris and Ford14 and Barrett10 provided computational evi-
dence suggesting that microcanonical MD simulations
should be used to describe dissociation events due to a time
dependent behavior of the canonical rate constant kn

d�T� re-
lated to the strategy employed to maintain T constant. In the
case of zero/low bath gas pressure, of relevance also for
constant energy cross beam scattering experiments, the mi-
crocanonical ensemble �henceforth indicated either as � or
NVE� appears therefore better suited for the description of

condensation/dissociation events thanks to the fact that E is a
constant of motion, a fact suggesting one should focus on the
calculation of microcanonical rates �kn

d�E� and kn−1
c �E��. Fol-

lowing the time evolution of N�n ,E� instead of N�n ,T�, how-
ever, increases the computational cost required to predict the
nucleation rate due to the necessity of tracking the time evo-
lution of both E and n.

To complicate the matter further, the angular momentum
�J−� resolved microcanonical ensemble �indicated as �J or
JNVE� should be used instead of NVE in gas phase to ac-
count for the constant of motion nature of J. In this case,
however, the problem with the scarce efficiency of MD in
computing dissociation rates would be exacerbated due to
the necessity of integrating the equations of motion for sev-
eral values of J, a task required not only to obtain the
J-dependent behavior of kn

d�E ,J� and kn−1
c �E ,J� but also to

predict more detailed state-to-state rates such as kn
d�E

→E� ,J→J��. Here, E� and J� are the internal energy and
total angular momentum of the product cluster Mn−1, while
kn

d�E ,J� and kn−1
c �E ,J� are the dissociation and association

rates for clusters with total energy E and angular momentum
J.

As a consequence of this brief discussion, one should
quickly realize the necessity of finding a computationally
convenient approach to estimating kn

d and kn−1
c , for the hope

of developing a �- or �J-ensemble based numerical scheme
able to predict the time dependent behavior of a nucleating
system to remain alive. Whereas estimating kn−1

c is expected
to be reasonably straightforward and computationally inex-
pensive thanks to the absence of high energy barriers be-
tween impinging monomer and clusters, computing kn

d�E�
should be more expensive than obtaining kn

d�T�. Thus, a sta-
tistical theory may, again, represent a practical way of avoid-
ing the high computational cost of long MD simulations,
provided that it is shown capable of accurately approximat-
ing kn

d�E�. An appropriate statistical theory should also pro-
vide an accurate estimate for other quantities such as the
kinetic energy release �KER� �Etr=Et+Er� distribution,15 i.e.,
the probability of finding the systems after a dissociation
event with the amount of energy Etr injected into relative
translational energy Et of the two fragments and the rota-
tional energy Er of the remaining cluster. As it should be-
come apparent from the discussion in Sec. II, the KER is a
key ingredient needed for setting up the MEs.

Results suggesting the possibility of predicting both kn
d

and the KER distribution for a dissociation event by means
of statistical theories have been already presented in the past.
For instance, phase space theory16,17 �PST� has been previ-
ously used to estimate kn

d for relatively small rare gas13 and
aluminum18 clusters and found to perform well. Similarly,
Schenter et al.19 provided evidence that their version of ca-
nonical vTST, developed to tackle the calculation of kn

d�T�
for molecular clusters, is in agreement with MD results to
within a factor of 2. More recently, Calvo and Parneix �Ref.
15, and references therein� investigated the possibility of
computing both the KER distribution �i.e., the probability of
Etr assuming a specific value �� and the probability of the
cluster fragment to have a total angular momentum J� by
means of PST, obtaining results that strongly suggested this
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theory to be capable of accurately predicting both quantities.
Estimating the reaction rate, however, was indicated as a
more demanding task due to the necessity of computing ac-
curately the cluster density of states ��E�,20 an issue previ-
ously discussed in Refs. 13 and 18. To circumvent the latter,
Calvo and Parneix20 resorted to calibrating PST dissociation
rates against high energy MD simulations, a pragmatic ap-
proach that allowed them to apply PST to a sequence of
cluster decays.

Apart from the computational difficulties inherent in ob-
taining ��E�, another complication is present in the use of
PST for the calculation of kn

d�E� for a range of cluster sizes,
namely, the definition of the asymptotic potential Veff�r� de-
scribing the region of the loose transition state due to relative
orbital motion of the two dissociating fragments. In a previ-
ous application of the theory, Peslherbe and Hase18 resorted
to fitting the long range interaction between Aln−1 and Al
�n=6,13� with the analytical form −C /r6, whereas canonical
Metropolis Monte Carlo �MMC� simulations were used to
compute the average potential experienced by the detaching
fragment in Refs. 13 and 20. In the latter case, the simulation
temperature was chosen matching MD and PST results20 de-
spite the fact that Veff�r� should, in principle, be E-dependent
and determined using microcanonical simulations.

Although practical, neither the calibration with MD
simulations nor the choice of using a single Veff�r� for all
energies are, in principle, mandatory as they could be cir-
cumvented using a different statistical theory merging the
appropriate sampling of the reactant configuration space with
the accurate determination of key observables, e.g., kn

d’s and
KER distributions. One of the aims of this work is therefore
to investigate the accuracy of generalized microcanonical
vTST in predicting the latter quantities. Given the four-index
dependency of kn

d�E→E� ,J→J��, we believe it would also
be useful to investigate its sensitivity with respect to the
constants of motion E, E�, J, and J�. Quantitative informa-
tion on this may allow one to devise possible simplification
of the MEs, hopefully reducing the number of numerical
simulations required to predict vapor condensation or a clus-
ter dissociation cascade. Such an investigation is therefore
the second goal of this work.

The outline of this manuscript is the following. In Sec.
II, we briefly introduce the theoretical approach used in this
work. Section III begins by describing a numerical investi-
gation of the J dependency of kn

d�E� carried out with MD
simulations, its results providing additional evidence for the
weak J-sensitivity of this quantity for atomic clusters. With
this observation in mind, MD and TST estimates for kn

d�E�
are successively presented for three different Lennard-Jones
�LJ� clusters as a benchmark for the accuracy of microca-
nonical vTST ��-vTST�. Finally, a generalized �-vTST
based approach is proposed to compute the KER distribution
with the same statistical simulations used to estimate kn

d�E�.
Section IV presents our conclusions and outlook for future
applications.

II. THEORY AND SIMULATION METHODS

In this work, we aim toward the development of a TST-
based approach for the description of cluster dissociation.

Generally speaking, we wish to build on the evidence that
PST provides an accurate alternative to MD and that it is
equivalent to more standard vTST in the case of a loose
transition state.21 In this respect, we begin by considering the
use of the TST equation for the classical statistical rate of a
dissociation process at constant energy E

kstat
d �E� =

�S���H�p,q� − E�v�dS�

�V��H�p,q� − E�d�
. �4�

Here, S� is the hypersurface in phase space separating the
reactant from the product and v� is the velocity perpendicu-
lar to this surface and pointing in the direction of the prod-
ucts. The integral at the numerator is carried out over the
transition surface �state� S�, whereas the one at the denomi-
nator is computed over the reactant phase space V enclosed
by S�. Often the dependence of S� on the momenta p is
neglected and only the coordinates q are used for its defini-
tion.

In the case of a simple dissociation process, Eq. �4� can
be rewritten as

kstat
d �E� =

1

2

�V��H�p,q� − E���rIRC − rC��ṙIRC�d�

�V��H�p,q� − E�d�
, �5�

where the distance between the dissociating moiety and the
center of mass of the remaining cluster is used as intrinsic
reaction coordinate �rIRC�, rC is the critical distance for rIRC

�i.e., the location of a spherical S��, and ṙIRC is the relative
velocity of the two dissociating fragments along rIRC. Ac-
cording to the usual vTST prescriptions, rC must be chosen
such that kstat

d �E� is minimum. Notice that our choice of re-
action coordinate is expected be adequate at low-medium
energies, i.e., when the remaining cluster, although fluxional,
is still fairly compact. At higher energies, the presence of
wide excursions of the surface particles may induce the dis-
appearance of the minimum in kstat

d �E� as a function of rC,
preventing one from obtaining a theoretically sound estimate
for the dissociation rate constant. This difficulty may, how-
ever, be cured with a different choice for rIRC.

Assuming H�p ,q�=1 /2�i=1
n pi

2 /mi+V�q�, the kinetic en-
ergy of the system is diagonal in Cartesian coordinates and
the integrals in Eq. �5� can be separated obtaining22

kstat
d �E� =

�V�E − V�q���3n−5�/2��rIRC − rC���ṙIRC�	Kdq

�V�E − V�q���3n−5�/2dq
, �6�

where V�q� is the potential energy surface of the system, n is
the number of atoms and ��ṙIRC�	K is the microcanonical en-
semble average of the relative velocity of the reactant �R�
through the critical surface in the direction of the product �P�
for a value of the internal �vibrational plus rotational� kinetic
energy equal to E−V�q�. Notice that �E−V�q���3n−5�/2 is the
appropriate configuration weight for an isolated molecule
composed by n atoms as obtained by factorizing out the con-
tribution due to the center of mass motion in the way sug-
gested by Schranz et al.23 An alternative form for Eq. �6� is
obtained by using the Heaviside function H	�ṙIRC� selecting
velocities directed from R to P and by rewriting the integral
ratio as a product of two ratios
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kstat
d �E� =

�V�E − V�q���3n−5�/2��rIRC − rC��H	�ṙIRC�ṙIRC�q�	Kdq

�V�E − V�q���3n−5�/2��rIRC − rC�dq

�V�E − V�q���3n−5�/2��rIRC − rC�dq

�V�E − V�q���3n−5�/2dq
. �7�

In this form, it is made apparent that the calculation of
kstat

d �E� could, in principle, be separated in two �or more�
parts with different interpretations. In fact, the first ratio rep-
resents the expectation value of ṙIRCH	�ṙIRC� when the sys-
tem is constrained to have the dissociating moiety at the
critical distance rC �henceforth dubbed as �-TS ensemble�.
The second ratio, instead, is the probability of finding the
system at the critical distance.

Notwithstanding the fact that kstat
d �E� could be estimated

directly using Eq. �6� �see Ref. 24 for its original description
and Ref. 25 for an alternative implementation�, the definition
of the �-TS ensemble introduced in Eq. �7� provides one
with conceptual and computational advantages. As for the
computational side, the probability of finding the system on
the separatrix can be efficiently computed by employing
microcanonical25 umbrella sampling26 �US� in conjunction
with a new estimator for the Dirac delta recently developed
by us.27 From the theoretical view point, instead, the advan-
tage comes from the possibility of thinking about the first
integral ratio in Eq. �7� as a specific example �i.e., for
ṙIRCH	�ṙIRC�� of an expectation value calculation over the
�-TS ensemble �for instance, see Ref. 28, where a similar
factorization was previously exploited to correct for the lack
of dynamical effects in TST�.

From this brief discussion, it should be apparent that
substituting ṙIRC with a different dynamical observable
would, in principle, give access to the phase space average of
the latter when the system is constrained to lie on the sepa-
ratrix while having H	�ṙIRC�=1. Thus, the computational
machinery developed for kstat

d �E� may, for instance, lend itself
to the calculation of Ptr�E,��, the probability distribution
function of finding Etr in the range �� ,�+d�� when the reac-

tant has a total internal energy E. This may be possible pro-
vided that the relevant dynamical observable Etr can be writ-
ten, at least, as an implicit function of the system position q.
A similar statement can be made for Pt�E ,�� when only the
distribution of Et is of interest. Needless to say, the impor-
tance of Ptr�E ,�� and Pt�E ,�� stems from the necessity of
defining the internal energy E� of the fragment cluster after a
dissociation event to predict the rate of, e.g., a second mono-
mer ejection, and it is therefore of prime interest in the de-
scription of multiple cluster decays as thoroughly discussed
in Ref. 20.

To derive a mathematical definition for Ptr�E ,�� fitting
the framework provided by Eq. �7�, we start by noticing that
it could be approximated by the fractional number of times a
system distributed according to the �-TS ensemble and with
H	�ṙIRC�=1 is found having Etr in the narrow but finite in-
terval ��tr ,�tr+��tr�. Within this approximation, it is implic-
itly assumed that no energy exchange takes place between
the two dissociating moieties after an event has been dubbed
as reactive. Given a specific geometrical configuration q of
the molecules in the system, the instantaneous amount of
kinetic energy K available to the latter is given by K=E
−V�q�, a part of which would be distributed into Etr. If K is
statistically distributed among degrees of freedom, the rela-
tive number of times Etr falls within ��tr ,�tr+��tr� is simply
given by �H	�ṙIRC�����	K, where ���� is a normalized rect-
angular distribution with nonzero values only in the interval
of interest. Taking the limit ��tr→0 and integrating over all
available configuration space with the proper microcanonical
weighting �i.e., �E−V�q���3n−5�/2 �Ref. 24�, one arrives at

Ptr
TS�E,�tr�d�tr =

�V�E − V�q���3n−5�/2��rIRC − rC��H	�ṙIRC���Etr�q� − �tr�	Kdq

�V�E − V�q���3n−5�/2��rIRC − rC�dq
d�tr. �8�

Here, Etr�q� explicitly indicates the dependency of Etr on the
atomic coordinates and ��Etr�q�−�tr� is used to count the
number of occurrences for a specific �tr. In practice, Eq. �8�
suggests to use a constrained simulation with rC chosen ac-
cording to the variational TST principle and to estimate
Ptr

TS�E ,�tr� by counting the number of times Etr falls in the
small range between �tr and �tr+��tr.

While employing Eq. �8� to obtain Ptr
TS�E ,�tr�, one faces

an additional difficulty related to the lack of an analytical
form for Etr�q�. A possible way to circumvent this issue is to
tackle the calculation of �H	�ṙIRC���Etr�q�−�tr�	K numeri-

cally, i.e., by sampling the particle momenta with the appro-
priate distribution and subject to the constraint K=E−V�q�
as suggested in Ref. 29. Practically speaking, the randomly
sampled momenta are first used to test if ṙIRC is correctly
oriented, and subsequently employed to obtain Etr�q�. In the
latter, the Er component in the fragment cluster can be com-
puted using its total angular momentum and the instanta-
neous position of its constituent atoms to define the inertia
tensor, whereas Et is easily obtained from the relative veloc-
ity of the two dissociating fragments. Notice that the numeri-
cal scheme just discussed implicitly contains the effect of the
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J-dependent dissociation potential, it does not consider the
cluster as a spherical object, it assumes a vanishingly small
residual interaction between the dissociating moiety and the
remaining aggregate, and it is a straightforward adaptation of
the approach used to estimate the Er component for a disso-
ciated MD trajectory.

III. RESULTS AND DISCUSSION

A. Behavior of kn
d
„E ,J… as a function of the total

angular momentum J

As mentioned in Sec. I, the task of modeling vapor
nucleation using a set of MEs would be substantially simpli-
fied if one was allowed to neglect the dependence on the
system angular momentum J. It therefore appears important
to explore whether the weak sensitivity of kn

d�E ,J� on J, the
angular momentum of the parent cluster, suggested for
LJ12–14 �Ref. 13� and Al6 �Ref. 18� is more generally valid.
We reiterate that the reason for this investigation is the fact
that predicting dissociation rates in gas phase would, in prin-
ciple, force one to work within the framework provided by
the �J-ensemble. Thus, a �partial� justification is needed for
the usage of the simpler � ensemble when there is no interest
in computing the evolution of the total angular momentum or
of any related observables during the process modeled �e.g.,
an evaporation cascade�.

In order to test such a hypothesis on slightly more gen-
eral grounds than provided by Refs. 13 and 18 the dissocia-
tion rates of three different LJn clusters �n=8, 14 and 19�
were computed as a function of both E and J using MD
trajectories. These three values of n were selected in order to
explore archetypal structural changes between reactants and
products.15 In particular, n=8 presents substantial structural
differences from its product, the latter being a high symmetry
�D5h� oblate rotor that is expected to be capable of isomer-
izing in the range of energies amenable to MD simulations.15

n=14 was instead chosen for its low evaporation energy due
to its capped icosahedral structure and for the fact that it
produces a spherical species, whereas n=19 was selected to
explore the effect of breaking the compact structure of a
nonspherical magic number cluster. Figure 1 shows the mini-
mum energy structures for the clusters relevant to this study.

For all systems, the details of the simulations employed
to compute the reaction rates are the following. Atoms were
assumed to interact by means of a pairwise LJ potential writ-
ten as V�r�=4���
 /r�12− �
 /r�6�, with the parameters ��
=3.7935�10−4 hartree and 
=6.4354 bohr� being chosen
to represent the Ar–Ar interaction. A mass of 73 350.6 times
the electron mass was used for the Ar atoms. For each clus-
ter, an initial equilibration stage was conducted at the appro-
priate total energy E by means of a MMC simulation in the
microcanonical ensemble;24 each of the atoms in the cluster
was also constrained to have its distance from the center of
mass of the remaining ones shorter than 4
. Trajectories
were started from statistically independent samples extracted
from the MMC simulations; 10,000–25 000 total trajectories
per �n ,E ,J� triplet were employed to estimate dissociation
rates. In the triplet, E is the total energy of a cluster and
includes the contribution from the potential energy, the rota-

tional kinetic energy, and the vibrational kinetic energy but
not from the center of mass motion. Trajectories were inte-
grated using the leap frog algorithm and a time step of 200
a.u. �roughly 5 fs� up to a maximum of 120 ps. The total
energy was conserved better than 10 ppm in all cases. Initial
velocities for all particles were chosen according to the sto-
chastic procedure suggested in Ref. 29. The total angular
momentum was sampled employing a simple rejection pro-
cedure with a sampling window of six atomic units of angu-
lar momentum � centered around the chosen J value. To
select physically sensible values for the latter quantity, short
preliminary MMC simulations were carried out on each LJn

at the chosen E. During the MMC sampling, initial velocities
for the particles were chosen as indicated above �see Ref. 29�
and used to produce the probability distribution p�J� for J at
the specific E. In general, such distributions are well approxi-
mated by the canonical-like density p�J�
J2 exp�−�J2�. The
upper limit of the range of J explored in the MD simulations
was chosen as the value Jupper	Jmax for which
p�Jupper� / p�Jmax�
0.2, with Jmax being the position
of the maximum in p�J�; with this choice,
�0

�J�upperp��J��d�J� /�0

p��J��d�J�	0.85 for every E. As final

comment, we notice that an explicit dependency on J of the
cluster structure and dynamics is introduced only at the be-
ginning of the MD trajectory. However, the initial trajectory
configurations partially accounts for some angular momen-
tum effect due to the microcanonical sampling. Also, a sub-
stantial re-equilibration of the clusters is allowed by their
reasonably long lifetime �see below�.

During a trajectory evolution, a particle was considered

FIG. 1. Minimum energy structure for the reactant �left, LJ8,14,19� and prod-
uct �right LJ7,13,18� clusters. The energy of the global minimum for n=7, 8,
13, 14, 18, and 19 are, respectively, �0.006 261 317, �0.007 519 282,
�0.016 815 372, �0.018 150 06, �0.025 238 516, and �0.027 563 488
hartree.
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dissociated when its distance from the center of mass of the
remaining cluster was larger than 4
, a region for which the
interaction potential between the two dissociating fragments
was found negligible. The MD rate constants were estimated
assuming a first order kinetic law and fitting the long time
behavior of ln��N0−Nt� /N0� with a straight line. Here, N0 is
the total number of trajectories and Nt is the number of tra-
jectories dissociated at time t. This approach differs some-
what from the procedure used by Weerasinghe and Amar,13

who used the last negative minimum of the radial momentum
for the dissociating atom to define the dissociation time. It
also introduces some arbitrariness in the results, which are
independent of the separatrix location only when the latter is
placed in a region where the interaction potential has com-
pletely died off. Preliminary test runs, however, provided
evidence that the rate constants are fairly insensitive to the
critical dissociation distance, provided the residual potential
is small. Thus, 4
 was found to represent an adequate com-
promise between accuracy and computational cost for all
values of n, E, and J. To test for the suitability of the first
order kinetic law, trajectories have been also analyzed plot-
ting lifetime distributions. Generally speaking, lifetimes
were found to follow the single exponential distribution pre-
dicted by the Rice-Ramsperger-Kassel-Marcus �RRKM�
theory30 within the statistical precision of our simulations,
the only exception being represented by clusters with high
internal energy. Even in these cases, however, only minor
deviations were noticed as will be discussed in the following.

Figure 2 �panel a� shows the behavior of kn
d�E ,J� as a

function of n, E, and J obtained using MD simulations. Panel
b in Fig. 2 provides a graphical representation for the prob-
ability distribution function p��J�� of J at the energies em-
ployed in the MD simulations. The values of energy used to
investigate the J-dependency of kn

d�E ,J� �Fig. 2� were chosen
in order to explore situations of medium and high energy
content for the LJ clusters; in all cases, the species are liq-
uidlike. For all cluster sizes, only small changes in kn

d�E ,J�
as a function of J are seen. The nature of these changes
appear to be nonsystematic and probably due to mild sam-
pling issues. The only deviation from this rule is represented
by the case of LJ19 at E=−0.016 hartree, for which kn

d�E ,J�
increases, roughly, by 20% for J	200 a.u. Overall, the re-
sults shown in Fig. 2 support the previous observation on
LJ12–14 �Ref. 13� and Al6 �Ref. 18� indicating a weak
J-dependency of the dissociation rate. Bearing in mind the
wide range of difference between the structure of the parent
and daughter clusters explored in this work and Refs. 13 and
18, we interpret our numerical results �Fig. 2� as suggesting
that it may be legitimate to neglect the dependency of
kn

d�E ,J� on J for atomic aggregates of similar size. As a
direct consequence of this assumption, additionally the de-
pendency of kn

d�E→E� ,J→J�� on the angular momentum J�
of the daughter cluster could be neglected while considering
an evaporation cascade. This is easily understood: given the
weak dependency on the angular momentum of the dissocia-
tion rate, there is no obligation to keep track of the amount of
energy injected in the cluster rotational motion to describe a
subsequent dissociation step. In this way, one is also relieved
from the burden of estimating the probability of finding the

daughter cluster with total angular momentum J� given an
initial total angular momentum J for the parent �see, how-
ever, Ref. 31 for an alternative approach that explicitly takes
J� into account�. This approximation is of course reasonable
unless a substantial amount of rotational heating/cooling
takes place during the dissociation processes, a possibility
that, however, appears unlikely.15

In retrospective, the weak dependency of kn
d on J high-

lighted by the MD results could have been easily foreseen
from simple statistical consideration. Assuming equipartition
of the internal energy between modes, one quickly reaches
the conclusion that only a small fraction �roughly 3 / �2�3n
−6�+3�� of the total energy would be into the rotational
modes. This result, in turn, suggests that the vast majority of
the energy needed during the dissociation process is made
available by the vibrational modes, so that keeping track of
the cluster rotational energy may generally not be of prime
importance. In this way, a substantial simplification of the
calculations and a reduction in the associated computational
cost is introduced and we shall therefore assume in the rest

FIG. 2. �Color online� �a� kn
d�E ,J� as a function of J �in units of �� for LJn

�n=8,14,19�. Two selected values of E �potential plus rotational and vibra-
tional kinetic energies, in atomic units� are shown per cluster size. E values
were chosen to investigate the effect of medium and high energy content. J
values were chosen to cover the range sampled during short preliminary
simulations carried out with unconstrained J-sampling as described in the
main text. Differences in kn

d�E ,J� as a function of J are at most 20% in all
cases. �b� A plot of the analytical form p�J�=4��3 /�J2 exp�−�J2�, fitted to
the sampled distribution of J, is shown for the six cases reported in panel a.
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of this work that only a negligible dependency on the total
angular momentum of the dissociation rates is present and
focus only on the �-ensemble.

B. Comparison between �-vTST and MD dissociation
rates

Bearing in mind the results discussed in the previous
paragraphs, it appears therefore useful to benchmark the ac-
curacy afforded by TST in predicting kn

d�E� for LJ clusters.
Perhaps surprisingly, the only comparison between exact and
statistical rates present in literature for these systems was
carried out for PST on LJ12–14,

13 whereas no tests are avail-
able for the microcanonical version of TST provided by Eq.
�6� to the best of our knowledge. In this situation, a more
general test employing a set of atomic clusters featuring
largely different structures appears as a worthwhile exercise
as it could support more general conclusions.

To partially fill this gap, statistical and MD dissociation
rate constants for LJ8, LJ14, and LJ19 have been computed
over a wider range of energies than explored in Sec. III A.
MD simulations were run and analyzed with a protocol iden-
tical to the one used to investigate the J dependency of
kn

d�E ,J�. As discussed in Sec. II, a microcanonical
adaptation25 of the procedure described in Ref. 27 was used
to compute TST rates. This employs US to guide the con-
figurational sampling close to the possible TS region and a
discretization error-free estimator for the Dirac delta.27 In the
TST calculations, a variable number of US windows was
used as a function of the cluster size �2 for LJ8, 3 for LJ14,
and 5 for LJ19�. To reduce the likelihood of quasiergodic
behavior for simulations at low energy, a microcanonical
replica-exchange32 MMC approach was implemented ac-
cording to the rules discussed in Ref. 33. In this approach, all
MMC calculations needed to span the energy interval of in-
terest for a given cluster are run concurrently, exchanging
configurations between energetically close simulations with
an exchange probability that conserves the microcanonical
distribution at both energies. This allows configurations un-
likely to be sampled by low energy simulations to “percolate
down” from high energy ones, facilitating the sampling of
region in configuration space separated by energy barriers.
The set of energy values employed in the microcanonical
MMC runs were chosen in order to obtain an exchange rate
of, at least, 20%–30% between neighbor energy values dur-
ing preliminary test simulations; 106 configurations per en-
ergy were sampled during each US simulation. The value of
kn

d�E� �Eq. �6�� was computed as a function of rC over a grid
of equispaced points separated by 1 bohr. Five to seven
simulations were used to estimate these values obtaining a
statistical accuracy of roughly 10%. The variational nature of
TST rate constants was exploited selecting the location of the
separatrix �rC� over the chosen grid as the one that minimizes
the value of kn

d�E�. The simulation protocol employed for the
TST calculations is fairly efficient and allows one to extend
the range of energies substantially below the one accessible
by MD thanks to its lower computational cost. In the energy
range investigated, the clusters undergo a phase change from
solidlike to liquidlike upon increasing the internal energy.

The results of the MD and TST simulations are reported
in Tables I–III and shown in Fig. 3. Tables I–III also report
the recrossing factor kMD

d �E� /kTST
d �E�. From these data, one

notices a good agreement between variational TST and MD
rates, the two sets of data differing at most by a factor of 2
over the energy range accessible by MD simulations. As
usual, TST deviates the most from MD at high energy,
whereas low energy TST dissociation constants are off by
less than 30%. To highlight the better computational perfor-
mances of the TST based approach, in Table III we have also
included rate constants computed in a range of E substan-
tially lower than the one accessible by trajectory simulations
for LJ19. These additional results show that TST is, indeed,
capable of providing an estimate for rates spanning roughly
20 orders of magnitude. As for the relative performances
versus cluster size, the largest differences between TST and
MD rates are seen for LJ8 and LJ19; we suspect this finding
to be related to a less spherical structure for LJ7 and LJ18

than for LJ13 and our choice of a spherical separatrix.
A more detailed analysis of the trajectory results indi-

cated the presence of moderate nonstatistical effects for high
energy species, with a slightly faster decay of ln��N0

−Nt� /N0� at short time than at longer time �Fig. 4�. To test
for quasiergodic behavior, the slope of ln��N0−Nt� /N0� at
t=0 was also computed. The latter was found to differ from

TABLE I. Monomer dissociation rates for LJ8 as a function of the internal
energy E computed using MD and TST simulations. The adiabatic dissocia-
tion energy for a monomer is 0.001 257 964 hartree for LJ8. Statistical errors
are of the order of 1% and 10% of the quoted results for MD and TST,
respectively.

E
�hartree�

kMD
d �E�
�ps−1�

kTST
d �E�
�ps−1� kMD

d �E� /kTST
d �E�

�0.005 0.000 032 0.000 032 1.00
�0.004 75 0.000 13 0.000 16 0.81
�0.004 5 0.000 41 0.000 72 0.57
�0.004 25 0.001 1 0.002 2 0.50
�0.004 035 0.002 4 0.004 0 0.6
�0.003 5 0.008 1 0.013 0.62
�0.003 0.019 0.021 0.91
�0.002 5 0.045 0.033 1.37

TABLE II. Monomer dissociation rates for LJ14 as a function of the internal
energy E computed using MD and TST simulations. The adiabatic dissocia-
tion energy for a monomer is 0.001 334 688 hartree. Statistical errors are of
the order of 1% and 10% of the quoted results for MD and TST, respec-
tively.

E
�hartree�

kMD
d �E�
�ps−1�

kTST
d �E�
�ps−1� kMD

d �E� /kTST
d �E�

�0.011 0.001 137 721
�0.0105 0.0014 0.0021 0.67
�0.0100 0.0039
�0.0095 0.0075 0.0062 1.23
�0.0085 0.013 0.015 0.87
�0.0080 0.023
�0.0075 0.028 0.028 1.00
�0.0070 0.039
�0.0065 0.051 0.046 1.1
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the statistical rate constant by 10% at most, suggesting that
the configuration space of all species is appropriately
sampled by our MMC simulations and that the time depen-
dence of ln��N0−Nt� /N0� is likely to derive from an “intrin-
sic non-Rice–Rampsberger–Kassel �RRK� behavior” as de-
scribed by Bunker and Hase.34 As far as obtaining an
analytical representation for the behavior of kn

d as a function
of E, in the presence of intrinsic non-RRK behavior it should
be possible to fit both the statistical and weakly nonstatistical
regimes using the approach presented by Shalashilin and
Thompson.35 An analytical representation would, of course,
facilitate the simulation of long evaporation cascades or
droplet nucleation, a long term interest of ours.

Apart from exploring the possibility of nonstatistical be-
havior during cluster dissociation, the possible impact of an-
harmonicity on kn

d�E� was assessed by fitting low energy TST
rates for all clusters with the RRK expression log�kn

d�E��

=log���+ �s−1�log��E−E0� /E�. Here, E is the internal en-
ergy of the cluster and E0 is its evaporation energy �i.e., the
energy necessary to detach a monomer from the global mini-
mum of LJn producing the global minimum of LJn−1�. Over-
all, the RRK expression was found to performed quite well,
even though the fitting process produced larger s values than
suggested by counting the vibrational degrees of freedom
�sRRK=3�n−6� for LJ8 and LJ14. Specifically, s was found
to be 22, 44, and 50 for n=8, 14, and 19, respectively. Ac-
cording to Song and Hase,36 an s value larger than the num-
ber of modes is likely to be due to anharmonic effects, which
allow the sum of states for the TS �N‡�E�� to grow more
rapidly than the reactant density of states ���E��. This seems
to be the case for both LJ8 and LJ14 that are liquidlike in the
range of energies used to extract s. Differently, LJ19 is solid-

TABLE III. Monomer dissociation rates for LJ19 as a function of the internal
energy E computed using MD and TST simulations. The adiabatic dissocia-
tion energy for a monomer is 0.002 324 973 hartree. To highlight the effec-
tiveness of the TST approach, rate constant values at energies substantially
below the ones accessible by MD simulations have also been included.
Statistical errors are of the order of 1% and 10% of the quoted results for
MD and TST, respectively.

E
�hartree�

kMD
d �E�
�ps−1�

kTST
d �E�
�ps−1� kMD

d �E� /kTST
d �E�

�0.024 7.7�10−24

�0.023 2.4�10−13

�0.022 4.6�10−9

�0.021 7.3�10−7

�0.02 0.000 022
�0.019 0.000 094 0.000 12 0.78
�0.018 0.000 24 0.000 43 0.56
�0.017 0.001 1 0.001 7 0.64
�0.016 0.002 2 0.005 1 0.43
�0.015 0.005 9 0.010 0.59
�0.014 0.011 0.023 0.47
�0.013 0.020 0.039 0.51

FIG. 3. �Color online� Behavior of log10�kn
d�E�� �ps−1� as a function of

log10��E−E0� /E� for n=8, 14, and 19. The data for LJ14 have been shifted
by 0.05 units of log��E−E0� /E� to the right in order to unclutter the plot.

FIG. 4. �Color online� Behavior of ln��N0−Nt� /N0� vs time for selected
values of the internal energy �in a.u.�. �a� LJ8; �b� LJ14; �c� LJ19.
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like in the range of E employed in the fitting procedure and
the obtained s value, only slightly lower than the theoretical
sRRK, seems to suggest that the cluster is behaving in reason-
able accord with the harmonic approximation used to derive
the RRK rate expression. An additional deviation from the
classical RRK behavior might be present in barrierless dis-
sociations due to a contraction of the TS distance upon in-
creasing the internal energy. This contraction may affect both
the effective value of the dissociation energy and the abso-
lute value of � �for harmonic modes this term is given by
�=�i=1

s �i /�i=1
s−1�i

‡,30 where �i and �i
‡ are the harmonic fre-

quencies of the reactant and TS, respectively�. However, we
found only small changes �1 bohr� in the locations of the TS
as a function of E, suggesting a minor role for this effect.

To conclude this section, it appears necessary to com-
ment on the total cost of both MD and statistical TST simu-
lations, providing evidence for the better efficiency and re-
duced computational effort suggested earlier for MMC-TST
calculations. To do so, let us focus on the largest and most
demanding cluster studied, namely, LJ19. For this, obtaining
low energy MD dissociation rates required a minimum of
2500 trajectories and roughly 55 min per energy on an Intel
3.0 GHz processor. In those conditions, we found that only a
small fraction �e.g., 60 over 2500� of trajectories are reactive
and that the total computational time decreases by up to a
factor of 3 due to faster trajectory dissociation at higher en-
ergy. To estimate TST rates, five US windows were used to
force the MMC simulation to visit the relevant range of rIRC

�16–40 bohr�, each of which sampled 106 configurations at
12 different energies and required roughly 20 min. Six addi-
tional simulations of similar length were successively em-
ployed to estimate ���rIRC−rC�	, with a total cost of roughly
18 min per energy. As a consequence, TST allows a threefold
decrease in computational time at the lowest energy still
amenable to MD simulations.

C. KER distributions

From the results discussed in Sec. III B, we conclude
that the version of TST given by Eq. �6� may indeed be
capable of providing accurate dissociation rate constants for
LJn over a wide range of energies and a substantial saving in
computer time for processes at low energy. It would seem
therefore possible to rely on MD simulations only for the
most difficult cases or at high values of E.

In our view, there is an additional and more compelling
reason to employ TST in modeling the dissociation of atomic
and molecular clusters, a reason that has been partially intro-
duced in the work by Calvo and Parneix.20 As discussed in
Sec. I, modeling a cluster dissociation cascade by means of a
set of MEs necessitates use of either Ptr�E ,�tr� �the distribu-
tion of Etr as a function of E and J� or Pt�E,�t� �the distri-
bution of Et as a function of E if the J-dependency is ne-
glected�. Unfortunately, obtaining a precise estimate for
these distributions with MD is more demanding than the cal-
culation of kn

d�E�. For instance, we found that a minimum of
10 000 dissociated trajectories were needed to obtain a rea-
sonably precise Ptr�E ,�tr� for LJ8. From these data and the
small fraction of low energy dissociation events witnessed

for LJ19 �roughly 2.5%�, it is possible to estimate that at least
153 h would be needed to obtain a low energy KER distri-
bution for LJ19.

The difficulty related to the large number of dissociated
trajectories needed for the construction of Ptr�E ,�tr� could, in
principle, be circumvented using TST. In fact, Calvo and
Parneix15 already showed that accurate KER distributions
can be obtained using PST at a small fraction of the compu-
tational cost required by MD �Ref. 15� provided that ��E�
and the correct integration boundaries in energy and momen-
tum space are available. As mentioned previously, Eq. �8�
circumvents the necessity for an accurate estimate of ��E�
and it is expected to feature a similarly reduced computa-
tional cost. However, the performance of Eq. �8� in predict-
ing Ptr�E ,�tr� need to be properly assessed, the results of this
task being described in the following paragraphs.

To produce a comparison for Ptr
TS�E ,�tr� �Eq. �8��, at

least 10 000 dissociated MD trajectories have been collected
for each cluster size and value of internal energy investi-
gated. Trajectory simulations have been carried out follow-
ing protocols discussed in Secs. III A and III B. More spe-
cifically, trajectories were dubbed as dissociated at rIRC=4

and analyzed to extract both Et and Er with the scheme pro-
posed in Sec. II for the analysis of the TST simulations.
Histograms for Ptr

TS�E ,�tr� were obtained collecting samples
composed of 104 independent configurations distributed ac-
cordingly to the �-TS ensemble by means of MMC simula-
tions. In the latter, Jacobi coordinates were used instead of
the Cartesian ones to maintain the dissociating atom on the
separatrix. For each configuration q extracted from the MMC
runs, 20 independent momentum samples were generated as
suggested earlier, producing a total of 2�105 independent
momentum samples for energy and cluster size.

Figure 5 shows the KER distributions for the three clus-
ter sizes and selected values of the internal energy. Overall,
the results presented in Fig. 5 indicate a good agreement
between MD and TST distributions, especially at low inter-
nal energy. At higher internal energies, the agreement
slightly deteriorates for low values of �tr, whereas the behav-
ior at high �tr is reasonably well reproduced �panels a and b�.
More specifically, the TST distributions suggest a higher
probability for low �tr values than the MD counterparts. A
similar behavior �not shown� was also found for the distri-
bution of Et.

At the moment, we find it difficult to completely ratio-
nalize the difference between MD and TST results. This may
be due, for instance, to nonstatistical effects, i.e., to non-
statistical energy distributions in the products, which may
lead to a more substantial accumulation of energy either
along the reaction coordinate or in the rotational motion of
the fragment cluster. Another possible source of difference
comes from the fact that different separatrix locations are
used in MD and TST simulations, the optimized separatrix
radius rC in TST always being shorter than the fixed distance
rC=4
 used for MD trajectories. Because a phase space
point is implicitly labeled as “reactive” in Eq. �7� based only
on a positive value of the projection of its velocity along the
reaction coordinate, some residual interaction between the
two fragments may still be present due to the shorter rC

084108-9 Theory of atomic cluster dissociation J. Chem. Phys. 130, 084108 �2009�

Downloaded 13 Oct 2009 to 193.206.165.81. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



distance used in TST. As a consequence of this, not all the
phase space points dubbed as reactive in TST should be con-
sidered as such, and the ones with only a small amount of
kinetic energy injected along rIRC may actually be “trapped.”
Excluding the contribution of such points should lead to a
decrease in the probability of emitting a monomer at low �tr.
Needless to say, both nonstatistical effects and the limitation
intrinsic in the choice of a geometric separatrix may share a
role in inducing the discrepancy between KER distributions
at low �tr, an issue that would be the focus of an investiga-
tion in the near future.

IV. CONCLUSIONS

This work reports an investigation exploring the possi-
bility of theoretical and computational simplifications that
could be introduced in studying the quantitative details of
dissociating atomic clusters. The underlying motivation be-
hind this study is the desire of extending DNT to the micro-
canonical ensemble �or the J-resolved microcanonical en-
semble�, the latter being a more natural framework to deal
with gas phase activated processes such as collision-induced
dissociation.

The first simplification comes from noticing that kn
d�E ,J�

is substantially independent of J, the total angular momen-
tum of the activated aggregate, for the range of cluster sizes
and energies explored in this work. As a net consequence of
this, one would therefore be allowed to focus only on the
energy dependency of kn

d with a substantial reduction in both
the complexity and cost of the calculations. However, it is
important to stress that the reason for introducing this sim-
plification is only related to the total cost of computing dis-
sociation rates and not to an intrinsic limitation of TST in
dealing with nonzero angular momentum. In fact, it would be
straightforward to extend it using the procedure suggested in
Ref. 31.

When modeling parallel dissociation/condensation pro-
cesses, the weak sensitivity of kn

d�E ,J� with respect to J may
allow one to introduce another simplification in the ME set,
namely the possibility of neglecting the dependency on J of
the condensation rate constant kn−1

c �E�→E ,J�L�→J�, L� in-
dicating the orbital angular momentum of the colliding sys-
tem. Similarly to that discussed previously, this simplifica-
tion would rely on the fact that the dissociation lifetime of
Mn only weakly depends on J, but it would be fully justified
only if kn−1

c was also found to be largely independent of J�,
an issue currently under investigation in our laboratory.

As for the dependency of kn−1
c �E�→E ,J�L�→J� on L�,

indirect evidence for a simple behavior of kc with respect to
L� was provided by Napari et al.,37 who carried out MD
simulations to study the monomer capture probability by
cold LJ clusters as a function of the collision parameter b.
The capture probability �and the lifetime � of the formed
cluster� was found to be practically insensitive to b, hence to
L�, provided b was within the cluster radius. At larger colli-
sion parameters, the capture probability becomes almost neg-
ligible suggesting the possibility of modeling the condensa-
tion process as a function of L� using a steplike function for
the capture probability. Notice, however, that Georgievskii
and Klippenstein38 reported improvements in the accuracy of
long range TST when the full �J-vTST version is used.
Needless to say, a more accurate investigation of this issue
for atomic clusters would be worthwhile but it is outside the
scope of this work.

Evidence has been also provided for a good performance
of TST with respect to MD in predicting the dissociation rate
constant as a function of the aggregate internal energy E.
Bearing in mind that usually TST performs rather well at low
energy, i.e., when MD becomes inefficient, this finding sug-
gests that statistical kn

d�E�’s obtained with Eq. �6� could be
used at all but the highest values of internal energy with a

FIG. 5. �Color online� MD and TST KER distribution for LJn at different
values of E. �a� n=14; �b� n=8; �c� n=19. The distributions have been
normalized so that �P�E ,�tr�d�tr=1. Energy in hartree.
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substantial saving in computational time. Importantly, the
version of TST used in this work �see Eq. �6�� lends itself to
be merged with a microcanonical extension of replica ex-
change algorithm,32 thus improving the exploration of the
configuration space, and fully accounts for the anharmonic
behavior of LJn. As previously shown by Peslherbe and
Hase18 for PTS, the correct treatment of anharmonicity is an
indispensable ingredient for an accurate prediction of disso-
ciation rates for fluxional species.

The knowledge of kn
d�E� over a wide range of energies

would, in principle, allow one to also obtain kn
d�T�

by convolving the NVE reaction rates with the
normalized Boltzmann distribution Pn

B�T ,E�dE
=��E�e−E/kBTdE /���E�e−E/kBTdE for LJn at the chosen tem-
perature T. According to this prescription, one also needs to
know ��E�, the system density of states, in order to obtain
kn

d�T�. Unfortunately, the accurate calculation of ��E� is far
from trivial �see e.g., Ref. 20 for a discussion�, explicitly
avoided by the method described in Sec. II, and it is there-
fore considered outside the scope of this work. Besides, we
suspect that the direct calculation of kn

d�T� using, for in-
stance, the approach described in Ref. 27 would be as effi-
cient, if not more, than obtaining ��E� and, subsequently,
computing the convolution integral.

Finally, the performance of a TST-based approach �Eq.
�8�� to predict KER distributions has been tested against MD
results and shown to provide quantitative accuracy at low
internal energies. At higher energies, the agreement slightly
deteriorates, probably due to nonstatistical behavior or to the
different method used to label a phase space point as reac-
tive. Nevertheless, our approach appears to provide, overall,
a robust and computationally efficient tool for the calculation
of this important quantity.

Armed with the simplifications discussed above, TST
could therefore become a powerful tool to study the atomis-
tic details of cluster dissociation cascades. Needless to say,
several issues still need to be addressed before it becomes of
general applicability. In this respect, it is important to point
out that better choices for the separatrix �e.g., nonspherical or
momentum dependent� may further improve its accuracy and
that further algorithmic development is likely to reduce the
computational cost with respect to trajectory simulations
even more. Work in these directions is currently carried out
in our laboratory.

With the long term goal of simulating homogeneous
vapor-liquid condensation, one should also be concerned
with the performance of TST in predicting the capture of a
monomer by an already formed aggregate and the subse-
quent dissociation or de-energization process that may be
induced by a postcapture collision with another body. The
latter processes may, in principle, be modeled also in the
TST framework39 provided that the lifetime of the energized
cluster is long enough to allow for intrasystem energy redis-
tribution. Evidence for well separated time scales between
energy redistribution and dissociation has been provided by
Napari and Vehkamäki,40 who highlighted the short time re-
quired for energy redistribution �maximum 30 ps� and the
small role played by unrelaxed clusters. Given the fact that

the kn
d�E� values reported in this work suggest a cluster life-

time at least an order of magnitude longer, it would be inter-
esting to explore the overall accuracy of a two step TST
approach to the condensation/dissociation process.
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