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Unexpected Symmetry in the Nodal Structure of the He Atom
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The nodes of even simple wave functions are largely unexplored. Motivated by their importance to
quantum simulations of fermionic systems, we have found unexpected symmetries in the nodes of several
atoms and molecules. Here, we report on helium. We find that in both ground and excited states the nodes
have simple forms. In particular, they have higher symmetry than the wave functions they come from. It is
of great interest to understand the source of these new symmetries. For the quantum simulations that
motivated the study, these symmetries may help circumvent the fermion sign problem.
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Generally speaking, the calculation of electronic struc-
ture is concerned with the determination of either the wave
function itself or properties determined from expectation
values over the wave function squared. The nodes of the
wave functions are largely ignored. Here, motivated by a
simulational approach to electronic structure, where the
nodes do play an important role [1], we take a systematic
look at the nodes of the helium atom. In as simple a system
as He, where the electronic structure has been very well
studied [2], and despite its apparent simplicity, the exact
wave function is unknown, and progress in its determina-
tion has been slow. Nor have there been more than scat-
tered looks at its nodal structure.

Determination of a wave function, by either expansion
methods or variational optimization, by its very nature in-
volves the positioning of amplitude where it is large. Such
an approach cares little about getting the structure right in
regions where the wave function is small. Thus the nodes in
particular are not being optimized. In fact, to traditional
electronic structure methods, nodes of the trial function are
simply irrelevant. This might explain the general neglect of
interest in nodes. Yet they are of great significance in the
growing field of quantum Monte Carlo (QMC) simula-
tions. QMC simulations are of growing importance as
they are the most accurate method of obtaining information
about many-body systems, and one that scales very well
[1]. In QMC simulations, the nodal structure determines
the volume of the 3N-dimensional space that is to be
sampled, and errors in the nodes are errors in the boundary
conditions and, hence, in the solution to the Schrodinger
equation. The key point here is that exact knowledge of the
nodes allows for an exact stochastic solution of the
Schrodinger equation. But is not knowledge of the nodes
inherently as difficult (or as we have just noted, possibly
more so) as knowledge of the wave function?

Here we show that for the helium atom the answer is de-
cidedly “no.” That is, one can exactly specify nodes even
when the wave function is unknown. That is particularly
obvious for the 1 'S ground state, for it has no nodes. (That
is, we know the node trivially, though the wave function
clearly is not trivial.) Since there is no node, QMC simu-
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lations can solve this state exactly. As we show in this Let-
ter, the nodes of the excited states of He also appear to be
simple. Moreover, based on our ongoing work, it appears
that this simplification may be more general, as we see evi-
dence for it in other atoms and seemingly small molecules
as well. If true, the implications are significant: on the one
hand, it allows for exact simulations of fermionic systems
when we can determine the nodes, and may open up a
systematic way to perform fermion simulations when the
nodes can be modeled; on the other hand, it may lead to
deeper understanding of many-body wave functions.

General observations about the nodes.—The Pauli prin-
ciple imposes a global constraint, requiring antisymmetry
of the wave function defined in a 3N-dimensional space,
where N is the number of particles (here two). Implicitly
this defines a 3N — 1 dimensional nodal hypersurface.
However, the obvious ‘“‘points” compose the so-called
“Pauli hyperplane” {x; = x,, y; = y», 2 = z»} which is
only a subset of dimensionality (3N — 3) of the full node.
The rest of the nodal surface is usually not determined by
antisymmetry alone (though it can be constrained by other
symmetries), but depends on the potential and eigenstate
through the solution of the Schrédinger equation [3].
Henceforth we implicitly factor out the spin by treating
the a and B electrons separately. That is, we make a spin
assignment and consider only the remaining spatial part
of the wave function. The exact spatial eigenfunctions for
the (infinitely massive) helium atom (and likewise for all
other two-electron atomic ions) are functions of just six
spatial coordinates. Thus, e.g., ¥,(R) =V, (7, 7) =
\Pn(xl’ Y 21, X2, Y2, ZZ)‘

The first triplet state: 1s2s 23S.—This excited state has
the surprising property that its exact node is analytically
known, despite the fact that no exact expression is known
for the wave function itself. The derivation of the node is
quite simple. Although it is part of the lore of the QMC
community [4], we derive the analytical form here, since
this does not appear widely known outside this community.

States with S symmetry (L = 0) are rotationally invari-
ant, and can thus be described by three fewer spatial
coordinates, Many different choices for these coordinates
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have been used in the literature. The most extensively used
are the interparticle coordinates ry, r,, r1,, and the trivially
related coordinates ry, r,, 61,. Hylleraas introduced the
coordinates s=r; +ry; t=r —ry; u=ry [5]
Pekeris extended this idea introducing perimetric coordi-
nates, which are a linear combination of all three of ry, r,,
and rq, [6]. Also frequently used is a hyperspherical coor-
dinate system introduced by Fock [7].

We choose interparticle coordinates. Applying the Pauli
principle, we can write W(r, ry, r5) = —W(ry, 11, 712),
from which we infer W(r, r, r;,) = 0 or that the node is
simply r; — r, = 0. Note r; and r, are not vectors here.
Thus the node occurs whenever both electrons are at the
same distance (as each other) from the nucleus, regardless
of their separation rq, (or angle 61,).

Thus we have analytically the node of the exact wave
function, without knowing the exact wave function itself.
The above argument is equally valid for any 3S state of he-
lium, thus all these states share this node. (Of course,
higher excited states must have additional nodes as well,
to enforce orthogonality with the first triplet S state.) Since
only symmetry considerations were used, and the potential
energy function was not needed in the proof, this is also the
node of all other two-electron atomic systems. This prop-
erty is quite remarkable: e.g., the Li*23S wave function is
very different from the He 23S wave function, yet they
have the same nodal structure. A corollary is that the node
of exactly soluble models, such as the one in which the
interelectronic repulsion is turned off, are also the same.

It is known that using these coordinates the exact wave
function is not separable: W(r, ry, r12) # P(ry, r2)@(r2).
However, for the 23S state we see that we can decom-
pose the exact wave function into a positive definite func-
tion and a function representing the node, W(r|, ry, rj2) =
N(ry, ry) X efrvr2m2) Here ef 117272) s the unknown posi-
tive definite, totally symmetric function, written as an ex-
ponential to emphasize its positivity, and N(r;, ry) is an
antisymmetric function, with N(r, r) = 0, that we call a
nodal function since it describes the node. By this defini-
tion, a nodal function is any function that, when equated to
zero, implicitly describes the nodal hypersurface of the
wave function. The functions in the above decomposition
are clearly not unique: different functions N might describe
the same nodal structure. Nevertheless it is truly unex-
pected that the antisymmetric function N can be chosen
to be a function of only the two variables r; and r,. This
means that the exact wave function depends on the inter-
particle distance while its node does not. The nodal func-
tion N belongs to a higher symmetry group than W. In this
sense, the node is more symmetric than the wave function.
Rotating a single electron around the nucleus leaves the no-
dal function invariant, but not the wave function. It is also
interesting that the node can be described so simply: by the
solution of an algebraic equation of particle distances.

Approximate wave functions usually do not give the
correct nodes [8—12], but if the node is completely deter-

mined by symmetry, all trial functions respecting that
symmetry will have the correct node. For the 3S He this
is, indeed, the case. Consider the simplest functional
form able to approximately describe the first triplet state,
namely, W = f(r)f2(r) = f2(r1)f1(ry). This form, re-
gardless of the form of the functions f;, has the exact node.

Although the wave function has physical significance
only for positive values of interparticle distances, we in-
vestigated numerically the wave function behavior even for
negative values of the variables, since this might reveal
information on its analytical structure. We used an anti-
symmetrized linear expansion of correlated exponentials
e“ntbntern Byen with only a two-term expansion, a node
in the unphysical region appears. Expanding the wave
function in a Taylor series around the origin, to first order
weobtain N = [cy + ¢,(r; + 1,) + corpp + -+ - 1(ry — 12).
With no loss of generality, and in order to make meaningful
comparisons between different expansions, we normalize
the wave functions so that ¢; = 1. Numerically, for a five
term expansion ¢y = —0.03. Note that a negative ¢, is an
indication of the presence of a spurious nodal surface close
to the origin. The most accurate wave function we exam-
ined, a 14 term expansion with an energy less than a micro-
Hartree away from the exact energy, gives ¢, = 0.0051. In
Fig. 1 we show a superimposed plot of the nodes for
various values of the angle 6, for, respectively, the
5 term and the 14 term function.

Our numerical results suggest that the node in the un-
physical region is present also in the exact wave function
(i.e., the wave function is zero for negative values of
distance). Thus, at first order, the wave function expanded
around the origin is N =[cy + ¢,(r; + r,)](r; — r,) where
the coefficients ¢y and ¢, are independent of r,. While for
an approximate wave function ¢, is not zero, numerical
exploration of approximate but accurate wave functions
suggests that the true c is, indeed, zero. That is, the two
nodes cross exactly at the origin. This means that at first
order, around the nucleus, the wave function node has the
simple crossing structure (r; + r5)(r; — rp). As we saw
above with the antisymmetrized linear expansion of corre-
lated exponentials, a generic approximate wave function
does not have this property. Remarkably, the exact wave
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FIG. 1. Superimposed plots at various 0, (0, 7/4, 7/2, 37/4)

of W(ry, ry, 6;,) = 0 for (a) 5 and (b) 14 term wave functions.
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function of the model system with the electron-electron
interaction turned off, whose wave function is ¥ = (r; —
1)e 722 — (ry, — 1)e" 27211, does have exactly this
crossing node. Furthermore, it is easy to check that all
two-electron atomic ions also have this property in this
model. Given that the physical node (r; — r,) does not
contain ry,, it is tempting to expect that even the node in
the unphysical region will not contain it.

np mp P¢ states.—In 1930 Breit [13] observed that for
even-parity P states of He, the exact wave function can be
written as V' = (x;y, — y;x,)@(ry, 13, r12). This is the so-
lution with quantum number L, = 0. If one desires a
different symmetry axis, one simply replaces the term in
parentheses by the component of 7| X 7, parallel to the
axis of choice, where 7; and 7, are the position vectors of
the two electrons.

Let us consider the first doubly excited state 2p?3P¢.
Since x,y, — yx, is antisymmetric, the function ¢(ry, 7,
rip) must be symmetric with respect to the interchange of
the two electrons and thus will not generate additional
nodes. Higher 3P¢ states will, of course, have additional
nodes in ¢(r|, ry, r12) to enforce orthogonality, but not
antisymmetry. Once again the exact node is independent
of r|, while the wave function is not; and again we have the
form of the node exactly but not that of the wave function.

For ! P¢ states the spatial function ¥ must be symmetric.
The prefactor x;y, — y;x, is antisymmetric, implying that
@(ry, 1y, 1) must be antisymmetric. This necessarily
means that we have the node r; = r, by the same argument
as for He 3S. An exact factorization of the lowest energy
Lp¢ wave function is thus ¥ = (x;y, — y;x,)(r; — 1) X
&(ry, 1y, r12) Where the symmetric function ¢ here in the
singlet is different from the symmetric function ¢ above in
the triplet. We also note that the r; = r, node is now
present in a singlet state. Higher states would have addi-
tional nodes to impose orthogonality with lower states.
And again we note the higher symmetry for the node.

Both singlet and triplet P¢ nodes contain x;y, = X,y;.
Geometrically, this node occurs whenever the two elec-
trons are both within a plane containing the z axis (and
hence also the nucleus), regardless of their interelectronic
distances. We note, once again, the same node in different
states. This is the behavior that one would expect from a
separable system, although so far a factorization for the
helium atom has not been found. (In a separable system ¥
can be written as a product of terms, each of which can
contain nodes in its coordinates. One or more of these
functions would remain invariant in excited states, leading
to a node that is present in many states.)

'P? and 3P? states.—In the same 1930 paper [13] Breit
discussed ! P° and 3 P° states. He showed that they could be
described exactly by

W('P) = z1f(ry, ra, r12) + 20f (ra, 11, 1),
WEPY) = 21f(ry, 12, r12) — 20f (ra, 11, 1)

These equations are not sufficient to completely fix the
nodal structure, though they do describe a subset of the

)

node in 3N — 2 dimensions. In studying the 1s2p 3 P? state
of helium using a very accurate trial wave function,
Anderson [14] found convincing numerical evidence that
the full node can be described by the equation g(ry, z;) =
g(ra, z,), indicating that the exact wave function is factor-
izable into [g(ry, z;) — g(ra, 22)]e(ry, ra, r12). As recog-
nized by Anderson, this is an unexpected higher sym-
metry since it is not required by Egs. (1). While symmetry
principles (angular momentum conservation and the Pauli
principle) are clearly at play in the derivation of the nodal
structure of the 3S and singlet and triplet P¢ states, as
shown above, the result for the nodal structure of the 3 P°
state does not have this origin. Thus if this node is correct,
it must have a deeper, and still unknown, origin. It is likely,
by analogy with the 3 P? state, that the 1s2p ' P° state could
be described by [g(rl’ Zl) + g(VZ’ Z2)]§0(71, r, 7’12), al-
though to our knowledge this has not been checked yet.
1525 'S state.—We know of no previous work on the
nodes of the first singlet S state, i.e., the 1s2s 'S state. This
state must have a node to make the state orthogonal to the
ground state, but there do not appear to be additional
symmetry constraints to exploit. For the electronic struc-
ture of this state, various very accurate expansions using
different coordinate systems have been explored (see
Ref. [2]). With the structure of the node in mind, we ex-
amined a series of increasingly accurate Hylleraas expan-
sions of the exact wave function using the MATHEMATICA®
software package. An examination of the node of a 70 term
expansion (whose energy is —2.145971069 a.u. com-
pared to the exact value of —2.145974 046 a.u.) is shown
in Fig. 2. The figure shows practically no dependence on
the interelectronic angle, which is plotted vertically.
Examining a longer expansion, with 203 terms, the
energy improves to E = —2.145973975. The plot in the
inset shows a superposition of cuts of the node of this latter
trial function for different values of the angle {#,, =
0,7/6, w/3,..., 7} It shows even less deviation as a
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FIG. 2 (color online). Surface contour plot with inset of super-
imposed cuts at various 61, of the node of 70 and 203 term He
1525 1S wave functions.
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FIG. 3. Superimposed plots at various 6, (0, 7/4, 7/2, 37/4)
of W(ry, ry, 1,) = 0 for the 84 term He 153s53S wave function.

function of 6,,. (Likewise, the deviation for shorter ex-
pansions becomes more noticeable.) Thus we see strong
convergence toward a node with no r|, dependence.

This fact is quite remarkable given that each term of the
Hylleraas expansion is of the form rfryrk,edn*brter:,
properly symmetrized. To converge to a form independent
of r;, there must be a very delicate cancellation of terms
when one is exactly on the node.

153s3S state.—The second triplet S state must be or-
thogonal to the lower lying triplet S states, whose exact
(r; = ry) node we showed earlier. That node must still be
present though, by the earlier argument. A plot of the node
of an 84 term Hylleraas expansion is shown in Fig. 3.

We can see the r; — r, node and, in addition, a structure
similar to the one we just saw above for the second singlet
S state. The shape again seems ‘“‘almost” independent of
the interelectronic angle (distance) coordinate, and im-
proves in “‘convergence’’ with expansion length.

Conclusions.—The nodes of the excited states of the
helium atom quite generally appear to belong to higher
symmetry groups than the wave functions they are em-
bedded in. We have shown a number of exact nodal struc-
tures where there are no exact wave functions. Moreover,
we seem to see a node independent of 7|, even in states for
which we have only numerical results, and where the wave
functions are not independent of that coordinate.

The 'S and *S nodes are exactly of the topology implic-
itly generated in the hyperspherical treatment of the helium
atom. There the shape of the various nodes come out as
spherical, while numerically it appears that the nodes are
actually quite similar, but deformed from that. The lower
dimensional nodes (in r; and r, separately, for example)
are spherical. But the “hyperspherical” coordinate appears
to be (perhaps) a higher power combination of the individ-
ual coordinates. Specifically, a least squares fit shows that
nodal surfaces of the 1525 'S and 1535 3S states seem to be,
respectively, } + r§ = const and r; + r3 = const. At this
point, however, we would have to consider these forms no
more than numerical fits.

We also note a striking similarity between the shape of
the 'S and *S nodes and the first unstable periodic orbit of

the semiclassical treatment of He [15]. In semiclassical
treatments, stable periodic orbits give regions of high
probability, while unstable orbits give regions of low
probability. Thus we can consider the latter orbits as the
semiclassical nodes. If so, the orbits in Fig. 15 of Ref. [15]
give a striking confirmation of the nodes we have seen.

While we examined only the helium atom here, there are
indications that some of the properties we describe might
be present also in many-electron atoms. For example, in
Ref. [8] and in ongoing work by the present authors, there
is numerical evidence that the node of the lithium atom
appears to have higher symmetry than its wave function,
and possibly of a trivial form. In Ref. [16] Mitas and co-
workers investigate the nodal properties of spin-polarized
states of few-electron ions and molecules and also find
simplifications. Further work is needed to clarify whether
these are general properties of nodes of yet larger atomic
and molecular systems.
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