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Abstract It is well known that the classical Sobolev embeddings may be improved
within the framework of Lorentz spaces Lp,q: the space D1,p(Rn), 1 < p < n, embeds
into Lp∗,q(Rn), p ≤ q ≤ ∞. However, the value of the best possible embedding
constants in the corresponding inequalities is known just in the case Lp∗,p(Rn). Here,
we determine optimal constants for the embedding of the space D1,p(Rn), 1 < p < n,
into the whole Lorentz space scale Lp∗,q(Rn), p ≤ q ≤ ∞, including the limiting case
q = p of which we give a new proof. We also exhibit extremal functions for these
embedding inequalities by solving related elliptic problems.
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1 Introduction

Let D1,p(Rn) be the completion with respect to the norm ‖∇ · ‖p of smooth com-
pactly supported functions in R

n, n ≥ 2 and 1 < p < n; then, the Sobolev inequality
[21] reads as follows

‖u‖p∗ ≤ Sn,p∗‖∇u‖p , ∀ u ∈ D1,p(Rn) (1)

where p∗ = np/(n − p) is the critical Sobolev exponent and Sn,p∗ is the best possible
constant in Eq. 1 which was obtained by T. Aubin [3] and G. Talenti [24] and is
given by

Sn,p∗ = 1√
πn1/p

(
p − 1

n − p

) p−1
p

[
�(1 + n/2)�(n)

�(n/p)�(1 + n − n/p)

]1/n

(2)

Moreover, the best constant is attained by the following functions

ua,b (x) =
(

a + b |x| p
p−1

)− n−p
p

(3)

for positive normalizing constants a, b ∈ R; furthermore, as a consequence of the
Gidas-Ni-Nirenberg symmetry result [13], Eq. 3 turns out to be the unique family of
extremals to Eq. 1.

The knowledge of the best constant Sn,p∗ is important in applications to PDEs
as the building block for the quantization of energy (see e.g. [23, 26]) which is a
key-ingredient to establish existence of solutions to nonlinear elliptic equations with
nonlinearities in the critical growth range.

Inequality (1) yields the embedding D1,p(Rn) ↪→ Lp∗
(Rn) which is sharp in the

context of Lebesgue spaces, in the sense that no smaller Lebesgue space can replace
Lp∗

. However, it is well known from the work of Peetre [19], see also [25] and
references therein, that this embedding can be improved within the framework of
Lorentz spaces.

Lorentz spaces Lp,q are scales of interpolation spaces between Lebesgue spaces
Lp and can be defined via the notion of spherically symmetric decreasing rearrange-
ment. For a measurable function u : � → R

+, let u∗ denote its decreasing rearrange-
ment which is defined as the distribution function of the distribution function μu of
u, namely

u∗(s) = |{t ∈ [0,+∞) : μu(t) > s}| = sup{t > 0 : μu(t) > s}, s ∈ [0, |�|]

whereas the spherically symmetric rearrangement u#(x) of u can be defined as

u#(x) = u∗(ωn|x|n), x ∈ �#

where �# ⊂ R
n is the open ball with center in the origin which satisfies |�#| = |�| and

ωn is the area of the unit sphere of R
n. Then, we define the Lorentz space Lp,q(�) as

Lp,q(�) :=
{

u : � → R measurable
∣∣∣ ‖u‖p,q :=

(∫ ∞

0

(
u∗(t)t1/p)q dt

t

) 1
q

< ∞
}
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where the quantity ‖u‖p,q is a quasi-norm which turns out to be equivalent to a real
norm. One clearly has Lp,p = Lp and furthermore, with respect to the second index,
Lorentz spaces satisfy the following inclusions

Lp,q1 ⊂ Lp,q2 , if 1 ≤ q1 < q2 ≤ ∞ (4)

where for q = ∞, the so-called Marcinkiewicz or weak-Lp space, we define

‖u‖p,∞ := sup
t>0

t
1
p u∗(t) (5)

The above mentioned improvement of the standard Sobolev embedding says that

D1,p(Rn) ↪→ Lp∗,p(Rn)⊂
= Lp∗,p∗
(Rn) = Lp∗

(Rn) (6)

The importance of the embedding (6) lies in the fact that it is optimal in the context
of rearrangement invariant spaces (see [5] and [11]), since no “better” rearrangement
invariant quasinorm than the Lorentz quasinorm ‖ · ‖p∗,p can be substituted in the
embedding inequality:

‖u‖p∗,p ≤ Sn,p∗,p‖∇u‖p , (7)

in which the best constant

Sn,p∗,p = p
n − p

[
�(1 + n/2)

] 1
n

√
π

was obtained by A. Alvino in [2].
Note that in view of Eq. 4 we have also the following embeddings:

D1,p(Rn) ↪→ Lp∗,q(Rn), for all q with p ≤ q ≤ ∞ (8)

The aim of this note is to obtain the value of the best possible embedding constants
for the embeddings (8) and to exhibit a corresponding family of extremals, which
will be obtained by solving related elliptic problems. Hereby, the embedding into the
weak Lp-space seems of particular interest.

As a byproduct, we also give a new proof of the well known results when q = p and
q = p∗. Moreover, connections with embeddings of Sobolev spaces into weighted
Lebesgue spaces (see [17]) are discussed in Section 5.

Recently it has been proved that the embedding (6) is not even locally compact,
see [9, 14, 20, 22]. We show here that this is due to the remarkable fact that all the
embeddings (8) are invariant under the following group actions

uε(r) = Tεu(r) = ε
− n−p

p u
( r

ε

)
(9)

which leave invariant the Sobolev norm ‖∇u‖p as well as the Lorentz norms
‖u‖p∗,q, p ≤ q ≤ ∞. As a consequence, none of the embeddings (8) can be locally
compact. Nevertheless, we will show that all the best embedding constants in the
embeddings (8) are attained, except in the limiting (and optimal) case q = p, see
Remark 2 below.
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2 Main Results

We state our main results distinguishing the three cases q = ∞, 1 < p < q < ∞ and
the limiting case q = p. Hereafter we denote by D1,p

0 (�) the closure in D1,p(Rn) of
smooth functions with compact support in � ⊆ R

n.

The case q = +∞

Theorem 1 Let � ⊆ R
n and 1 < p < n. Then, the following inequality holds

‖u‖p∗,∞ ≤ Sn,p∗,∞‖∇u‖p (10)

for any u ∈ D1,p
0 (�), where

Sn,p∗,∞ = n− 1
p ω

− 1
n

n

(
p − 1

n − p

) p−1
p

(11)

Furthermore, the constant Sn,p∗,∞ is sharp for any domain, it is never achieved as long
as � � R

n stays bounded, and attained when � = R
n.

Explicit radially symmetric extremal functions for inequality (10), for � = R
n, can

be obtained as solutions of an elliptic equation as established in the following

Theorem 2 Let � = R
n and {ur0}r0∈(0,∞) be a (radial) family of extremal functions for

inequality (10). Then for each r0 ∈ (0,∞), ur0(r) satisf ies (weakly) the equation⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

− d
dr

(|y′|p−2 y′rn−1
) = (nωn)

− p−1
p

(
n − p
p − 1

) p−1
p

r
n−p

p

0 δr0 ,

y′(0) = 0,

y(r0) = (nωn)
− 1

p

(
p − 1

n − p

) p−1
p

r
− n−p

p

0

(12)

The unique solution to problem (12) is the truncated function

yr0(r) = (nωn)
− 1

p

(
p − 1

n − p

) p−1
p

⎧⎪⎨
⎪⎩

r
− n−p

p

0 , 0 ≤ r ≤ r0

r
n−p

p(p−1)

0 r− n−p
p−1 , r0 ≤ r < ∞

(13)

Remark 1 We observe that Eq. 12 is invariant under the action of the group (9);
actually, the truncated functions ur0 are invariant under the action of same group,
and

ur0(r) = Tr0 u1(r) = r
− n−p

p

0 u1 (r/r0)

The case p < q < ∞

Theorem 3 Let 1 < p < n and p < q < ∞. Then, the following inequality holds

‖u‖p∗,q ≤ Sn,p∗,q‖∇u‖p (14)
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for any u ∈ D1,p(Rn), with

Sn,p∗,q = n
1
q − 1

p ω
− 1

n
n p

1
q q− 1

p (q − p)
1
p − 1

q
(p − 1)

1+ 1
q − 2

p

(n − p)
1
q − 1

p +1

[
B

(
q

q − p
,

q(p−1)

q−p

)]− 1
p + 1

q

(15)

where B(s, t) denotes the Euler beta function. The constant Sn,p∗,q is sharp and is
achieved by the family of extremal functions

ψ(x) =
(

a + b |x| (n−p)(q−p)

p(p−1)

)− p
q−p

, a, b > 0 (16)

which originate from solutions to the following Euler-Lagrange equation related to
Eq. 14

−
pu = c(n, p, q)|x| q
p (n−p)−n|u|q−2u, c(n, p, q) = q

p
(n − p)p

(p − 1)p−1
(17)

and given by

ψλ(x) = λ
1

q−p

(
λ + |x| (n−p)(q−p)

p(p−1)

)− p
q−p

, λ > 0

Remark 2 Note that for p < q ≤ p∗, Eq. 17 is the Euler-Lagrange equation cor-
responding to the critical embedding D1,p ⊂ Lq( dx

|x|s ), s = n − q
p (n − p), i.e. into a

weighted Lebesgue space; these solutions and the corresponding best constants are
in fact known, cf. [17]. See Section 5.1 for further details.

The case q = p

We treat this case by taking the limit q ↘ p in Theorem 3. We will show:

Theorem 4 Let q ↘ p. Then

(i) the constants in Eq. 15 tend to

Sn,p∗,p = ω
1
n
n

p
n − p

which is the constant obtained in [2];
(ii) the limiting Euler-Lagrange equation is associated to the well-known Hardy

inequality which is known to have no solution in any domain � ⊆ R
n.

3 Proof of Theorem 1

We first consider the case in which � = R
n. Thanks to the Polya-Szego principle,

we may assume that u is a radial non increasing function; furthermore, by standard
density arguments, we may suppose that u is sufficiently smooth. We begin by
performing the following change of variable

r = t−
p−1
n−p , r = |x|
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and defining

w(t) := (nωn)
1
p

(
n − p
p − 1

) p−1
p

u
(

t−
p−1
n−p

)
(18)

Then, w(t) : [0, ∞) → R
+ is an increasing function, w(0) = 0 and

w′(t) = −(nωn)
1
p

(
n − p
p − 1

)− 1
p

t−
p−1
n−p −1ur

(
t−

p−1
n−p

)

Hence

‖∇u‖p
p = nωn

∫ ∞

0
|ur|prn−1dr

= nωn
p − 1

n − p

∫ ∞

0
|ur

(
t−

p−1
n−p

)
|pt−n p−1

n−p −1dt (19)

=
∫ ∞

0
|w′(t)|pdt (20)

whereas, recalling that u∗(s) = u�
(
( s

ωn
)1/n

)

‖u‖p∗,∞ = sup
s∈(0,∞)

u∗(s)s
1

p∗

= sup
s∈(0,∞)

u

((
s

ωn

)1/n
)

s
1

p∗ (21)

= ω
n−p
np

n sup
r∈(0,∞)

u (r) r
n−p

p

= n− 1
p ω

− 1
n

n

(
p − 1

n − p

) p−1
p

sup
t∈(0,∞)

w(t)

t
p−1

p

(22)

Let us now estimate w(t) as follows:

w(t) =
∫ t

0
w′(s)ds ≤

{∫ t

0
|w′(s)|pds

} 1
p

t
p−1

p ≤ ‖∇u‖pt
p−1

p

where we have used Eq. 19. Hence, by Eq. 21

‖u‖p∗,∞ ≤ n− 1
p ω

− 1
n

n

(
p − 1

n − p

) p−1
p

‖∇u‖p = Sn,p∗,∞‖∇u‖p

We next prove that the constant Sn,p∗,∞ is sharp by exhibiting a family of extremal
functions for inequality (10). Let

wk(t) =
⎧⎨
⎩

t
k1/p

, 0 ≤ t ≤ k

k
p−1

p , t ≥ k
(23)
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that is,

uk(r) = (nωn)
− 1

p

(
p − 1

n − p

) p−1
p

⎧⎨
⎩

k
p−1

p , 0 ≤ r ≤ k− p−1
n−p

k− 1
p r− n−p

p−1 , r ≥ k− p−1
n−p

Then

‖∇uk‖p
p =

∫ ∞

0
|w′

k|pdt =
∫ k

0

dt
k

= 1

and

‖uk‖p∗,∞ = n− 1
p ω

− 1
n

n

(
p − 1

n − p

) p−1
p

sup
t∈(0,∞)

w(t)

t
p−1

p

= n− 1
p ω

− 1
n

n

(
p − 1

n − p

) p−1
p

= Sn,p∗,∞

Next we prove the second part of Theorem 1 in which � ⊂ R
n is a bounded

domain (with sufficiently smooth boundary). Clearly inequality (10) follows since any
function u ∈ D1,p

0 (�) can be trivially extended by 0 outside �, obtaining a function
which belongs to D1,p(Rn). Nevertheless, we next give a direct proof of the inequality
also in the case of a bounded domain, since the one dimensional reduction will be
crucial in the proof of the sharpness; as a byproduct we will get that the best constant
turns out to be domain independent.

Consider a radial, non increasing function belonging to D1,p
0 (BR), and consider

the change of variable

r = Rt−
p−1
n−p

together with

w(t) := (nωn)
1
p

(
n − p
p − 1

) p−1
p

R
n−p

p u
(

Rt−
p−1
n−p

)
(24)

Then w(t) : [1,∞) → R
+, is increasing, w(1) = 0 and

‖∇u‖p =
∫ ∞

1
|w′(t)|pdt, ‖u‖p∗,∞ = n− 1

p ω
− 1

n
n

(
p − 1

n − p

) p−1
p

sup
t∈(1,∞)

w(t)

t
p−1

p

so that, as in the proof of Theorem 1,

w(t) =
∫ t

1
w′(s)ds ≤

{∫ t

1
|w′(s)|pds

} 1
p

t
p−1

p ≤ ‖∇u‖p(t − 1)
p−1

p

and inequality (10) follows.
Let us now prove the sharpness of the constant Sn,p∗,∞ for any bounded domain.

Actually it is enough to prove the sharpness for radial domains: indeed, for any
bounded domain � ⊂ R

n there exist R, R′ > 0 such that BR ⊂ � ⊂ BR′ (up to per-
forming translations which is possible since the symmetrization operator commutes
with translations), so that by means of extension arguments we may consider just the
class of radial domains.
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Thus set � = BR and define

wk(t) =
⎧⎨
⎩

t − 1

(k − 1)1/p
, 1 ≤ t ≤ k

(k − 1)
p−1

p , t ≥ k
(25)

that is,

uk(r) = (nωn)
− 1

p

(
p − 1

n − p

) p−1
p

⎧⎪⎪⎨
⎪⎪⎩

(k − 1)
p−1

p , 0 ≤ r ≤ Rk− p−1
n−p

(R/r)
n−p
p−1 − 1

(k − 1)
1
p

, Rk− p−1
n−p ≤ r ≤ R

Then

‖∇uk‖p
p =

∫ ∞

1
|w′

k|pdt =
∫ k

1

dt
k − 1

= 1

and

‖uk‖p∗,∞ = n− 1
p ω

− 1
n

n

(
p − 1

n − p

) p−1
p

sup
t∈(1,∞)

w(t)

t
p−1

p

= n− 1
p ω

− 1
n

n

(
p − 1

n − p

) p−1
p

(
1 − 1

k

) p−1
p

→ Sn,p∗,∞ , as k → ∞

It remains to prove that the best constant is never achieved: this can be done by
adapting the argument developed in the proof of Theorem 2 in [7] and which we
next recall. Let {uk} be a normalized maximizing sequence; we may suppose that
uk ⇀ u weakly in D1,p

0 (�), |∇uk|p → μ weakly in the sense of measure. By means of
Lions’ concentration-compactness principle [15], we have two possible alternatives
for the sequence uk: the weal limit u 
= 0 and compactness occurs and hence the best
constant is achieved or u = 0 and μ = δx0 the Dirac mass at a point x0. We show that
the second case occurs.

Thanks to the Polya-Szego inequality, we may restrict our attention to radial and
nondecreasing normalized maximizing sequences; we may also assume that uk is
radially decreasing and sufficiently smooth. If {wk} is the sequence obtained from
{uk} via the change of variable (24), then

wk(1) = 0, w′
k(t) ≥ 0,

∫ +∞

1

(
w′

k(t)
)p

dt = 1

and

sup
t∈(1,∞)

wk(t)

t
p−1

p

→ 1−

This implies that for any ε > 0 there exists kε ∈ N and tε ∈ (1,+∞) such that

wkε
(tε) > (1 − ε)t

p−1
p

ε

On the other hand, for any A ∈ (1, t) and for any t > 1

w(t) − w(A) =
∫ t

A
w′(s)ds ≤

{∫ t

A

(
w′)p

ds
} 1

p

(t − A)
p−1

p
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so that, for any ε > 0 and for any A ∈ [1, tε)

(1 − ε)t
p−1

p
ε <

{∫ tε

A

(
w′

kε

)p
} 1

p

(tε − A)
p−1

p + wkε
(A) (26)

Now choose A = 1 in Eq. 26 to obtain tε −→ ∞ as ε → 0. Furthermore, for any A >

1 we infer ∫ A

1

(
w′

kε

)p
ds −→ 0

Indeed, if not, one has ∫ tε

A

(
w′

kε

)2
< 1 − δ

for some δ > 0 and this contradicts Eq. 26.
Therefore, up to a subsequence, {wk} concentrates at +∞, so that the corre-

sponding {uk} turns out to be a normalized maximizing sequence which concentrates
at 0.

4 Elliptic Problems Related to Extremals: Proof of Theorem 2

Let us now restrict our attention to a family of radial extremal functions to inequality
(10) which originate from solving associated Euler-Lagrange equations. As previ-
ously observed, the Polya-Szego inequality implies that

(nωn)
−1

(
p − 1

n − p

)p−1

= sup
u∈D1,p

0,rad, ‖∇u‖p
p=1

ψ#(u) (27)

where

ψ#(u) = sup
r∈(0,∞)

|u#(r)|prn−p = ω
− n−p

n
n ‖u‖p

p∗,∞ (28)

and the supremum is attained if and only if the constant

(nωn)
−1

(
p − 1

n − p

)p−1

is achieved.
Now the idea is to derive the Euler-Lagrange equation related to Eq. 27. However,

since the Lp∗,∞ quasi-norm is not differentiable, we replace the optimization problem
(27) by an equivalent one which involves a convex functional and which thus admits
a nonempty subdifferential set.

Note that for any u ∈ D1,p
0,rad(R

n) one has

|u(r)| =
∣∣∣∣
∫ +∞

r
u′dρ

∣∣∣∣ ≤ (nωn)
− 1

p

{
nωn

∫ ∞

r
|u′(ρ)|pρn−1dρ

} 1
p
{∫ ∞

r
ρ

− n−1
p−1 dρ

} p−1
p

≤ (nωn)
− 1

p

(
n − p
p − 1

) p−1
p

‖∇u‖pr− n−p
p
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so that

ψ(u) := sup
r∈(0,∞)

|u(r)|prn−p ≤ (nωn)
−1

(
p − 1

n − p

)p−1

‖∇u‖p
p (29)

and thus

(nωn)
−1

(
p − 1

n − p

)p−1

≥ sup
u∈D1,p

0,rad, ‖∇u‖p
p=1

ψ(u)

On the other hand,

ψ#(u) = sup
r∈(0,∞)

|u(r)|prn−p = ψ(u) for any u = u#

and since via the Polya-Szego inequality there exist positive and radially decreasing
extremal functions to inequality (10), we can conclude that

(nωn)
−1

(
p − 1

n − p

)p−1

= sup
u∈D1,p

0,rad, ‖∇u‖p
p=1

ψ(u) (30)

which implies directly

sup
u∈D1,p

0,rad, ‖∇u‖p
p=1

ψ�(u) = sup
u∈D1,p

0,rad, ‖∇u‖p
p=1

ψ(u)

Furthermore, the extremal functions to Eq. 27 satisfy the Euler Lagrange ineqal-
ity associated to Eq. 30. Notice that though the functional u �→ ψ(u) fails to be
differentiable, it is convex and therefore its subdifferential ∂ψ(u) is well defined.

For the convenience of the reader, let us briefly recall some basic definitions and
properties of the subdifferential and the subgradient of a convex function:

Definition 1 Let E be a Banach space, and ψ : E → R continuous and convex.
Then the subdifferential ∂ψ(u) of ψ at u ∈ E is the subset of the dual space E′
characterized by

ηu ∈ ∂ψ(u) ⇐⇒ ψ(u + v) − ψ(u) ≥ 〈ηu, v〉, ∀ v ∈ E

where 〈·, ·〉 denotes the duality pairing between E and E′. An element ηu ∈ ∂ψ(u) is
called a subgradient of ψ at u.

Adapting the proofs of Lemmas 2.2 and 2.3 and Corollary 2.4 in [10] one has the
following results

Lemma 1 Let ψ : E → R be convex and continuous. Assume ψ(x) ≥ 0 for all x ∈ E
and

ψ(tx) = tqψ(x), ∀t ≥ 0

where q ≥ 1. Then

μ ∈ ∂ψ(u) ⇐⇒
{ 〈μ, u〉 = qψ(u)

〈μ, x〉 ≤ 〈μ, u〉, ∀ x ∈ ψu := {x ∈ E : ψ(x) ≤ ψ(u)}
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Lemma 2 Let E be a Banach space and assume that φ ∈ C1(E; R) satisf ies

〈φ′(x), x〉 = qφ(x) 
= 0, ∀ x ∈ E \ {0}
Let ψ : E → R satisfy the hypotheses of Lemma 1. If y ∈ E is such that, for some
A > 0

ψ(y) = sup
u∈E, φ(u)=1

ψ(u) = 1

A

then

φ′(y) ∈ 1

ψ(y)
∂ψ(y) ≡ A∂ψ(y).

Specializing Lemmas 1 and 2 to our situation we obtain

Proposition 1 Let E = D1,p
0,rad(R

n) and consider ψ(u) def ined by Eq. 29. Suppose that
y ∈ E satisf ies

ψ(y) = sup
u∈E, ‖∇u‖p

p=1

ψ(u) = 1

nωn

(
p − 1

n − p

)p−1

Then y satisf ies, in the weak sense, the equation
⎧⎨
⎩− d

dr

(|y′|p−2 y′rn−1
) = 1

p

(
n − p
p − 1

)p−1

μy, where μy ∈ ∂ψ(y) ⊂ E′

y′(0) = 0,

(31)

Proof of Proposition 1 By Lemma 2 we obtain that y satisfies

nωn

∫ ∞

0
p|y′|p−2 y′v′rn−1dr = nωn

(
n − p
p − 1

)p−1

〈μy, v〉, ∀ v ∈ E (32)

and the claim easily follows. ��

It remains to determine the subgradient μy in Eq. 31. Following the lines of
Lemmas 2.6, 2.7 and 2.8 of [10] we get

Proposition 2 Let y be a maximizer for problem (30) and let

Ky =
{

r ∈ (0,∞)

∣∣∣∣∣ yp(r)rn−p = sup
ρ∈(0,∞)

yp(ρ)ρn−p = 1

nωn

(
p−1
n−p

)p−1
}

Then

i) supp(μy) ⊂ Ky, ∀μy ∈ ∂ψ(y);

ii) 〈μy, y〉 = pψ(y) = p
nωn

(
p−1
n−p

)p−1
;

iii) Ky = {r0};
iv) ∂ψ(y) = [ψ(y)] p−1

p pr
n−p

p

0 δr0 = p

(nωn)
p−1

p

(
p−1
n−p

) (p−1)2

p
r

n−p
p

0 δr0
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Proof of Proposition 2 Statements i) and ii) follow by slight changes to the argument
in [8] where the Moser limiting case p = n is considered.

For proving iii) let us first prove that supp(μy) does not contain intervals. By
contradiction, suppose that supp(μy) contains an interval I = (r1, r2), 0 ≤ r1 < r2

with

y(r) = (nωn)
− 1

p

(
p − 1

n − p

) p−1
p

r− n−p
p , r ∈ I

From Eq. 32 and ii) we obtain

nωn

∫ ∞

0
|y′|prn−1dr = nωn

p

(
n − p
p − 1

)p−1

〈μy, y〉 = 1

that is

nωn

∫ ∞

0
|y′|prn−1dr = 1

which is the constraint in the maximum problem (30). Performing the change of
variable (18) and recalling that the y(r) = y#(r) we obtain:

w(t) = t
p−1

p , ∀ t ∈ (t1, t2); 0 ≤ t1 < t2 ≤ ∞;
∫ ∞

0
|w′|pdt = 1

where w(t) = (nωn)
1
p

(
n−p
p−1

) p−1
p

u
(

t−
p−1
n−p

)
, t1 = r

− n−p
p−1

2 and t2 = r
− n−p

p−1

1 . Observe that

∫ t2

t1
|w′|pdt =

(
p − 1

p

)p ∫ t2

t1

dt
t

so that 0 � t1 < t2 � ∞. Hence

w(t) =

⎧⎪⎪⎨
⎪⎪⎩

ϕ1(t), 0 ≤ t ≤ t1

t
p−1

p , t1 ≤ t ≤ t2

ϕ2(t), t2 ≤ t < ∞

and letting δ = ∫ t2
t1

|w′|pdt ∈ (0, 1) we have

0 <

∫ t1

0
|w′|pdt =

∫ t1

0
|ϕ′

1|pdt ≤ 1 − δ

A straightforward calculation shows that

inf

{∫ t1

0
|ϕ′

1|pdt, ϕ1(t) C1-piecewise , ϕ1(t1) = t
p

p−1

1

}

is achieved by a line and its value is 1, thus a contradiction.
Actually in the above argument we have also proved that if r0 ∈ Ky, than y is a

truncated function, so that Ky = {r0}.
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Finally to prove iv) notice that from Ky = {r0} we have

ψ(y + v) = sup
r∈(0,1)

|y(r) + v(r)|prn−p ≥ |y(r0) + v(r0)|prn−p
0

≥ |y(r0)|prn−p
0 + p[y(r0)]p−1v(r0)r

n−p
p

0

= ψ(y) + [
ψ(y)

] p−1
p pv(r0)r

n−p
p

0

Hence μy = p
[
ψ(y)

] p−1
p δr0r

n−p
p

0 . Vice versa, let μy be an arbitrary element of ∂y.
Since supp(μy) ⊂ Ky = {r0}, one has supp(μy) = {r0}; hence the distribution μy has
finite order N and can be represented as μy = ∑N

i=0 a1 Diδr0 . But μy ∈ (D1,p
0,rad)

′ so that
N = 0 and μy = aδr0 ; recalling ii) the thesis follows. ��

Resuming the proof of Theorem 2 we have so far obtained

μy = pr
n−p

p

0 (nωn)
− p−1

p

(
p − 1

n − p

) (p−1)2

p

δr0

By Propositions 1 and 2 we infer that if y is a maximizer for Eq. 30, then it satisfies
(weakly) the equation

⎧⎪⎨
⎪⎩

− d
dr

(|y′|p−2 y′rn−1
) = (nωn)

− p−1
p

(
n − p
p − 1

) p−1
p

r
n−p

p

0 δr0

y′(0) = 0,

where

y(r0) = (nωn)
− 1

p

(
p − 1

n − p

) p−1
p

r
− n−p

p

0

that is Eq. 12.
Let us now determine the solution to this problem: by definition, we have

∫ ∞

0
|y′|p−2 y′v′rn−1 = (nωn)

− p−1
p

(
n − p
p − 1

) p−1
p

r
n−p

p

0 v(r0)

for any v ∈ D1,p
0,rad(Rn). Let v be smooth, with compact support, then

(nωn)
− p−1

p

(
n − p
p − 1

) p−1
p

r
n−p

p

0 v(r0)

= lim
η→0+

[∫ r0−η

0
|y′|p−2 y′v′rn−1dr +

∫ ∞

r0+η

|y′|p−2 y′v′rn−1dr
]

= lim
η→0+

[
|y′|p−2 y′(r0 − η)v(r0 − η)(r0 − η)n−1 −

∫ r0−η

0

d
dr

(|y′|p−2 y′rn−1
)
v dr

−|y′|p−2 y′(r0 + η)v(r0 + η)(r0 + η)n−1 −
∫ ∞

r0+η

d
dr

(|y′|p−2 y′rn−1
)
v dr

]
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so that y satisfies the problem

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− d
dr

(|y′|p−2 y′rn−1
) = 0 r ∈ (0, r0) ∪ (r0,∞)

y′(0) = 0,

rn−1
0

[
(y′+(r0))

p−1 − (y′−(r0))
p−1

] = (nωn)
− p−1

p

(
n−p
p−1

) p−1
p

r
n−p

p

0

and

y(r0) = (nωn)
− 1

p

(
p − 1

n − p

) p−1
p

r
− n−p

p

0

Hence

yr0(r) =
{

c1, 0 ≤ r < r0

c2r− n−p
p−1 , r0 < r < ∞

where

c1 = (nωn)
− 1

p

(
p − 1

n − p

) p−1
p

r
− n−p

p

0 , c2 = c1r
n−p
p−1

0 = (nωn)
− 1

p

(
p − 1

n − p

) p−1
p

r
n−p

p(p−1)

0

that is Eq. 13.

5 The Case p < q < ∞: Proof of Theorem 3

The key in the proof of Theorem 3 is a suitable change of variable which allows us to
reduce the problem to the case treated in [24]. Thanks to the Polya-Szego inequality,
finding the best constants Sn,p∗,q is equivalent to maximize the ratio

Jn,q,p(u) := n
1
q − 1

p ω
− 1

n
n

(∫ ∞
0 uqr

q
p (n−p)−1 dr

) 1
q

(∫ ∞
0 |u′(r)|prn−1dr

) 1
p

(33)

where u(r) is a positive decreasing function on [0,∞) sufficiently smooth (e.g.
Lipschitz continuous) and such that

∫ ∞
0 |u′(r)|prn−1dr < ∞. Let us now perform the

change of variable (see also [12], proof of Lemma 7)

r = ρ
p2

(n−p)(q−p) , p < q < ∞
and define

v(ρ) = u
(

ρ
p2

(n−p)(q−p)

)

Then v(ρ) is still Lipschitz continuous on (0,∞), positive and decreasing, with

∫ ∞

0
|u′(r)|prn−1dr =

(
(q − p)(n − p)

p2

)p−1 ∫ ∞

0
|v′(ρ)|pρ

pq
q−p −1 dρ (34)
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and ∫ ∞

0
uqr

q
p (n−p)−1 dr = p2

(q − p)(n − p)

∫ ∞

0
v(ρ)qρ

pq
q−p −1 dρ (35)

To conclude the proof we need the following Lemma due to Talenti

Lemma 3 (Lemma 2 in [24]) Let m, p, q be real numbers such that

1 < p < m, q = mp
m − p

Let u be any real valued function of a real variable r, which is suf f iciently smooth on
the half line (0,+∞) (e.g. Lipschitz continuous) and such that

∫ +∞

0
rm−1|u′(r)|pdr < +∞, u(r) → 0, as r → +∞

Set

Im,p(u) :=
(∫ ∞

0 rm−1|u|q dr
) 1

q

(∫ ∞
0 rm−1|u′(r)|p dr

) 1
p

Then

Im,p(u) ≤ Im,p(ϕ)

where ϕ is any function of the form

ϕ(r) =
(

a + br
p

p−1

)1− m
p

with a and b positive constants. A straightforward calculation yields

Im,p(ϕ) = m− 1
p

(
p − 1

m − p

) p−1
p

(
p

p − 1

) 1
m

⎡
⎣ �(m)

�
(

m
p

)
�

(
m(p−1)

p

)
⎤
⎦

1
m

The extremals are solutions of the dif ferential equation

(
rm−1|u′|p−1sgn(u′)

)′ = m
(

m − p
p − 1

)p−1

ab p−1rm−1|u|q−1 (36)

verifying the conditions
∫ ∞

0
rm−1|u′(r)|p dr < ∞, u(r) → 0 as r → +∞, u′(r) = o(r− m

p ) as r → 0 or + ∞

Conversely, any solution to Eq. 36 with the above properties is an extremal for Im,p .

Now set

m = pq
q − p
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so that mp
m−p = q and recalling Eqs. 34 and 35, we have

Jn,q,p(u) = n
1
q − 1

p ω
− 1

n
n

(
p2

(q − p)(n − p)

) 1
q + p−1

p

(∫ ∞
0 v(ρ)qρ

pq
q−p −1 dρ

) 1
q

(∫ ∞
0 |v′(ρ)|pρ

pq
q−p −1 dρ

) 1
p

= n
1
q − 1

p ω
− 1

n
n

(
p2

(q − p)(n − p)

) 1
q + p−1

p

Im,p(v)

≤ n
1
q − 1

p ω
− 1

n
n

(
p2

(q − p)(n − p)

) 1
q + p−1

p

Im,p(ϕ)

= n
1
q − 1

p ω
− 1

n
n p

1
q q− 1

p (q − p)
1
p − 1

q
(p − 1)

1+ 1
q − 2

p

(n − p)
1
q − 1

p +1

[
B

(
q

q − p
,

q(p − 1)

q − p

)]− 1
p + 1

q

= Sn,p∗,q

The constant Sn,p∗,q is achieved by any function of the form

ψ(x) =
(

a + b |x| (n−p)(q−p)

p(p−1)

)− p
q−p

(37)

which solves the differential equation

(
rn−1|u′|p−1sgn(u′)

)′ = q
p

(n − q)p

(p − 1)p−1
ab p−1r−n+q n−p

p |u|q−1 (38)

subject to the following conditions

∫ ∞

0
r

pq
q−p −1|u′(r)|p dr < ∞, u(r) → 0 as r → +∞, u′(r)=o

(
r− q

q−p

)
as r → 0 or +∞

Clearly, as q = p∗ we recover the Talenti constant (2).

5.1 Connections with Interpolation Inequalities with Weights

As mentioned in the introduction, there is a natural relationship between Lorentz
spaces and weighted Lebesgue spaces. Indeed, let u be a radially decreasing function
i.e. u = u�, then

‖u‖q
p,q =

∫ +∞

0

[
u∗t1/p]q dt

t

= nω
q
p

n

∫ ∞

0
uqrqn/p dr

r

= nω
q
p −1

n

∫
Rn

|u|q|x|− n
p (p−q) dx = nω

q
p −1

n ‖u‖q

q,|x|− n
p (p−q)
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where ‖ · ‖q,|x|−s denotes the norm of the weighted Lebesgue space Lq(|x|−sdx). If
the weight |x|− n

p (p−q) is radially non increasing, and thus p ≥ q, then thanks to the
Hardy-Littlewood inequality,

‖u‖q
p,q =

∫ +∞

0

[
u∗t1/p]q dt

t

= nω
q
p

n

∫ ∞

0
(u�)qrqn/p dr

r

= nω
q
p −1

n

∫
Rn

|u�|q|x|− n
p (p−q) dx

≥ nω
q
p −1

n

∫
Rn

|u|q|x|− n
p (p−q) dx = nω

q
p −1

n ‖u‖q

q,|x|− n
p (p−q)

for any u ∈ Lp,q, so that

Lp,q(Rn) ↪→ Lq
(
R

n, |x|− n
p (p−q)dx

)
if p ≥ q (39)

with optimal embedding constant given by

‖u‖
q,|x|− n

p (p−q) ≤ n− 1
q ω

1
q − 1

p
n ‖u‖p,q

The same embedding holds for any radially symmetric domain � ⊂ R
n.

Let us now go back to the family of (critical) Sobolev-Lorentz embeddings

D1,p(Rn) ↪→ Lp∗,q(Rn), p∗ = np
n − p

, q ≥ p

Replacing p with p∗ in Eq. 39 we get the following embeddings

Lp∗,q(Rn) ↪→ Lq
(
R

n, |x|−n+q n−p
p dx

)
if p ≤ q ≤ p∗

namely

‖u‖
q,|x|−n+q n−p

p
≤ n− 1

q ω
1
q − 1

p∗
n ‖u‖p∗,q

with optimal embedding constant. This embedding, combined with Theorem 3, yields
as a byproduct

D1,p(Rn) ↪→ Lq
(
R

n, |x|−n+q n−p
p dx

)
if p ≤ q ≤ p∗ (40)

that is,

‖u‖
q,|x|−n+q n−p

p
≤ n− 1

q ω
1
q − 1

p∗
n Sn,p∗,q‖∇u‖p

where the optimal constant is achieved if p < q ≤ p∗ by the extremals (37).
The embedding Eq. 40 is well known in the literature (see [6, 17] and [12]):

D1,p(Rn) ⊂ Lp∗(s) (
R

n, |x|−sdx
)

if and only if s ≥ 0, with p∗(s) = p
n − s
n − p
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whereas, if s < 0, the emeddings holds just for the radial part of D1,p(Rn). The
optimal embedding constant is achieved by dilations (and also translations, if s = 0)
of the function

φλ(x) = λ
n−p

p(p−s)

(
λ + |x| p−s

p−1

)− n−p
p−s

which is solution of the Euler Lagrange equation
⎧⎨
⎩

−
pu = c(n, p, s)|x|−s|u|p∗(s)−2u

u ∈ D1,p(Rn)

where c(n, p, s) = (n − s)(n − p)p−1

(p − 1)p−1

Setting

s = n − q
n − p

p
, p < q ≤ p∗ = np

n − p

we find

ψλ(x) = λ
1

q−p

(
λ + |x| (n−p)(q−p)

p(p−1)

)− p
q−p

which are solutions of the problem
⎧⎨
⎩

−
pu = c(n, p, q)|x|−n+q n−p
p |u|q−2u

u ∈ D1,p(Rn)

where c(n, p, q) = q
p

(n − p)p

(p − 1)p−1

and thus Eq. 38.

6 The Limiting Case q = p: Proof of Theorem 4

As recalled in the introduction, the case q = p has been already investigated
by Alvino in [2]. Following the approach developed so far, notice that formally
Theorem 3 does not apply as the quantity (q − p) vanishes. However, we will show
that the constant Sn,p∗,q, defined by Eq. 15, admits a limit for q → p, which coincides
with the optimal constant Sn,p∗,p, namely

lim
q→p

Sn,p∗,q = Sn,p∗,p = ω
− 1

n
n

p
n − p

Let us work out the following limit

lim
p→q

Sn,p∗,q = lim
p→q

n
1
q − 1

p ω
− 1

n
n p

1
q q− 1

p (q− p)
1
p − 1

q
(p−1)

1+ 1
q − 2

p

(n− p)
1
q − 1

p +1

[
B
(

q
q− p

,
q(p−1)

q− p

)]− 1
p + 1

q

= ω
− 1

n
n

(p − 1)
1− 1

p

(n − p)
lim
p→q

e
q−p

pq log(q−p) lim
p→q

[
B

(
q

q − p
,

q(p − 1)

q − p

)]− 1
p + 1

q

= ω
− 1

n
n

(p − 1)
1− 1

p

(n − p)
lim
p→q

[
B

(
q

q − p
,

q(p − 1)

q − p

)]− 1
p + 1

q

(41)
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since limp→q
q−p

pq log(q − p) = 0. Now recall that the Beta and Gamma functions are
related by

B(a, b) = �(a)�(b)

�(a + b)
,

so that

B
(

q
q − p

,
q(p − 1)

q − p

)
=

�
(

q
q−p

)
�

(
q(p−1)

q−p

)

�
(

qp
q−p

)

Furthermore, by Stirling’s formula one has

�(z) = zze−z

{√
2π

z
+ O

(
z− 3

2

)}
, as Rez → +∞

from which we get the following estimates:

�

(
q

q − p

)
=

(
q

q − p

) q
q−p

e− q
q−p

{√
2π

q − p
q

+ O
(
(q − p)

3
2

)}
, as q → p

�

(
q(p−1)

q − p

)
=

(
q(p−1)

q− p

) q(p−1)

q−p

e− q(p−1)

q−p

{√
2π

q− p
q(p−1)

+O
(
(q− p)

3
2

)}
, as q → p

�

(
qp

q − p

)
=

(
qp

q − p

) qp
q−p

e− qp
q−p

{√
2π

q − p
qp

+ O
(
(q − p)

3
2

)}
, as q → p

Therefore, as q → p we have

[
B

(
q

q− p
,

q(p−1)

q− p

)]− 1
p + 1

q

=
⎡
⎣�

(
q

q−p

)
�

(
q(p−1)

q−p

)

�
(

qp
q−p

)
⎤
⎦

− q−p
qp

=
(

q
q − p

)− 1
p

e
1
p

{√
2π

q − p
q

+ O
(
(q − p)

3
2

)}− q−p
qp

·
(

q(p−1)

q− p

)− p−1
p

e
p−1

p

{√
2π

q− p
q(p−1)

+O
(
(q− p)

3
2

)}− q−p
qp

·
(

qp
q − p

)
e−1

{√
2π

q − p
qp

+ O
(
(q − p)

3
2

)} q−p
qp

= q− 1
p − p−1

p +1 p(p − 1)
− p−1

p (q − p)
1
p + p−1

p −1e
1
p + p−1

p −1

×
{√

2πp(q − p)

q(p − 1)
+ O

(
(q − p)

3
2

)}− q−p
qp

→ p(p − 1)
− p−1

p , as q → p
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We conclude by inserting this value into Eq. 41 to obtain

lim
p→q

Sn,p∗,q = ω
− 1

n
n

(p − 1)
1− 1

p

(n − p)
lim
p→q

[
B

(
q

q − p
,

q(p − 1)

q − p

)]− 1
p + 1

q

= ω
− 1

n
n

(p − 1)
1− 1

p

(n − p)
p (p − 1)

− p−1
p

= ω
− 1

n
n

p
(n − p)

= Sn,p∗,p
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