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This paper concerns the theoretical, numerical, and experimental study of the second-harmonic-generation
(SHG) process under conditions of phase and group-velocity mismatch and aims to demonstrate the
dimensionality transition of the SHG process caused by the change of the fundamental wave diameter. We
show that SHG from a narrow fundamental beam leads to the spontaneous self-phase-matching process with,
in addition, the appearance of angular dispersion for the off-axis frequency components generated. The angular
dispersion sustains the formation of the short X pulse in the second harmonic (SH) and is recognized as
three-dimensional (3D) dynamics. On the contrary, the large-diameter fundamental beam reduces the number
of the degrees of freedom, does not allow the generation of the angular dispersion, and maintains the so-called
one-dimensional (1D) SHG dynamics, where the self-phase-matching appears just for axial components and
is accompanied by the shrinking of the SH temporal bandwidth, and sustains a long SH pulse formation. The
transition from long SH pulse generation typical of the 1D dynamics to the short 3D X pulse is illustrated
numerically and experimentally by changing the conditions from the self-defocusing to the self-focusing regime
by simply tuning the phase mismatch. The numerical and experimental verification of the analytical results are

also presented.
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I. INTRODUCTION

Since 1961, when Franken and his collaborators experi-
mentally discovered second-harmonic generation (SHG) [1],
the process of SHG has been widely investigated leading first
to important contributions by Refs. [2—6], who derived the
now well-known theory described in nonlinear optics books.
It was also realized that the use of short light pulses for
second-harmonic generation gives rise to special effects such
as the broadening of the generated light pulse due to the
group-velocity difference between the fundamental harmonic
(FH) frequency and the second-harmonic (SH) frequency
pulses, predicted by Comly and co-workers [7] and observed
by Shapiro [8].

Typically, SHG is investigated or used at or near the
phase-matching condition in such a way as to maximize the
conversion efficiency. More recently, the study of propagation
phenomena in phase-mismatched second-harmonic processes
has attracted considerable interest, in particular for the in-
vestigation of the effect on the generated pulse shape. In
1969, Glenn provided a general solution of the SH field,
which showed two contributions, one arising as a surface term,
traveling with the characteristic group velocity expected at the
SH frequency, and a second component that instead appeared
to travel with the velocity of the FH beam [9]. The combined
effect of phase-mismatch and group-velocity difference was
studied both analytically [10,11] and in combination with
depletion numerically [12], showing the occurrence of a
double-peak structure in the SH signal. This feature was also
shown to arise as a result of group-velocity dispersion within
the bandwidth of the fundamental pulse [13]. In particular, the
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predicted pulse splitting of the second-harmonic signal due
to the group-velocity difference between the fundamental and
the generated second harmonic was observed experimentally
by Noordam and co-workers [14].

The modification of the temporal and spectral shapes of
the pulses generated in SHG processes has also been analyzed
experimentally by looking at the influence of cascading self-
phase and cross-phase modulation [15]. Theoretical aspects
of such phenomena have also been discussed beyond the
regime of the usual slowly varying envelope approximation
by Mlejnek et al. in [16] for the general case of nonlinear
dielectrics, and by Su et al. [17] in BBO crystals both
theoretically and experimentally.

Recently, the generation of two distinct components in
the conditions of phase and group-velocity mismatch and
low pump intensities was interpreted as a phase-locking
mechanism that causes the trapping of portions of the SH
signal, which then travel under the pump pulse [18], as shown
experimentally in absorbing materials [19]. Lately, the phase-
and group-velocity locking of FH and SH pulses was also
observed at oblique incidence in a lithium niobate crystal [20].

Phase-mismatched SHG processes in the presence of large
group-velocity mismatch (GVM) have also been investigated
in the context of applications. Namely, Marangoni and co-
workers have demonstrated a simple method for the generation
of tunable picosecond pulses synchronized with femtosecond
pulses [21]. To this end, they exploit the SHG process in
this regime to efficiently transfer the energy of a broadband
FH pulse into a narrowband SH pulse, thus allowing us to
obtain tunable picosecond pulses, as also shown in [22].
The narrow-bandwidth picosecond pulses were also generated
with predetermined spectral and temporal shapes, as recently
demonstrated by means of quasi-phase-matched nonlinear
structures [23].
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The so-called nonlinear X waves were observed in phase-
mismatched SHG processes [24,25] (recently also in a different
regime in [26]), as well as investigated in Kerr media [27-30].
The nonlinear X waves are weakly localized nondiffracting
and nondispersing wave packets characterized by a nonsepa-
rable spatiotemporal profile (propagation invariant solutions)
[31,32], accessible in the normal group-velocity dispersion
regime, the formation of which is triggered by conical emission
[33]. In [34], it was theoretically demonstrated that an X wave
at SH can be generated spontaneously by doubling a broad
FH pump beam in the undepleted stage of its propagation.
Moreover, as shown in [24], in SHG, these wave packets are
constituted by X-shaped envelopes at the SH and FH frequency
traveling locked together.

This paper is aimed at highlighting the transition between
the one-dimensional (1D) case, where diffraction is negligible,
and the three-dimensional (3D) case, where diffraction and
angular dispersion become important in the SHG process, es-
pecially in relation to the reshaping of the SH pulses involved.
Thus, we will present a clear and detailed analysis of the
propagation dynamics occurring in phase-mismatched second-
harmonic-generation processes, corroborated by numerical
simulations in various regimes of focusing, beam dimensions,
positive or negative phase mismatch, presence or absence
of group-velocity mismatch, group-velocity dispersion, and
in relation with the spontaneous SH X-wave formation.
Experimental results performed in the femtosecond-pulsed
regime in different parameter cases in a lithium triborate
crystal (LBO) will also be presented. The paper is organized
as follows. In Sec. II, the description of self-phase matching
in SHG is presented in the one- and three-dimensional cases,
with an illustration of several interesting regimes (also from
the numerical point of view). In Sec. III, the transition from
the 1D to the 3D cases is discussed and demonstrated by
means of numerical simulations, while experimental results
are presented in Sec. IV. Conclusions are presented in Sec. V.

II. SELF-PHASE MATCHING IN SHG

In this section, we discuss the main features of the phase-
mismatched SHG process by means of an analytical and
a numerical study. The collinear SHG in the second-order
dispersion approximation and in the reference frame moving
with the group velocity of the fundamental harmonic wave
is described by the set of equations for the interacting fields
envelopes given by

A i 82A1 RN A Ak
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where A(t,x,y,z) is the complex amplitude, ¢ is the retarded
time (corresponding to the coordinate frame moving with the
fundamental wave), x and y are transverse coordinates, and
z is the longitudinal coordinate, respectively. The indexes
j =1, 2 stand for fundamental and second-harmonic waves, re-
spectively. v;; = 1/u; — 1/u; is the group-velocity mismatch,
u; is the group velocity of wave j calculated at carrier
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frequency wjo, and wyy = 2w;o. Parameters g; (i,j = 1,2)
are the group-velocity dispersion (GVD) coefficients for the
FH and SH waves. The parameter ko = |kjo| is the modulus
of the wave j axial wave vector (both FH and SH are
collinear to the propagation axis z) calculated at the carrier
frequencies. Ak = kyg — 2k1o is the phase mismatch along
the propagation axis calculated at the carrier frequency, o; is
the nonlinear coupling coefficient, and A is the transverse
Laplace operator.

In the case of the undepleted SHG process, we can write
the set of Eq. (1) by introducing new amplitudes B; = A; and
By = Ay exp(—iAkz):

9B, i 9B AR —0
oz 250 T2k tTM T
3B, 3B, i 9By, i

— 4y — — = + ——A| By +iAkB; = 0»B}.
9z V21 ar 282 312 o 1Dy T1 2 =02
(2)

The fundamental wave dynamics is governed by a linear
equation that can be solved independently from the equation
for the SH. In general, the fundamental wave amplitude has a
temporal and spatial profile affected by the medium dispersion
and by diffraction, thus, in general, B; = B;(t,x,y,z). We
will assume below that the fundamental wave is undepleted,
undistorted, and propagates with group velocity u; without
changing its spatial and temporal profile, thus, in our ref-
erence frame B; = Bj(¢,x,y). The investigation of the SHG
process will be performed in one-dimensional (plane-wave
model) as well as in three-dimensional (pulsed-beam model)
approximations. Indeed, in the following, we shall present an
in-depth investigation of the SHG process in different regimes,
starting from the one-dimensional case and then showing
the impact of the space-time coupling on those regimes in
the three-dimensional case. Despite the fact that some of the
cases discussed in the following relative to one-dimensional
SHG were studied by various authors (as mentioned in the
Introduction), here we will present some classification of
the SHG regimes based on the SH wave decomposition into
several components. This is necessary and has the purpose of
demonstrating the differences and similarities between one-
and three-dimensional cases and revealing the possibilities of
the X-wave formation in SH.

A. One-dimensional SHG

We start here by restricting ourselves to the plane-wave
approximation (assuming large beam diameters), so that, in
Eq. (2), the term with the Laplace operator can be neglected.
We also assume a negligible group-velocity dispersion of the
fundamental wave, so B; = Bj(¢). Under these assumptions,
the second equation of Eq. (2) becomes

0B, 0B, i 0°B

Bz TV T8

We look for the solution of Eq. (3) in the Fourier space by
introducing the spectral representation for the SH and FH
waves, respectively,

+iAkB, = O'2B (3)

By(t,z) = % / S(2) exp(iQ)dS2, 4)

[e¢]
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Bi(t) = % / h F(2) exp(i Qt)dQ. 5)

o0

Note that the SHG in the undepleted approximation is governed
just by the squared envelope of the FH wave, so if we are
not interested in the FH dynamics, having the function F(£2)
instead of the fundamental wave spectrum is enough. After
substitution of Egs. (4) and (5) into (3), we obtain

0S5
r +iD(RQ)S = 0, F(Q), 6)
Z
where we define
1
D(Q) = Ak + v+ EgZQZ. (7

The solution of Eq. (6) with the zero SH condition at the
input [S(2,z = 0) =0] is

S(R2,2) = 70, F(2) sinc <D(;2)Z> exp <—i D(Q)Z) . (8

2

The key parameter describing the SHG dynamics is D(f2).
Note that €2 is the absolute w frequency detuning from the SH
carrier (2 = w — wyp). The most effective second-harmonic-
generation process can be obtained if D(£2) = 0. In this case,
the SH wave sustains a stationary profile with amplitude
growing linearly with the propagation distance z [S(£2,z) =
707 F(2)]. It is clear that, due to material dispersion, the
condition D(2) =0 can not be satisfied for all frequency
ranges. This makes the frequency band for SHG defined by
the product of the ’squared” fundamental wave spectrum F (£2)
and the function sinc(%).

For a better interpretation of the main features of the
obtained solution, we rewrite Eq. (8) as

F&) [ D(€2 1 9
By P ID@ — 1. ©)

showing how the SH wave may be described as composed by
a free and a driven wave as

S(Q,z) =io,

S(2,2) = S(Q2,2) + SV (Q). (10)

The free wave is the solution of the homogeneous equa-
tion [% + i D(2)S = 0], which describes linear wave-packet
propagation at carrier frequency w; and is given by

F(Q
SO (@) = oy
D(R2)

The driven wave solution is constant along the propagation
distance z and satisfies Eq. (6):

exp [—i D(2)z] . (11)

F(Q)
D(Q)

Note that the reference frame is fixed with the fundamental
wave, thus, the driven SH propagates with the group velocity
of the FH, that is, u; and the free SH wave {due to phase shift
exp[—i D(2)z]} propagates with a group velocity u, (as for a
pulse of carrier frequency wyg in a linear medium).

We should note that the obtained solutions could be
extended to the case of linearly absorbing media. In that
case, the left side of Eq. (3) contains the additional term « B;
accounting for the linear losses, where o > 0 is the linear
absorption coefficient. Therefore, the solution has the same

SDQ) = —ioy

(12)
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form as before, but the quantity D(£2) becomes complex and
can now be written as

D(Q) = —ia + Ak + 12 Q + 16,Q7% (13)

We observe that, when z >> 1/«, the free wave vanishes and
the SH contains only the driven component with constant
amplitude S(R,z) ~ S@(Q) (despite linear losses).

We present in the following the discussion of different
cases.

Case A: The fundamental wave nearly monochromatic
[F(2) =~ 2 Fp8(£2)] [here §(£2) is the Dirac delta function], or
material dispersion (GVM, GVD) negligible (v,; — 0,8, —
0) in the case of phase-mismatched (Ak # 0) SHG. We have
D(2) = Ak and, thus, by means of Egs. (4) and (8), we find

20, F Ak Ak
By(t,z) = (Zko sin (TZ> exp (—iTZ> . (14)

The intensity of the second-harmonic |B;|? sinz(ATkZ) ex-
hibits well-known oscillations versus z as the result of the
spatial beating between the free and the driven SH waves,
as discussed in every handbook of nonlinear optics (for
example, see [35]). Note that in the dissipative case, when
z > 1/a, the SH field reduces to the driven wave with constant
amplitude

By(t.7) = — 2 _F,

2= Ak

Case B: Phase-matched SHG with GVM domi-

nant over GVD (Ak =0, vy; #0, g2 =0). In this case,

we have D(Q)~ vy, and the solution of Eq. (8)
becomes

Q Q
S(Q,z):zozF(Q)sinc<v212 Z)exp(—iv21 Z). (16)

15)

2

The spectral width of the function sinc(”z‘TQZ) (defined as
the interval between the first two zeros around the value Q =
0) decreases with the distance as AQgn. = 47 /(v212). If the
FH bandwidth [width of the function F(2)] is AQgy, for
> 47'[/(\)2] AQEy), we have AQgne < AQpy and

Q Q
S(2,2) ~ 70> F(0) sinc ("2‘2 Z) exp <—i ”2‘2 Z) .an

The above equation describes the spectrum of a rectangular
pulse with duration t = |v;;z|, thus growing proportionally
to the propagation distance z. Therefore, the phase-matched
SHG process with large GVM supports, via spectral filtering
(i.e., shrinking of the sinc function), the formation of a nearly
rectangular SH pulse with such a duration. Note that, in
the limit case z — oo, we obtain a monochromatic wave
since the spectra is described by the Dirac delta function
[lim,_, o 282 = §(2)]. Moreover, from Eq. (9), we find that
the leading and trailing fronts of the SH pulse are propagating
with different velocities, corresponding to the fact that the
rectangular SH pulse is made of two waves: the free component
propagating with velocity u, and the driven one propagating
with velocity 1. In the dissipative medium, for z > 1/«, only
the driven SH wave survives:

— 2 FQ).

S(RQ,2)~
(€.2) o +ivy 2

(18)
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Note that S(€2,z) & F(£2) and the temporal profile of such
a wave is similar to the square envelope of the FH, namely
B, o B} [with some asymmetry due to the fractional term in
Eq. (18)].

The analytical results presented here have been reproduced
by numerical simulations by means of a split-step code
solving the system of Egs. (1) and accounting for the medium
parameters.

The group-velocity-mismatch parameter v; was taken
into account via the group-velocity-mismatch length L, =
79/vp; calculated for the tHp =1 ps pulse; the group-
velocity-dispersion parameter g; via the GVD length Lg; =
r02 /(41n2g;), which defines the distance over which the
duration of the Gaussian ty = 1 ps pulse increases by a factor
of +/2. The nonlinearity of the medium was accounted for
by introducing the nonlinear length L,, = (o0, Ao)~L, where A,
is the pulse amplitude corresponding to the pulse intensity
of 1 GW/cm?. The linear losses parameter « for the SH was
taken into account through the absorption length L, = (2ar)~",
defined as the distance over which the intensity drops by
factor of e, due to absorption. The temporal envelopes and
the spectral profiles of the interacting pulses obtained from the
numerical solution of Eq. (1) in Case B are presented in Fig. 1.
The artificial (with made-up dispersion and nonlinearity) L =
30 mm crystal with switched-off GVD (Lg; = oo) and typical
(for most real crystals) other parameters L, = 25 mm, L, = 1
mm was used. The fundamental pulse full width at half
maximum (FWHM) duration was set to 7 = 0.1 ps, intensity
Igg = 10 MW/cmz, and Ak =0 cm™'. When absorption is
negligible, the short FH pulse [see Fig. 1(a), dashed line]
generates a broad SH pulse [Fig. 1(a), solid line] with the
temporal bandwidth that shrinks [Fig. 1(c)]. If the linear
absorption is significant (L, =2 mm), only the driven SH wave

,:g 1 :g 1
o g
) )
z z
& &
2 2
= =

0 0

150 -1.25 <100 -0.75  -0.50

g 'g time (ps)
S S 1
) )
z z
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g g
Q Q

0
2 2
U300 -200 -100 0 100200300 -300 -200 -100 0 100 200 300

Q(eni) Q(ent’)

FIG. 1. (Color online) Numeric demonstration of Case B. The
SH (solid line) and FH (dashed line) (a), (b) intensity and (c), (d)
spectra profiles at the exit of the nonlinear medium presented. The
left column (a), (c) depicts the case without and the right column
(b), (d) depicts the case with linear losses. The parameters used
(see text) are L =30 mm, L, =25 mm, L, =1 mm, t = 0.1 ps,
Iry = 10 MW /cm?, and Ak = 0. For the dissipative case (b), (d),
L, =2 mm.
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survives sustaining a short SH pulse formation [Figs. 1(b) and
1(d)], in agreement with the above-discussed solution (18).
We mention that originally the effects of the pulse broadening
were predicted by Comly and co-workers [7] and observed by
Shapiro [8] and also observed later in quasi-phase-matching
structures by Marangoni and co-authors [21,23]. The role of
the linear absorption was also studied in [19].

Case C: Phase-mismatched SHG with GVM dominant over
GVD (Ak # 0,v1 # 0,82 = 0). In this case, D(2) &~ Ak +
1212 and therefore the dynamics depends on the FH pulse
bandwidth. Two possible subcases can be analyzed.

(i) The first one is when the bandwidth of the FH is so
narrow that it does not contain frequencies around Qy = — VA—ZI]‘ ,
where D(£2y) = 0. Thus, in proximity to the carrier frequency
(2 = 0), we have D(€2) & Ak and the solution described by
Egs. (10)—(12) reads as

SO(Q,7) ~ iZ—j{F(Q) exp[—i (Ak + v, 2)z],  (19)
Doy~ i 22
SV~ —i - F(Q). (20)

Here, the SH wave is composed by two pulses with nearly
equal profile [given by the function F(£2) that corresponds
to the square FH temporal envelope]. The exponential term
exp(—ivy1Q2z) in Eq. (19) corresponds to a temporal shift of
the pulse envelope by a quantity 7 = v;;z. Therefore, instead
of a broad pulse as in Case B, the SH generated contains two
pulses with durations nearly equal to that of the FH pulse
but propagating with different group velocities: the free SH
component [Eq. (19)] propagates with group velocity u, and
the driven component [Eq. (20)] with group velocity u;. In
the linearly absorbing medium [instead of Ak we should
substitute Ak — i in Eq. (19)] when z > 1/« only the driven
wave with constant amplitude survives and, from Eq. (20), we
have B,(t,2) ~ —i g% B{(1).

(i) The second scenario occurs when the spectrum of the
FH contains frequencies close to €2y = —UA—ZII‘, therefore, the
condition D(£2) ~ 0 becomes valid (at the proximity of £2),
and the dynamics described in Case B becomes possible
at a shifted frequency: a new SH component with nearly
rectangular envelope appears at a carrier frequency shifted
by €29. Moreover, this new component may be significant
even if F(2) < F(2 = 0). This becomes possible because
of the fulfillment of the condition D(2)|q—.q, — 0. For a
quantitative description, the solution described by Eq. (9) can
be rewritten in these conditions as the sum of two components

5(2,2) = " (2,2) + 59 (2,2), (21)
where
F(Q) — F(0)

SE(Qz) =i
(Q.2)=io, D)

{exp [ D(R)z] — 1},
(22)

SO(Q,2) = 202 F(Q) sinc (D (;2)1> exp <_l. D(Q)z> ‘

2
(23)

After introducing the frequency shift €2, we have D(Q2) =
121(2 — Qo) and the component S® becomes equal to

vy (2 2_ Qo) Z) e_i V21(9;90)r ' (24)

§® = 720, F(£2p) sinc (
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Equation (24) describes the spectrum of a rectangular pulse
with carrier frequency shifted by €y and duration (t = |v,1|z)
growing proportionally to the propagation distance z. On the
contrary, the component S-2 has no influence on the SH wave
at frequency €2y, but around the carrier frequency (2 =~ 0) we
have D(Q) ~ Ak. Thus, S"? describes a wave composed by
two pulses with different velocities [see Eqs. (9)—(12)]. The
temporal envelope of such pulse is defined by the spectrum
F(2) — F(£2). If the carrier component dominates, | F'(0)| >
| F(29)| and, thus, for the spectral components around 2 = 0,
we obtain from Eq. (22)

(1,2) 02 .
SR, ~ zEF(Q){exp [—i(Ak + v R2)z] — 1}

= const; F'(2) exp (—ivy1Q2z) + consty F(£2).
(25)

Equation (25) describes two pulses with the same envelope
~ Blz(t) separated in time by an interval T = |vyz|, i.e.,
the pulses are propagating with different velocities [u; =
u(wyo),ur = u(wyg)]. We can say, therefore, that in the case of
large FH bandwidth, the SH pulse contains three components:
two of them at frequency wyy = 2w but propagating with
different velocities [described by Eq. (25)], and a third one
[see Eq. (24)] at carrier frequency 2wjg + €29 propagating
in between the first two [see Fig. 2(b)]. Note that, in the
first-order dispersion approximation, the wave number for the
fundamental and SH waves are, respectively, k;(wjo + %) =
kio + % and k, 2wig + Q) = koo + MQ The phase mismatch
at frequency 2 is defined as Ak(2) = ﬁ2(2a) + Q) — 2k (w +
%) = Ak + v Q2. Therefore, the parameter D(£2) may be
interpreted as the phase mismatch: Ak(Q2) = D(2) clearly
showing that the most efficient SHG occurs when D(£2) = 0.

e o)
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z z
72} 172]
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0 0
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ol L .
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Q(cni’)

Spectrum Intensity (arb.units)
Spectrum Intensity (arb.units)

FIG. 2. (Color online) Numeric demonstration of Case C when
the FH spectra function F(£2) (a), (c) does not contain and (b), (d)
does contain the frequency €29. The SH (solid line) and FH (dashed
line) (a), (b) intensity and (c), (d) spectra profiles at the exit of the
nonlinear medium are presented. The parameters (see text) used are
(a), (c) L =20 mm; (b), (d) L =40 mm; (a), (c) L, =25 mm,
L,=1mm, 1 =0.1ps, I;y =1 GW/cm?, Ak =100 cm™!; and
(b), (d) Ak =50 cm™!, (b), (d).
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The numerical example of the solution of Eq. (1) in the
regime studied here (Case C) is presented in Fig. 2. The
same {L =20 mm [Figs. 2(a) and 2(c)] and L = 40 mm
[Figs. 2(b) and 2(d)]} medium with switched-off GVD
(Lgj =00) and L, =25 mm, L, =1 mm was used. The
fundamental pulse FWHM duration was set to 7 = 0.1 ps,
intensity I;y = 1 GW/cm?, Ak = 100 cm™! [Figs. 2(a) and
2(c)] and Ak = 50 cm™' [Figs. 2(b) and 2(d)].

Note that when the component at €2 in the FH wave is
absent, the SH pulse (as predicted by the above theory) has
a double-peak profile [Fig. 2(a)] composed by the free and
the driven wave solutions [Egs. (19) and (20)]. The spectrum
[Fig. 2(c)] of the SH radiation has fringes as the result of the
temporal delay between two spikes propagating with different
velocities. We mention that the double-peaked profiles in
phase-mismatched SHG under conditions of group-velocity
mismatch were also studied by other authors [10,11,14].
However, if the component at € is present [F(£2) # O],
the new component at shifted frequency appears [Fig. 2(d)].
The temporal duration of such a component is increasing
with the propagation according to the solution given by
Eq. (24) [Fig. 2(b)].

The cases of phase-mismatched SHG in the first-order
dispersion approximation discussed so far are summarized in
Fig. 3. The square FH pulse profile spectrum F'(£2) is presented
in Fig. 3(a) for narrowband (dashed line) and broadband
(solid line) FH pulse. The dispersion of the fundamental
wave is shown in Fig. 3(b) (dashed line) by plotting K(2) =
2k(wio + €2/2) as function of the frequency €2. The SH wave
number K»(2) = k(wyo + 2) as function of 2 is also shown
for comparison (solid line). Note that the slopes of the plotted
lines give the group velocities of the interacting pulses. In
the plot, v; > 0 (up < u;). The nonzero phase mismatch
at carrier frequency (€2 = 0) is persistent [in the presented
case Ak > 0, see Fig. 3(b)]. We can see that, because of
the different slopes, the exact phase matching occurs at a
shifted frequency Q¢ = —UA—" [intersection point in Fig. 3(b)].
Thus, if the bandwidth of the fundamental wave is narrow
[Fig. 3(a), dashed line], the SH pulse contains two components
around 2 = 0: the component [denoted by (1) in the figure]
propagating with the velocity of the SH in linear medium (u,)
and corresponding to the free SH wave solution, and the driven
wave component [denoted by (2)] propagating with the group
velocity u; of the polarization source (equal to that of the FH).
Due to their different velocities, these two components possess
a relative delay proportional to the distance, i.e., & |vy;z]
[see Fig. 3(d)], and lead to interference fringes in the SH
spectrum close to 2 = 0 [see Fig. 3(c)]. However, in the case of
broadband FH [Fig. 3(a), solid line], the nonzero component at
frequency wig + 20/2, F(£2p) # 0 generates a phase-matched
SH component [Ak($29) = D(2p) = 0] in proximity to the
frequency wyg + €2 [see in Fig. 3(c) the component denoted by
(3)]. The spectral bandwidth of the phase-matched component
(3) shrinks because of the filtering described by the function
sinc(@) [see Eq. (24)]. Note that the spectral amplitude
of the component (3) is growing proportional to z. In the
temporal domain, its dynamics corresponds to the formation
of a long pulse with duration increasing proportionally to z
[see component (3) in Fig. 3(d)].
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FIG. 3. (Color online) Illustration and explanation of the different

SH components in phase-mismatched SHG. The GVM dominant
case.

Case D: Regime of large group-velocity dispersion (GVD
dominating over GVM). As mentioned before, the quantity
D(£2) may be interpreted as the phase mismatch at the detuned
frequency 2. Indeed, the SH wave number within the second-
order approximation is ky(wz + ) = kyo + u% + %gz Q2. 0On
the other hand, according to our model, the FH wave number
accounts just for the first-order dispersion (the reference frame
is moving with the fundamental group velocity u), therefore,
ki(wo + %) =kio+ 2—31 The phase mismatch can thus be
rewritten as Ak(Q) = kx(2wio + Q) — 2ki (w10 + £) = Ak +
V192 + % g2S22 = D(R2). Obviously, efficient SH generation
occurs when D(€2) = O (perfect phase matching). We can see
how this condition can be implemented by rewriting D(£2)
[introduced by Eq. (7)] as

D (Q) = Do + (v21 + £2Q20)(2 — Qo) + 582(2 — 0)*,
(26)

where

Dy = Ak + Q0 + 893 (27)

PHYSICAL REVIEW A 83, 043834 (2011)

Because of material dispersion, the condition D(£2) = O can
not be guaranteed for all frequency ranges, but only for some
fixed frequency 2y, where Dy = D(2p) = 0. In the case of
dispersion limited to the first order, this gives Qo = —% and
the resulting dynamics is the one discussed in the preceding
Case C. In the case of significant GVD, the phase matching
occurs for the two frequencies given by

2Ak
e iy vy 28k Gy
82 &2 V1
while in the case of moderate GVD (ZAfg2 < 1), these are
V21
Ak
ol ~ ——,
Va1
(29)
Ak 2v
@ 21
QO) N — — —.
V21 82

In the case of group-velocity matching (v2; = 0), the frequency
detuning due to self-phase matching is characterized by the two
symmetrical frequency values

[ 2Ak
Q" =4 |- (30)
&2

The appearance of the phase-matched components in the
case of large GVD is depicted in Fig. 4. For this purpose,
we introduce the function K,(2) = ky(wao + Q) — Q2/u; =
koo + %gz(Q + vz1/gz)2 — v%1/2g2 (as a SH wave number
in the coordinate frame moving with u; velocity) and we
rewrite parameter D as D(2) = [ka(wro + Q) — Q/u;] —
2[ky (w19 + 2/2) — /2u;]. Also, note that, in our approxi-
mation, ki (w9 + 2/2) — 2/2u; = kyo, so we obtain D(2) =
K»(€2) — 2kyg. Therefore, the phase-matched components in
Fig. 4 [graphic solution of the equation D(£2) = 0] occur at
the intersection of the curve K, = K,(€2) with the straight
horizontal line K| = 2kjo. If group-velocity matching takes
place (v2; = 0), the phase-matched components are displaced
symmetrically [Figs. 4(a) and 4(b)]. Intersection takes place
only if Akg, < 0 [see Eq. (30) and Figs. 4(a) and 4(b)]. The

K K
;ZA N
% D@ % .
Q) o o © ) o o @
K
Vvy<0 g50
% N©
ap 0o a
0 Q+tv,/g,

FIG. 4. Appearance of the phase-matched components in phase-
mismatched SHG with the GVD dominant over GVM. (a), (c) Ak > 0
and (b) Ak < 0.
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FIG. 5. (Color online) Numeric demonstration of Case D (GVD
dominant over GVM). The SH (solid line) and FH (dashed line) (a),
(b) intensity and (c), (d) spectra profiles at the exit of the nonlinear
medium are presented. The left column [(a), (c)] depicts the case
without linear losses and the right column [(b), (d)] depicts the case
with linear losses. The parameters (see text) used are L = 10 mm,
Lyp=20mm, L, =1mm,7 =0.1ps, ;g = 1 GW/cm?, and Ak =
—30 cm~'. GVM matched interaction (L, = o0o). For the dissipative
case [(b), (d)], L, = 1 mm.

presence of GVM shifts the parabola K,(£2), respectively, to
the left by a frequency amount of v,;/g, and down by an
amount Ak = v§1/2g2 [see Fig. 4(c)].

The numerical illustration of the Case D in the regime
of perfect group-velocity matching is shown in Fig. 5. The
L =10 mm crystal with GVD (Lgy =20 mm) and L, =
1 mm was used. The fundamental pulse FWHM duration
was set to T = 0.1 ps, intensity I;g = 1 GW/cm?, and Ak =
—30 cm~!. When absorption is negligible, the short FH pulse
[see Fig. 5(a), dashed line] generates broad SH pulse [Fig. 5(a),
solid line) with the temporal profile exhibiting modulation
caused by interference of two spectral components [Fig. 5(c),
solid line]. The same case with the linear absorbtion (L, =
2 mm) is presented in Figs. 5(b) and 5(d), where only the driven
SH wave survives and sustains the short SH pulse formation.

B. Three-dimensional SHG

In the following treatment, we remove the plane-wave
approximation, supposing that the FH beam is limited in
transverse space. We shall investigate the SHG process
considering cylindrically symmetric beams. In this case, we
assume B; = B;(t,r), r = /x> + y2, and, for the transverse
Laplace operator, A, = 3%/3r> 4 (1/r)3/dr. In such a case,
instead of Eq. (3), we have

0B 0B i 9°B
- + 1)21—2 2

i
— —go——=+ —A| B, +iAkB, = 5, B>.
9z Y 282 o) + 1By +1 2 = 02D]

2kag
€29
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We look for the solution of Eq. (31) in the spectral domain by
using the Fourier-Hankel transform. We have

B, = / f S (2,x,2) Jo (kr) exp (i2t) —« dk,
0 —00 2
(32)

2 .
Bi = / / F (Q,k) Jo (kr)exp (i) —«k dk.
0 —00 2

The substitution of Eq. (32) into (31) and the Fourier-Hankel
transform give the same equation [Eq. (6)] as in the 1D case
98 (2,k,2)

. +iD(Q.,6) S (2,6) = 02 F (Q,),
Z

(33)

where
2

1 K
D (2,k) = Ak Q+ -, — —.
(£2,) + vy 82+ 282 2

The solution of Eq. (33) is given by Eq. (8), but now the
functions F and D depend also on the spatial frequency «:

S = z0, F(£2,k) sinc (@) exp (—i D(QZ,K)Z> .

(34)

(35)

As discussed previously, the most effective SH generation
(S growing proportionally to z) takes place when D = 0.
In the 1D case, this condition may be satisfied only for
fixed frequency(ies) 2y. In contrast, in 3D, the dependence
of D on the spatial frequency « leads to extra degrees
of freedom, and D =0 may be satisfied within a whole
frequency range over which the SH wave has a suitable
angular dispersion (dependence of the transverse wave vector
on generated frequency). In other words, we have k = «(2)
and D[2,x(2)] = 0, leading from Eq. (34) to

K2 (Q 1
2k(20) = Ak + 1)219 + Egzgz.
Note that the spatial frequency describing the angular dis-
persion ¥ = k(£2) is by definition the transverse wave vector
kyy = kysin(9) = k().
As shown in the 1D case, here also D may be interpreted
as the longitudinal phase mismatch. This can be proved by
rewriting the longitudinal SH wave-vector component as

2
K
kzz(a))z \/]m%kz(w)_ Tzo

Considering that w is the absolute frequency (w = wyy + 2),
by expanding the first term up to second order kp(wy + ) =
koo + % + 14,92, we obtain

(36)

(37)

o (0 + D) ~ k2 + Lgi02 = 2
- (w IS —_ — — .
2z (W20 20 " 282 oo

In order to interpret D as the longitudinal phase mismatch,
we rewrite the fundamental wave vector at frequency wo +
Q/2 as

(38)

Q
kiz (@10 +$2/2) = kio + 5—,

2141

corresponding to undepleted (invariant during propagation)
fundamental harmonic approximation. Thus, the longitudi-
nal phase mismatch defined as Ak, () = ko (wy + ) — 2

(39)
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ki (w10 + €2/2) becomes equal to the parameter D defined
by Eq. (34): Ak,(2) = D(2,k). We can say that the optimal
SH generation condition D = 0 [defined by Eq. (36)], being
guaranteed by the angular dispersion of the generated SH, cor-
responds to longitudinal phase matching between the angularly
dispersed SH components and the frequency components of
the fundamental wave. Note that the phase-matching process
is selecting from the bulk FH spectrum (£2,x volume) the
components described by Eq. (36).

We see from Eq. (34) that D(S2,x) calculated at « =0
(axial component) is equivalent to the parameter D(£2) in the
1D case, D(£2,0) = D(S2). Therefore, on-axis phase matching
in the three-dimensional case can be reached at the same
shifted frequency 2y found in the one-dimensional case. The
condition described by Eq. (36) ensuring optimal SHG can
be rewritten by introducing the frequency shift €y defined via
Dy = D(R2p) = 0 [see Eq. 27)]:

K (Q)
2kao

1
= (v21 + £2820) (2 — Qo) + 582(52 — Q)% (40)

While D = 0 is satisfied for the on-axis spectral component
at the shifted frequency [y, ki = k(20) = 0], for the
off-axis components [ky; = x(2) # 0], the optimal SHG
condition occurs for frequencies 2 # o, satisfying the above
equation (40).

It is interesting to note that the occurrence of longitudinal
phase matching, guaranteed by the frequency shift on axis, and
the angular dispersion indicate the reshaping of the generated
SH pulse into an X pulse [36]. We can show this by substituting
Eq. (36) into (38), and obtaining ky,(wyo + 2) = kyg — Ak +
%. Taking into account that —Ak = v5;Q + $£,Q7 and

ka(wao + S20) = koo + f—;’ + 38293, we have

Q —
ko (w20 + ) = ko (w20 + 20) + ”
1

(41)

Considering the absolute frequencies w = wyy + €2, and intro-
ducing a new carrier frequency a)( ew) — = wy + Q0, Eq. (41)
can be written as

(new)
w — Wy,

ko, (@) = ka (5™ + (42)

ujp

Note that the longitudinal wave vector does not depend on
the spatial frequency but is linearly proportional to the tem-
poral frequency. Such dependence sustains the wave-packet
invariance during propagation [36] and X-wave formation.
We mention that the analytic solution showing possible SH
X-pulse formation in the undepleted regime and first-order
dispersion was obtained also in [34].

In summary, from this analysis, we have found that the
optimal SH generation condition D(€2,x) = 0, also equivalent
to the longitudinal phase matching Ak, (€2) = 0, is satisfied for
on-axis component(s) at shifted frequency(ies) a)( W) — = wy +
Qo [0 defined by Egs. (28)—(30)], as well as for angularly
dispersed off-axis components as shown by Eq. (42). This
corresponds to a dispersion of the SH wave-vector longitudinal
component described by Eq. (42), which meets the definition
of the X-pulse propagating with the group velocity u: k. (w) =
Y + 2 (y = const) [36].
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Ak<0

k,
Ak<v,/2g,

kL (e)
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FIG. 6. (Color online) The phase-matching (left column) and
angular dispersion features (right column) in the 3D case. (a), (d)
depict the GVM dominant case. The GVD dominant case is presented
in (b), (e) for g, > 0 and in (c), (f) for g, < 0. The dotted line in (f)
depicts a situation where the phase matching does not exist.

As mentioned above, the transverse wave-vector depen-
dence on frequency [k; = k(2)] defines the angular disper-
sion and can be illustrated graphically as the longitudinal phase
matching (Fig. 6). For this reason, we introduce K,(2,kx) =
koo +v212 + 5 g292 >— as the SH longitudinal wave vec-
tor in the reference frame movmg with the velocity u; (we
have subtracted the term —) thus, Ak,(2) = D(R2,k) =
K>(2,6) — 2k1o. The 10ng1tud1nal phase-matching condition
D(£2,k) = 0 graphically is equivalent to the intersection of the
surface K, = K»(€2,«) with the plane K| = 2k (see Fig. 6).

In the following, we discuss different regimes.

Case 1. In the case of phase-mismatched SHG with GVM
dominant over GVD (Ak # 0,v,; # 0,8, = 0), we have D =
0, when

2
K Ak Q = Ak 4 vy + (2 — Q). (43)
2kago

On-axis (k = 0) longitudinal phase matching leads to the

generation of the SH component at a frequency shifted by

Qp = —f—zll‘ (as in the one-dimensional case), while off-axis

phase matching occurs for transverse wave-vector components

satisfying

(@ = 0. (44)

The situation we have when vy > 0 is depicted in
Figs. 6(a) and 6(d). If vp; < 0, the figure is the same, but the

ki (£2)
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axis of the temporal frequency €2 should be inverted. Note that
the appearance of a single angular dispersion branch sustains
the kind of X-wave formation in SH when Q2 > Q¢ if vo; > 0
(and when Q < Qg if vp; < 0).

Case 2. In the case of normal GVD (g, > 0), the longi-
tudinal phase matching may be described as the intersection
of the saddle surface K, = K,(£2,«) and the horizontal plane
K = 2k [see Fig. 6(b)]. If Ak < %, the intersecting plane
is above the saddle point and two branches of the angular
dispersion appear, starting from two distinct axial frequencies
Q" and Q defined by Egs. (28) and (29) [see Figs. 6(b)
and 6(e)]. The off-axis components Q2 < Qf)l) and Q > ng)

@if Qf)l) < Qf)z)) also become phase matched when

ki () = akan(@ — 2") (@ — 2).

Therefore, the appearance of angular dispersion with the
gap in temporal frequency (no components for Qg) < Q<

Q(()z)) sustains the subluminal X-wave formation in SH [see
Fig. 6(e)].

If Ak > %‘2 , the intersecting plane is below the saddle point
and on-axis phase matching becomes impossible (solutions
for axial frequencies Qg)'(z) do not exist). However, off-axial
components can be phase matched, as shown in Fig. 6(e)
(bottom line). That sustains the formation of the superluminal
X wave.

In the case of group-velocity matching (v,; = 0), the
topology of the phase matching remains unchanged, but
the picture becomes symmetric: the on-axis phase matching
occurs when Ak < 0 at frequencies

(45)

o) _ . [T2Ak
0 82

(46)

and it occurs for off-axis frequency components satisfying

ki () =/ g2kao (2% — Q7).

Case 3. In the case of anomalous GVD (g, < 0), the lon-
gitudinal phase matching may be depicted as the intersection
of the ellipsoid K, = K»(2,k) and the plane K| = 2k [see
Fig. 6(c)]. Intersection occurs if Ak > ;—[’:‘2 (Ak > 0if vy = 0).
The same expressions for the axial components given by
Qg”’(z) [Egs. (28) and (46)] and for the transverse wave
vectors [Eqs. (45) and (47)] are valid. The intersection curves
are ellipses and the phase-matched frequency range lies
in-between Qf)l) and QE)Z) [see Fig. 6(f)]. In this case, it is
interesting to note that the appearance of angular dispersion
sustains the formation of an O wave [36] in the SH.

(47)

III. CHANGE OF THE WAVE-PACKET TOPOLOGY VIA
TRANSITION FROM 1D TO 3D INTERACTION

In the following, we shall focus our attention on the regime
of phase-mismatched SHG with GVM dominant over GVD
(Case 1 of the preceding section), as this is the regime
permitting us to observe in a spectacular way the transition
from the one- to the three-dimensional dynamics of the
SHG process. It is worth noting that a broad FH beam, and
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consequently a narrow angular spectrum, allow us to access
(thanks to the self-phase-matching process studied above) only
the narrow spectral range A, of the generated temporal
bandwidth, starting from frequency €2 [see Fig. 6(d)], and
therefore support the formation of a long SH pulse [denoted
as component (3) as discussed in Sec. Il A] in the 1D Case C.

On the contrary, a narrow FH beam possessing a broad
angular spectrum allows us to access a broad temporal
bandwidth A€, featured also by angular dispersion [see
Fig. 6(d)]. This type of spectrum sustains the formation of a
short X-type SH pulse characterized by a central spike duration
proportional to the whole spectrum bandwidth ~ A€;.

The above considerations suggest that a decrease of the
FH beam diameter should cause a transition from a long axial
SH pulse toward a short X pulse. We have demonstrated this
effect in a numerical experiment of phase-mismatched SHG
under conditions of large GVM. We evaluated the numerical
solution of Eq. (1) for different input conditions (diameters of
the fundamental beam and phase mismatch). The L = 40 mm
medium with switched-off GVD and L, =25 mm, L, =1
mm, Ak = —50cm~! was used. The diffraction was accounted
for by means of the diffraction lengths (Rayleigh ranges)
Lij =k jodg /(41n2), calculated for dy = 1 mm diameter beam
at FWHM. It was set at L;; =3 m for FH and L, =
6 m for SH. The fundamental pulse duration was t = 0.1 ps,
and the intensity gy = 1 GW/cm?. Results of the numerical
simulation are presented in Fig. 7.

First, we started with a fundamental wave with a narrow
angular spectrum (FH diameter d = 1 mm). The temporal
[Fig. 7(a)] and spectral [Fig. 7(b)] profiles of the SH radiation
generated at the very beginning (z = 0.07 mm) of the nonlinear
crystal resemble the temporal profile of the FH and the
corresponding spectrum [defined by function F(2)]. After
z = 40 mm of propagation, the SH wave [see Figs. 7(c) and
7(d)] develops features typical of the 1D dynamics: the free SH
component [see, for comparison, the 1D Case C component
(1) in Fig. 3] generated at frequency w,( propagates with the
group velocity u,; however, the driven SH component [as
component (2) in Fig. 3], also generated at frequency ws,
propagates with the group velocity of the fundamental wave
(u1). The interference of these temporally delayed components
generates fringes around the frequency wyg [see Fig. 7(d)].
However, the SH component generated at the shifted frequency
wy + Qo [Fig. 7(d)] [like the component (3) in Fig. 3)] is a
broad pulse component with a nearly rectangular profile. Note
here that Ak < 0, v; > 0, thus, the frequency shift is positive
(20 > 0). The SH pulse duration increases continuously
[Fig. 7(c)], while the temporal spectrum shrinks until it reaches
a distribution free from angular dispersion [Fig. 7(d)] (spectral
distribution pattern lies along a line orthogonal to the w axis).
Note the total SH pulse profile on axis [inset of Fig. 7(c)]
is identical to the profile obtained in the 1D calculation
[see Fig. 2(b)].

Second, seeking to demonstrate the transition from the
1D to the 3D dynamics, we repeated the calculation with
a 20 times smaller FH beam diameter (d = 50 um). In
order to see the FH beam diameter (and angular bandwidth)
pure influence on the SHG dynamics, we switched off the
diffraction of the fundamental beam (L,; = 00, Ly, = 6 m).
The SH component at shifted frequency wyy + 2o [Fig. 7(f)]
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FIG. 7. (Color online) SH spatiotemporal profiles (left column)
and corresponding spectrum intensity distributions (right column)
for different phase-mismatched SHG cases obtained by numerical
solution of the propagation equations. See text for details.

becomes bent, i.e., contains angular dispersion. The angular
dispersion curves obtained analytically [Eq. (44)] are plotted
in dashed lines. We observe a quite good agreement between
theory and numerics. In contrast to the large beam case (when
along SH pulse is generated), here a narrow FH beam sustains
a short X-pulse [Fig. 7(e), see also inset] formation with nearly
constant duration. Note the tails typical of an X pulse.
Finally, the fact that the beam diffraction of the fundamental
beam was switched off in the numerics is important for
the experimental demonstration of the transition between 1D
and 3D dynamics. Indeed, in reality, the diffraction of the
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FH beam should be accounted for. However, the positive
phase mismatch (Ak > 0) corresponds to a self-defocusing
interaction case (due to effective Kerr nonlinearity induced
by cascaded x® processes [37,38]), where the fundamental
wave beam diameter is rapidly growing. On the contrary,
the negative phase-mismatch (Ak < 0) case corresponds to a
self-focusing dynamics for the fundamental beam and allows
us to keep a narrow fundamental beam waist in the crystal.
These conditions imply the natural possibility to demonstrate
the transition from the 1D to the 3D case by changing Ak
via the crystal temperature tuning and, thus, by tuning the
phase mismatch from positive to negative. We repeated the cal-
culations for the self-focusing interaction (Ak = —50 cm™)
with the presence of diffraction (Ly; = 3 m, Ly, = 6 m) and
an initial FH beam diameter of d = 160 um. During the
interaction, the FH diameter shrinks and becomes narrower.
Therefore, the SHG dynamics [Figs. 7(g) and 7(h)] is similar
to the previous case with the narrow diameter FH and no
diffraction. The component at shifted frequency [Fig. 7(h)]
also presents angular dispersion, approximately matching the
theoretical (dashed) line given by Eq. (44). The features of
a short SH X pulse with weak tails emerge in Fig. 7(g). In
the case of self-defocusing interaction (Ak = 50 cm™!), with
the other parameters set as above, the red-shifted frequency
component appears [Fig. 7(k)]. However, the lack of angular
dispersion determines a completely different pulse temporal
dynamics [Fig. 7(i)] with features similar to the 1D case. The
long SH component appears (see inset) as in the previously
discussed case with a FH beam diameter of d = 1 mm.

IV. EXPERIMENTAL RESULTS

A set of experiments in different conditions was performed
in the femtosecond-pulsed regime in order to illustrate, in
phase-mismatched SHG, the dimensionality transition and the
effect of reshaping of the interacting pulses. The experimental
layout used for the measurements is illustrated in Fig. 8.

A traveling wave optical parametric amplifier (TOPAS)
was pumped by a 130-fs, 800-nm pulse of a Ti:sapphire
laser, generating signal and idler pulses at 1283 and
2124 nm wavelength, respectively. A 5-cm long lithium
triborate crystal placed in an oven was pumped for SHG
by the second harmonic of the idler, i.e., at 1062 nm. The
polarization of the latter (originally) vertical was changed into
horizontal by means of a half-wave plate. By changing the
distance d between the lenses of an unbalanced telescope,
we were able to control the beam size of the pump entering the
nonlinear crystal, and thus its focusing conditions. The phase

imaging -m
spectrometer

1301fs, 800 nm
(Ti:sapphire)

HR1055 A2

FIG. 8. (Color online) Scheme of the experimental layout used for
the measurements of phase-mismatched second-harmonic generation.
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mismatch Ak was controlled by tuning the crystal temperature.
The diagnostics consisted of the detection of the far-field
spatiotemporal spectrum (6,A) of the second-harmonic beam
generated at the output of the LBO crystal by means of an
imaging spectrometer combined with a NIKON camera. In
addition, by flipping the mirror FM, the output radiation could
be sent to a cross-correlation setup for the measurement of
its temporal profile. In this case, the horizontally polarized
TOPAS signal at 1283 nm was used as gate pulse for the
sum frequency generation process occurring in a 300-um
beta barium borate. Measurements of the (6,1) spectrum and
the pulse temporal shape were performed for different values
of the 1062-nm fundamental beam size, of the energy, and
for different values of Ak, both in the self-defocusing and
in the self-focusing regimes. In the following, we present
experimental results that illustrate the 1D <> 3D transition of
the phase-mismatched second-harmonic process, confirming
that it can be observed as described in the preceding section
by switching from the defocusing to the focusing regime.

A. SHG in self-defocusing regime

We start by considering the positive phase-mismatched
case (Ak > 0) corresponding to a self-defocusing regime
for the fundamental pump beam. In this case, the crystal
temperature was tuned in order to be smaller than the exact
phase-matching temperature. Figure 9 shows the spectra of
the second-harmonic radiation generated by the LBO crystal
when pumped by a fundamental pump beam of about 205 um
FWHM, in two different cases. In Fig. 9(a), the spectrum
corresponds to Ak = 23.1 cm™! (top figure) and in Fig. 9(b)
to Ak = 55.2 cm™! (bottom figure). The spectra presented
here were recorded for a pump energy of 0.83 and 3.36 uJ,
respectively. With the chosen beam size, diffraction effects
in this regime can be assumed to be negligible and the
dynamics resemble a one-dimensional dynamics. Because of
the simultaneous presence of phase mismatch and GVM, we
simply observe in the spectra the presence of on-axis phase
matching occurring at a tunable shifted frequency with respect
to the exact phase matching value of 531 nm. Note the presence
of interference fringes as discussed in Secs. Il A and III. The
broad temporal cross-correlation pulse profile associated with

A (nm)

FIG. 9. (Color online) Experimental spatiotemporal spectra
recorded for a fundamental pump beam of 205 um FWHM in the
conditions (a) Ak =23.1 cm™! and (b) Ak =552 cm™".
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FIG. 10. (Color online) Cross-correlation profile of the shifted
frequency second-harmonic radiation recorded for Ak = 23.1 cm™!
and a fundamental pump beam of 205 um FWHM.

the shifted second-harmonic component in the case of Ak =
23.1 cm™' is shown in Fig. 10. The measurement was
performed by using a long-wave-pass RazorEdge filter cutting
the exact SH component (531 nm).

Spatiotemporal spectral measurements in the defocusing
regime have also been performed for a smaller size of the
fundamental beam. Figure 11 shows three spectra recorded
in three different phase-mismatch conditions in the case of
a 140-um FWHM pump; namely, Ak = 23.1 cm~!, Ak =
33.8 cm™!, and Ak = 55.2 cm™!, respectively. The on-axis
contributions of the second-harmonic field lie, respectively,
around 539, 543, and 552 nm, as expected. On the other hand,
thanks to the angular dispersion, other frequencies are clearly
matched off axis, as predicted by the theory. The bending
of the tails, which can be observed in the measured spectra,
depends on the sign of the GVM between the interacting

540, ')

550

FIG. 11. (Color online) Experimental spatiotemporal spectra
recorded for a fundamental pump beam of 140 um FWHM in the
conditions (a) Ak = 23.1 cm™!, (b) Ak =33.8 cm™!, and (c) Ak =
552 cm™!.
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FIG. 12. (Color online) Cross-correlation profiles of the second-
harmonic radiation recorded for Ak = 23.1 cm~' and a fundamental
pump beam of 140 pm FWHM. These have been recorded with
(red solid line) and without (blue dashed line) the long-wave-pass
RazorEdge filter and they are, respectively, associated with the
complete SH and the shifted frequency SH contribution only.

pulses. Note that self-defocusing leads to a fast divergence
of the fundamental beam and thus to a small efficiency
of the SH process, and higher energies here are needed
to see the phase-mismatched second-harmonic generation,
especially off axis. An illustration of the temporal profile of
the generated SH radiation is given in Fig. 12 for the case of
Ak =23.1 cm™ 1, where we show the cross-correlation traces
recorded with (red solid line) and without (blue dashed line) the
long-wave-pass RazorEdge filter. The width (FWHM) of the
temporal component associated with the off-axis contribution
turns out to be around 1.5 ps. This pulse (approaching a
rectangular shape) is thus much longer than the delayed pulse
corresponding to the exact phase-matched radiation in the
second-harmonic process. Note that the broadening and the
tunability of the generated phase-mismatched SH peak confirm
previous observations [21]. Here we see experimentally that
the shifted frequency is tunable by more than 30 nm.

B. SHG in self-focusing regime

A clear three-dimensional dynamics of the second-
harmonic generation process is observed when pumping the
LBO crystal by means of a broad angular spectrum pump (i.e.,
with small beam width) and in the self-focusing regime. To
work in these experimental conditions, the temperature of the
crystal was selected to be greater than the phase-matching
temperature, in such a way to have Ak < 0. The pump
beam width (FWHM) was 140 um. In this case, we can
obtain phase matching for a broad range of frequencies by
generating, in addition to the exact phase-matched radiation,
frequency shifted components together with evident angular
dispersion. This can be seen in Fig. 13,where we report the
experimental spectra (a) and (c) corresponding to two different
phase-mismatch conditions, namely, Ak = —17.6 cm~! (with
pump energy of 0.848 1J) and Ak = —41.1 cm™' (with pump
energy of 1 uJ). The on-axis phase matching occurs in these
cases, respectively, around 525 and 518 nm as expected. The
reshaping of the SH radiation is evident. In both cases, the
spectrum clearly showing the formation of angular dispersion
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FIG. 13. (Color online) (a), (c) Experimental and (b), (d) numeri-
cally simulated spatiotemporal spectra associated with a fundamental
pump beam of 140 um FWHM in the conditions of (a), (b) Ak =
—17.6 cm™! and (c), (d) Ak = —41.1 cm™.

[Figs. 13(a) and 13(c)] has been fitted with the X-wave
spectral relation [Eq. (42)] for a wave traveling at the group
velocity of the pump. A comparison with a corresponding
spectrum obtained from a numerical simulation is shown in
Figs. 13(b) and 13(d). Indeed, we find from the fit a group
velocity of u; = 1.84 10% m/s in perfect accordance with the
group velocity of a 1062-nm pump pulse.

The cross-correlation profile of the SH radiation measured
in the case Ak = —17.6 cm~! with a low-pass RazorEdge
filter is shown in Fig. 14 (red dashed line). The corresponding
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FIG. 14. (Color online) Measured second-harmonic cross-
correlation profile (red dashed line) and corresponding on-axis
pulse envelope obtained by numerical simulation in the case Ak =
—17.6 cm™! with a fundamental pump beam of 140 wm FWHM.
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FIG. 15. The SH on-axis profile obtained by computer simulation
with the optimized input fundamental beam wave-front curvature
radius Ry. (a) Ak = —17.6 cm™! and Ry = 29 mm, and (b) Ak =
—41.1 cm™! and Ry = 27 mm.

on-axis SH intensity profile from numerical simulation is
shown also in Fig. 14 with the black plain line. Note that, in
this case, the pass-band filter we had could not cut completely
the exact phase-matching contribution at 531 nm. To obtain
good agreement of the numerical data with the experimentally
measured SH profile, the FH beam at the input was slightly
defocused (beam wave-front radius was set at Ry = 23.5 mm).
The on-axis SH pulse FWHM duration was nearly 300 fs. Such
conditions are not optimal for the shortest SH pulse formation.
As it was demonstrated by numeric simulation, it is possible
to generate a much shorter on-axis SH pulse by choosing a
proper FH beam wave-front curvature at the input. Computer
simulation results are presented in Fig. 15 in the conditions of
(a) Ak = —17.6 cm™! and (b) Ak = —41.1 cm™". In the case
Fig. 15(a), the on-axis SH pulse with 35 fs FWHM duration
could be obtained by setting the FH beam wave-front radius
to Rop = 29 mm; in the case Fig. 15(b), the SH pulse duration
is 22 fs if Ry = 27 mm.

V. CONCLUSIONS

In this paper, we have presented a detailed theoretical and
numerical description of the second-harmonic-generation pro-
cess under phase-mismatched conditions, carefully analyzing
different regimes of focusing, beam dimensions, and positive
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or negative phase mismatch, with the presence or absence
of group-velocity mismatch and group-velocity dispersion.
It has been shown that, in a sufficiently long medium, the
phase-mismatched SHG becomes self-phase matched at a
shifted frequency. In the case of a broad FH beam (when the
plane-wave approximation is valid in the so-called 1D case),
the duration of the self-phase-matched SH pulse component
increases proportionally to the propagation distance and is free
from angular dispersion. In the case of a narrow FH beam (the
so-called 3D interaction case), the self-phase matching occurs
also for off-axis components, leading to the generation of a
propagation-invariant X pulse (with longitudinal wave-vector
linearly dependent on the frequency). This short SH pulse
propagates with the group velocity equal to that of the
fundamental one, while keeping its duration nearly constant.
Transition between the 1D and the 3D dynamics naturally
occurs by tuning the phase-mismatch parameter Ak from
the self-defocusing (Ak > 0) to the self-focusing (Ak < 0)
regime.

Experimental = measurements  performed in  the
femtosecond-pulsed regime in an LBO crystal in both the
focusing and self-defocusing cases have confirmed
the theoretical predictions, illustrating by means of a
spatiotemporal diagnostics the generation at a shifted
frequency of a picosecond SH pulse, together with its
tunability, the narrowing of its corresponding spectrum, as
well as the presence of angular dispersion, which is well
evident in the three-dimensional case.

It is worth noting that this study can be extended to
a medium with cubic nonlinearity, as the appearance of
the second-harmonic X pulse at shifted frequency may be
considered analogous to the generation of the blue-shifted
component in the filamentation regime characteristics of Kerr
media [39].
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