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Three-Dimensional Vortex Solitons in Self-Defocusing Media
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We demonstrate that families of vortex solitons are possible in a bidispersive three-dimensional
nonlinear Schrodinger equation. These solutions can be considered as extensions of two-dimensional
dark vortex solitons which, along the third dimension, remain localized due to the interplay between
dispersion and nonlinearity. Such vortex solitons can be observed in optical media with normal dispersion,

normal diffraction, and defocusing nonlinearity.
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Vortex solitons are self-localized solutions of nonlinear
wave equations, which are characterized by a phase singu-
larity at the pivotal point. The phase charge of a simple
closed curve surrounding the vortex core is equal to 27m,
where m is the integer vorticity of the solution. Vortex
solitons have been theoretically predicted in the context of
superfluids [1,2]. In those early works, a two-dimensional
(2D) nonlinear Schrodinger (NLS) equation with defocus-
ing nonlinearity was shown to support vortex soliton solu-
tions whose intensity vanishes at the vortex center and
asymptotically approaches a constant value at infinity.
Such dark vortex solitons were experimentally observed
in a bulk self-defocusing optical medium [3]. The stability
of nonlinear vortices depends on the vorticity number, m.
Fundamental vortices with m = 1 are energetically favor-
able (and, as a result stable), which implies that instabili-
ties of other families of solutions may result to the for-
mation of (a set of) fundamental vortices. In particular, a
2D dark soliton stripe is unstable to long-wave symmetry
breaking perturbations, leading to the generation of funda-
mental vortex-soliton pairs with opposite vorticities [4—6].
Higher order vortices are also unstable and break down
into fundamental vortices. However, in the NLS limit no
exponentially growing mode exists [7] (the instability may
be subexponential) and, as a result, multicharged vortices
are very long-lived objects. Strong instabilities of multi-
charged vortices can be triggered by different mechanisms
such as dissipation, nonlinearity saturation, or anisotropy
[8].

Another class of solutions feature ring-shaped intensity
profiles and exist in self-focusing media [9]. Such solutions
are unstable even in the case of saturable nonlinearity due
to azimuthal instabilities and break down to a set of fun-
damental solitons [10]. Ring vortices can be stabilized if
the model includes a combination of competing (self-
focusing and self-defocusing) nonlinear terms, such as
cubic and quintic [11,12] or quadratic and self-defocusing
cubic [13] ones. Azimuthal instabilities can also be sup-
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pressed by appropriately modulating the amplitude of the
solution in the angular direction [14]. Recently a lot of
attention has been attracted to the study of vortices in
periodic lattices. The lattice can stabilize families of ring
vortices [15—19] by trapping the intensity in the lattice
potential minima. In a different setting, vortex solitons
were observed in Bose-Einstein condensates [20,21].

In contrast to the plethora of theoretical and experimen-
tal works on vortices in two dimensions, only a few works
have addressed 3D solutions. Stable toroidal solitons with
vorticity 1 were found in systems with competing nonline-
arities [13,22], and a variety of 3D discrete solitons of the
vortex type were constructed and explored in Refs. [23,24].
In addition, propagation and robustness of 3D ring optical
vortices in the atmosphere was examined in Ref. [25].
Focusing properties of bidispersive (normal dispersion
and normal diffraction) optical systems have been studied
in [26,27] for self-focusing nonlinearities.

The subject of the present Letter is to find 3D counter-
parts of the dark optical vortices which were discovered
long ago in Refs. [1,2], and to predict experimental con-
ditions necessary for their observation. We demonstrate
that 3D vortices exist in media with the cubic defocusing
nonlinearity and normal group velocity dispersion (GVD),
i.e., the diffraction-dispersion operator is of the hyperbolic
type. Optical media realizing this model are available, such
as specific AlGaAs alloys [28,29]. In the transverse (x, y)
plane, these solutions have the form of a dark vortex,
whereas along the longitudinal axis (i.e., in the temporal
direction) they remain localized as bright temporal soli-
tons, due to the interplay between the normal GVD and
defocusing nonlinearity. We first construct the solutions in
a semianalytical (and quite accurate) form, making use of
the Hartree approximation [30]. Then, we employ the
Newton iteration method to find the 3D vortices as numeri-
cal solutions to the underlying NLS equation. The Hartree
approximation provides the Newton’s method with appro-
priate initial conditions. The stability of the vortices is
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tested by direct numerical simulations. We conclude that
3D vortices are stable (as long as a super-Gaussian carrying
the vortex in the transverse plane, which is as a part of the
numerical procedure, does not suffer essential diffraction).
Considering applications, the central hole in such a vortex
pancake may be used as an optically induced aperture to
dynamically control a probe beam passing through it.

We start the analysis by introducing the normalized NLS
equation,

1
iy, + E(vzﬂﬁ — ) — |¢|2¢’ =0, (D

where V4 = 92 + 97 is the diffraction operator, with the
normal GVD dispersion and defocusing nonlinearity coef-
ficients scaled to unity. In addition to the aforementioned
optical media (AlGaAs alloys), Eq. (1) applies, as the
Gross-Pitaevskii equation, to Bose-Einstein condensate in
an optical lattice, where z is now time, and ¢ a spatial
coordinate across the lattice. In this case, the negative
diffraction along ¢ is achieved when the Bloch momentum
corresponds to a negative effective mass.

Notice that if ¢(x, y, z, t) is a solution of Eq. (1), then
' = ay(ax, ay, at, a’z), with real free parameter «, is a
solution too. Using this scale-invariance property, a one-
parameter family of solutions can be generated from a
single solution of Eq. (1). Introducing polar coordinates
(p, ¢) in the (x, y) plane, we look for solutions of Eq. (1) in
the form of

U(p, &, 1,2) = ulp, t) exp(—ikz) exp(ime),  (2)

where m is integer vorticity. Substituting Eq. (2) in Eq. (1)
and using the above-mentioned scale invariance to set k =
1/2, we obtain

u+(p tu, +u,, —m?p?u) —u, —2u>=0. (3)

p pp

The asymptotic expansion of the z-independent problem
at p — oo yields u = (1//2)[1 — (m2/2)p~2 — (m%/8) X
(8 + m?)p =]+ O(p~°). On the other hand, the asymp-
totic expansion at p— 0 is u = c{p" —[1/(4(m +
D]p!+2} + O(p!™1*4). Accordingly, we look for solu-
tions of the time-dependent problem with lim,_ou(p, t) =
0 and lim,_,u(p, t) = Ux(?). In the latter limit, Eq. (3)
reduces to the dynamical system associated with the
single-soliton solution of the NLS equation, ts — Ueo; —
2u3, = 0, whose commonly known soliton solution is

lim u(p, t) = u(r) = sech(r), 4)
p—POO
in compliance with our objective to find solutions that look

as bright solitons in the temporal direction.
The total energy conserved by Eq. (1) is

P= foo [00 foo lr(x, y, t)|>dxdydt. 5)

However, this integral of motion diverges for solutions

with asymptotic form (4). A renormalized (convergent)
form of the energy, that takes into account the asymptotic
form of the solution, may be defined as

o= [T [0 - wldya o)

Notice that i, = u(f)e’?’? = sech(f)e’*/? is a solution of
Eq. (1) representing a bright soliton stripe in three dimen-
sions. As a result, both terms in Eq. (6) obey the above-
mentioned scale invariance, which can be used to derive a
rule for generating a one-parameter family of vortex soli-
tons from a single one: P,(a) = P,(1)/a.

We start the analysis by resorting to the Hartree approxi-
mation (HA), which is based on the product ansatz [30],

u(p, 1) = R(p)T(2). @)

This approximation will then be used as an initial guess
for numerical solutions based on the Newton’s method.
Substituting Eq. (7) in Eq. (3), we arrive at a formal
equation,

(p"'R'"+R" —m?’p™*R + R)T — RT" — R’T* = 0.
®)

First, Eq. (8) is to be multiplied with R, integrated over p
from 0 to p;, and divided by [§' R*dp. Taking the limit of
p1 — oo, the equation

T—-T'-2T%=0. 9)

is derived by assuming (without loss of generality) that
R(p — o) = 1. A relevant solution to Eq. (9) is the same
temporal bright soliton as the one obtained above as the
asymptotic wave form, 7(r) = sech(z). Next, we multiply
Eq. (8) by T, integrate it from —¢; to t,, divide by
[2,, TX(t)dt, and take the limits of 7, — 00, #, — 00, to
obtain

3(p7'R'+ R —m?p™?R) + 4R —R¥) =0. (10

Equation (10) can be solved numerically by dint of stan-
dard two-point boundary-value methods, such as shooting.
All our direct numerical simulations are performed us-
ing the beam propagation method, where the linear part is
solved using the fast Fourier transform and the nonlinear
part by direct integration (see, for example, [31]). Since the
solution does not vanish at infinity, and aiming to avoid
artifacts produced by reflections from domain boundaries,
we took a 12th order super-Gaussian (in p) as a finite-
extension carrier for the solution. Of course, diffraction of
the super-Gaussian cannot be avoided, hence, after a large
but finite propagation distance, the field starts to decay.
Eventually, this leads to destabilization of the vortex.

In Fig. 1 the evolution of an initial configuration sug-
gested by the HA is depicted. Notice that the simulation
window is truncated for large values of p so as to display
only the evolution of the vortex soliton while eliminating
the above-mentioned irrelevant effect of the background
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FIG. 1 (color online). Shape of the fundamental (m = 1)
vortex-soliton solution, at z = 0, 1, 2, 3. The initial condition
is taken as per the Hartree approximation. Here and below,
contour plots display the wave amplitude, ||, versus ¢ and p.

diffraction. In all simulations, the initial conditions did not
develop azimuthal instabilities, i.e., the intensity distribu-
tion corresponding to the vortex soliton did not generate
any dependence on ¢, nor did it develop any other insta-
bility. Furthermore, as the vortex propagates, it slightly
broadens in ¢ close to its center. This effect does not imply
any trend to decay of the vortex. It is, rather, a manifesta-
tion of the relaxation of the initial approximate wave form
towards an exact vortex state. As shown below, this con-
clusion is in agreement with results generated by the
Newton iteration method.

To generate numerically exact stationary vortex-soliton
solutions, the HA was fed, as an initial guess, into the
Newton’s method for Eq. (3). Notice that the discretization
of Eq. (3) in variable p requires special attention, since the
error is p-dependent. More specifically, the discretization
error becomes larger as p decreases, whereas at large
values of p the error is almost isotropic (independent of
p, to the leading order). The iteration provided for the
convergence of solutions fed by the above-mentioned ini-
tial HA configurations. The isointensity profile of the so
obtained fundamental vortex soliton is depicted in Fig. 2.

In Fig. 3, direct simulations of the propagation of a 3D
vortex soliton, with the initial condition generated by the
Newton’s iteration method, is shown (as above, the initial
configuration was actually multiplied by the 12th order
super-Gaussian). Notice that the vortex-soliton profile re-
mains invariant in the course of the propagation, i.e., the
vortex soliton is stable. Comparison with Fig. 1, which
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FIG. 2. Tsosurface plot, corresponding to |u|> = 0.5, of the

fundamental vortex-soliton solution obtained by means of the
Newton iteration method.

showed similar evolution initiated by the HA, attests to the
accuracy of that approximation. A noteworthy feature
revealed by Fig. 3 (in a more salient form than by the
HA cf. Fig. 1) is that, close to the vortex core (at small
values of p), the vortex is wider in the ¢ direction. We stress
that the vortical phase structure of the solution is main-
tained during the propagation.

To directly verify that such a 3D vortex-soliton solution
is a nonlinear object indeed, we repeated the same simu-
lations, dropping the nonlinear term. As one can see in
Fig. 4, the vortex quickly diffracts in that case by at z = 3.

10

FIG. 3 (color online). The same as in Fig. 1, but if the initial
condition was taken as a stationary solution generated by the
Newton’s iteration method.

113901-3



PRL 98, 113901 (2007)

PHYSICAL REVIEW LETTERS

week ending
16 MARCH 2007

z=0 z=3

10

FIG. 4 (color online). Propagation of a fundamental (m = 1)
vortex soliton up to z = 0, 3 at which point the nonlinearity is
switched off.

We have also performed simulations for double vortices,
with m = 2. They were found to propagate undistorted
over large distances, without splitting into fundamental
vortices. This observation is, in fact, in agreement with a
conjecture put forward in Ref. [7].

In conclusion, we have demonstrated that vortex solitons
are possible in the bidispersive 3D NLS equation. These
solutions have the form of a dark vortex in the spatial
plane, whereas they are localized along the temporal di-
mension, due to the interplay between the GVD and non-
linearity. Such vortex solitons can be observed in certain
optical media with normal GVD, normal diffraction, and
defocusing nonlinearity, and in self-repulsive Bose-
Einstein condensation.
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