
Information and Software Technology 55 (2013) 1796–1809
Contents lists available at SciVerse ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof
Towards a simplified definition of Function Points
0950-5849/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.infsof.2013.04.003

⇑ Corresponding author. Tel.: +39 0332218930; fax: +39 0223954458.
E-mail address: luigi.lavazza@uninsubria.it (L. Lavazza).
Luigi Lavazza a,⇑, Sandro Morasca a, Gabriela Robiolo b

a Università degli Studi dell’Insubria, Department of Theoretical and Applied Sciences, Italy
b Universidad Austral, Facultad de Ingeniería, Argentina

a r t i c l e i n f o a b s t r a c t
Article history:
Received 28 September 2012
Received in revised form 8 March 2013
Accepted 16 April 2013
Available online 3 May 2013

Keywords:
Functional size measurement
Function Points
Effort prediction
Background: The measurement of Function Points is based on Base Functional Components. The process
of identifying and weighting Base Functional Components is hardly automatable, due to the informality
of both the Function Point method and the requirements documents being measured. So, Function Point
measurement generally requires a lengthy and costly process.
Objectives: We investigate whether it is possible to take into account only subsets of Base Functional
Components so as to obtain functional size measures that simplify Function Points with the same effort
estimation accuracy as the original Function Points measure. Simplifying the definition of Function Points
would imply a reduction of measurement costs and may help spread the adoption of this type of mea-
surement practices. Specifically, we empirically investigate the following issues: whether available data
provide evidence that simplified software functionality measures can be defined in a way that is consis-
tent with Function Point Analysis; whether simplified functional size measures by themselves can be
used without any appreciable loss in software development effort prediction accuracy; whether simpli-
fied functional size measures can be used as software development effort predictors in models that also
use other software requirements measures.
Method: We analyze the relationships between Function Points and their Base Functional Components.
We also analyze the relationships between Base Functional Components and development effort. Finally,
we built effort prediction models that contain both the simplified functional measures and additional
requirements measures.
Results: Significant statistical models correlate Function Points with Base Functional Components. Basic
Functional Components can be used to build models of effort that are equivalent, in terms of accuracy, to
those based on Function Points. Finally, simplified Function Points measures can be used as software
development effort predictors in models that also use other requirements measures.
Conclusion: The definition and measurement processes of Function Points can be dramatically simplified
by taking into account a subset of the Base Functional Components used in the original definition of the
measure, thus allowing for substantial savings in measurement effort, without sacrificing the accuracy of
software development effort estimates.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Correct and timely prediction of software development cost
may provide software companies with a very valuable competitive
advantage. In software development, effort is the main cost driver
[1], so the ability to predict it early in the life cycle may help soft-
ware companies decide whether it is economically sensible for
them to develop a software product and, if they decide to go ahead
with development, price the product right and allocate resources
adequately.

Software size is one of the main factors that are believed to
influence software development effort. Intuitively, it makes sense
to presume that the greater the size of a software product, the
greater the effort needed to develop it, and, therefore, the greater
the cost. Such intuition was confirmed and formalized by models
that established a relationship between functional software size
and software effort (see for instance [2,3]).

A number of measures have been proposed to quantify the size
of a software product early on in software development, based on
Functional User Requirements (FUR). These proposals are collec-
tively known as Functional Size Measurement (FSM) methods.
The introduction of FSM has also led to the evolution of effort pre-
diction models (a recent overview of FSM-based effort prediction
tools and techniques can be found in [4]).

Function Points Analysis (FPA) [5] was the first proposal for
FSM. Among other elements, FPA takes into account the so-called
‘‘elementary processes’’ of a software application, which are sized

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.infsof.2013.04.003&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2013.04.003
mailto:luigi.lavazza@uninsubria.it
http://dx.doi.org/10.1016/j.infsof.2013.04.003
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


1 For simplicity, we use the same form for the singular and the plural of acronyms
in this paper. So, for instance, we use ‘‘BFC’’ for both ‘‘Base Functional Component’
and ‘‘Base Functional Components.’’

L. Lavazza et al. / Information and Software Technology 55 (2013) 1796–1809 1797
based on the amount of data exchanged across the boundaries of
the application and the number of data groups accessed within
the application. FPA provides a measure of size in Function Points
(FP). FPA is carried out during the early development phases, so it
requires manual analysis of informal documents such as software
requirements, and the sizing (called ‘‘counting’’) of an application
well before it is built, as we concisely explain in Section 2.

Following the introduction of FPA, other FSM methods have
been proposed, e.g., MarkII Function Points [6], NESMA [7], FiSMA
[8], and the Common Software Measurement International Consor-
tium (COSMIC) method [9]. All of these methods have provided
important contributions towards the measurement of the func-
tional size of software. However, they share a number of issues
that need to be dealt with and resolved to make FSM a more reli-
able and widely accepted method.

1. A first issue with FSM methods is that they are generally
lengthy and costly, as they require that measurers read require-
ments specifications made of collections of heterogeneous doc-
uments, often totaling several hundred pages. In fact, FP
measurement speed can be as low as 200 Function Points per
work day [10]. Accordingly, if the size measure is needed for
bidding purposes in three days, an application having size
around 1000 FP could not be measured in time. In addition,
we should consider that the cost of five work days of a profes-
sional FP counter could be considered too high in some
organizations.

2. A second issue is that some degree of subjectivity in the results
is to be expected, since the definitions of FSM are informal and
prone to different interpretations by different subjects. More-
over, requirements documents themselves are generally writ-
ten in natural language, thus allowing for different
interpretations, which, in turn, may lead different measurers
to give different values for the same size measures, as has
already been shown [11–14].
To address these first two issues, a few requirements modeling
methodologies and measurement tools have been introduced to
partly automate the measurement process [15–17]. However,
the use of any automated tool on a set of informal requirements
suffers from the typical problems of any automatic analysis of
natural language texts, so it is not possible to guarantee that
the values of the measures obtained automatically are close
enough to those that would be provided by expert measurers,
which are the reference ones. As a result, these proposals are
not widely used.

3. A third, more fundamental issue is related to the very defini-
tions of FSM methods (mainly FPA), which have been subject
to critical scrutiny, because of the potential problems they
may generate. For instance, it has been observed that the
components upon which the FP counting is based have strong
inter-correlations, which could make the measures somewhat
unreliable [18].

In this paper, we focus on FPA, which is by far the most widely
used FSM method. Specifically, we address the three issues men-
tioned above by simplifying the definition of Function Points, with-
out reducing the accuracy of estimation models built based on the
simplified measures. Our simplified measure definitions benefit
from the strengths of consolidated FP counting procedures, which
have been assessed and refined over the last few years. Our simpli-
fication is obtained and validated via an empirical approach based
on real-world data to this end.

Our basic idea comes from the observation that FP measure-
ment is based on the measure of Basic Functional Components
(BFC) and the subsequent weighting and aggregation of BFC mea-
sures. As we show in the review of the literature in Section 8, some
studies have provided some initial evidence suggesting that the
measures of BFC1 are statistically associated with Unadjusted Func-
tion Points (UFP), which are the most basic part of FP measure, and
the standardized one, as we explain in Section 2. So, it may not really
be necessary to consider all of the elements taken into consideration
by FPA to get a representative measure for the functional size of soft-
ware. Being able to exclude a few BFC from the measure definition
would have important practical consequences towards the solution
of the three issues outlined above:

1. Needing to identify and evaluate fewer BFC provides two
important benefits: first, the duration and cost of measurement
can be reduced; second, the evaluation of size can start earlier,
as soon as user requirements specifications concerning the con-
sidered BFC are complete, while the specification of require-
ments concerning the BFC not included in the measure can
proceed in parallel with the measurement. These effects can
enable measurers to provide the functional measures ‘‘on time,’’
i.e., within the given deadlines.

2. The degree of subjectivity could be reduced. In fact, the fewer
BFC have to be identified and evaluated, the less room there is
for different interpretations of requirements.

3. Theoretical benefits could be achieved as well. In fact, if the
measure were based on a single BFC, the problems due to
inter-correlations among BFC would simply disappear.

The achievement of the expected enefits described above is dis-
cussed in Section 9.2.

Though functional size measures can be used for different pur-
poses, we here concentrate on the most typical one, i.e., effort esti-
mation. Thus, the final goal of the research described in this paper
is to propose and empirically validate a method that:

(a) simplifies FP definitions, by retaining FPA measurement cri-
teria and practices, but using only a subset of FPA BFC,

(b) can predict software development effort with accuracy com-
parable to that of FPA, and

(c) can be used, possibly in combination with measures of other
requirements attributes, to predict software development
effort with better accuracy than FP measures alone.

In our empirical approach, we use data from the public ISBSG
dataset for points (a) and (b) above, because it contains data on a
relatively high number of projects. As for point (c), we used an-
other dataset that we have independently collected on a different
set of projects, as this dataset also contains the values of a require-
ments complexity measure that is not included in the ISBSG
dataset.

We would like to note that our paper is about the simplification
of the definition of Function Points while other proposals have ad-
dressed the simplification of the process of functional size mea-
surement while keeping the definitions of Function Points
measures unchanged. For instance, the NESMA indicative [19]
methods provide ways to estimate the size in FP of a software
application based exclusively on the knowledge of data functions;
the NESMA estimated method requires the identification and clas-
sification of all data and transaction functions, but does not require
the assessment and weighting of each function. Similarly, with the
Early & Quick Function Points (EQFP) [20], different parts of the
system can be measured at different detail levels: a part of the sys-
tem can be measured following the IFPUG manual rules [21], while
other parts can be measured on the basis of coarser-grained
’



1798 L. Lavazza et al. / Information and Software Technology 55 (2013) 1796–1809
information. However, all these methods provide estimates of size
in Function Points. This is a fundamental difference with respect to
the method that we propose in this paper, whose result is the def-
inition and use of FSM measures that (1) are not Function Points
(i.e., the value of the measure according to the simplified definition
is different from the value obtained via traditional FPA), (2) sup-
port effort estimation, and (3) are clearly correlated with UFP. In
our approach, the simplification of the measurement process
comes as a consequence of the simplification of the measure
definition.

The paper is organized as follows. Section 2 gives a concise
introduction to FPA. Section 3 details the goals of our empirical
study, the research questions, and the statistical techniques used.
Section 4 addresses goal (a) above, by empirically investigating
the statistical relationships between BFC and functional software
measures. Section 5 addresses goal (b) above and shows that the
measures of functional size based on BFC may be used as a replace-
ment of traditional size measures in effort prediction. In addition,
Section 6 addresses goal (c) above and shows how effort prediction
models can be built by using BFC and other software requirements
measures. Threats to the validity of our study are discussed in Sec-
tion 7. Section 8 accounts for related work, and Section 9 draws the
conclusions of the paper and provides an outline for future work.
2. A concise introduction to Function Points Analysis

The Function Point method was originally introduced by Albr-
echt to measure the size of data-processing systems from the
end-user’s point of view, with the goal of estimating the develop-
ment effort [5].

The initial interest sparked by FPA along with the recognition of
the need for improvement in its counting practices led to founding
the International Function Points User Group (http://www.ifpu-
g.org/), which provides guidelines for carrying out FPA, makes
FPA counting rules evolve along with the evolution in software
technologies, and oversees FPA’s standardization.

IFPUG FPA is now an ISO standard [21] in its ‘‘unadjusted’’ ver-
sion. So, throughout the paper, unless otherwise explicitly stated,
we refer exclusively to Unadjusted Function Points, which are gen-
erally referred to as ‘‘UFP.’’

The basic idea of FPA is that the ‘‘amount of functionality’’ re-
leased to the user can be evaluated by taking into account the data
used by the application to provide the required functions, and the
transactions (i.e., operations that involve data crossing the bound-
aries of the application) through which the functionality is deliv-
ered to the user. Both data and transactions are evaluated at the
conceptual level, i.e., they represent data and operations that are
relevant to the user. Therefore, Function Points (FP) are counted
on the basis of the user requirements specification. The boundary
indicates the border between the application being measured
and the external applications and user domain.

In Function Point Analysis, functional user requirements are
modeled as a set of Basic Functional Components (BFC), which
are considered the elementary unit of functional user require-
ments. Each of the identified BFC is then measured; finally, the size
of the whole application is obtained as the sum of the sizes of BFC.

FPA BFC are data functions (DF), which are classified into inter-
nal logical files (ILF) and external interface files (EIF), and transac-
tional functions, which are classified into external inputs (EI),
external outputs (EO), and external inquiries (EQ) according to
the main intent of the process. Each function, whether a data or
transactional one, contributes a number of FP that depends on its
‘‘complexity.’’ Each function is weighted on the basis of its com-
plexity according to given tables. Finally, the number of so-called
Unadjusted Function Points (UFP) is obtained by summing the con-
tribution of the function types. Details about FP measurement can
be found in the manual [21].

Throughout the paper we use the notation M(x) to indicate the
measure of the size of BFC x, obtained according to IFPUG measure-
ment rules. So, for instance, M(EI) is the measure of the size of
external inputs.

The size of a software application – expressed as the number of
Unadjusted Function Points (UFP) – is described in Formula (1).

UFP ¼ MðEIÞ þMðEOÞ þMðEQÞ þMðILFÞ þMðEIFÞ ð1Þ
3. Overview of the empirical study

We here provide an overview of the goals, research questions,
and statistical techniques of our study, whose empirical analyses
are described in Sections 4–6.

3.1. Goals of the analysis

Our purpose is to assess if it is possible to simplify the definition
of Function Points, by investigating whether some BFC can be
safely ignored. Thus, we stuck to the framework of FPA, where
UFP is computed as sum of BFC sizes, with the underlying implicit
idea that the single contributions related to each individual BFC are
perfectly comparable and can be summed. In fact, the purpose of
complexity weights in FPA is to make the contributions of all BFC
comparable so they can be summed to obtain UFP.

Thus, we consider sums of the sizes of subsets of BFC as candi-
date simplification measures. For notational convenience, SBFC
indicates a measure computed as the sum of the contributions of
a subset of FPA BFC. For instance, SBFC could indicate M(EI) +
M(EO) + M(EQ), or just M(EI).

Conversely, it is not the goal of this paper to study whether it is
possible to build multivariate regression models based on (subsets
of) BFC for estimating software development effort, like some of
the related papers in the literature instead do (see for instance
[22,23]), and even though we studied the use of multivariate mod-
els in estimation elsewhere [24]. This would mean introducing a
new layer of weights on top of FPA complexity weights.

The goals of our analyses are detailed in the following subsec-
tions, which refine the three goals mentioned in the introduction.

3.1.1. Verification of the role of BFC in functional size measures
In Section 4 we perform an initial investigation to corroborate

the idea that sums of BFC size measures could be used as simplifi-
cations of UFP.

The influence of at least some SBFC on UFP is to be expected. For
instance, it is quite clear that M(EI) + M(EO) + M(EQ) is an impor-
tant part of UFP. However, we would like to empirically check
how accurately the various SBFC are correlated with UFP to decide
which SBFC may be used as sensible simplifications. If, for instance,
M(EI) and M(EI) + M(EO) + M(EQ) were correlated with UFP with
the same accuracy, it would make sense to select M(EI) as the bet-
ter simplification because it would be less effort-consuming to
compute M(EI) than M(EI) + M(EO) + M(EQ). This actually turns
out to be the case in our study (see Section 4).

In addition, there are other, less obvious, reasons for the corre-
lations found. For instance, ILF and EIF are bound to act as FTR in
several transaction functions. Thus, even if ILF and EIF were not
counted, they would anyway contribute to the size measure of
transaction functions that use them (as they act as FTR and deter-
mine the weight of the transaction).

We do not strive to explain the nature and causes of the men-
tioned correlations here. The important point for our purposes is
that size can be measured based on just a subset of the FPA BFC,

http://www.ifpug.org/
http://www.ifpug.org/


Table 1
Summary of the analyses reported in the paper.

Goal Analysis performed Statistical technique used Paper
section

RQ1 UFP vs. SBFC Kendall’s and Spearman’s tests 4.2.1
RQ1 UFP vs. SBFC LMS linear regression 4.2.2
RQ2 Effort vs. SBFC Kendall’s and Spearman’s tests 5.1.1
RQ2 Effort vs. SBFC log–log OLS regression 5.1.2
RQ2 Effort vs. SBFC Analogy-based estimation 5.3
RQ3 Effort vs.

SBFC and complexity log–log OLS regression 6

L. Lavazza et al. / Information and Software Technology 55 (2013) 1796–1809 1799
so this subset of BFC can be considered to build a true simplifica-
tion of UFP. The existence of such models provides necessary sup-
port for the rest of the work.

3.1.2. Building predictive models of software development effort with
accuracy comparable to that of UFP

After performing the check described above, we need to empir-
ically investigate whether the sums of individual BFC that are good
simplifications for UFP are also good effort predictors. Just because,
say, M(EI) is well correlated with UFP and UFP is well correlated
with software development effort does not mean that M(EI) too
is well correlated with effort.

Note that it is not our goal to estimate the measure of size in
UFP on the basis of a few BFC and then use the estimated size in
UFP for estimating the development effort. Such a two-step predic-
tion is exemplified in Formula (2), where we assume a COCOMO-
like relationship between effort and size.

EstimatedUFP ¼ a� SBFCþ b

Effort ¼ k� EstimatedUFPc

�
ð2Þ

Estimating effort via the equations in Formula (2) would compose
two prediction errors. This would result in errors greater than those
of regression models based on SBFC (or UFP). The dangers of using
two-step prediction procedures are one of the most important rea-
sons why it is not advised that one use UFP (or FP) to predict LOC
and then use the estimate of LOC to predict effort.

Instead, after showing that the sums of some BFC size measures
are strongly correlated with functional size, our goal is to investi-
gate the possibility of directly using the same sums in the predic-
tion of effort, as in Formula (3)

Effort ¼ a� SBFCb ð3Þ

This is done in Section 5 to address the second goal of the paper
(building predictive models of software development effort with
accuracy comparable to that of UFP). Throughout the paper, the
term ‘‘accuracy’’ indicates the closeness of an effort estimate to
the actual value. Actually, we are interested in evaluating the dif-
ference of accuracy of models that use different types of size mea-
sures to estimate the development effort. In general, the accuracy
of an effort estimate depends on many factors (including the accu-
racy of the measures used in the estimation process). Since all the
pairs of models being compared in this paper use data from the
same repository, we can safely assume that the difference in accu-
racy of the models is not affected by the accuracy of the data.
Therefore, accuracy is a property of the models, which summarize
a relationship between size and effort. So, by comparing the accu-
racy of models based on different size measures, we actually com-
pare the correlation to effort of these different size measures.

3.1.3. Building predictive models of software development effort,
possibly in combination with measures of other requirements
attributes, with better accuracy than FPA

We investigate whether SBFC may also be used in more sophis-
ticated models that use additional factors that can affect the devel-
opment effort and can be measured early in the software
development lifecycle. Showing that these models turn out to have
better accuracy than the effort prediction models obtained by
using SBFC or UFP alone would support the usefulness of the sim-
plified approach and the possibility of building effort prediction
models that are usable in practice.

3.2. Research questions

The research questions addressed in the paper are thus the fol-
lowing ones:
RQ1 Is it possible to build a statistically significant model for the
relationship between UFP and a SBFC, so as to suggest that
SBFC can be used as a replacement of UFP?

RQ2 Are there any statistically significant models of Effort vs.
SBFC whose residuals are not significantly greater than those
of Effort vs. UFP models, so as to suggest that SBFC can be
used as a replacement of UFP for effort estimation?

RQ3 Is it possible to build statistically significant software devel-
opment effort models that use SBFC and other requirements
measures, whose accuracy is sufficient to make them suit-
able for use in practice?

Table 1 summarizes the analyses that were carried out, what
statistical techniques were used and in which sections they are
described.
3.3. Statistical techniques

We applied a variety of statistical techniques in the analyses
documented here, depending on their usefulness and appropriate-
ness for the specific datasets we have used.

Specifically, we used Ordinary Least Square (OLS); whenever
OLS linear regression could not be applied, we carried out a
log–log transformation and checked whether the assumptions
underlying OLS with these transformed variables are supported
by evidence. When applying OLS linear regressions (with or
without log–log transformations) we use Cook’s distance [25] to
identify outliers.

When the assumptions for OLS linear regression are not sat-
isfied, even after the log–log transformation, we use a specific
kind of robust regression based on the Least Median of Squares
(LMS) [26], whose goal is to produce linear models that are not
biased by overinfluential outliers and for which fewer and weak-
er assumptions need to be satisfied than for OLS linear regres-
sion. LMS regression has already been successfully used in
several empirical software engineering studies (see for instance
[27–30]).

We have also checked the existence of statistical dependence
between variables by using so-called nonparametric association
indicators such as Spearman’s q and Kendall’s s. The presence
of a nonparametric association does not necessarily imply that
an accurate predictive model can be built. However, it is an indi-
cation that there is a statistical dependence between two vari-
ables, which is a necessary condition for building a statistically
significant and accurate predictive model. In what follows, we
use the term ‘‘correlation’’ when dealing with linear relationships
such as the ones identifiable via OLS (with or without log–log
transformation) or LMS. We use the term ‘‘association’’ to denote
the (non-necessarily linear) nonparametric relationship between
two variables.

In addition, to get further evidence that simplified size mea-
sures can be effectively used to estimate development effort, we
used them also in estimations based on analogy criteria. To this



1800 L. Lavazza et al. / Information and Software Technology 55 (2013) 1796–1809
end, projects were considered analogous when their sizes (evalu-
ated with the proposed simplified measures) where similar.

To assess the accuracy of the regression models, we used a
few goodness-of-fit indicators that are commonly found in the
Empirical Software Engineering literature, namely R2, the Mean
Magnitude of Relative Error (MMRE), Pred(25), and the error
range. When we carried out OLS linear regression, we used
the usual R2 defined for OLS linear regression, which we denote
in this paper as R2

OLS. When we carried out LMS linear regres-
sion, we evaluated the quality of the fit by R2

LMS, which is de-
fined in [30]. Even though it is better known and therefore
more immediately interpretable than R2

LMS;R
2
OLS may be safely

used only if a model is obtained through OLS regression. If this
is not the case, R2

OLS is no longer guaranteed to range between 0
and 1, so it is difficult to interpret R2

OLS as the proportion of ex-
plained variance of the dependent variable provided by a linear
model.

Also, criticisms have been cast on the usefulness and meaning
of MMRE and Pred(25), even though MMRE is often quoted as
the de facto current accuracy indicator used in Empirical Software
Engineering. The interested readers can refer to [31] for a discus-
sion of these issues. At any rate, though we may somehow caution
the readers about them, we have used MMRE and Pred(25) here to
provide some additional pieces of information about the accuracy
of models. Boxplots representing the distributions of relative resid-
uals, or relative error ranges are also reported to complement
MMRE and Pred(25).

We set a 0.05 statistical significance threshold throughout the
paper, as is customary in Empirical Software Engineering studies.
All the results reported in Sections 4–6 are characterized by
p-value < 0.05, unless otherwise stated.

When building LMS regression models, the significance of the
model was evaluated by applying the sign test to the difference
of the absolute values of the residuals with respect to constant
LMS regression and the absolute values of the residuals with re-
spect to univariate LMS regression (the detailed definition of this
test is in [30]). Summarizing, the sign test is used to verify if the
univariate LMS regression provides a significantly better model
than constant LMS regression, which is a model that, instead,
would predict that the value of the dependent variable (say, UFP)
is constant as the independent variable (say, a BFC) varies, i.e., it
would predict that the dependent variable does not depend on
the independent variable.
Table 2
Associations between SBFC and UFP: non-parametric analysis.

Measure Kendall’s s Spearman’s q

M(EI) 0.658 0.839
M(EO) 0.597 0.776
M(EQ) 0.528 0.692
M(ILF) 0.619 0.804
M(EIF) 0.264 0.363
M(TF) 0.828 0.953
M(DF) 0.635 0.824
4. Functional sizing based on BFC

Release 11 of the ISBSG dataset [32] includes data from over five
thousand projects. For each project, the following measures are re-
ported, among others:

� year of project;
� count approach (IFPUG, COSMIC, NESMA, LOC, etc.);
� functional size in UFP, together with M(EI), M(EO), M(EQ),

M(ILF), M(EIF);
� development effort in Person-Hours (mean = 5502, med-

ian = 1867, max = 645,694);
� development type (there are 1970 new developments and 2969

enhancements);
� miscellaneous information about the organization, application

type, etc.;
� implementation language, hardware platform, and operating

systems;
� several other types of information, not relevant for our

purposes.
4.1. ISBSG data selection criteria

The ISBSG Repository contains a large amount of data on a very
wide range of projects. For reasons that are discussed below, it is
not possible to use the ISBSG data as a whole for our purposes.
We selected samples of data to be used in the analysis as follows.

� The quality of the project data provided is classified on an ordi-
nal scale. As in most studies that use the ISBSG data (see for
instance [33–35]), we selected only the data points with the
highest quality, namely those having Data Quality Rating and
UFP Rating = ‘A’ or ‘B’.
� We discarded all of the projects for which all of the BFC size

measures were missing, since they are essential to our study.
As for the specific individual BFC data, it is not uncommon that
a project has no EIF or no EQ, i.e., that it does not rely on any
read-only files or no inquiries are made to it. On the other hand,
it would be quite unusual if even one among M(ILF), M(EI), or
M(EO) were null, so project data with even one of those BFC size
measures null are very likely to be erroneous. We therefore
selected projects having M(ILF), M(EI), and M(EO) non-null.

As a result of the selection criteria described above, we obtained
a sample of over 600 projects measured in FP.

4.2. UFP vs. BFC size measures

We now show the results of our association and correlation
analyses on the possible relationships between SBFC and UFP and
between the size measures of individual BFC.

4.2.1. Non-parametric analysis
The results are reported in Table 2, where Transaction Functions

(TF) denote the set of all transactions and Data Functions (DF) de-
note the set of all data functions. Accordingly, M(TF) = M(EI) + -
M(EO) + M(EQ) and M(DF) = M(ILF) + M(EIF). It is easy to see that
the measure of TF is extremely well associated with UFP. Also,
M(EI) alone is very well associated with UFP. The association with
M(TF) was expected – being M(TF) an important component of UFP
– but our results show that the association is extremely strong. The
association between M(EI) and UFP is a bit more surprising: it
seems that even just one out of five BFC can provide the essential
sizing information. Actually, there are also fairly strong associa-
tions between the BFC size measures, except for M(EIF), as shown
in Table 3. There is also a fairly high association between M(TF) and
M(DF): Spearman’s rank correlation q is 0.643, Kendall’s s = 0.462.

4.2.2. Regression analysis
Even though there is a strong association between SBFC and

UFP, OLS linear regression does not provide valid quantitative
models of these relationships, as its assumptions are not satisfied,
even after a log–log transformation. Therefore, we used LMS robust
regression, and we obtained the following statistically valid and
significant model:



Table 3
Associations between SBFC: non-parametric analysis.

Kendall’s s Spearman’s q

M(EO) M(EQ) M(ILF) M(EIF) M(EO) M(EQ) M(ILF) M(EIF)

M(EI) 0.438 0.448 0.449 0.072 0.593 0.602 0.616 0.101
M(EO) 0.288 0.417 0.194 0.408 0.587 0.268
M(EQ) 0.327 0.097 0.454 0.136
M(ILF) 0.195 0.266

L. Lavazza et al. / Information and Software Technology 55 (2013) 1796–1809 1801
UFP ¼ 28þ 1:137�MðTFÞ ð4Þ

The quality of the fit, on the entire dataset, was evaluated by
R2

LMS ¼ 0:74.
All the indicators of the precision of fit appear fairly good:

MMRE = 19.7%, Pred(25) = 71%. The error range is �82% to 156%.
The analysis of the relationship between M(EI) and UFP carried

out by using LMS regression provided the following model:

UFP ¼ 79þ 1:9�MðEIÞ ð5Þ

The model has R2
LMS ¼ 0:41. The residuals are characterized by

MMRE = 40.5%, Pred(25) = 38.4% and error range = �91% to 503%.
The distribution of relative residuals is reported in Fig. 1.
No other models could be found by using LMS, i.e., M(EI) and

M(TF) are the only measures that support a statistically significant
model for UFP.
4.3. Remarks on size analysis

The usage of LMS regression allowed us to derive statistically
valid and significant models showing that UFP are linearly corre-
lated with size measures of subsets of their BFC.

It is worthwhile noticing that, while previous studies suggested
the existence of associations between SBFC and FP [36], the usage
of LMS regression allowed us to derive quantitative models of the
correlation linking SBFC and FP. To the best of our knowledge, no
such models were ever proposed before.

These results suggest that, in principle, one could think of using
the size measure – carried out according to standard FPA measure-
ment process [21] – of a subset of the BFC as replacements of the
size of the whole application in UFP. This hypothesis is tested in
the rest of the paper.
−1
0
0

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

Fig. 1. ISBSG UFP vs. M(EI): boxplot of the relative residuals of the LMS regression.
5. Effort prediction based on BFC

Since effort is usually predicted on the basis of functional size,
and we have shown that functional size expressed in UFP is corre-
lated to the size of subsets of the BFC, it is reasonable to further
investigate the idea that effort can also be estimated on the basis
of a subset of the BFC size measures. To support this hypothesis,
we built different types of the traditional Effort = f (functional size)
models by analyzing the ISBSG dataset.

First of all, we need to notice that the ISBSG dataset contains
data concerning both new developments and enhancements.
When dealing with enhancements, some authors correlate the re-
quired effort with just the size of the enhancement, i.e., they build
models of Effort = f (functional size of the enhancement). This
choice may create a number of problems, since the enhancement
effort in general depends not only on the size of the enhancement,
but on the total size of the program that is being enhanced, be-
cause a few development activities involve the whole program,
even when just a small fraction is modified. Since the ISBSG data-
base reports only the size of changes, an accurate analysis of
enhancements is not possible. Therefore, in the rest of the paper
we deal exclusively with new development projects data from
the ISBSG database.

It is also generally recognized that development effort depends
on several other parameters, in addition to the size of the soft-
ware to be developed. Actually, the ISBSG database includes sev-
eral indications concerning variables that affect development
effort and in principle could be useful to build effort models.
Among these are: organization type, application type, type of
architecture, development technique (life cycle), process maturity
(e.g., CMM, CMMI, SPICE), development method, etc. However,
the values of these variables are not given for the majority of
the ISBSG projects: only 19.6% of the projects in the ISBSG dataset
specify the application type, architecture and development tech-
niques used. So, these variables cannot be included in the analy-
sis: in fact, selecting the projects for which the mentioned
measures are given would result in subsets too small to support
statistically sound analyses.

Other potentially useful data – like the skills of developers or
the complexity of the application – are not present in the ISBSG
database.

To analyze reasonably homogeneous sets of data, we selected
from the ISBSG dataset the sets of projects that were

� carried out not earlier than year 2000, to increase the probabil-
ity that they were developed using similar technologies, meth-
odologies and tools and maximize the usefulness of our results
for effort estimation in future projects;
� implemented using the same ‘‘primary programming lan-

guage’’: thus, we group projects that are more likely to belong
to the same application areas and were supported by similar
toolsets. Stratifying by language is a fairly consolidated practice
in the FPA community. Previous research [37,38] found that the
‘‘primary programming language’’ used is an important element
affecting the development effort.

Of course, the filtering described above does not guarantee that
we get completely homogeneous sets of data, but it surely de-
creases the fraction of development effort due to unknown
variables.

The filtering described above produced three sets of data:
namely, the sets of projects written in Cobol, Java, and Visual Basic.
Other sets were discarded because they did not contain enough
projects to support reliable statistical analysis (only datasets con-
taining at least 20 projects were considered in the analysis



1802 L. Lavazza et al. / Information and Software Technology 55 (2013) 1796–1809
reported in this Section). The sets obtained were then analyzed
separately.
5.1. Predicting effort based on SBFC

5.1.1. Non-parametric evaluation of the association between SBFC and
effort

The existence of associations between effort and SBFC is sup-
ported by the results of Spearman’s and Kendall’s indicators re-
ported in Table 4.

The data in Table 4 indicate that several SBFC appear to be asso-
ciated with effort as strongly as UFP is. It is noticeable that for Java
projects even the measure of a simple BFC like EI appears to be bet-
ter associated with effort than UFP is.
5.1.2. Models of the correlation between SBFC and effort
We built quantitative models of effort vs. size by adopting a

widely used procedure in data analysis, i.e., we used OLS linear
regression after log–log transformations, which led to equations
of the kind provided by COCOMO [1], i.e., Effort = a � Sizeb. The
log–log transformation is applied to ‘‘normalize’’ the data as sug-
gested in [39].

The models are summarized in Table 5. Column a and b corre-
spond to the coefficients in the model Effort = a � Sizeb.

To compare the models found, we studied relative residuals.
When talking about effort prediction, the relative (i.e., percentage)
residuals need to be considered, rather than plain residuals. For
instance, a 2 Person-Month error is probably acceptable for a 2
Person-Year project, while it is surely not acceptable for a 4
Person-Month project: in the former case, the error is around 8%;
in the latter case, it is 50%.

To evaluate the equivalence of models, Kitchenham et al. sug-
gest the use of the paired t-test of absolute residuals [40]. This indi-
cation follows the proposal by Stensrud and Myrveit, who used
paired t-tests of the MRE [41]. We agree with these indications
in principle, but since in our case the usage of t-test is often pre-
vented by non-normality of the distribution, we use the more ro-
bust Wilcoxon signed rank test and the Wilcoxon rank sum test
(also known as Mann–Whitney test) [42].
Table 4
Associations between SBFC and effort for new developments: language-specific non-
parametric analysis.

Language n Variable Kendall’s s Spearman’s q

Cobol 20 M(EI) 0.537 0.704
Cobol 20 M(EO) 0.417 0.596
Cobol 20 M(EQ) 0.381 0.490
Cobol 20 M(ILF) 0.345 0.470
Cobol 20 M(EIF) 0.525 0.722
Cobol 20 M(TF) 0.589 0.743
Cobol 20 M(DF) 0.466 0.669
Cobol 20 UFP 0.621 0.777
Java 29 M(EI) 0.601 0.794
Java 29 M(EO) 0.400 0.520
Java 29 M(EQ) 0.372 0.517
Java 29 M(ILF) 0.499 0.659
Java 29 M(TF) 0.611 0.799
Java 29 M(DF) 0.463 0.633
Java 29 UFP 0.591 0.791
VB 56 M(EI) 0.505 0.651
VB 56 M(EO) 0.505 0.687
VB 56 M(EQ) 0.446 0.624
VB 56 M(ILF) 0.439 0.609
VB 56 M(TF) 0.558 0.742
VB 56 M(DF) 0.399 0.554
VB 56 UFP 0.561 0.728
We applied the Wilcoxon signed rank test and the Wilcoxon
rank sum test to the distributions of absolute relative residuals:
the results are reported in column ‘‘equiv.’’ of Table 5. The tests
indicate that, for all the considered implementation languages,
we cannot reject the null hypothesis that the models based on
M(EI), M(EO), or M(TF) are equivalent to the model based on UFP
in terms of absolute relative residuals.

In practice, the analysis described above seems to indicate that
using M(EI) (or M(EO), or M(TF)) instead of UFP to estimate the ef-
fort does not cause the accuracy of the estimate to decrease.

5.2. Exploration of alternative data grouping criteria

The analysis described above was carried out on data samples
obtained by grouping project data by main programming language.
Other criteria could be used to partition the dataset to obtain rea-
sonably homogeneous samples. Other authors have grouped pro-
ject data by application area (see for instance [34]). We tried to
apply the same grouping concept, to check whether the findings
described above also hold for data samples characterized according
to different principles.

We found that only one application area, namely ‘‘Financial
transaction process/accounting,’’ occurs often enough to form a
sufficiently large data sample (73 data points). For this dataset,
we found only models with rather low R2

OLS and low accuracy.
We also tried to form data samples that were homogeneous

with respect to both the main programming language and the
application type. In principle, these samples could be sufficiently
homogeneous to provide models that are precise enough to be
usable in practice. Unfortunately, even the largest obtained sample
(Financial transaction process/accounting applications written in
Visual Basic) was quite small (15 data points) and provided no sig-
nificant model.

On the contrary, we performed the analysis of all new software
developments carried out since year 2000 with no distinction with
respect to the implementation language. As expected, the resulting
models, based on a data subgroup including 536 data points, are
worse than those reported in Table 5 as far as R2, MMRE, and Pred
(25) are concerned. The same models are equivalent to those
reported in Table 5 as far as the accuracy of SBFC based models
is concerned.

5.3. Effort estimation by analogy

To get further evidence that simplified size measures can be
effectively used to estimate the development effort, we used them
in estimations based on analogy criteria, rather than on statistical
models. To this end, we used the same data subsets used in Section
5.1, i.e., a set of 20 Cobol applications, a set of 29 Java applications,
and a set of 56 Visual Basic applications.

Estimation by analogy was carried out according to the follow-
ing criteria. For each project, the K closest analog projects were se-
lected among those implemented with the same programming
language and developed before the considered project, but not
more than ten years older. The mean productivity (size/effort) of
the K selected analogs was computed. Finally, the estimated effort
was computed as the size of the project to be estimated divided by
the mean productivity of the analogs.

This process was applied for M(EI), M(EO), M(TF), M(DF) and
UFP. M(EQ) and M(EIF) were excluded because several projects
do not include any EQ or EIF, and establishing a similarity on the
basis of the absence of a BFC does not seem to make much sense.

We also used different values of K, from 1 up to 15, so we could
select the value of K that optimizes the estimates. Probably due to
the fact that the ISBSG dataset contains different numbers of
projects for each language, we got different values of K for each



Table 5
Language-specific log–log OLS regression models for SBFC vs. effort for new developments.

Lang. Var. b a R2
OLS

Outl. n MMRE Pred (25) %err. range Equiv.

COBOL EI 0.904 96.8 0.516 0 20 120 15 �85 to 797 ⁄⁄

COBOL EO 0.768 154.1 0.382 0 20 165 25 �88 to 1319 ⁄⁄

COBOL EQ 1.009 73.6 0.702 1 13 66 23 �89 to 205 ⁄

COBOL ILF 0.719 184.2 0.289 0 20 171 5 �91 to 1303 ⁄⁄

COBOL EIF 1.634 12.5 0.645 4 19 121 16 �96 to 599 ⁄

COBOL TF 0.964 27.4 0.582 0 20 118 15 �80 to 831 ⁄⁄

COBOL DF 0.981 38.8 0.478 0 20 136 15 �90 to 1049 ⁄⁄

COBOL UFP 1.057 9.6 0.591 0 20 119 0 �79 to 872
Java EI 0.614 232.2 0.686 8 29 50 38 �75 to 245 ⁄⁄

Java EO 0.642 221.1 0.428 5 29 61 28 �94 to 316 ⁄⁄

Java EQ 0.298 984.0 0.335 8 27 86 30 �88 to 731 ⁄

Java ILF 0.385 640.3 0.425 4 29 82 24 �82 to 923 x
Java TF 0.592 151.2 0.614 4 29 58 41 �75 to 340 ⁄⁄

Java DF 0.536 238.0 0.585 5 29 63 34 �83 to 503 x
Java UFP 0.674 63.5 0.717 5 29 49 48 �77 to 284
VB EI 0.888 51.9 0.801 13 56 92 38 �97 to 2240 ⁄⁄

VB EO 0.679 138.0 0.626 8 56 129 27 �89 to 3290 ⁄⁄

VB EQ 0.632 202.2 0.593 7 54 137 30 �91 to 3826 ⁄

VB ILF 0.764 66.7 0.511 7 56 185 14 �94 to 6179 x
VB TF 0.895 17.7 0.852 13 56 91 32 �93 to 2430 ⁄⁄

VB DF 0.665 94.8 0.404 5 56 217 14 �94 to 6786 x
VB UFP 1.033 4.6 0.821 12 56 130 34 �94 to 4117

⁄⁄ = no evidence of non-equivalence according to both Wilcoxon and Mann–Whitney tests; ⁄ = no evidence of non-equivalence according to only one test; x = evidence that
UFP model is better, according to at least one test.

L. Lavazza et al. / Information and Software Technology 55 (2013) 1796–1809 1803
language. Thus, for each language we selected the value of K that
provides the most accurate estimate.

Table 6 reports the results of the analysis. For each SBFC and
language, the values of MdMRE (the Median Magnitude of Relative
Error), MMRE, Pred(25) and the relative error ranges are given,
along with the number of projects that it was possible to estimate.
The boxplots of relative errors obtained using each measure are
illustrated in Fig. 2 (mean values are shown as diamonds). It is pos-
sible to see that estimates based on M(EI) do not appear substan-
tially worse than those based on UFP. This is confirmed by both
Wilcoxon signed rank test and the Wilcoxon rank sum test
(Mann–Whitney test) [42]. Tests indicate that we cannot reject
the null hypothesis that the residuals of estimates based on
M(EI), M(EO), M(TF) or UFP are equivalent to those based on UFP
in terms of relative residuals.

These results do not depend on the selected value of K, i.e.,
M(EI), M(EO), M(TF) and UFP appear equivalent (according to Wil-
coxon and Mann–Whitney tests) for all values of K. Only M(DF)
yields greater residuals for some values of K and some languages.
Table 6
Estimation by analogy using UFP and SBFC: accuracy indicators.

Language Measure K MdMRE MMRE Pred
(25)

N %err. range

COBOL M(EI) 5 67.5 195.6 21.3 94 �91 to 2224
COBOL M(EO) 5 76.6 360 19.1 94 �88 to 7405
COBOL M(TF) 5 54.9 180.9 27.7 94 �81 to 5502
COBOL M(DF) 5 71.1 216.7 19.1 94 �82 to 6138
COBOL UFP 5 54.7 176.3 26.6 94 �82 to 5293
Java M(EI) 5 78.9 94.7 26.9 26 �78 to 260
Java M(EO) 5 60 86.1 30.8 26 �95 to 389
Java M(TF) 5 37.3 90.1 26.9 26 �56 to 616
Java M(DF) 5 56.1 141.9 30.8 26 �80 to 678
Java UFP 5 44.3 90.5 26.9 26 �76 to 469
VB M(EI) 2 58.7 218.8 26.4 87 �98 to 4672
VB M(EO) 2 52.1 196.4 28.7 87 �94 to 4686
VB M(TF) 2 61 136.3 25.3 87 �95 to 2599
VB M(DF) 2 69.4 212.6 17.2 87 �98 to 3156
VB UFP 2 59 188.8 21.8 87 �92 to 4271
6. Towards models that use additional requirements measures

As already mentioned, the goal of this paper is not to produce
readily usable models, but rather to show that simplified measures
of functional size can be used in effort prediction models without
loss in accuracy. Nevertheless, it is quite clear that defining models
that are able to perform estimates with acceptable errors is funda-
mental for the practical usability of the models.

Of course, the acceptability of estimate accuracy is intrinsically
subjective: for instance, a practitioner could be satisfied with
MMRE = 20%, while another could require MMRE 6 15%. However,
to stay on the safe side, we take COCOMO [1] as a reference. In this
section, we derive models that base effort estimation on both sim-
plified size measures and complexity measures: these models’
accuracy is fairly good; actually it is better than COCOMO’s, so
we can consider these models usable in practice.

Since the definition of COCOMO, it is widely recognized that
practically usable effort prediction models should consider not
only the size of the application to be developed, but other fac-
tors that affect the required effort. Accordingly, we expect that
statistically significant effort models based on a simplified mea-
sure of size and other parameters can have relatively low error
levels.

To support this idea, we propose a model of effort based on two
variables: a measure of functional size and a measure of the func-
tional complexity of user requirements, along the lines described
in [43,44]. As a complexity measure we used the density of Paths.
The measure of Paths [45] is obtained by applying the principles of
McCabe’s complexity measure to the descriptions of elementary
processes. Accordingly, the density of Paths is defined as the aver-
age number of Paths per transaction function. When M(EI) is used
in place of UFP, Path density is redefined accordingly: only EI pro-
cesses are considered.

The dataset used in this analysis is reported in Table 7. The data
are about a set of small business projects, most of which were web
applications. They were all new developments.

Since the dataset contains only 22 data points, it does not sup-
port conclusive evidence, but rather a sort of ‘‘proof of concept’’ of
the viability of using simplified functional size measures in models
meant to provide sufficiently precise estimates.



Fig. 2. Boxplots of relative residuals of estimates by analogy using different SBFC.

Table 7
Dataset used to derive models that use additional requirements measures.

Project ID Actual effort UFP Num. Trans. M(EI) Num. EI Paths

P1 410 185 39 78 24 71
P2 474 269 58 97 29 73
P3 382 171 19 35 11 60
P4 285 113 15 40 12 49
P5 328 110 14 45 9 34
P6 198 86 9 18 4 35
P7 442 75 10 21 6 50
P8 723 214 33 83 21 97
P9 392 340 47 79 17 83
P10 272 179 27 36 9 42
P11 131 115 17 24 6 18
P12 1042 168 26 63 20 118
P13 348 107 16 46 12 32
P14 243 111 12 36 10 68
P15 300 40 4 12 4 33
P16 147 59 10 31 10 20
P17 169 61 5 19 5 17
P18 121 72 13 41 13 21
P19 16,809 623 100 128 32 693
P20 5221 201 23 38 10 288
P21 342 41 27 24 8 24
P22 268 46 27 12 4 16

1804 L. Lavazza et al. / Information and Software Technology 55 (2013) 1796–1809
The models described in Table 8 were found. These results pro-
vide evidence that models based on simplified functional size mea-
sures and other relevant parameters can provide a level of
precision that can be considered acceptable for practical effort pre-
diction. In any case, the models reported in Table 8 can be possibly
improved by considering other relevant factors, like the expertise
of developers, the usage of tools, and the volatility of requirements,
for instance.
7. Threats to validity

Like with any other correlational study, the threats to the valid-
ity of our study need to be assessed, along with the actions that
have been undertaken to mitigate them.
Table 8
Models based on size and complexity.

Effort model R2 Outlier

1.422 UFP0.978 (Path/NumTrans)0.76 0.748 7/22
7.731 (M(EI))0.826 (Path/NumEI)0.395 0.793 8/22
7.1. Threats to internal validity

The limited size of the datasets used in some of the effort pre-
diction models may be a first threat to internal validity. Despite
the relatively small numbers of data points, we still filtered out
outliers, to make sure that the results are not unduly influenced
by a very small number of high-leverage points, even though this
further reduced the cardinality of the samples. We also used non-
parametric and robust techniques whenever the preconditions of
parametric techniques were not supported by evidence to be on
the safe side, even at the expense of sacrificing some statistical
power. We also tried to identify homogeneous samples whenever
possible. However, due to a variety of reasons, even a large dataset
like ISBSG does not really support subsampling based on the values
for several factors.

7.2. Threats to external validity

The ISBSG dataset contains a substantial number of projects in
several application domains. Nevertheless, it may not be represen-
tative of the entire universe of software applications. We parti-
tioned the dataset in subsamples according to the main language
used in each project to obtain effort prediction models that may
be more representative for each of those languages. At any rate,
the relatively small size of some of the samples may make the
models we found of limited external validity. We also tried to mit-
igate the potential threats due to the changes in the development
practices over time by selecting only the projects from year 2000
onward. This should make the models we obtained more applica-
ble to current projects.

7.3. Threats to construct validity

The first main construct validity threat is due to the inherent
subjectivity of counting FSM methods. We relied on the ISBSG data,
but only selected the projects with the two higher categories of
data quality, as is usually done in research studies that use ISBSG
data. Another threat may come from interpreting MMRE, MdMRE,
and Pred(25) as accuracy indicators, as pointed out by criticisms in
s MMRE Pred (25) Error range

37 50 �80 to 119
33 45 �91 to 66



Table 10
Associations between SBFC according to [47].

M(EO) M(EQ) M(ILF) M(EIF)

L. Lavazza et al. / Information and Software Technology 55 (2013) 1796–1809 1805
the previous literature. At any rate, we provided other accuracy
indicators to provide a more complete picture about the accuracy
of our results.
M(EI) R2s R2s s
M(EO)
M(EQ) R2s s

s indicates an association (in terms of Kendall’s tau); R2 indicates a correlation
according to R2

OLS.
8. Related work

8.1. Work concerning the relationship between the size of BFC and the
size of applications

The number and selection of the BFC upon which FSM should be
based have already received some attention in the literature. Even
the very first definition of FP in [46] included 4 individual BFC in-
stead of 5 and a different way of taking into account their impor-
tance when building a functional size measure.

Having to deal with many BFC is likely to involve both practical
and theoretical problems. From a practical point of view, associa-
tion or correlation between BFC implies that some aspects are
measured twice, with a waste of measurement effort. From the
theoretical point of view, it is not clear why one should include a
BFC that appears to measure some property or dimension that is
already measured by another BFC.

After completing an experiment involving data from 269 pro-
jects, Lokan reported evidence of such associations [36]. In another
case study involving 40 projects, Kitchenham and Känsälä [18] re-
ported the existence of associations among BFC size measures. Spe-
cifically, the statistical analysis found that the associations
indicated in Table 9 were statistically significant (in terms of Ken-
dall’s tau). Kitchenham and Känsälä also observed that FP do not
have the characteristics of a valid size metric, since some elements
may be counted more than once.

A paper by Jeffery and Stathis [47] empirically analyzed FP. We
mention here only the parts that are most related to our work. The
study uses data from 17 projects, three of which were singled out
as outliers in the statistical analysis, thereby reducing the number
of data points used to build the statistical models to 14; however,
the entire set of 17 projects was used in the evaluation of the accu-
racy of the models. Among other things, the study investigates
whether BFC size measures are statistically independent. The
authors’ idea was that if BFC size measures were actually corre-
lated, then this would suggest that a simplified form of FP sizing
would be possible across different domains, as the paper references
the work by Kitchenham and Känsälä as a starting point, with data
coming from a different domain. The statistical analysis found that
the correlations (based on R2

OLS) and the associations (in terms of
Kendall’s tau) illustrated in Table 10 were statistically significant.
In addition, the authors found statistically significant associations
and correlations between UFP and EI, EQ, ILF.

Another observed weakness of taking into account several BFC
is that the variability of Function Point counting may increase.
Kemerer investigated this aspect and reported that the differences
in Function Point measures of the same system proveded by differ-
ent counters averaged 12.2% [11]. Jeffery et al. reported even worse
figures: a 30% variance within an organization, which rose to more
than 30% across organizations [12]. More recent studies confirmed
– at least qualitatively, if not quantitatively – the results reported
by Kemerer and Jeffery. Rule [13] found that experienced software
measurement specialists obtained better results than software
Table 9
Associations between SBFC according to [18].

M(EO) M(EQ) M(ILF) M(EIF)

M(EI) U U U

M(EO) U U U

M(EQ) U
engineers who had little measurement training. The intercounter
consistency of specialists was around 5%, while that obtained by
recently trained project staff was typically around 23%. In a similar
study, Cuadrado-Gallego et al. [14] employed 77 trained under-
graduate students in the measurement of a real world application
using the IFPUG method. The obtained measures ranged from a
minimum value of 57 FP to a maximum of 104 FP. The standard
deviation reported was ca. 14% of the mean value.

Kitchenham and Känsälä expect that simpler counting would
reduce the variability of the results [18].

The simplification of FSM methods has been the objective of
several other proposals.

Symons defined Mark II Function Points [6] on the basis of only
three BFC: data element types, entity-type references, and output
data element types. The classification of BFC as simple, average,
or complex was eliminated, because considered straightforward,
but also oversimplified. Although the main characteristic of Mark
II Function Points is the inclusion of a measure of complexity, Sy-
mons pointed out that the simplicity of the Mark II approach in
having fewer BFC than Albrecht’s method has a number of advan-
tages, such as greater ease of calibration against measurements or
estimates.

Our results concerning the associations among BFC size mea-
sures and of BFC size measures with UFP substantially agree with
those mentioned above. The results of previous work were reached
by analyzing datasets (like the one maintained by ISBSG) by means
of nonparametric tests (typically tests on Spearman’s q and Ken-
dall’s s). However, no models could be derived by using Ordinary
Least Squares (OLS) linear regression (not even after log–log trans-
formations). Under this respect, our results are stronger, in that we
were able to derive – via LMS linear regression – models that quan-
titatively represent the correlation between BFC size measures and
UFP.
8.2. Work concerning the relationship between BFC and effort

Kitchenham and Känsälä also pointed out that an effort predic-
tion model built with stepwise linear regression based on two BFC
(input Function Points and output Function Points) was just as
good as the effort model based on ‘‘complete’’ Function Points,
and an effort prediction model based on the raw (i.e., not complex-
ity-weighted) counts of files and outputs was only slightly worse
than an effort model based on Function Points [18].

One of the earliest attempts to build effort prediction models
based on BFC measures or even finer-grained measures is docu-
mented in [23]. The statistical study uses a dataset composed of
21 mainframe-based projects of a major Canadian financial organi-
zation. The projects were classified as major enhancements to
existing transaction-based software applications. Several kinds of
statistical effort prediction models were built, based on OLS regres-
sion, including models based on so-called ‘‘primary components,’’
i.e., DET and RET and a multivariate model whose independent
variables are the measures of the five BFC of FPA.

With respect to the work reported in [23], we are able to
provide more reliable results, since our dataset is larger and we



1806 L. Lavazza et al. / Information and Software Technology 55 (2013) 1796–1809
employed statistical tests such as Wilcoxon and Mann–Whitney
tests. Moreover, we derived also non-linear models, while in [23]
only linear models were studied.

In the already mentioned paper [47], Jeffery and Stathis empir-
ically investigated whether the individual BFC could be used as
predictors for effort, and found that M(EI), M(EQ), and M(ILF) are
correlated with development effort. Multivariate stepwise linear
regression with the individual BFC size measures as independent
variables was also investigated, but did not provide a model. Final-
ly, they investigated whether the raw (i.e., not complexity-
weighted) counts of files, inputs, outputs and inquiries could be
used for effort prediction and found that the total count of files, in-
puts, outputs and inquiries were significant predictors.

Abran et al. studied the relationship between effort and single
BFC size measures by using release 8 of the ISBSG dataset [48].
They grouped projects by programming language, but they do
not seem to have separated data points representing new develop-
ments from those representing enhancements. With respect to the
work reported in [48], we are able to provide more complete and
reliable results, since we evaluated results in terms of estimation
accuracy and employed statistical tests such as Wilcoxon and
Mann–Whitney tests to compare the significance of models. More-
over, we derived also non-linear models, while in [48] only linear
models were studied.

A few articles report studies concerning the relationship be-
tween development effort and COSMIC BFC [49,22,50]. These arti-
cles tend to confirm that effort estimation can be carried out on the
basis of a single BFC, although a few limitations of the performed
analyses – namely, the usage of relatively small datasets and the
fact that no accuracy comparison based on statistical tests were
performed – suggest that further analysis is necessary to get reli-
able evidence that also the definition of COSMIC Function Point
can be simplified.

With respect to the research work mentioned in this section,
our work provides more reliable conclusions in that (a) we used
a large public dataset, and rigorously selected the data sample to
be used for the analyses; (b) we used data from multiple applica-
tion areas, so our results are expected to apply to a fairly wide
range of software applications; (c) we used samples that are suffi-
ciently homogeneous, thus avoiding as far as possible the influence
of variables not considered in models; (d) we used sound statistical
methods, including statistical tests to compare the precision of UFP
based models with respect to BFC based models; (e) we used mul-
tiple types of models (e.g., LMS and OLS after log–log transforma-
tion); and (f) we showed that the simplified measures can be
used in conjunction with measures of other attributes of user
requirements to build models that are precise enough to be used
in practice.
8.3. Work concerning the relationship between the distribution of BFC
sizes and effort

Abran et al. suggested that development effort can depend on
the distribution of BFC sizes [48]. Therefore, we studied the distri-
bution of BFC size measures in our dataset. Table 11 shows the ac-
tual distributions of the average contributions of the BFC to UFP.
Table 11
Distribution of SBFC.

M(EI)% M(EO)% M(EQ)% M(ILF)% M(EIF)% Stdev. (%)

COBOL 21.6 23.9 15.2 29.2 10.2 7.4
Java 22.8 17.5 19.0 27.3 13.4 5.3
VB 20.0 21.0 18.8 28.1 12.0 5.7
The distributions reported in Table 11 is very similar to those re-
ported in [48]: for instance, COBOL projects are characterized by
similar M(EI) and M(EO) percentages, and by low M(EQ) and
M(EIF) percentages. There does not seem to be any extremely
‘‘dominating’’ or ‘‘dominated’’ BFC.

Interestingly enough, the BFC that provide the largest contribu-
tions are not necessarily the ones whose sizes are best associated
or correlated with UFP. For instance, ILF are the most frequent
BFC, but they are not the BFC whose size are best associated or cor-
related with UFP or the development effort. So, even though an
association or correlation can be expected, as we already men-
tioned, it is not due to the fact that the best associated or correlated
BFC accounts for the absolute or even the relative majority of UFP.
From a practical point of view, this implies that FSM measurers
may count a reasonably small percentage of BFC without sacrific-
ing the accuracy of predictions.

8.4. Work dealing with the simplification of the measurement process

While we explore the possibility of simplifying the measure of
functional size by dropping most BFC, other researchers have ex-
plored the possibility of simplifying the measurement process, while
retaining the original definition of the measure – that is, including
all the original BFC.

The most well-known of these approaches – which are some-
how orthogonal to ours – is probably the Early & Quick Function
Points (EQFP) [51]. EQFP starts from the consideration that esti-
mates are sometimes needed before the analysis of requirements
is completed, when the information on the software to be devel-
oped is incomplete or not sufficiently detailed. Therefore, the EQFP
measurement process considers elements that are coarser-grained
than the FPA BFC, and leads to an approximate measure of size in
IFPUG FP. Since several details for performing a correct measure-
ment following the rules of the IFPUG manual (as described in
[21]) are not considered, the result is a less precise measure. Re-
duced measurement time and costs are also a reason for adopting
the method when full specifications are available, but there is the
need of completing the measurement in a short time, or at little
cost. An advantage of the method is that different parts of the sys-
tem can be measured at different detail levels; so, for instance, a
part of the system can be measured following the IFPUG manual
rules, while other parts can be measured on the base of coarser-
grained information.

Other methods have been proposed by NESMA [7] to simplify
the process of counting FP. The Indicative NESMA method simpli-
fies the process by only requiring the identification of logic data
from a data model; the Function Point size is then computed by
applying predefined weights, whose value depends on whether
or not the data model is normalized in 3rd normal form:

� Nonnormalized model: Function Points = 35 � Number of
ILF + 15 � Number of EIF
� Normalized model: Function Points = 25 � Number of

ILF + 10 � Number of EIF

The Indicative NESMA method is quite rough in its computa-
tion: the official NESMA counting manual specifies that errors in
functional size with this approach can be up to 50%.

The Estimated NESMA method requires the identification of
each BFC, but does not require the assessment of the complexity
of each component: Data Functions (ILF and EIF) are assumed to
be of low complexity, while Transactions Functions (EI, EQ, and
EO) are assumed to be of average complexity.

Another noticeable approach was proposed by Heričko and
Živkovič [52]: they deal with the need of size estimates based on
descriptions having variable levels of abstraction through an



L. Lavazza et al. / Information and Software Technology 55 (2013) 1796–1809 1807
iterative development lifecycle. To this end, they use the OOFP2
measurement method [53]. The core of the proposal is that,
throughout the lifecycle, the application is represented at different
abstraction levels, via different UML diagrams (e.g., use case dia-
grams at the topmost level, sequence an activity diagrams at an
intermediate level, and class diagrams at the detailed level), and
FP counting procedures are defined for different combinations of
UML diagrams. The approach proposed by Heričko and Živkovič
is in some sense complementary to ours, since they consider a soft-
ware application’s description at varying abstraction levels, while
we consider only the level of abstraction required by the IFPUG,
but limiting the scope of the measurement to a subset of the BFC.

The methods mentioned above are not meant to replace FP, but
rather to provide alternative measurement processes under spe-
cific conditions. On the contrary, our analysis might bring to a com-
plete replacement of FP. This of course would imply that also the
measurement process is simplified (under any conditions), since
just a subset of the full original measurement processes would
be required.

An important characteristic of approaches involving the
simplification of the measurement process is that, when used
in the effort estimation process, they force the usage of the
two-step procedure mentioned in Section 3.1.2: first you esti-
mate the size, than you estimate effort on the basis of the esti-
mated size, thus combining estimation and resulting in an
increased error with respect to the estimates based on the ‘‘real’’
size. On the contrary, our approach does not cause any statisti-
cally significant loss in software development effort prediction
accuracy.

8.5. Other relevant work

Gencel and Demirors critically reviewed the FSM methods [54].
They state that there exist significant improvement opportunities
for FSM, both theoretically and practically. On the theoretical side,
they mention a few open issues, including the additivity of the
functional sizes of different BFC types, and the definition of formu-
las to transform different BFC types to a single type so that they can
be added up.

Our proposal does not provide solutions to the problems high-
lighted by Gencel and Demirors, rather it directly eliminates some
problems: for instance, using just one BFC to represent the func-
tional size makes the additivity issue irrelevant.
9. Conclusions and future work

9.1. Results

The analyses reported above allow us to provide answers to the
research questions stated in Section 3.2:

RQ1: Is it possible to build a statistically significant estimation
model for UFP based on a SBFC, so as to suggest that SBFC
can be used as a replacement of UFP?
Yes. Most SBFC appear correlated with UFP. This result is
supported by both non-parametric analysis (see Table 2)
and – as far as EI and TF are concerned – by linear LMS
regression analysis (see the models described by Eqs. (4)
and (5)).

RQ2: Are there any statistically significant models of SBFC vs.
Effort that feature residuals not significantly greater than
those of UFP vs. Effort models?
Yes. M(EI), M(EO), and M(TF) support models of Effort whose
residuals are not significantly greater than the model based
on UFP (see Table 5).
RQ3: Is it possible to build statistically significant software devel-
opment effort models that use SBFC and other requirements
measures, and that feature sufficient precision to make them
suitable for use in practice?
Yes, as a ‘‘proof of concept.’’ We built models of the type
Effort = a � SBFCb �MCc, where MC is a measure of the pro-
cessing complexity derived from requirements (see Table
8). The models found feature an error level that is (almost)
low enough to make the models usable for effort prediction
in real development environments.

9.2. Consequences

The analyses performed indicate that measuring UFP as speci-
fied by FPA does not seem necessary, since M(EI) – as well as
M(EO) and M(TF) – appear as good as UFP for predicting effort. This
conclusion appears reliable, in that it applies to all languages that
appear frequently enough in the ISBSG dataset.

This observation has relevant implications with respect to the
issues mentioned in Section 1.

9.2.1. Simplification of the measurement process
Simplifying the definition of functional measures implies sim-

plifying the measurement process. In fact, according to the IFPUG
manual [21], the core of the counting process involves the follow-
ing activities:

1. Identify the ILFs and EIFs.
2. Determine the ILF complexity and their contribution to the

unadjusted function point count.
3. Determine the EIF complexity and their contribution to the

unadjusted function point count.
4. Identify the elementary processes.
5. Determine the primary intent of the identified elementary pro-

cesses, and classify it as an EI, EO, or EQ.
6. Validate elementary processes against the transaction identifi-

cation rules.
7. Determine EI complexity and their contribution to the unad-

justed function point count.
8. Determine EO complexity and their contribution to the unad-

justed function point count.
9. Determine EQ complexity and their contribution to the unad-

justed function point count.

So, while measuring UFP requires performing all of the activities
listed above, measuring just M(EI) requires performing a subset of
such activities, namely activities 1, 4, 5, 6 (limitedly to EI) and 7.
Each activity performed to measure M(EI) involves the same work
needed for IFPUG UFP measurment. Therefore, we can safely con-
clude that measuring M(EI) generally involves a reduction in the
duration, effort and cost of measurement with respect to UFP
measurement.

This is very good news for organizations that need to collect his-
torical data to build their own effort prediction models. Organiza-
tions that already own historical data concerning the development
effort and the size of completed projects (i.e., UFP, M(EI), M(EO),
etc.) can switch to the simplified versions of the size measures
while preserving the validity of the whole set of historical data.
In fact, they can simply ignore the data concerning BFC that do
not appear relevant. This is actually a big advantage: with our ap-
proach, new effort models can be derived almost immediately
using the available data.

9.2.2. Less subjective measures
Concerning subjectivity, let us consider the following – quite

typical – situation. Requirements specifications mention some data



1808 L. Lavazza et al. / Information and Software Technology 55 (2013) 1796–1809
(let’s call them ‘A’) in a way that leaves space for interpreting the
requirements by an IFPUG FP measurer. Thus, it can easily happen
that a measurer decides that these data are a single ILF (A) with
two RET, while another measurer decides that there are two ILF
(A1 and A2) with one RET each. If we suppose that the total num-
ber of DET of A (or the sum of DET of A1 plus the DET of A2) is 25,
then we have that measurer 1 counts A as an average complexity
ILF (10 UFP), while measurer 2 counts two low complexity ILF
(14 UFP). The subjective interpretation of the requirements leads
to differences in the measures.

The subjectivity of the measure of ILF (and of EIF too) also af-
fects the measure of a transaction. For instance, if an EI updating
the data mentioned above involves X FTR according to measurer
1, it will involve X + 1 FTR according to measurer 2. It is thus pos-
sible that the two measurers provide different measures for the
same EI, again due to the subjective interpretations of the ILF in-
volved in the transaction: if measurer 1 identifies two FTR (includ-
ing A) and 10 DET exchanged through the application boundaries
(an average complexity EI: 4 UFP), measurer 2 will identify three
FTR (including A1 and A2) and 10 DET (a high complexity EI: 6
UFP). The same type of effect applies to EO and EQ transactions
that involve data A.

The consequence of the observations reported above is that:

� When measurers 1 and 2 count the UFP of the application, they
will get differences that are due to subjective evaluations in
M(ILF), M(EI), M(EO), etc. All these differences sum up: the mea-
sure provided by measurer 2 will be greater than the measure
provided by measurer 1 because of the subjectively increased
size of ILF, EI, EO, etc.
� When measurers 1 and 2 measure the size of the application

based only on EI, they get differences due to subjective interpre-
tations only for M(EI). Thus, the difference between the two
measures will be smaller, though not null.

We can conclude that, although the simplified measure pro-
posed in the paper is not free from subjectivity, it is – by construc-
tion – less affected by subjectivity than measures involving
multiple BFC.

9.2.3. Theoretical implications
A few authors (see for instance [18,36]) noted that the measures

of some BFC are inter-correlated. Our analyses confirmed previous
results concerning inter-correlations (see Table 3). By means of
LMS analysis it is possible to quantify the inter-correlations: for
the ISBSG dataset we found a statistically significant linear correla-
tion between the measures of EO and EI: M(EO) = 24.5 + 0.7 M(EI).

These findings cast serious doubts on the well-formedness of
Function Points as a measure, as inter-correlation among BFC mea-
sures imply that some aspects are taken into account multiple
times in the size measure. According to our analysis, including both
M(EI) and M(EO) in the measure of size involves counting M(EI) 1.7
times. From the theoretical point of view, measuring some prop-
erty or dimension that is (maybe partially) already measured –
by taking into account other BFC – makes the resulting measure
unstable.

Basing size measures on a single BFC completely removes this
type of problems.

9.3. Future work

A possible evolution of the work reported above consists in
repeating the analysis described in Section 6 with a larger dataset,
to gain a better confidence in the possibility of building models
that are based on a simplified definition of size and on a relatively
sophisticated measure of complexity.
We shall extend our analysis to involve additional parameters
that could explain why EI can be used as a replacement of UFP,
or why for COBOL projects EQ appears to correlate to effort better
– as far as R2

OLS is concerned – than both EI and UFP (see Table 5).
Finally, we intend to extend the analysis reported above to

COSMIC Function Points.

Acknowledgments

The work has been partially supported by Project ‘‘Metodi, tec-
niche e strumenti per l’analisi, l’implementazione e la valutazione
di sistemi software’’ funded by the Università degli Studi dell’Insu-
bria and Research Fund of School of Engineering of Austral
University.

References

[1] B.W. Boehm, Software Engineering Economics, Prentice-Hall, 1981.
[2] G. Finnie, G. Wittig, J. Desharnais, A comparison of software effort estimation

techniques: using function points with neural networks, case-based reasoning
and regression models, Journal of Systems and Software 39 (3) (1997) 281–
289.

[3] R. Jeffery, M. Ruhe, I. Wieczorek, Using public domain metrics to estimate
software development effort, in: Software Metrics Symposium, 2001. METRICS
2001. Proceedings. Seventh International, IEEE, 2001, pp. 16–27.

[4] L. Buglione, C. Ebert, Estimation tools and techniques, Software, IEEE 28 (3)
(2011) 91–94.

[5] A.J. Albrecht, J.E. Gaffney, Software function, lines of code and development
effort prediction: a software science validation, IEEE Transactions on Software
Engineering 9 (6) (1983) 639–647.

[6] C. Symons, Function point analysis: difficulties and improvements, IEEE
Transactions on Software Engineering 14 (1988) 2–11.

[7] I. ISO, IEC 24570: 2004, Software Engineering-NESMA Functional Size
Measurement Method Version 2.1 – Definitions and Counting Guidelines for
the Application of Function Point Analysis, International Organization for
Standardization, Geneva.

[8] Finnish Software Measurement Association, FiSMA FSM Method 1.1 (2004).
[9] COSMIC – Common Software Measurement International Consortium, The

COSMIC Functional Size Measurement Method – Version 3.0 Measurement
Manual (The COSMIC Implementation Guide for ISO/IEC 19761: 2003) (2007).

[10] Total Metrics, Methods for Software Sizing How to Decide which Method to
Use (2007).

[11] C.F. Kemerer, Reliability of function points measurement: a field experiment,
Communications of the ACM 36 (2) (1993) 85–97.

[12] J. Jeffery, G. Low, M. Barnes, Comparison of function point counting techniques,
IEEE Transactions on Software Engineering 19 (5) (1993) 529–532.

[13] P. Rule, The importance of the size of software requirements, in: Software
Measurement Services, NASSCOM Conference, India, 2001.

[14] J. Cuadrado-Gallego, L. Buglione, M. de Sevilla, P. Rodrı́guez-Soria, M.
Dominguez, Horizontal dispersion of software functional size with IFPUG
and cosmic units, Advances in Engineering Software 41 (2) (2010) 262–269.

[15] O. Mendes, A. Abran, P. Bourque, Function Point Tool Market Survey, Tech.
Rep., Université du Québec a Montréal, Montreal, 1996.

[16] A. Stambollian, A. Abran, Survey of automation tools supporting COSMIC-FFP
ISO 19761, in: Proceedings of the 16th IWSM-Metrikom 2006, Postdam,
Germany, 2006.

[17] D. Kempisty, M. Harris, Is automated function point counting useful yet? in:
United Kingdom Software Metrics Association Conference – UKSMA, 2009.

[18] B. Kitchenham, K. Känsälä, Inter-item correlations among function points, in:
Proceedings of the 15th International Conference on Software Engineering,
ICSE ’93, IEEE Computer Society Press, Los Alamitos, CA, USA, 1993, pp. 477–
480.

[19] ISO/IEC, ISO/IEC 24750:2005, Software Engineering NESMA Functional Size
Measurement Method, Version 2.1, Definitions and Counting Guidelines for
the Application of Function Point Analysis (2005).

[20] L. Santillo, M. Conte, R. Meli, Early and quick function point: sizing more with
less, in: Software Metrics, 2005. 11th IEEE International Symposium, Como,
19–22 September 2005.

[21] ISO, ISO/IEC 20926: 2003, Software Engineering – IFPUG 4.1 Unadjusted
Functional Size Measurement Method – Counting Practices Manual (2003).

[22] L. Buglione, C. Gencel, Impact of base functional component types on software
functional size based effort estimation, Product-Focused Software Process
Improvement (2008) 75–89.

[23] A. Abran, P.N. Robillard, Function points analysis: an empirical study of its
measurement processes, IEEE Transactions on Software Engineering 22 (1996)
895–910.

[24] S. Morasca, On the use of weighted sums in the definition of measures
international conference on software engineering, in: 2010 ICSE: Workshop on
Emerging Trends in Software Metrics, 2010, pp. 8–15.

[25] R.D. Cook, S. Weisberg, Residuals and Influence in Regression, Chapman and
Hall, London, 1982.

http://refhub.elsevier.com/S0950-5849(13)00086-4/h0005
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0005
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0010
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0010
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0010
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0010
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0015
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0015
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0015
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0020
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0020
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0025
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0025
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0030
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0030
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0035
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0035
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0035
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0035
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0040
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0040
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0040
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0040
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0040
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0045
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0045
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0045
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0050
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0050
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0050
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0055
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0055
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0055


L. Lavazza et al. / Information and Software Technology 55 (2013) 1796–1809 1809
[26] P.J. Rousseeuw, A.M. Leroy, Robust Regression and Outlier Detection, John
Wiley & Sons, Inc., New York, NY, USA, 1987.

[27] S.G. MacDonell, Establishing relationships between specification size and
software process effort in CASE environments, Information and Software
Technology 39 (1) (1997) 35–45.

[28] B. Kitchenham, S. MacDonell, L. Pickard, M. Shepperd, Assessing Prediction
Systems, Technical report, University of Otago, 1999.

[29] L. Baresi, S. Morasca, Three empirical studies on estimating the design effort of
web applications, ACM Transactions on Software Engineering and
Methodology 16 (4) (2007) 15.

[30] S. Morasca, Building statistically significant robust regression models in
empirical software engineering, in: PROMISE ’09: Proceedings of the 5th
International Conference on Predictor Models in Software Engineering, ACM,
New York, NY, USA, 2009, pp. 1–10.

[31] B. Kitchenham, L. Pickard, S. MacDonell, M. Shepperd, What accuracy statistics
really measure [software estimation], in: Software, IEE Proceedings, vol. 148,
IET, 2001, pp. 81–85.

[32] International Software Benchmarking Standards Group, Worldwide Software
Development: The Benchmark, Release 11 (2009).

[33] E. Mendes, C. Lokan, R. Harrison, C. Triggs, A replicated comparison of cross-
company and within-company effort estimation models using the ISBSG
database, in: Software Metrics, 2005. 11th IEEE International Symposium,
IEEE, 2005, pp. 10.

[34] C. Gencel, L. Buglione, Do base functional component types affect the
relationship between software functional size and effort?, Software Process
and Product Measurement (2008) 72–85

[35] P. Pendharkar, J. Rodger, The relationship between software development
team size and software development cost, Communications of the ACM 52 (1)
(2009) 141–144.

[36] C.J. Lokan, An empirical study of the correlations between function point
elements, IEEE International Symposium on Software Metrics 0 (1999) 200.

[37] C. Symons, The Performance of Real-Time, Business Application and
Component Software Projects: An Analysis of COSMIC-Measured Projects in
the ISBSG Database, Tech. Rep., ISBSG, 2009.

[38] International Software Benchmarking Standards Group, Practical Software
Project Estimation: A Toolkit for Estimating Software Development Effort &
Duration, McGraw-Hill, 2011.

[39] B. Kitchenham, E. Mendes, Why comparative effort prediction studies may be
invalid, in: Proceedings of the 5th International Conference on Predictor
Models in Software Engineering, ACM, 2009, p. 4.

[40] B. Kitchenham, S. Pfleeger, B. McColl, S. Eagan, An empirical study of
maintenance and development accuracy, Journal of Systems and Software 64
(1) (2002) 57–77.
[41] E. Stensrud, I. Myrtveit, Human performance estimating with analogy and
regression models: an empirical validation, in: Proceedings of the 5th
International Symposium on Software Metrics, 1998.

[42] D. Sheskin, Handbook of Parametric and Nonparametric Statistical Procedures,
third ed., Chapman & Hall/CRC, 2004.

[43] L. Lavazza, G. Robiolo, The role of the measure of functional complexity in
effort estimation, in: Proceedings of the 5th International Conference on
Predictor Models in Software Engineering – PROMISE 2010, Timisoara, 2010.

[44] L. Lavazza, G. Robiolo, Introducing the evaluation of complexity in functional
size measurement: a UML-based approach, in: Proceedings of the 4th
International Symposium on Empirical Software Engineering and
Measurement – ESEM 2010, Bozen, 2010.

[45] G. Robiolo, R. Orosco, Employing use cases to early estimate effort with
simpler metrics, Innovations in Systems and Software Engineering 4 (1) (2008)
31–43.

[46] A. Albrecht, Measuring application development productivity, in: I.B.M. Press
(Ed.), IBM Application Development Symp., 1979, pp. 83–92.

[47] R. Jeffery, J. Stathis, Function point sizing: structure, validity and applicability,
Journal of Empirical Software Engineering 1 (1) (1996) 11–30.

[48] A. Abran, B. Gil, É. Lefebvre, Estimation models based on functional profiles, in:
International Workshop on Software Measurement–IWSM/MetriKon,
Kronisburg, Germany, 2004, pp. 195–211.

[49] C. Gencel, L. Buglione, Do different functionality types affect the relationship
between software functional size and effort, in: Proceedings of the Int. Conf. on
Software Process and Product Measurement (IWSM-MENSURA 2007), Palma
de Mallorca, 2007, pp. 235–246.

[50] L. Buglione, F. Ferrucci, C. Gencel, C. Gravino, F. Sarro, Which COSMIC Base
Functional Components are Significant in Estimating Web Application
Development? A Case Study, in: 20th International Workshop on Software
Measurement (IWSM)/Metrikon/MENSURA Joint Conference, Shaker Verlag,
2010.

[51] M. Conte, T. Iorio, R. Meli, L. Santillo, E&Q: An Early & Quick Approach to
Functional Size Measurement Methods, in: Software Measurement European
Forum, 2004.

[52] M. Heričko, A. Živkovič, The size and effort estimates in iterative development,
Information and Software Technology 50 (7) (2008) 772–781.

[53] A. Živkovič, I. Rozman, M. Heričko, Automated software size estimation based
on function points using UML models, Information and Software Technology
47 (13) (2005) 881–890.

[54] C. Gencel, O. Demirors, Functional size measurement revisited, ACM
Transactions on Software Engineering and Methodology 17 (3).

http://refhub.elsevier.com/S0950-5849(13)00086-4/h0060
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0060
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0060
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0065
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0065
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0065
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0070
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0070
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0070
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0075
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0075
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0075
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0075
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0075
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0080
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0080
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0080
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0085
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0085
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0085
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0090
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0090
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0095
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0095
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0095
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0095
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0155
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0155
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0155
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0100
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0100
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0100
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0105
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0105
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0105
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0110
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0110
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0115
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0115
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0120
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0120
http://refhub.elsevier.com/S0950-5849(13)00086-4/h0120

	Towards a simplified definition of Function Points
	1 Introduction
	2 A concise introduction to Function Points Analysis
	3 Overview of the empirical study
	3.1 Goals of the analysis
	3.1.1 Verification of the role of BFC in functional size measures
	3.1.2 Building predictive models of software development effort with accuracy comparable to that of UFP
	3.1.3 Building predictive models of software development effort, possibly in combination with measures of other requirements attributes, with better accuracy than FPA

	3.2 Research questions
	3.3 Statistical techniques

	4 Functional sizing based on BFC
	4.1 ISBSG data selection criteria
	4.2 UFP vs. BFC size measures
	4.2.1 Non-parametric analysis
	4.2.2 Regression analysis

	4.3 Remarks on size analysis

	5 Effort prediction based on BFC
	5.1 Predicting effort based on SBFC
	5.1.1 Non-parametric evaluation of the association between SBFC and effort
	5.1.2 Models of the correlation between SBFC and effort

	5.2 Exploration of alternative data grouping criteria
	5.3 Effort estimation by analogy

	6 Towards models that use additional requirements measures
	7 Threats to validity
	7.1 Threats to internal validity
	7.2 Threats to external validity
	7.3 Threats to construct validity

	8 Related work
	8.1 Work concerning the relationship between the size of BFC and the size of applications
	8.2 Work concerning the relationship between BFC and effort
	8.3 Work concerning the relationship between the distribution of BFC sizes and effort
	8.4 Work dealing with the simplification of the measurement process
	8.5 Other relevant work

	9 Conclusions and future work
	9.1 Results
	9.2 Consequences
	9.2.1 Simplification of the measurement process
	9.2.2 Less subjective measures
	9.2.3 Theoretical implications

	9.3 Future work

	Acknowledgments
	References


