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Abstract This article is concerned with the study of statistical power in agent-

based modeling (ABM). After an overview of classic statistics theory on how to

interpret Type-II error (whose occurrence is also referred to as a false negative) and

power, the manuscript presents a study on ABM simulation articles published in

management journals and other outlets likely to publish management and organi-

zational research. Findings show that most studies are underpowered, with some

being overpowered. After discussing the risks of under- and overpower, we present

two formulas to approximate the number of simulation runs to reach an appropriate

level of power. The study concludes with the importance for organizational

behavior scholars to perform their models in an attempt to reach a power of 0.95 or

higher at the 0.01 significance level.

Keywords Statistical power � Agent-based modeling � Computational simulation �
Effect size � Sample size � Organizational behavior research

1 Introduction

The last few years have seen a growing interest towards agent-based modeling

(ABM) and its potentials to benefit management and organization studies (Fioretti

2013). As a technique to model complex adaptive social systems, it has been
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recently advocated that ABM is particularly well suited to team research (Secchi

2015) and, more broadly, to study organizational behavior (Secchi and Neumann

2016).

Research on organizational behavior and management is slowly taking ABM into

consideration, with the help of a few specialized academic outlets such as

Computational and Mathematical Organization Theory and the Journal of Artificial

Societies and Social Simulation, and of increasing room at international manage-

ment conferences such as EURAM and AOM. Given this expanding trend, we

believe behavioral sciences and management studies have a lot to offer to the way

computational simulations are performed. We refer to the typical toolkit of the

management and organizational behavior researcher, the questions they ask, and the

solutions they adopt when conducting a study. ABM simulations can be intended as

experiments of a computational nature (Coen 2009a; Hoser 2013) consistent with

experimental design and methods that flourish in our disciplines.

This article is concerned with an issue that is opposite to what the articles above

point out (i.e. how ABM can be imported into management and organizational

behavior studies). The present study aims at exporting one of the most relevant

concerns of experimental methods to ABM. One of the issues that every

experimental researcher deals with is statistical power and sample size determina-

tion (Cohen 1988, 1992). When performing any computer simulation, a researcher

comes to the question of how many times the model should run. As known from the

literature (e.g., Liu 2014), this is a problem of sample size determination that is

usually addressed by power analysis.

By improving the way ABM research is conducted by the means of power

analysis, we also improve the tools in the hands of those organizational behavior

researchers that have embraced this new simulation technique. Moreover, by using

statistical power analysis, the organizational researcher may feel more ‘‘at home,’’

being able to apply tests that are more familiar to him/her.

It is clear that statistical power analysis is relevant only to ABM respecting some

conditions. First of all, the models under scrutiny have to be stochastic (see North

and Macal 2007, Sect. 2 for a comparison between deterministic and stochastic

models). Second, the objective of the model should be testing of assumptions and

not, say, observation of emergent behavior or detailed description of phenomena, as

is often the case for exploratory ABM. Third, while our discussion of statistical

power analysis can be applied to all kinds of tests, in the second part of the paper,

we will focus on the following situation: one or more outcome measures are

identified, and the hypothesis is to test that the expected outcomes under

J configurations of parameters are the same; the expected outcome for each

configuration is estimated through the mean over a certain number n of runs.

Although statistical power and Type-II and Type-I error are well known topics in

statistics, some authors (e.g., Gigerenzer 2004; Friston 2012) highlight that many

scholars get confused by the interpretation of some of the key elements and

approaches involved. For this reason, we believe we should clarify what is the

methodological backbone of the testing theory we are discussing. Hence, the

following section features a description of the classic theory of power, setting the

ground for the basic concepts used in this article. We then review ABM studies
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published between 2010 and 2013 and present calculations of power for all the 69

articles (whenever possible). A discussion of findings follows and we finally

conclude the article with some recommendations for organizational and ABM

researchers.

2 The traditional treatment of power

In the following, we consider the Neyman–Pearson framework, introduced by Jerzy

Neyman and Egon Sharpe Pearson between the 20’s and the 30’s, where statistical

tests start from the definition of a null hypothesis, H0, and of an alternative

hypothesis, H1. This article is concerned with parametric models, i.e. statistical

models defined through a set of parameters H, called parameter space. As an

example, a normal distribution can be characterised by the mean l, that can take any
real value, and the standard deviation r, that must be nonnegative. The parameter

space is H ¼ �1;þ1ð Þ � 0;þ1½ Þ. The null hypothesis is generally characterized
as a subset of the parameter space, say H0. The most common hypotheses

correspond to the nullity of a parameter (in the previous example, say, l ¼ 0 and

H0 ¼ 0f g � 0;þ1½ Þ) or a vector of parameters, or the equality of some parameters.

The alternative hypothesis is given by the values of the parameters that are not in

H0; this set is generally called H1 and is defined as the complement of H0 in H (in

the previous example, H1 ¼ �1; 0ð Þ � 0;þ1½ Þ [ 0;þ1ð Þ � 0;þ1½ Þ). It should
therefore be clear, in what follows, that either the null or the alternative hypothesis

is true.

The objective of a statistical test is to help the researcher make a decision as to

which hypothesis between H0 and H1 is true. Usually this is done through a test

statistic T and a subset A of the range of T, called acceptance region. In the sample

the test statistic T takes the value t. It is customary to write that, if t does not fall

inside the region A, the test ‘‘rejects’’ the null hypothesis. On the other hand, if t

falls inside the region A, the test ‘‘fails to reject’’ or ‘‘does not reject’’ the null

hypothesis. This apparently odd circumlocution is preferred instead of the more

direct ‘‘accept.’’ The widespread and uncontroversial use of this expression in the

recent literature conceals a disagreement in earlier theoretical references, as

witnessed by the contradiction between the use of ‘‘acceptance region’’ and of ‘‘fail

to reject.’’ Indeed, Neyman himself (Neyman 1950, p. 259) agreed with the use of

the word ‘‘accept.’’ The dichotomy between acceptance and rejection is coherent

with the original purpose of tests in the Neyman–Pearson framework. Neyman, in

particular, was extremely clear about the fact that tests should lead to decision based

on acceptance or rejection and even to action (Neyman 1950, p. 259). Pearson,

instead, was more reluctant (Pearson 1955, p. 206). It was Fisher (Fisher 1955, p.

73), in a different approach to testing, who strongly and consistently argued against

the use of the word ‘‘accept’’ and this contributed to create the confusion on

terminology. In fact, the prescription that ‘‘accept’’ should not be used inside the

Neyman–Pearson approach is yet another part of what Gigerenzer (2004) calls the

‘‘null ritual.’’ However, in this article, we follow Neyman and will use

interchangeably ‘‘fail to reject’’ or ‘‘accept.’’
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Two types of errors can be committed while testing the hypotheses. If we reject

the null hypothesis when it is true, we commit a Type-I error (or false positive). This

happens with a rate equal to the probability that T does not belong to A when H0 is

true. This probability is usually denoted as a. If we accept the null hypothesis when
it is false, we commit a Type-II error (or false negative). This happens with rate b,
the probability that T belongs to A when H0 is false (and H1 is true). The two

probabilities, a and b, are linked by a trade-off: in order for a to decrease, one needs

to increase A (because a is the probability that T does not belong to A under H0),

and therefore b increases too (because b is the probability that T belongs to A under

H1).
1 In the classic Neyman–Pearson approach, A is chosen in such a way that a is

fixed and small (5 and 1 % are customary values). On the other hand, b is not

directly (and rarely indirectly) controlled. However, when the sample size

N increases, b generally tends to 0, so that, for N large enough, one can take a
small and hope for b to be not too large.

2.1 An example on the relation between a and b

Consider the test for the nullity of the mean in a normally distributed population

with mean l and variance r2. The null hypothesis is H0 : l ¼ 0, the alternative

hypothesis is H1 : l 6¼ 0. Suppose to observe a sample X1; . . .;XNf g from the

population. A test statistic for this hypothesis is

T ¼
PN

i¼1 Xi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1 X
2
i � 1

N

PN
i¼1 Xi

� �2
q :

If H0 holds true, then its distribution is a Student’s t with N � 1 degrees of freedom,

indicated as tN�1. An acceptance region at level a will be given by the interval

A ¼ ta
2
;N�1; t1�a

2
;N�1

h i
(this is not the only possible one, but is the most common),

where tc;n is the c�quantile of the distribution of a tn random variable. This region

will have a Type-I error rate equal to a by construction. Suppose now that H0 does

not hold true, i.e. l 6¼ 0 and H1 holds. Then, T will be distributed as a noncentral

Student’s t with N � 1 degrees of freedom and noncentrality parameter

kN ¼
ffiffiffiffi
N

p
l=r, indicated as tN�1 kNð Þ. The Type-II error rate b is:

b ¼P tN�1 kNð Þ 2 ta
2
;N�1; t1�a

2
;N�1

h in o

¼P ta
2
;N�1 � tN�1 kNð Þ� t1�a

2
;N�1

n o
:

One can verify the properties we rapidly described above. When a decreases, ta
2
;N�1

and t1�a
2
;N�1 get far from 0, and b increases. When N increases, a is constant while b

goes to 0, as kN gets further from 0.

1 See van der Vaart (1998, p. 213) or Choirat and Seri (2012, Proposition 7, p. 285) for a quantitative

version of this trade-off.
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2.2 The power of a test

The power of a statistical test is the probability that it correctly rejects a false null

hypothesis, namely one minus b. The previous reasoning lets one wonder which

levels of power are supposed to be acceptable. The value that seems to be more

commonly accepted is 80 % as it appears in several places in Cohen (1992) and also

in Lehr (1992). Studies with lower values are often seen as underpowered. This

value, corresponding to b ¼ 20 %, does not seem very high, especially when

a ¼ 5 % or even 1 %. The profound asymmetry between the value required for a
and the value deemed acceptable for b calls for a clarification.2 We provide, in what

follows, three different possible explanations, not necessarily alternative to each

other.

First, it has been repeatedly indicated in the literature (Sedlmeier and Gigerenzer

1989; Hallahan and Rosenthal 1996; Cohen 1992) that many researchers do not

perform formal power analysis but rely on sample size as an indicator of error.

Indeed, when the sample size N increases, even if a is fixed, b tends to decrease to 0.

Together with the increase in precision, this is probably the most important reason

for which a large sample size is usually considered positively. Therefore, a

researcher may feel dispensed with power considerations if he or she believes that

the sample size is sufficiently large. However, we show below that this false sense

of security often leads to underpowered studies. (We will see more on the role of

sample size later.)

Second, suppose that we have two hypotheses, say H0 and H00, such that either

one or the other is true but both of them cannot be true at the same time. As in the

Neyman–Pearson approach a is controllable while b isn’t completely, it is often

reasonable to choose as H0 the hypothesis, say H0, whose rejection is considered

more serious. Indeed, in case H00 were chosen as the null, the rejection of H0 when
true (that would now correspond to a Type-II error rate b) would be out of control.

This is related to the reason behind Cohen’s choice (Cohen 1988, Sect. 2.4) of

b ¼ 0:20 when a ¼ 0:05 (see also Lakens 2013). Indeed, he explicitly states that the

ratio b=a should be near to 4 when Type-I errors are about four times as serious as

Type-II errors.

Third, the different emphasis on a and b is largely due to a misunderstanding

between the Neyman–Pearson and Fisher approaches that is made particularly clear

in Royall (1997, pp. 109–110). In the Fisher approach, the computation of the test

statistic does not lead to any decision but to the determination of the p value: this is

the probability, under the null hypothesis, of obtaining values that are as extreme as,

or more extreme than the one that is observed, i.e. t. A small p value is considered

evidence against the null hypothesis because, if the null is true, it is difficult to

suppose that chance alone would lead to such a small probability of observing a

sample as extreme as the one we have observed. Despite Fisher himself took

2 As an interesting variation on the traditional choice of a fixed significance level, Arrow (1960)

describes a procedure to compute a that starts from setting a ¼ b for a value of the parameters under the

alternative hypothesis.
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position against this choice (Fisher 1956, p. 42)3 the extraordinariness of the p value

is often evaluated comparing it with a (if smaller, rejection ensues). Therefore a
takes the further role of a gauge of extraordinariness and it is smaller than b because

of the double meaning of which it is charged, i.e. error in a Neyman–Pearson

framework and p value threshold in a Fisher framework.

This is complicated by the fact that the alternative hypothesis is generally

composed of more than one possible value for the parameters. This means that for

any possible value of the parameters respecting the alternative hypothesis H1 it is

possible to define a different value of b and power. However, it is generally the case

that the parameters enter into the power function through a single number ES, called

effect size and identified with l=r in the previous section. There are two kinds of

power analysis that can be performed involving ES. The first one is called a priori

power analysis and is generally used, before data is collected, to evaluate the sample

size needed to obtain a certain value of b for fixed a under an hypothesized value for
ES. This procedure is customarily performed imputing a value to ES on the basis of

the evidence collected in previous similar studies (see Lenth 2001, Sect. 2; Lakens

2013). Cohen (1992) has compiled tables of ES values indicated as small, medium

and large that can be used for this task. This kind of power analysis is universally

considered as an important and statistically sound tool (despite the use of ‘‘canned’’

effect sizes has been subject to critique, see Lenth 2001, Sect. 6).

The second is called post hoc power analysis and is performed after estimation in

order to obtain an a posteriori estimate of the power. This is achieved using the

value of ES in which the parameters are replaced by their estimated values. There is

some evidence that this technique has several drawbacks (for further de-

tails on the issues related to this analysis, see Korn 1990; Hoenig and Heisey

2001).

2.3 The importance of power for ABM

In this subsection we briefly discuss the role of Type-I and Type-II error rates for

ABM as a theoretical preamble for the review performed in the section below.

Indeed, in this case, the researcher makes decisions on the parameters of the

simulation and on how many times the simulation should be performed. The interest

of this class of models is often to show if and how a certain outcome measure varies

with the parameters of the simulated model. Agent-based simulations are

particularly useful in the social sciences for their ability to model complex adaptive

systems (e.g., Miller and Page 2007). This makes ‘‘emergence’’ one of the main

features of these models (e.g., Fioretti 2013; Secchi 2015), sometimes as a result of

complexity. This points right at the core of the use of power for this class of models,

3 The attitude of Fisher towards fixed thresholds was more ambivalent than this source suggests. As an

example, Fisher (1926) advocated the comparison of the p value with a threshold chosen by the researcher

according to his or her experience (2, 5 or even 10 %). It is therefore ironic that this paper is often

considered as the origin of the fixed 5 % threshold because this is the number that Fisher used more

frequently in it. A more nuanced use of p values is in Fisher (1925, p. 80 and elsewhere), where the 5 %

threshold is used alongside other values, such as 1 %.
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that is to make sure that the occurrence that results of simulations are mostly

affected by random effects is avoided.4

ABM researchers may be running the simulation for different purposes. Some of

them may be interested in the mean values of the outcome variable, some others

may focus on extreme values, while other simulations may be descriptive or tied to a

particular set of empirical data. In this article, we assume that the researcher

considers the average value of the outcome variable to be informative, hence

relevant to one’s data analysis. This assumption may cut some of the ABM

simulations off but we believe most approaches are covered. The modeler will

generally identify, for example, a certain number J of parameter configurations to be

experimentally tested in a computational simulation. The theoretical expectations of

the outcome measure for each of these combinations are given by lj, j ¼ 1; . . .; J.

Several null hypotheses can be tested, but most of them require that some of these

means are equal and, in the extreme case, all of them are equal (H0 : l1 ¼ . . . ¼ lJ).
We suppose that the simulation is balanced across configurations so that each mean

is estimated through n runs, and the total number of simulations to be run is

N ¼ n � J.
In ABM and more generally in simulations, most of the reasons for which, in

real-world experimental studies, a large b can be tolerated suddenly cease to be

acceptable. On the one hand, the statistical tests are quite standard and their power

analysis is easily performed. On the other hand, both a and b could be reduced with

respect to the values in use in most statistical practice. However, before we can

elaborate further on the adequate level of power for ABM research, the next section

shows not only that a formal power analysis—neither a priori nor post hoc—is by

no means common in ABM but also that the values that can be reconstructed from

the papers show that most studies are strongly underpowered.

3 ABM and power: a review

Once we have clarified what is the theoretical need for statistical power analysis,

and before explaining the consequences of ignoring it, we may ask whether ABM

research is actually exempt from these issues. One may claim that, for simulation

studies, all it takes to avoid Type-II error is to increase the number of runs, or

conduct convergence analysis, for example.

The simplest action to obtain high power, thus having a low probability that the

null hypothesis is accepted when it is false, is that of increasing the number of runs.

This would be equal to increasing the number of subjects in an experiment, bearing

a positive and strong effect on power (Liu 2014). However, given the nature of

agent-based simulations, even one more run can be sometimes particularly hard to

perform. This is due to the fact that some of these models can be complex. Some

advocate a KIDS (‘‘Keep It Descriptive, Stupid’’) principle as opposed to the classic

KISS (‘‘Keep It Simple, Stupid’’) to signal that ABM can be very detailed

4 This is made very clear by Morris (1987) whose example shows unequivocally that b is by far a more

reasonable measure of reliability than the estimated ES.
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representations of reality (Edmonds and Moss 2005). These are models that some

consider ‘‘expensive’’ (Ritter et al. 2011), because each run may take a significant

amount of time to complete. Of course, not all ABM are complex and expensive so,

in principle, the strategy of increasing the number of runs may pay off although it

can be difficult to achieve in practice.

The other claim—i.e. perform convergence analysis—tackles with a different

issue that may affect the test power but it is not directly related to it. In fact,

convergence or sensitivity analyses are usually performed to understand whether a

given simulation reaches some sort of equilibrium around a given pattern of results

(Robinson 2014). Clearly, this is a very important check to be run on a simulation

but, as far as ABM is concerned, it deals with time rather than with runs. In other

words, it provides information on when a given configuration of parameters provide

meaningful results within a single run. It may help with Type-I error, because if data

are of low quality (e.g., they have not reached the above-quoted equilibrium) the test

is applied to a set of data intrinsically different from the one that the researcher

would like to submit to test, and the size of the test may be incorrect.

Even whether power analysis is deemed unnecessary because Type-II error can

be avoided easily, researchers should have a benchmark, a point of reference. For

this reason, it is strongly advocated by the authors of this paper that power analysis

should always be performed (Secchi 2014).

Given the importance of power analysis for the social and behavioral sciences

(Cohen 1988; Liu 2014), it is not uncommon to find publications indicating the

scarce use for empirical studies (e.g., Mone et al. 1996; Sedlmeier and Gigerenzer

1989). As far as our knowledge is concerned, a review of power has not been

conducted for simulation studies. Given the prominence that ABM is gaining in the

social and behavioral sciences, we have reviewed some of the publications featuring

a model and calculated power where appropriate and possible. In the following, we

describe the method of the review study and comment on its results.

3.1 Methods

The study was conducted on articles published over a limited period of time when

ABM-related publications seemed to increase. We considered the four years from

2010 to 2013. Since our interest lies in the management and organizational behavior

literature, we screened the two simulation journals that have the closest ties with our

Table 1 Summary of results for power calculations performed (number of models)

Journal IP OP NC Fine Total Articles

CMOT 17 7 5 – 29 24

JASSS 21 1 14 4 40 39

Other 4 2 – – 6 6

TOTAL 42 10 19 4 75 69

IP insufficient power, OP overpower, NC not computable, Fine good power

Other: Organization Science, MIS Quarterly, Journal of Management Studies, Strategic Management

Journal
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Table 2 Power analysis estimations on ABM articles published between 2010 and 2013

Article ES = 0.1 0.3 0.1 0.3 CoP Runs ER

a = 0.01 0.01 0.05 0.05

Computational and Mathematical Organization Theory

Arroyo et al. (2010) NC NC NC NC 9, 6 NC NC

Fioretti and Lomi (2010) 0.161 0.997 0.355 0.999 4 100 562

Fridman and Kaminka (2010)

——exp 1 0.015 0.074 0.066 0.207 2 30 875

——exp 2 0.012 0.036 0.058 0.124 2 15 875

——exp 3 0.037 0.558 0.127 0.780 2 30d 875

——exp 4 0.014 0.060 0.063 0.180 4 25 68

Zhang and Gao (2010)

——exp 1 0.999a 0.999a 0.999a 0.999a 24 1000 178

——exp 2 0.03 0.318 0.108 0.560 2 100 875

Zhang and Leezer (2010) 0.029 0.689 0.110 0.871 36d 10d 138

Zappala and Logan (2010) 0.999a 0.999a 0.999a 0.999a 1024 5000 16

Ahrweiler et al. (2011) 0.017 0.133 0.073 0.324 5d 10 487

Grow and Flache (2011) 0.326 0.999a 0.572 0.999a 36 50 138

Hirshman et al. (2011) 0.999a 0.999a 0.999a 0.999a 100 1000 72

Mungovan et al. (2011) 0.160 0.997 0.355 0.999 4 100 562

Sharpanskykh and Stroeve (2011) 0.999a 0.999a 0.999a 0.999a 4446 8000 6

Zou and Yilmaz (2011) 0.999a 0.999a 0.999a 0.999a 1000d 1000d 16

Castellani and Rajaram (2012) NC NC NC NC NC NC NC

Cassell and Wellman (2012) NC NC NC NC NC NC NC

Cioffi-Revilla et al. (2012) 0.048 0.826 0.155 0.940 8 30 360

Wang and Hu (2012) NC NC NC NC NC NC NC

Abbas (2013) 0.012 0.031 0.057 0.120 4 4d 562

Bausch (2013) NC NC NC NC NC NC NC

Dugundji and Gulyás (2013) NC NC NC NC NC NC NC

Hoser (2013) 0.474 0.999a 0.708 0.999a 16 100 231

Fairchild et al. (2014) NC NC NC NC NC NC NC

Shimazoe and Burton (2013) 0.266 0.999 0.497 0.999 8 100 360

Villarroel et al. (2013) 0.999a 0.999a 0.999a 0.999a 9 1000 334

Udayaadithya and Gurtoo (2013) 0.999a 0.999a 0.999a 0.999a 768 200 19

Yamanoi and Sayama (2013) 0.234 0.999 0.462 0.999 25 50 174

Journal of Artificial Societies and Social Simulation

Altaweel et al. (2010) 0.366 0.999a 0.608 0.999a 2 1000 875

Boero et al. (2010) 0.397 0.999a 0.637 0.999a 7 1000d 393

Bosse and Gerritsen (2010) NC NC NC NC NC NC NC

Cecconi et al. (2010) 0.033 0.692 0.119 0.871 16d 16 231

Dunn and Gallego (2010) NC NC NC NC NC NC NC

Lee (2010) NC NC NC NC NC NC NC

Miodownik et al. (2010) 0.016 0.115 0.072 0.294 4 10 562
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Table 2 continued

Article ES = 0.1 0.3 0.1 0.3 CoP Runs ER

a = 0.01 0.01 0.05 0.05

Quera et al. (2010) NC NC NC NC NC NC NC

Radax and Rengs (2010)b 0.04 0.550 0.147 0.772 2 164 69c

Sobkowicz (2010) 0.999 0.999 0.999 0.999 42d 8000 125

Savarimuthu et al. (2010) NC NC NC NC NC NC NC

Xianyu (2010) 0.037 0.558 0.127 0.781 4 30 562

Ballinas-Hernández et al. (2011) NC NC NC NC NC NC NC

Nongaillard and Mathieu (2011) 0.565 0.999a 0.781 0.999a 20 100 201

Siebers and Aickelin (2011) 0.026 0.330 0.099 0.578 4 20 562

Wildman and Sosis (2011) 0.565 0.999a 0.781 0.999a 20 100 201

Fonoberova et al. (2012) 0.656 0.999a 0.846 0.999a 36 80 138

Grazzini (2012) 0.161 0.997 0.355 0.999 4 100 562

Letia and Slavescu (2012) NC NC NC NC NC NC NC

Meadows and Cliff (2012) NC NC NC NC NC NC NC

Montes (2012) 0.857 0.999a 0.953 0.999a 40 100 129

Patel et al. (2012) 0.543 0.999a 0.765 0.999a 19 100 207

Schindler (2012) 0.099 0.995 0.259 0.999 12 43 278

Sioson (2012) 0.014 0.058 0.063 0.174 2 24 875

Sutcliffe and Wang (2012) 0.424 0.999a 0.669 0.999a 48 50d 114

Xianyu (2012) NC NC NC NC NC NC NC

Cockburn et al. (2013) NC NC NC NC NC NC NC

Demarest et al. (2013) 0.137 0.987 0.318 0.997 3 100 675

Dubois et al. (2013) 0.999 0.999a 0.999 0.999a 4, 6 1000 562, 433

Gulden (2013) NC NC NC NC NC NC NC

Heckbert (2013) NC NC NC NC NC NC NC

Jansson (2013) 0.497 0.999a 0.728 0.999a 17 100 223

Kim et al. (2013) 0.548 0.999a 0.766 0.999a 6 200 433

Lee et al. (2013) 0.991 0.999a 0.998 0.999a 80 100 83

Nye (2013) 0.565 0.999a 0.781 0.999a 20 100 201

Schindler (2013) 0.024 0.372 0.095 0.622 8 15 361

Shiba (2013) 0.016 0.099 0.071 0.265 3d 10 675

Waldeck (2013) 0.046 0.757 0.148 0.905 6 32 433

Wijermans et al. (2013) NC NC NC NC NC NC NC

Other journals

Miller and Lin (2010) 0.225 0.999 0.451 0.999a 24 50 178

Aggarwal et al. (2011) 0.999a 0.999a 0.999a 0.999a 16 10,000 231

Coen and Maritan (2011) 0.914 0.999a 0.976 0.999a 48d 100 114

Nan (2011) 0.179 0.999 0.392 0.999a 50 30 111

Levine and Prietula (2012) 0.048 0.867 0.154 0.958 12 25 278

Miller et al. (2012) 0.999a 0.999a 0.999a 0.999a 288 100 36
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discipline (Meyer et al. 2009, 2011): Computational and Mathematical Organiza-

tion Theory and the Journal of Artificial Societies and Social Simulation. Then, we

also screened articles published in a list of top management journals (based on ISI

Thompson’s Impact Factor) and decided to include the four presenting ABM-related

publications (Table 1): Organization Science, Journal of Management Studies,

Strategic Management Journal, and MIS Quarterly. The total sample of articles

selected for this study is 69, for a total of 75 experiments (some articles feature more

than one computational experiment or model).

The criteria for the selection of articles to include in our study were very

straightforward. We checked for publications built around an agent-based simula-

tion or where the model was a significant part of the study. We did not screen for

models that were more or less descriptive, nor we did check whether the article

made enough information available for us to allow (or replicate) power calculations.

The reasons for keeping all the ABM we could possibly find (in the time period

considered) was that of being able to have a look at all model types. Some of the

models reported as NC in Table 2 may be descriptive or of the kind mentioned

earlier in this paragraph.

Once the articles were selected, data on power or Type-II error was extracted

whenever possible. If no data or calculations were found in the article, we attempted

to gather the information needed to compute statistical power. Given that the most

difficult information to gather is the effect size ES, we hypothesized two worst case

scenario, with a small- (0.1) and a medium-size (0.3) ES à la Cohen (1992). Since

we treat ABM simulations as experiments, we calculated the statistical power of the

test hypothesizing that an ANOVA was performed to test the differences provided

by results from the different configurations of parameters. According to Cohen

(1992) the medium ES for the case of ANOVA is 0.25. We decided to go a bit above

that with 0.30 to reach a more significant impact on measurements. When ES is

large, high power is reached with a limited number of runs and we deem that this is

the case that may not present particular concerns. Another variable that requires

careful consideration is the significance level a at which power calculations should

Table 2 continued

Article ES = 0.1 0.3 0.1 0.3 CoP Runs ER

a = 0.01 0.01 0.05 0.05

Mean 0.415 0.783 0.526 0.842

SD 0.395 0.346 0.373 0.284

a Overpower
b The article uses power tests to determine how many runs need to be performed and we have adapted ES

to fit the calculation
c ES based on the information from their article
d Our estimate, not explicit in the paper

NC not computable, CoP how many configurations of parameters J in the study, Runs number of runs

n per CoP performed in the study, ER estimated number of runs according to our formula (2) with

a ¼ 0:01, b ¼ 0:05, ES ¼ 0:1
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be referred to. There is no consensus over its value and we have decided to take the

standard a ¼ 0:05 and also a more stringent criterion of a ¼ 0:01 as a reference for

our calculations.

3.2 Findings

Table 2 shows our calculations for 75 ABM studies found in the 69 articles selected

for the present study in years 2010–2013 (see above for details). All calculations are

performed using the ANOVA test with a ¼ 0:01, a ¼ 0:05, and for small (0.1) and

medium (0.3) ES. Table 2 then presents how many configurations of parameters

(CoP), J, the model in each paper uses, together with the number of runs n actually

performed—as declared by the authors. The final column is the calculation of the

recommended number of runs resulting from our formula (2) below when

1� b ¼ 0:95, a ¼ 0:01, and ES ¼ 0:1, although those simulations with J ¼ 2

CoP only could have benefited from using a t formula, like Lehr’s—we

acknowledge this limitation and slight imprecision in the calculations. Power

calculations appearing in columns 2 to 5 are obtained using Cohen’s (1988)

formulas as they appear in the package for —an open source software for

statistical analysis. The information provided in Table 2 allows full replication of

our study. A particularly sensible quantity is the number of configurations of

parameters (CoP), i.e. J, that we computed, as far as possible, from the original

articles, where the interested reader can check this information. Some of the studies

employ a full factorial design so that every possible parameter assumes multiple

values and the model is simulated a number n of times for every possible

combination of parameter values ceteris paribus. When this is the case, it is

relatively easy to calculate J by multiplying the various numbers as they appear in

the text of the article.5 Most studies do not perform any calculation to estimate the

robustness of the simulation. In the selected period, only one article (Radax and

Rengs 2010) presents statistical power analysis with the intention to determine the

appropriate number of runs.

There are multiple strategies to determine either the number of runs or steps.

Among the latter, some authors (e.g., Mungovan et al. 2011; Shimazoe and Burton

2013) report convergence analysis to estimate the steady state. Instead, among the

former, Siebers and Aickelin (2011) refer to Robinson (2004) to justify the choice of

20 runs per each configuration of parameters. This is an approach that uses

confidence intervals but it does not seem to specify to what these numbers are

sufficient for. Another strategy for justifying the number of runs is that of

Chebyshev’s theorem (Shannon 1975), indicated in Lee et al. (2013). The logic

seems to be similar to what found in Siebers and Aickelin (2011) in that it is based

on 95 % confidence intervals for the performance measure (outcome).

5 For example, in the article by Grow and Flache (2011), authors identify ‘‘36 experimental conditions’’

(p. 213), and this simplifies our job. Instead, in articles such as in Hoser (2013), the author indicates there

are 3 parameters, each taking respectively 2, 4, and 2 values (p. 267). This gives J ¼ 2� 4� 2 ¼ 16. In

some other articles such as Cioffi-Revilla et al. (2012), we had to estimate the number of parameters and

their values because the authors were less explicit on the various configurations of the simulation or, at

least, it was unclear to us.
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In the panel of data, we also found 19 published experiments (26 %) where it was

impossible (for us, at least) to understand how to calculate power. This signals that

the information on methods was not easily accessible from just reading the paper.

This may not be a significant problem, given that most ABM are made available in

open-source platforms and this may eventually lead to access all information

needed. However, this time we limited our analysis to what was available in the

published article that is the piece of information with the largest diffusion among

academics.

From Table 2, it is apparent that when ES is small (i.e. 0.1), mean power for the

studies in our sample is 0.415 (SD = 0.395) at the more restrictive significance level

of a ¼ 0:01, and it is 0.526 (SD = 0.373) when a ¼ 0:05. Both values are well below
any known standard, indicating most studies are significantly underpowered. When

ES is medium (i.e. 0.3), on average, the test is above the threshold recommended for

power in empirical studies (i.e. 0.80; see Cohen 1988; Liu 2014) with mean ¼ 0:842
(SD = 0.284) at the less stringent significance level of a ¼ 0:05. This power threshold
is, on average, still not met when a ¼ 0:01, with mean ¼ 0:783 (SD = 0.346).

Figures 1 and 2 are a graphical reorganization of the information in Table 2. In

these two figures, only papers and experiments on which we performed the

calculations were shown (55 observations). Also, experiments are sorted by

publication outlet, using a different color and mark: red dot for JASSS, blue dot for

CMOT, green other shapes for the other journals. The logic behind the two figures is

to map what happens to power in the same study when significance level a is

relaxed, respectively when the assumed ES is small (Fig. 1) and medium (Fig. 2).

This exercise is interesting because it shows how the assumptions on stringency of a

seemingly irrelevant element of power—i.e. the significance level a—affect power.

Note that we transformed logarithmically the axes in both figures, to help make

sense of the distribution of results.
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Fig. 1 Impact of the coefficient alpha and small effect size on power in selected studies (2010–2013; 55
observations; both axes are in logarithmic coordinates)
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Figure 1 intuitively shows that some studies have power below 0.50 and the

majority seems to appear below 0.90—the actual numbers are 51 % below 0.50 and

73 % below 0.90. The change in the significance level does not seem to affect

power in the ABM studies reviewed, when ES is small. For overpowered studies—

i.e. those studies that have excessively high power (see below for an overview of the

risks this entails)—a change in significance levels does not bear any effect at all. For

other underpowered studies, there is some effect in that it seems power levels

double when a is relaxed for 1� b� 0:30. Instead, for 1� b[ 0:30, the impact of

a ¼ 0:05 is never enough for the study to reach sufficient power. Hence, Fig. 1

makes it even more apparent that, when ES is small, a higher significance level a
does not bear meaningful results. This implies that the most sensible strategy for

researchers would be to increase the number of runs performed in the simulation. Of

course, this requires power analysis to be taken into consideration.

Figure 2 shows the impact of significance levels when ES is medium (0.3). With

larger ES, there are only 14 % of studies with power that is below 0.50 under both

conditions. Instead, studies with power below 0.90 are 29 % of the total. The

distribution is skewed towards higher levels of power, highlighting two interesting

facts. On the one hand, when ES is relatively large, underpowered studies do not

benefit significantly from a relaxation of a levels. On the other hand, there is a very

limited number of borderline studies that would pass the threshold and reach 1�
b[ 0:90 (from just below0.90) although nonewould reach 0.95 solely because of an a
effect. This means, once again, that higher ES impacts power levels more effectively

but the only viable way to tackle with low power is to increase the number of runs.

In short, both figures substantiate what is in Table 2 and highlight the importance

of assuming a reasonable value of ES and running the simulation an appropriate

number of times. The following section discusses these results further.
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4 Discussion of results

The results of the review presented in the previous section points out a few issues

with ABM research. Before discussing the results of the review and presenting two

formulas for sample size determination, we need to specify what the threshold for

power analysis should be in the case of computer simulation.

We have claimed above and elsewhere (Secchi 2014) that computer simulation

studies cannot be subjected to the same standards to which empirical studies are.

Not only computer simulation—especially ABM—is, obviously, different from

empirical study but it is the nature of the difference that supports the need for

different standards. The diversity of computational modeling from other scientific

methods has been advocated by many scholars (e.g., Gilbert 2008; Coen 2009b;

Miller and Page 2007), and we believe it is particularly relevant in the case of power

analysis. ABM simulation studies are based on a simplification of reality where a

given phenomenon is analyzed according to rules, environmental and agent

characteristics. The control exercised on this artificial micro-world is much higher

than that exercised, for example, in a lab experiment. For this reason, it is possible

to structure the ABM in order to make sure errors are not plaguing or fogging

results. More than a possibility, this should be the aim of every modeler. Any

simplification of reality carries the risk of being too imprecise, lax, unfocused. Thus,

given the assumptions, errors should be brought down to the bare minimum so that

unclear findings may be directly identified as coming from the model’s theoretical

framework, not from its statistical shortcomings. We suggest the reference for every

ABM should be to reach power of 0.95 and higher at a 0.01 significance level. More

rigorous simulation studies have more potential to contribute to the advancement of

our field because they would appear robust and more consistent within the range of

assumptions.

It is fair to note that several authors (Johnson 2013; Colquhoun 2014) have

recently advocated similarly stringent standards for Type-I error, pushing a to 0.001.
However, these authors did not accompany this suggestion with an analogous one

concerning a decrease in b. This creates a paradoxical situation, because none of the
reasonings in Sect. 2.2 above is compatible with such a huge difference between a
and b. This fact has been remarked by other authors (Fiedler et al. 2012; Lakens

2013; Lakens and Evers 2014) that have stressed the relevance of statistical power

and Type-II errors for statistical inference as well as the need to balance the two

errors. Our proposal of reducing both a and b in the stated proportions embraces the

suggestion of decreasing the frequency of Type-I errors while making the ratio of

the two probabilities quite near to the original value proposed by Cohen (1988, Sect.

2.4). While both these reductions can be difficult to accomplish in laboratory

experiments, we think that most simulations are compatible with them.

4.1 The current norm: under-powered studies

Once we have clarified the threshold for power in ABM and simulation studies

should be 0.95 or higher, we can interpret results more clearly. Most studies appear
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to be underpowered (medium ES) or strongly underpowered (small ES). This is

consistent with the constituents of power, the ES being one of the elements affecting

power the most. Even small increases in ES lead to higher power. Surprisingly

enough, the increase we used in our analysis (þ0:2) seems not to be enough in most

cases. If we take this four-year sample to be representative of ABM research

published in the social sciences, we obtain a very meagre picture. With small or

even medium ES, studies published in most of these articles are not able to tell

whether Type-II error is under control. Given that large ES depends on the

characteristics of the phenomenon under analysis, it seems unlikely that all these

studies can claim to have large ES. Hence, ABM research needs power calculations

to make sure results are sound enough.

To further elaborate on the issues surrounding underpowered studies, we provide

four arguments that lean on the variables entering the formula of statistical power

1� b of an ANOVA test, namely ES, J, n and a. We start with the problems

associated with ES. The first implication is that low power may be symptom of

faulty design, that becomes apparent by discarding effects that are, in fact, relevant

to understand the dynamics of a simulation model. In addition to that, low power

may depend on the fact that the researcher is testing configurations of parameters

that are irrelevant (i.e. too close to each other). Low power may also derive from

insufficient number of groups/runs J and n, so that results are more or less

significant at random. Finally, one may have lax testing standards, on the belief that

setting a more stringent a for simulation studies is not an issue and it does not affect

power. Are faulty design, testing irrelevant differences, insufficient number of

groups or runs, or lax standards a problem for ABM research? Indeed, we think they

are. We will take on each one of these in the following.

First, faulty design may affect power in that the simulation model is not capable

of discriminating significantly enough between parameter configurations (this is

reflected in a low ES). This may depend from coding the impact of parameters on

the outcome variable in a way that fails to make differences apparent and it may be

related to coding or equation errors, parameter misspecification, etc. If the

simulation is affected by these errors (that we call ‘‘faulty design’’), with the given

number of groups and runs, power remains low and some effects may remain

hidden. Hence, although in this case power would not fix poor simulation design,

checking for power would help the modeler control the model further. Of course, the

ES may be low because that is the nature of the simulated relation among different

configurations of parameters and, in that case, power analysis would only suggest

the appropriate number of runs for that effect to become apparent.

Second, results may be relevant but ES is so small that it needs more runs to

become apparent. Sometimes this may affect the interpretation of the model, hence

making the contribution to academic discussion less relevant than it could have

been. Take, for example, the simulation by Fioretti and Lomi (2010) that is based on

the famous ‘‘garbage can’’ model (Cohen et al. 1972). In that very fine article,

Fioretti and Lomi show that the agent-based version of the model confirms some of

the results and discards some others. If we follow one of our hypotheses above, and

consider that the ES for the parameter configurations is small, power is always

insufficient (Table 2), independently of the significance level. This means that
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findings of such a fine piece of modeling are not accurate and, potentially, we

cannot either confirm nor reject any of the features that are in the ‘‘garbage can’’

model. In particular, we cannot discard some of the effects that Fioretti and Lomi

(2010) did not find. Yes, we may end up confirming some of the features of the

model and rejecting some others although having more runs may surely cast clarity

among results.

Third, insufficient number of runs n and/or groups (parameter configurations)

J are the most common cause of low power as per our review. This is a very

important issue because it undermines results. Not only low power makes

researchers discard results corresponding to nonnull effect sizes—this is the very

concept of false negative—but it raises questions on conditions that are accepted as

significant too. As the number of runs in underpowered studies is low (less than

needed to reach a certain value of power), it is likely that at least some large ES is

just a random occurrence. Stated differently, we cannot confirm that the large ES

will remain large when more runs are performed. One of the characteristics of good

agent-based modeling is that simulations can be made to vary significantly, so that

every run is different from another with the same configuration of parameters. Of

course, these differences should be less relevant than those with runs from different

configurations of parameters. However, in order for this to happen, the modeler

needs to make sure that each configuration runs a number of times that is sufficient

to exclude that the similarities (or the differences) are not product of random

variation. This is why appropriately powered studies in agent-based simulation

research are absolutely key. Discarding this issue on the claim that one is being

conservative equals to stating that one does not know whether results are coming off

a random effect or a stable, reliable, replicable effect. The least runs or groups one

has in the simulation, the more one is exposed to the fact that results are inconsistent

and/or anchored to a random occurrence. This is, we believe, the strongest argument

for the need of power analysis in ABM.

Finally, agent-based modelers and simulation researchers in general are

particularly keen on transposing the standards of empirical research to computa-

tional simulated environments. In this article, we advocate for more stringent

standards for computational simulation models (see above). From that stance, what

matters is that, for example, significance reference for modelers is still a ¼ 0:05, or
1� b ¼ 0:80. These are very lax standards in simulated environments. However, as

we show in the article, on average, ABM simulation studies do not even match

them. Hence, there probably is an issue with lax standards in the community or,

maybe, with lack of academic discussion on these issues. As we wrote above, these

standards may still affect the interpretation of results although they are probably a

secondary issue compared to the complete absence of power testing. We hope this

article contributes to start a discussion on these important topics.

In short, all the four aspects above point at the fact that power analysis is a tool to

make results more robust and reliable. There is no shortcut around these two aspects

as we believe they are much needed in simulations (as well as in any other scientific

analysis). Disregarding power may be considered as a conservative move when, in

fact, it may just be that one is leaning on random effects reflected in the simulation

results. Additional runs may end up changing the ‘‘face’’ of results, hence making
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them more robust and reliable. This, we believe, is a very important aspect that has

the potential to make simulations more palatable to other organizational scholars.

4.2 The subtle risks of overpowered studies

Some of the studies in Table 2 appear to be overpowered, i.e. calculations show a

number that is very close to 1.00 within the range of computational precision. This

means that the number we show in the table (0.999) is practically undistinguishable

from, although it can never be, 1.00. What happened in these cases is that

researchers overran their project, performing an astonishingly high number of runs

reaching an incredibly low probability for Type-II error to appear under the

hypothesized effect size. For example, our estimation from information available in

Sharpanskykh and Stroeve (2011) and Sobkowicz (2010) shows that they performed

8000 runs while Zappala and Logan (2010) did 5000 runs. The most over-performed

model we found is Aggarwal et al. (2011) with 10,000 runs performed. These are

researchers that showed some awareness of the issues related to low power and

decided to produce a number of runs so high that the problem would not appear to

be relevant any more. This can only happen when the simulation is not time

consuming or, in the case it is, when researchers have supercomputers available.

However, is this approach sound? What are the risks of overpower? Although a full

article is needed to analytically show what are the actual risks of overpower, we can

discuss a few points here as they seem particularly relevant to our results.

In other disciplines, such as medicine, overpowering studies bears high financial

costs (Girard 2005). Luckily enough, the decrease in the cost of computing power

over the last decades has been so steady that the cost of most ABM is nowadays

negligible with respect to more traditional experiments. However, there are risks of

overpower besides waste of time.

In particular, the risk is that overpowered studies may lead modelers to notice

effects so small that are not worth considering. Mone et al. (1996, p. 115) clearly

state that ‘‘Excessively large samples [...] raise a serious concern [...] of

oversensitivity to trivial or irrelevant findings.’’ This happens when secondary or

marginal elements appear to be statistically significant, just because of very large

samples. What we are trying to convey may appear clearer when one fixes a and b
and looks at the relation between sample size n and effect size (ES). The larger the

ES between two configurations of parameters the least runs are needed to reach the

stated values of a and b; conversely, the smaller the ES the larger the number of

runs. This implies that, when the number of runs increases for fixed a and b,
hypothesis testing procedures associated with a very small ES will reach the stated

values of a and b.
Consequently, researchers may end up not being able to distinguish between

more or less important effects because both of them appear statistically significant.6

6 The point we are going to make is similar to what Friston (2012) calls the ‘‘fallacy of classical

inference,’’ although we do not necessarily advocate his solution. We believe that a clear statement of the

significance threshold and of the required power under an hypothesized effect size is always better than a

ritual bound on the number of observations.
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This consequence of excessive power is rarely stressed in statistical textbooks,

but notable exceptions are DeGroot (1986, p. 497), Bickel and Doksum (2001, p.

231) and Larsen and Marx (2012, p. 383).7 The topic is more often brought to the

fore in applied statistics (Hochster 2008; McPhaul and Toto 2012, p. 61).

All in all, overpowered simulations end up being less reliable than appropriately

powered simulations. This is not to state that results are to be discarded completely

but they are less sound than better calibrated simulations. This property can be

turned to good account in order to test how a model performs under extreme or

boundary conditions. After obtaining the number of runs via power analysis and

testing different parameter configurations, researchers have a first set of results. The

following step would be to indiscriminately increment the number of runs to reach

overpower with the purpose of testing when previously irrelevant (insignificant)

results become statistically significant, if they do. This procedure would give

modelers two pieces of information at least: (a) it is a ‘‘stress’’ test for the model

and, as such, it may reveal modeling inaccuracies or faults (referred to as ‘faulty

design’ for underpowered studies above), and (b) it allows researchers to have a

better understanding of how/when a particular set of conditions is meaningful to the

modeling effort. Of course, this is feasible only when the simulation is not time

consuming.8

As our results seem to suggest, this risk of overpower is very significant for ABM

research, where the ease of producing additional runs of the model may affect how

‘‘clean’’ and ‘‘relevant’’ results are (Chase and Tucker 1976; Lykken 1968).

Appropriate sample size chosen in accordance with a prescribed level of power may

be the answer to get clean data. Another implication of our results seems to suggest

that there is no clear indication on how to implement statistical power analysis in

ABM research. This may be at the basis of most studies not reporting power or

misunderstanding the importance of number of runs determination. The following

subsection is dedicated to this specific point and it shows two formulas we derived

for sample size calculations for agent-based models.

5 Two new formulas for the determination of the number of runs

In ABM, the researcher has direct control over more factors than in most traditional

data collection situations (e.g., real experiments, surveys, etc.), because parameter

values have been chosen by the researcher and the incremental cost of adding

further observations to the sample is generally low. Despite this, the previous

sections delineated a situation in which most papers fail to achieve the most

elementary power requirements. On the one hand, this is probably due to the fact

that most researchers are unaware of the concept of power and of its importance in

sample size determination. On the other hand, formulas helping researchers in the

7 Pericchi and Pereira (2016, Sects. 1.3 and 1.4) go a bit further and present a (rather artificial) example

in which the accumulation of information apparently in favor of an hypothesis leads to its rejection.
8 We owe this very interesting consideration to one of the reviewers of this paper, whom we thank very

much.
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determination of the sample size as a function of power are not readily available in

the literature.

Apart from the classic and computationally-demanding method of numerically

inverting the formula for the power, popularized by Cohen and embodied in the

package in , it is customary (Norman and Streiner 1998, pp. 214–215) to

approach the multivariate case by reducing it to the univariate, covered in Lehr’s

formula (Lehr 1992).

In this section, we provide and discuss two formulas for sample size

determination (runs, in the case of ABM) that explicitly take into account the

multivariate nature of the comparisons.9

5.1 A general formula for n

Let a be the Type-I error rate, and b the Type-II error rate that one wants to achieve.

We consider an ANOVA test of the null hypothesis H0 : l1 ¼ . . . ¼ lJ . Let ES be

the effect size of the test (Cohen 1988, 1992). In this case the formula of ES is more

complex than the one seen in Sect. 2.2 for the t test, but the general interpretation is

similar, i.e. ES is a measure of the distance of the real values l1; . . .; lJ with respect

to the null hypothesis H0. It turns out that in this case n asymptotically behaves as

nH where:

nH ¼ 1

J � ES
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This formula shows several facts. First, when the effect size ES is small, a larger

sample size is required. Second, when b decreases, n increases: in particular, when b
is near to 0, n behaves like 2

J�ES � ln bj j. Third, when a decreases, n increases: in this

case too, n increases like 2
J�ES � ln aj j.

5.2 An empirical formula

The previous formula is valid for fixed a and ES, and is accurate for not too large

J and small b. In this section, the task is to find an accurate formula for

n ¼ n J;ESð Þ, valid for a wider range of J and effect sizes ES, but restricted to the

values a ¼ 0:01 and b ¼ 0:05 (see above). We have resorted to a response surface

analysis (Box and Wilson 1951). More details on the derivation are in the Appendix.

The proposed formula is:

n J;ESð Þ ’ 14:091 � J�0:640 � ES�1:986: ð2Þ

A related formula for N can be obtained through the equality N ¼ n � J.

9 Details of how formula (1) is derived are presented in Seri and Secchi (2014). How to apply this

formula to agent-based models and simulation is shown in a previous study (Seri and Secchi 2014), where

the code to perform the test is also made available.
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A graphical representation of the accuracy is obtained in Fig. 3 that displays the

function
n J;ESð Þ�14:091�J�0:640�ES�1:986

n J;ESð Þ for J varying between 2 and 200 and ES between

0.01 and 0.6. The value of the function is displayed through the level curves. The

value of n J;ESð Þ is displayed in shades of grey (each hue corresponds respectively,

from darker to lighter, to n\ 4, 4\ n\ 16, 16\ n\ 64, 64\ n\ 256,

256\ n\ 1024, 1024\ n). The area on which the function has been calibrated

is displayed as a trapezium. It is clear from the figure that the accuracy deteriorates

rapidly for large J and ES, but when ES is moderate and J is large, the formula is

overall quite accurate. Moreover, note that the percentage error is higher where n is

smaller, so that the error is comparatively less serious.

It is fair to note that, while formula (1) is a theoretical result, formula (2) is

empirical. As such, it is not backed by a rigorous mathematical derivation but offers

a guaranteed percentage error for certain values of the parameters.

6 Conclusions

In this article, we have described the importance of statistical power analysis for

ABM research, especially when applied to the field of management and

organizational behavior. We have then reviewed the literature on ABM from
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Fig. 3 Accuracy of empirical formula (2): the value of the function
n J;ESð Þ�14:091�J�0:640 �ES�1:986

n J;ESð Þ is displayed

through the level curves; the value of n J;ESð Þ is displayed in shades of grey (each hue corresponds
respectively, from darker to lighter, to n\ 4, 4\ n\ 16, 16\ n\ 64, 64\ n\ 256, 256\ n\ 1024,
1024\ n); the area on which the function has been calibrated is displayed as a trapezium
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selected outlets in the social and behavioral sciences, years 2010–2013, and found

that most studies are underpowered or do not provide any indication on ES, a levels,

number of runs, or power. This is a very surprising and worrying result because it

points at the reliability and significance of ABM research. Most importantly, it

points at the need that every ABM researcher at least asks the question on how to

avoid Type-II error, making results more robust and consistent. In the previous

section, we have derived some implications and presented formulas for sample size

(i.e. number of runs) determination of particular interest for agent-based and

simulation research. Although the focus of this article is on ABM, the question

‘‘how many runs’’ a simulation should run is not strange to other techniques and we

cannot exclude this approach can be successfully adopted in other areas of

computational simulation. It is very likely that what we suggest may be useful to

those running fitness landscape (or NK) models as well, although NK models may

be considered ‘‘close relatives’’ to ABM. Given the scope of the current article, we

leave further considerations on this possibility to future research.

ABM is a very promising technique, and it is spreading among the many

disciplines of the social and behavioral sciences. Management and organizational

behavior seem to lag behind this ‘‘new wave’’ of simulation research (Secchi 2015;

Neumann and Secchi 2016; Fioretti 2013). However, this can be a strength more

than a weakness. The first years of ABM research have been years of experimen-

tations and challenge to find appropriate and sound methods. Although these are

ongoing, our field can step in simulation research from a more solid ground, thanks

to what has been done in the last twenty years. This may put management and

organizational behavior on a more advanced ground, ready to develop the next

generation of ABM simulation and research. Power analysis is part of this toolkit of

the advanced simulation modeler.

Another aspect of the use of power is clearly related to the type of results that

come out of ABM models. If results of any given simulation are not solid enough,

there is the risk that scholars may go back to old prejudices on simulation studies. In

the recent past, computer simulation suffered from the excessive simplification of

assumptions, abstraction (i.e. distance from reality), and complicated design.

Results were often deemed very difficult to grasp and practical implications

were lacking. Inappropriate power may face the risk of seeing these prejudices

come back and undermine what is the most promising advancement in computer

simulation we have seen in decades. This is particularly important in management

and organization studies because ABM use has just started.

As we argue in the article, not only we need to encourage researchers to be more

precise in the determination of the number of runs for their simulations, but we also

need to establish thresholds that are meaningful for ABM research. Our proposal is

that of defining a power of 0.95 at a 0.01 significance level.

There are a few limitations of this article and we mention a couple. First of all,

we do not know what the ES of the selected studies actually is, and our review may

be based on misjudgement, if one was to show that the ES of those articles is higher

than hypothesized. However, we cannot do science hoping that data and results are

sound enough. On the contrary, we should develop scenarios that allow us to make

informed decisions on possibly unfavorable as well as more favorable occurrences.
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Another limitation is that our proposed thresholds—i.e. power of 0.95 at a 0.01

significance level—may reveal to be inadequate or too restrictive. More research is

needed to assure modelers that these are reasonable levels for producing sound and

clean results.

Despite these limitations, the article indicates that there are some important

reasons why statistical power analysis is particularly important for ABM research

per se and for the diffusion of this technique in management and organization

studies.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, dis-

tribution, and reproduction in any medium, provided you give appropriate credit to the original author(s)

and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix

We have considered all integer values of J ranging from 2 to 100, for a total of 99

values, and all effect sizes between 0.01 and 0.5 with a mesh size of 0.01, for a total

of 50 values. This constitutes a rectangle in the plane J;ESð Þ.
Then we have removed the combinations J;ESð Þ such that J þ 490 � ES� 247:

this is equivalent to remove the upper right corner of the rectangle. We came up

with this solution because removing it does not alter the behavior of the function for

large J and ES, but provides a much better approximation for small values of J and

ES. This choice is reasonable because it is sensible to suppose that, when J is

increased, this happens adding new combinations of parameters near to the previous

ones, so that ES witnesses an overall decrease.

For each J and ES, for a total of 3909 values, we have computed the exact value

of n ¼ n J;ESð Þ with a ¼ 0:01 and b ¼ 0:05. We have then approximated n through

the function c0 � Jc1 � ESc2 choosing c0; c1; c2ð Þ to minimize the function:

max
J;ESð Þ

n J;ESð Þ � c0 � Jc1 � ESc2
n J;ESð Þ

�
�
�
�

�
�
�
�

on the grid of J and ES values (the effect of the granularity of the grid on the

solution has been investigated in Still 2001; Seri and Choirat 2013). This means that

we are minimizing the maximum absolute percentage error in the approximation of

n J;ESð Þ over the grid. The present formula gives a maximum absolute percentage

error of 4.83 % on the grid. The formula for N ¼ n � J obtained from the previous

one has the same maximum absolute percentage error on the same grid.
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