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1
Introduction

This work originates from the growing interest of the medical imaging community in

the application of machine learning techniques and in particular, from deep learning to

improve the accuracy of cancer screening. For this reason, the Thesis is structured into

two different tasks. In the first part, magnetic resonance images were analysed in order

to support clinical experts in the treatment of patients with brain tumour metastases.

This task is the outcome of a close collaboration between the Research Center for Image

Analysis and Medical Informatics of the Insubria University and the Operative Unit of

Neurosurgery, Neuroradiology and Health Physics of the University Hospital “ASST dei

Sette Laghi”, Varese. The project aim is to investigate new methodologies using whose,

develop an integrated framework able to enhance, and in some cases make possible, the

use of the information contained in the Magnetic Resonance Images, in order to support

clinical experts in the treatment of patients with brain Metastases tumour. The goal

was to provide tools for semiautomatic segmentation of spaces where metastases are

present, to accelerate the segmentation phases defined slice by slice of the area occupied

by the tumour. The second task of the thesis was developed in collaboration between the

Research Center for Image Analysis and Medical Informatics of the Insubria University

and the Politecnico of Milano and the MultiMedica Group with the Breast Centre of

the Hospital “San Giuseppe”, Milano. This part of the Thesis analyses mammograms

in search of calcifications or masses present in the patient analysed. As a final goal

to integrate the system developed in clinical practice, for both fields studied, all the

Medical Imaging and Pattern Recognition algorithmic solutions studied for this PhD

13



14 Introduction

Thesis have been integrated into a software package. A MATLAB® prototype was

developed with an integrated analysis environment that offers, in addition to all the

features described explicitly in this thesis, a series of tools necessary to manage the

visualisation and information deriving from the Dicom format of the exam analysed.

1.1 The role of MRI segmentation in Metastasis Tumors Treat-

ment

Brain metastases (BMs) are one of the most common neurological neoplasms, and their

incidence is increasing with the availability of advanced imaging techniques such as Mag-

netic Resonance Imaging (MRI) [12, 32]. By visual inspection of MR scans, physicians

can accurately examine and identify pathological tissues thanks to the high spatial res-

olution and contrast and the enhanced signal differentiation. In the clinical practice,

MRI has been confirmed as a significant approach supporting diagnosis, surgical plan-

ning, follow up and therapy. In order to exploit this potential, intelligent techniques

should complement image acquisition and visualisation tools, addressing relevant issues

such as cancer detection. Extensive research has already been developed to introduce

computer-aided detection and segmentation methods in neuro-oncology clinical studies.

Available methods include image-based methods and machine learning-based methods

[31, 49]. The image-based methods use image data and image processing techniques to

detect and delineate lesions. Exemplary techniques include tissue classification based on

Raman spectroscopy [38], a colour-coded map from quantitative optical coherence to-

mography (OCT) for differentiating cancer from non-cancer in human brain tissues [42],

watershed segmentation algorithms [9], active contour algorithms [37], and region grow-

ing segmentation algorithms [67]. Supervised machine learning (ML) approaches have

been successfully applied to circumvent the problem of explicitly and analytically describ-

ing the specific segmentation procedure and related parameters, lying to a learning stage

the charge of inducing the classifier from supervised data available. The proposed tech-

niques make use of a single image or multi-spectral pattern and are interactive or fully

automatic [31, 6, 2, 58, 8, 63, 7, 27]. Among the most promising methods, we found the

support vector machine (SVM) [73, 19], discriminative models based on Random Forest

and logistic regression [71, 76]. Cai et al. [13] and Verma et al. [74] proposed classifica-

tion methods based on SVM to classify brain neoplasms and their sub-components using

multidimensional patterns obtained by a high number of MRI modalities. Ruan et al.

[62] proposed SVM to segment lesions using a lower number of modalities. Bauer et al.

[5] adopt a hybrid method, based on SVM and hierarchical regularisation, to segment

tumour and healthy tissues, including sub-compartments. Random Forest-based meth-

ods are proposed by Zikic et al. [77] to identify brain tumour sub-compartments from

multi-modal images and by Geremia et al. [26] that generate synthetic tumour images

to train a discriminative regression forest algorithm using different groups of features.
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Although the problem of segmenting all or part of the brain in MRI imagery does

continue to be investigated attempting to satisfy the high accuracy demand in diver-

sified clinical and neuroimaging application, only a few studies have applied such ML

approaches on BM detection and segmentation [14]. BM requires specific approaches

given their small size and multiplicity and the stringent requirements of RT clinical

practice in which usually segmentation procedures are inserted. In this application con-

text, MRI T1c images are usually the only modality considered and fast segmentation

is required for a rapid clinical workflow.

In their review, Perez et al. [59] describe methods that use hand-crafted templates

or blob based complex procedures. These works report performances strongly affected

by feature extraction methods, which becomes more and more complicated to improve

results. Machine learning algorithms such as SVM and Random Forest are proposed

in combination with spatial regularisation procedures and Gaussian processes to refine

patch-based segmentation [75]. Despite the achievements obtained, automated segmen-

tation of brain metastases and lesions, in general, remains an unsolved problem due to

normal anatomical variations in brain morphology, variations in acquisition parameters

of MRI scanners, the heterogeneous appearance of pathology.

Recent BM segmentation studies propose the use of deep learning methods using

different convolution neural network (CNN) architectures and different MRI sequences

as input data. Losch et al. have been among the first that investigated the use of deep

networks to detect and segment BM [51]. Their work compares several types of spatial

inputs and network topology to find performances comparable to conventional state-of-

the-art models. The importance of database quality has also experimented. Growick et

al. propose the use of a CNN based on the GoogLeNet architecture for automatic BM

detection and segmentation. The retrospective study focusses on 156 patients with brain

metastases from several primary cancers and makes use of multi-sequence MR images,

including pre- and post-gadolinium T1-weighted and FLAIR scans. Results obtained

are good, but several limitations because of limited sample size and false-positive results

near vascular structures, are highlighted.

The use of multi-sequence MRI limits the applicability in the clinical domain. Char-

ron et al. [14] studied the influence of MRI modalities together with the impact of the

number of segmented classes, both on the detection and segmentation of brain metastases

in MRI imagery. To do this, they used a modified version of DeepMedic neural network

proposed by Kamnitsas et al. [39] and data augmentation strategies. The combined use

of different MRI modalities outperformed the performances of the network when using

single modalities. In single modality, best performances are obtained using volumetric

T1c scans. Liu et al. investigate the use of deep learning convolutional neural network

(CNN) algorithm trained on both gliomas and BM [48] on T1c.

In radiation therapy (RT), the workflow for BM treatment requires fast and accurate
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detection and delineation of tumour volume of small size on MRI scans. Contrast-

enhanced T1 (T1c) magnetic resonance imaging (MRI) is generally the only imaging

modality adopted. Segmentation accomplished through a complete manual tracing is

still the standard routine although it has shown to be a time-consuming and labour-

intensive process affected by high intra- and inter-observer variability. In this context,

ML techniques would be very helpful, actively supporting human experts in tracing the

boundaries of the pathological tissues with varying degrees of automation and improving

the efficiency of the overall radiotherapy clinical workflow.

Promising results obtained by recent studies in automated BM segmentation [49,

14, 59, 33] lead us to further investigate ML techniques derived from both conventional

feature-based learning and deep learning approaches and measure and compare their

capability to compute spatially accurate and stable results. Indeed, both approaches

have their advantages and disadvantages.

In the design of an automated segmentation procedure, the feature extraction phase

plays a major role. Deep learning methods offer the advantage of automatically learn

hierarchical image representations which often outperform the most effective features

extracted by well-assessed procedures. However, good performances are obtained pro-

vided as large as sufficient amount of precisely annotated training sets are available.

This requirement is especially critical in medical image analysis, in particular in BM

segmentation where annotated consistent training data are difficult to collect and at

best of our knowledge, no public datasets of diagnosed patients with metastatic brain

tumours are available. Conventional ML models have shown excellent performances in

MRI brain tumours segmentation studies even when using a much smaller training set.

However, rarely these methods alone offer the opportunity to cope with the complete

segmentation task and are usually complemented with pre- and post-processing proce-

dure to overcome limitations of hand-craft features and improve spatial consistency in

classification results.

The remainder of this work is organised as follows in chapter 3. Section 3.1 introduces

the conceptual segmentation frameworks based on SVM and V-Net model, respectively.

Section 3.2 describes the experimental evaluation and comparison of their performances

using in-house collected datasets of different size. Section 3.3 illustrates the main features

of the software package and the use of the system in clinical studies. Section 3.4 reports

the discussion and conclusions.

1.2 The role of Mammography segmentation in Breast Cancer

Treatment

Breast cancer is one of the major causes of death among women [11]. Mammography has

a central role in screening and diagnosis, allowing early detection of the pathology and
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reduction of fatal cases [45]. During a mammographic examination, the angles of image

acquisition are 2 for each breast, bilateral craniocaudal (CC) and mediolateral oblique

(MLO). The visual inspection of these images shall enable radiologists to examine and

identify tissues carefully, looking for malignant lesions in the form of clusters of microcal-

cifications and masses. Unfortunately, the evaluation of mammograms is a complicated

and time-consuming process that inevitably affected by high intra- and inter-observer

variability [3].

In this context, automated methods of image analysis represent a valuable solution by

supporting human operators with varying degrees of automation in detecting important

clinical signs [45].

Over the last three decades, many solutions for Computer-aided detection (CAD) of

breast cancers have been proposed [22, 44]. Several techniques have been investigated in

studies distinguished by the type of image analysis and classification techniques adopted.

Despite the sizable achievement obtained, accurate detection of breast cancer tissues in

mammograms remains very difficult mainly due to their fuzzy, heterogeneous nature, low

distinguishability from the healthy backgrounds and low contrast of the mammographic

imagery [45].

Novel approaches are continuously investigated to provide robust solutions and fulfil hard

accuracy and reproducibility requirements. Early solutions of CAD systems principally

based on image analysis and conventional pattern recognition techniques [24] had not led

to an improvement in diagnostic accuracy when inserted in clinical practice. The utiliza-

tion of conventional “feature-based” Machine Learning (ML) procedures have ensured

a significant improvement in both screening and diagnoses. However, these methods

can only work well if features extracted from image data are meaningful to discriminate

pathological and healthy classes. Several studies highlighted limitations of CAD system

based on conventional ML techniques identifying the feature extraction phase the bot-

tleneck of the overall design process [25].

Promising results obtained by recent studies in automated biomedical image segmenta-

tion using Deep Learning (DL) techniques and in particular, the Convolutional Neural

Networks (CNN) [25, 1] have opened up a new opportunity to address the issue of early

detection of breast cancer with an acceptable level of accuracy and reproducibility. Deep

learning methods offer the advantage of automatically learn hierarchical image represen-

tations which often outperform the most effective handcrafted features. Although results

obtained by recent studies are promising, several aspects in the application of CNN for

breast cancer detection must be furtherly investigated to evaluate how these novel tech-

niques can be inserted in clinical practice. These aspects include the need for large

annotated training sets. In medical image analysis, training data are challenging to col-

lect, and the annotation is easily affected by inconsistencies that influence the learning

process and may cause low accuracies in classification.
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The remainder of this work is organised as follows in Chapter 4. Section 4.1 intro-

duces the types of mammography data-sets available online. Section 4.2 is dedicated

to the description of the pre-processing procedures. Section 4.3 illustrates the proposed

methods for this work with the respective network architectures and related training

procedure. Section 4.4 describes the experimental evaluation and comparison of their

performance using two data-sets CIBIS-FSM and INbreast-FFDM of different sizes. Sec-

tion 4.5 illustrates the main features of the software package and the use of the system

in clinical studies. Section 4.6 reports the discussion and conclusions.

1.3 List of abbreviations

AI Artificial Intelligence

ANN Artificial Neural Network

AUC Area Under Curve

BM Brain Metastases

CAD Computer-Aided Detection

CNN Convolutional Neural Network

DICOM Digital Imaging and Communications in Medicine

DL Deep Learning

DSC Dice

FFDM Full Field Digital Mammography

GUI Graphical User Interface

ML Machine Learning

MO Morphological Operators

MRI Magnetic Resonance Imaging

P Precision

R Recall

ROC Receiving Operating Characteristic

ROI Region Of Interest

SFM Screen Film Mammography

SVM Support Vector Machine

VOI Volume of interest

1.4 Tesis Organization

In the introduction, I define the purpose of this thesis and review the literature related to

the two tasks developed in this thesis. Chapter 2 describes some basic concepts useful for

understanding the proposed approaches, used in Chapter 3 for task 1 and Chapter 4 for
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task 2. In particular, in Section 2.1, the algorithm concerning the classification of Brain

Metastasis inherent to the task 1 is reported, starting from the works that use traditional

classifiers SVM (Sec. 2.1.1) to the use CNNs where the basic concepts are explained in

Section 2.1.3. Also, in task 2, in addition to the CNNs, the pre-processing operator was

used to analyze the image, the Hough transformation present in Section 2.3.1. These

notions are useful for understanding our proposed approaches and the advantages of

using this type of architecture to perform classification tasks. The datasets used are

described in Section 3.2.1 and 4.1 of the respective tasks, and the process of evaluating

in Section 2.2 for the respective tasks used to interpret the results of the experiments of

Sections 3.2 and 4.4. General conclusions and future works are presented in Chapter 5.

Finally, in chapter 6, the code used in chapter 3 for the study of metastases with V-Net

is reported.





2
Background

In this thesis, the images used derive from the MRI scanner (task one) and the Mam-

mography (task two); these images have been used in the field of supervision learning

algorithms since the single- voxel or pixel has been labelled with the pathological or

non-pathological class by the experts. A large amount of data available also allows us to

use deep learning for the artificial vision, which deals with the theory behind artificial

systems that extract information from images. For task one, the SVM (Sec.2.1.1) clas-

sifier was used in conjunction with morphological post-processing operators (Sec.2.3.2)

and a particular Convolutional neural network (Sec.2.1.3) called V-Net. For activity

two, on the other hand, two different types of convolutional networks were used after

the application of the Hough transform (Sec.2.3.1) to determine only the breast-target

analysed by CNN. The models and techniques used to classify the two tasks are analysed

in the next section and the relative evaluation metrics (Sec.2.2).

Some basic concepts useful for understanding the proposed approaches, used in Chap-

ter 3 for task 1 and Chapter 4 for task 2, are described in the following.

2.1 AI Algorithms

Artificial intelligence (AI) is evolving into a significant focus in medicine by addressing

problems of inconsistency and inter- and intra-observer variability during the acquisition

and interpretation of images. AI includes any technique that allows computers to imitate

human intelligence includes machine learning and deep learning. Many terms are used

21
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to describe different subfields and methods within AI (Fig. 2.1).

Figure 2.1: Schematic showing the hierarchy among AI, ML, and DL. Machine Learning
and Deep Learning are sub-fields within Artificial Intelligence.

Machine learning is a subset of artificial intelligence that consists of a statistical

method that allows machines to improve at the level of experience, including deep learn-

ing. ML is a system that is in an evolving environment that should have the ability

to learn. If the system can learn and adapt to this change, the system designer is not

required to foresee and provide solutions for all possible situations. Machine learning

is used in many fields, in our study in the field of medicine learning programs are used

for medical diagnosis. To use machine learning algorithms, the first thing to do is to

find the best criterion for separating the data classes of the training set, thus selecting

features to use the model. Deep learning is the subset of machine learning, is composed

of algorithms that enable the software to learn from the examples to perform tasks, such

as speech or image recognition, thanks to the exposure of multi-layered neural networks

with large amounts of data (Fig. 2.1).

Supervised learning is a machine learning technique that aims to train a system to

allow it to solve tasks independently based on a series of ideal examples, consisting of

pairs of desired inputs and outputs, which are initially provided. That said, every super-

vised learning algorithm needs training dataset, S, which consists of N data belonging

to C different classes.

S = {xn, yn} | n = 1, . . . , N ; xn ∈ RDyn ∈ C (2.1)

Where xn is a D-dimensional vector (or pattern) whose components are called at-

tributes, yn indicates the class to which the data belongs, and C is the set of possible

classes. The mapping function f : yn = f (x), is not known, and a learning algorithm

aims to define it. A supervised learning algorithm, therefore, looks for the function f
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which assigns its class to each datum. Each statistical learning process is divided into

two phases:

1. Learning phase, where the algorithm analyzes the training data and recognizes the

similarities in the data to build a model that approximates f

2. Classification phase, where the model generated during training is tested on a

different dataset to verify its performance

The classification activity has the purpose of organizing the entities of a given domain

so that they can be exposed using criteria that enjoy certain rationality.

We can think of these machines as an alternative technique to the classical training

techniques of neural networks. We could use single-layer neural networks, but in this

case, we could work only in the case of linearly separable data. In the case of using

multilayer neural networks, we could represent non-linear functions, useful for solving

cases with non-separable data, but it must be considered that these networks present a

series of problems that complications train. These difficulties are due to the high number

of dimensions of the weight space and to the fact that the most common techniques

have been obtained the network weights starting from the solution of a non-convex and

unconstrained optimization problem which, consequently, has a number indeterminate

of local minima. The technique used to train an SVM solves both questions: we have an

efficient algorithm capable of representing nonlinear functions. The required parameters

are also obtained from the solution of a convex quadratic programming problem with

equality constraints that provides for a single global minimum. In the next section, we

are seeing in detail the AI algorithms used for the processed task.

2.1.1 Support Vector Machine

The support vector algorithm has been developed [10, 18] approximately 20 years ago.

Support vector machines (SVMs) are a generalization of methods based on a linear

decision boundary identification for classification. SVMs produce nonlinear boundaries

by constructing a linear boundary in a large, transformed version of the feature space

using an appropriate kernel function [23]. This technique is based on the concept of

choosing centres points critical for the classification, called support vectors and is well

suited for the non-separable case, in which classes are overlapped. Indeed, a margin

surrounding the boundary line is identified, and its width is inversely proportional to

the value of a cost parameter C that has to be optimized. Given a set of training samples

N called training sets, each of which is labelled with the class to belong to among the

possible classes, an SVM classifier creates a model that will assign a classification label

to the new input data. An SVM model is a representation of the training data as points

in space and dimensions, mapped in such a way that the examples belonging to different
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Figure 2.2: Example of classification of two classes with hyperplane representation of
the SVM algorithm.

classes are separated from an area as large as possible. The new samples to be classified

are then mapped in space, and the prediction of the belonging class is made based on

the side on which this sample falls. The classifier calculates the distances from the

support vectors (hyperplanes, in the case of N-features dimensions) identified during

training. It should be noted that the SVM classifier is a binary classifier: given a set of

classes, this is reduced from time to time to two classes, the class considered against the

conjugated class (in our case, for example, tumour and not-tumour). The distances will

be calculated as many times as the value of N-classes, and the class in which the new

champion is most distant in the direction of the class itself will be provided. In detail,

suppose you have a set of N separable data with which you want to train the Support

Vector Machine, and you want to perform a binary classification, that is, with only two

possible classes. The training data is described as:

S = {xn, yn} | n = 1, . . . , N ; xn ∈ RDyn ∈ C (2.2)

where yn is a label that can assume one of the two values provided for identifying

the class it belongs to, while xn a vector containing the attributes that characterize the

data. If the data, for example, is an image formed by 1000 pixels, the vector xn will

contain 1000 elements, each indicating the numerical representation of the colour of the

single pixel. In the case of Support Vector Machine, the data with which you train can

be positive or negative (respectively the value of yn will be 1 or -1). The purpose of the

SVM is to find a separation hyperplane that divides these two classes in the best possible

way. The points x found on the hyperplane satisfy, as already seen, the equation:

xn · ω + b ≥ +1 for yn = +1 (2.3)
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xn · ω + b ≤ +1 for yn = −1 (2.4)

Being in the binary case and assigning the labels as illustrated above, it is possible to

combine these two conditions into a single inequality:

yn (xn · ω + b)− 1 ≥ 0 ∀n (2.5)

Only the valid points are considered since both in the case of positive data and in the case

of negative data, the product is positive. Considering the points against equality alone

(Eq.2.3). These points are positioned on the hyperplane H1 : xn · ω + b = +1 while,

similarly, the points that operate the equality (Eq.2.4) are placed on the hyperplane H2 :

xn · ω + b = −1. The other points will be found in the space external to that delimited

by the planes H1 and H2 going to verify the strict inequality (Eq.2.5). On the other

hand, no point can be found in the space inside that bounded by the marginal planes.

Considering the definitions given in the previous paragraph, the distance between the

separating hyperplane and the hyperplane H1 is the same as that between the separating

hyperplane and the hyperplane H2 and is d + = d + = 1 / ω . That said, the width of

the margin is simply the sum of these two distances, which is 2 / ||ω||. The hyperplanes

H1 and H2 are parallel, both having the same vector ω as an orthogonal vector, we

set ourselves the goal of identifying the two hyperplanes that give the largest margin,

minimizing ||ω||2 under the condition (Eq.2.5). As seen previously, the training points

that find equality (Eq.2.5) are those that are precisely above one of the hyperplanes that

determine the margin. These points are of fundamental importance, as their removal

modifies the solution found. These points are called support vectors, and in the figures,

they are represented by a circle (Fig.2.2).

2.1.2 Artificial Neural Network

Before analyzing the structure of Convolutional Neural Networks, it is necessary to see

the definition of classical neural networks, models with a high number of parameters in-

spired by the architecture of the human brain and promoted as universal approximators,

i.e. systems which, if fed by a sufficient quantity of data are able to learn any predictive

relationship. Invented in the 1980s, neural networks enjoyed a relatively short period of

popularity, as they were soon shelved by more recent inventions such as boosting and

support vector machines. Thanks to the considerable improvement of computational

resources in 2010 they returned to use, so the use of deep learning algorithms opened

the way to new perspectives for solving complex tasks such as the classification of images

and videos.

The inspiration for the neural network comes from brain function and its ability to

learn. Therefore, taking into consideration the neuron as the essential elements of the
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nervous system, which can be considered the primary computational unit at the basis

of our intelligence, making it as a mathematical model it was possible to build artificial

networks. The artificial neural network model is composed of many neurons connected

and joined in layered groups where each neuron can learn a primary function [40]. There

are several parameters that the network learns during the training phase to carry out

the final classification task.

Artificial Neural Networks Artificial is a supervised machine learning model where

each neural unit is connected to many others, and the connection can be of a reinforcing

or inhibitory type towards the activation of the units to which it is connected. Each

neuron contains a function used to combine the values of all its inputs and a function,

called the trigger function, which returns the neuron’s output. The general form of the

overall function contained in a neuron is represented by the following general equation:

y = f

(∑
i

wixi + b

)
(2.6)

In this Eq.2.6, wi are the weights assigned to each input being combined and b a term,

called bias, which is added later. The set of weights and bias represent the information

that the neuron learns during the training phase and that it conserves subsequently. The

f function represents the activation function, which usually consists of a threshold or

regulation function that causes only signals with values compatible with the threshold

or limit imposed to propagate to the next neuron or neurons. Typically, the activation

function is a non-linear function, and in the details, it is a step function, a sigmoid

or a logistic function. Therefore, the training phase in supervised learning of a network

consists of estimating the weights wi contained in each neuron which minimizes the error

between the output values expected from the training data and the values predicted by

the network. The function that calculates this error is commonly called loss function,

can be of different types. Weight estimation can be obtained with known mathematical

optimization techniques. The technique is typically used is that of gradient descent

using backpropagation [61]. It is a cyclical technique in two phases: the propagation

and updating of the weights. In the first stage (forwarding propagation), the inputs

traverse the entire network from the input level to the output level. After propagation,

the produced outputs are recovered, and through the loss function, the prediction error

concerning the expected outputs is calculated. This error is used for the calculation of

the gradient of the loss function, which is then propagated backwards in the network

until each neuron obtains its gradient value [70]. At this point, the weights update

phase begins. In this phase, the calculated values of the gradient are given as input to

the gradient descent algorithm, which uses them to update the weights of each neuron,

to minimize the value of the loss function. Specifically, to find the minimum of the loss

function, the gradient descent updates the network weights using steps proportional to
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the value that the gradient assumes at a moment of the computation. Now the network

output is directed in the direction of the gradient, with the effect of reducing the value

of the loss function in each cycle. The constant of proportionality used for updating the

weights is called “learning rate”.

In real use, this term is usually variable and generally has a decreasing trend with the

continuation of training. In this way, the network can take more significant steps in the

direction of the gradient at the beginning of the training, when it is generally far from

the minimum value, and reduce the number of updates when it begins to approach it, so

to facilitate convergence and avoid unwanted divergences. A possible adverse scenario

deriving from the use of this technique arises when the search for the minimum remains

blocked at a local minimum, which prevents the network from achieving the expected

result. There are two methods of execution for the management of training cycles, the

stochastic one and the group one. In stochastic learning, each forward propagation step

is immediately followed by a weights update step. In group learning, the propagation

step is carried out for each example in the training set and only then are the weights

updated using the gradient accumulated between all the propagations. Stochastic learn-

ing generally introduces a certain amount of “noise” into the training process, since at

each step, it uses the gradient calculated at a single point in the data space; the risk

of getting stuck in a local minimum but also the increased risk of divergence or non-

convergence. Training in the group, has the advantage of leading directly to the result,

since the amplification of the weights considers the entire training set. Unfortunately,

its implementation is infeasible due to significant limitations regarding the performance

and memory resources required. A compromise typically adopted in modern applica-

tions represents a middle ground between the two approaches and consists in the use

of so-called “mini-batches”, or small sets containing examples randomly selected from

the available data. One of the most important and interesting aspects of training is the

ability of the neurons of the intermediate layers to organize themselves independently

so that each of them learns to recognize different features in the input space. After

the training phase, when a new input is fed to the network, the neurons of the hidden

levels will be able to respond with an active state if the given input contains a particular

pattern that resembles a feature that each neuron has learned to recognize.

2.1.3 Convolutional Neural Networks - CNN

The CNN model is part of the deep learning, the architectures that are used for Deep

Learning refer to neural networks composed of different layers, each of which is made

up of a certain number of nodes, the neurons, which perform non-linear transforma-

tions on the data coming from the previous layer. Deep Learning refers to a class of

Machine Learning techniques for classifying data and extracting features [35]. These

techniques allow them to learn a representation of data on different levels of abstraction
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and are applied to computational models with a layered structure. The algorithms used

to make it possible to extract the complex internal structure of a large set of data and

indicate to the layered model how to modify its internal parameters. These parame-

ters, in each layer, are updated to create its own representation of the data starting

from the representation present at the previous level. Deep Learning methods are also

called representation-learning methods at multiple levels of representation, each of which

is obtained through the composition of simple but non-linear modules. Each module,

starting from a set of raw data, transforms the representation from one level to another

with an ever-higher degree of abstraction. The composition of a certain number of trans-

formations allows them to learn very complex functions. As part of the classification,

the higher levels of representation allow you to amplify some important aspects of the

input and eliminate irrelevant variations. An image, for example, takes the form of an

array containing the pixel values and the features learned in the first level of represen-

tation, typically, indicate the presence or absence of edges in particular positions and

with different orientations. The second layer, on the other hand, searches for patterns in

the image by identifying specific arrangements of the edges regardless of small variations

and their positions. The third level assembles the patterns producing many shapes,

and the subsequent layers identify the objects in the image as a combination of these

shapes. The key aspect of Deep Learning lies in the fact that these levels of features are

not studied and designed by man but are learned from the input data using a general-

purpose learning procedure. Since the early 2000s, Deep Learning has been applied with

great success in various fields for the detection, segmentation and recognition of objects

and regions present in images. Among these, we are starting to see exciting results in

the classification of images representing road signs [16] and as in our study for the use

of segmentation of biological images [55]. One of the sectors in which Deep Learning

techniques have led to the achievement of more extraordinary results is that of image

processing, especially with the use of convolutional neural networks, whose structure

and functioning is described in detail below. We see in detail from what type of deep

neural network, the structure of the CNN is composed together with an example.

The convolutive neural networks are multi-level neural networks (Fig.2.3), similar

to the Multilayer Perceptron, however with a very particular structure possessing at

least one layer composed of similar repeated structures, or replicas of artificial neurons

that share among their weights: these layers are listed convolutive (convolutional layer).

Each neuron receives some inputs, runs a product, and optionally follows it with a non-

linearity. The entire network still expresses a single function that can differentiate the

score: from the raw image pixels on the one hand to the class votes on the other. More-

over, they still have a loss function (for example SoftMax) on the last level (completely

connected).
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Figure 2.3: CNN example for binary classification.

CNN in Fig.2.3 is thus composed of the following blocks:

1. Convolution

Given an image x with k channels and a kernel w, the convolution operator creates

a new image y in the following way:

yi′j′k′ =
∑
ijk

wijkk′ · xi+i′ ,j+j′ ,k (2.7)

where k′ corresponds to the index of filters/kernels in the convolution. The image

is converted into a matrix containing only 0/1 if it is an image in black and white,

otherwise if in greyscale the px will have a value between 0 to 255 or in the case of

RGB colour images will be created 3 matrices one for red, one for green and one

for blue with pixel values between 0 and 255, an example below (Fig.2.4).

Figure 2.4: Example to the Feature map.

Multiply the coloured matrix with the filter or kernel 3x3 and add as many “1”

have in common. So now we have the feature map, which is our small starting

image. This is our featured detector step, surely we lose information with this

feature detector, because we have fewer values in the resulting matrix, but the

aim is to detect the most essential features (as the human eye filters and removes

useless features for the classification is not that we look at the single-pixel but the

whole image).
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Figure 2.5: Convolutional Layer.

We use many filters (featured detectors), and so we have the feature maps to keep

different info on the image. Filters are learned during the training phase. The

same filters in every position. Before moving to block 2 we apply the rectifier

because we want to increase the non-linearity in our image because the images are

not linear (objects and backgrounds), the rectifier eliminates all values under 0

and transforms the image again, there are also other applicable functions like the

sigmoid or the leakly relu (Fig.2.5). The most used non-linear activation function

is the Rectified Linear Unit (ReLU), and it is defined as follow:

yijk = max {0 , xijk} (2.8)

2. Max Pooling

Figure 2.6: Max pooling.

The second block, Max Pooling, is shown in the Fig.2.6 where the maximum value

is taken in the green box. The most common way to perform pooling is to apply

a max function called max-pooling to the output of each filter. Max pooling is

defined as follow:

yijk = max{yi′j′k : i ≤ i′ < i+ p, j ≤ j′ < j + p} (2.9)
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Because the larger numbers on the feature map represent where the similarity of

the characteristics actually exists. We are eliminating 75% of the information, but

if we analyse the same image with this system but rotate between them, we have

the same maximum pool, since the value “4” would be close in another cell of

the matrix; therefore, we preserve the characteristics on the same images even if

distorted/rotated (Fig.2.7).

Figure 2.7: Example to images even if rotated or distorted.

By removing the information in this step, we avoid over-adaptation, reduce noise.

3. Flattening

The third block, Flatting, is shown in the Fig.2.8 where Pooled Feature Map(i,j)

can be flatten to 1D array b(k).

Figure 2.8: Example to Flattening.

We now have as many vectors as the images created with filters as shown in the

Fig.2.9.
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Figure 2.9: Flattening.

4. Full Connection

We now have our classic artificial neural network (Fig.2.10), introduced in subsec-

tion 2.1.2, connected in a cascade to block 3 where each neuron is connected. Fully

connected layer, they are all connected. The purpose of the ANN is to combine

our features into attributes that even better predict the things we are trying to

classify.

One technique for reducing overfitting in the fully connected layer is dropout [65].

Dropout is a powerful regularization method, which has shown benefits for large

neural networks. The simple key concept of dropout is to reduce co-adaptation

between units. This objective is obtained randomly dropping units and their con-

nections during the training phase.

Figure 2.10: Artificial neural network.

The V-Net describe in section 3.1.2 is represented by a first part called compression

which is composed of the blocks 1,2,3 just seen, and connected to a decompression part

which reconstruct the labelled image.
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2.2 Accuracy evaluation

In this section, is shown which metrics have been used to evaluate the result of the exper-

iments conducted. It was considering the classification problems with two class labels,

positive and negative {1, 0}. Some classification models produce continuous output (e.g.

an estimate of the probability of belonging to a class of instances) to which different

thresholds can be applied to predict class membership. Other models produce a discrete

class label indicating only the expected class of the instance. To distinguish between

the actual class and the expected class we use the labels {1∗, 0∗} for the class predic-

tions produced by a model. Given a classifier and an instance, there are four possible

outcomes. If the instance is positive and classified as positive, it is considered as true

positive; if it is classified as negative, it is counted as a false negative. If the instance

is negative and classified as negative, it is considered as true negative; if it is classified

as positive, it is counted as a false positive. Given a classifier and an instance set (the

test set), it is possible to build a matrix two by two that represents the dispositions of

the set of instances. This matrix forms the basis for many common metrics and is called

the confusion matrix (Tab.2.1). The numbers along the major diagonal represent the

correct decisions made, while the numbers on this diagonal represent the errors between

the various classes.

True class
1 0

Hypothesized class 1* True Positive False Positive
0* False Negative True Negative

Table 2.1: Confusion matrix.

These metrics are calculated for single classes to evaluation the classification:

• Precision answers to the question, “What proportion of identifications was actually

correct?”:

Precision =
true positives

true positives+ false positives
(2.10)

• Recall answers to, “What proportion of identifications was identified correctly?”:

Recall =
true positives

true positives+ false negatives
(2.11)

• The F1 score or Dice index, is the harmonic average of the precision and recall:

F1 = 2 · precision · recall
precision+ recall

(2.12)
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If F1 score is high, the model has good results in precision and recall; on the

contrary, if it is low, it indicates that the model has problems with false positives

or false negatives. F1 score reaches its best value at 1 (perfect precision and recall)

and worst at 0.

• False positive rate answers to, “What proportion of identifications was a false

alarm?”:

False positive rate =
false positives

true negative+ false positives
(2.13)

• Overall accuracy calculates how many cases have been correctly classified:

accuracy =
true positives+ true negative

true positives+ false positives+ true negative+ false negative
(2.14)

• AUC answers to, “How much model is capable of distinguishing between classes?”

Finally, AUC is a common method to calculate the area under the ROC curve in a

graph [21]. ROC graphs are two-dimensional graphs in which true positive rate (or

recall) is plotted on the y-axis and false positive rate is plotted on the x-axis (Fig.

2.11). An ROC graph depicts relative tradeoffs between benefits (true positives)

and costs (false positives).

Figure 2.11: Roc curve and AUC.
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2.3 Image processing techniques

In the following section, two techniques for image processing, the Hough Transform and

the application of morphological operators are described. The first technique answers the

fundamental problem in the field of image processing is the recognition of objects, the

identification of geometric shapes presents in digital images. In the most straightforward

cases, the problem boils down to figures containing a certain number of discrete points

that stand on a white background. In general, the identification of shapes is a difficult

problem because objects undergo translations, vary in colour, undergo changes in scale,

rotations and images can be affected by noise. The problem can be solved for any

desired degree of accuracy by testing the straight lines passing through each pair of

points. According to this procedure, if n points are available, the number of operations

required is proportional to n2, and for n large the computational complexity could

become unmanageable for practical applications. While the second technique, concerning

morphological operators, is used to thin or thicken the linear elements of the object,

thanks to the application of filters to make the opening with a disc structuring element

that smoothes the corners from the inside and the closure with a disc that smoothes the

edges from the outside.

2.3.1 The Hough Transform

Rosenfeld described an ingenious method, due to Hough, which consists in replacing

the original problem of finding aligned points with a mathematically similar problem

which includes in identifying straight lines. This method contains mapping each point

in the image to a space in the parameter space. The parameter space is defined by a

parametric representation described the straight lines in the image plane. Intuitively a

model (template) is used, which scrolls over the image and compares it with the image

below where an error function is minimized:

E(y, x) =
∑
i,j

(I (y + i, x+ j)− T (i, j))
2

(2.15)

E(y, x) =
∑
i,j

|(I(y + i, x+ j)− T (i, j))| (2.16)

In general, it is a difficult problem because objects undergo translations, changes in

colour, experience changes in scale and rotations.

Hough’s transformation is a technique that allows you to identify straight lines, curves

or predefined shapes present within an image starting from their point projection in a

parameter space that is defined as “Hough space” . Hough introduced this technique in

1962, and then taken up and modified by Duda and Hart, who improved the method and
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abroad the determination to other geometric shapes. Among the advantages present,

we must mention its strength and stability against images with the presence of noise.

Furthermore, it is an extended technique used in the field of digital image processing,

and also the use in the medical field for the detection of forms in medical images through

its generalized way for circumferences and ellipses.

The Hough Line Transform

Classical equation of the line is y = ax+ b, for each point in the Image Space (IS) corre-

sponds to a hypersurface (generalized surface) in the Parameter Space (PS) (Fig.2.12).

Figure 2.12: Image space and corresponding parameter space.
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Fixed a point (xi, yi) in the image space the equation b = yi−axi describes the curve

(which still remains a straight line). For example: for the point (x1, y1) along the line

y1 = ax1 + b, in the parameter space is b = y1–ax1.

The n points in the IS belonging to the same curve generate n surfaces that intersect

at the same point in PS (Fig.2.13).

Figure 2.13: Parameter space.

So, in the PS an intersection of many surfaces is the indication of the presence of a

particular instance of the analytical curve sought. In general, it will take several points

at least equal to the number of parameters to identify a curve. The transform, therefore,

sends to convert a curve search problem into the simpler one of intersection search.

Phases of the algorithm:

1. The discretisation of the parameter space (Fig.2.14) in NxM cells:

ai = a0 + iδa where i = 1, . . . , N (2.17)

bj = b0 + iδb where i = 1, . . . ,M (2.18)
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Figure 2.14: Discretisation of the parameter space.

2. Definition of the accumulation matrix: H = HMxN = (Hji) with Hji = 0∀i, j.

3. Projection of the point (xP , yP ) in the straight-line b = −xPa + yP and look for

the cells crossed by the line.

4. Update the entries of the instruction accumulator matrix to the cells to cross from

the line where:

Hji = Hji + 1 (2.19)

if the cell is crossed by the line.

5. Repeat for each point of the image, so as to calculate the accumulation matrix

(Fig.2.15).
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Figure 2.15: Accumulation matrix in parameter space.

6. The local maxima in the accumulator matrix identify the intersection points of the

projected straight lines.

7. The local maxima in the accumulator matrix identify the collinear points in the

input image.

8. If j∗ and i∗ is the pair of indices corresponding to the global maximum in the

accumulator matrix, then:

y = ai∗x+ bj∗ (2.20)

it is the straight line in the image space that we are looking for.

2.3.2 Morphological Operations Opening and Closing

In the field of image processing, the term mathematical morphology indicates the study

of the geometric structure of images and morphological operators carry out elaborations

on the shape of an object [20]. The fundamental morphological operations are dilation

and erosion; the first consists of adding pixels to the outlines of an object, while the

second is removing them. In both cases, the number of pixels added or removed depends

on the organized shape on which it operates and on the size of the structuring element,

i.e. a smaller reference shape on which you interact, used to make a comparison with

the forms and structures of the image. The erosion of a binary image f by a structuring

element s (denoted f 	 s) produces a new binary image g = f 	 s with ones in all

locations (x, y) of a structuring element’s origin at which that structuring element s fits

the input image f, i.e. g(x, y) = 1 is s fits f and 0 otherwise, repeating for all pixel

coordinates (x, y).
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The dilation of an image f by a structuring element s (denoted f ⊕ s) produces a

new binary image g = f ⊕ swith ones in all locations (x,y) of a structuring element’s

origin at which that structuring element s hits the input image f , i.e. g(x, y) = 1 if s hits

f and 0 otherwise, repeating for all pixel coordinates (x, y). Dilation has the opposite

effect to erosion; it adds a layer of pixels to both the inner and outer boundaries of

regions. The expansion and erosion processes are operations at the basis of the two

operators that have been taken into consideration in the experimental tests, that is, the

morphological operators of opening and closing. The morphological opening operators

are characterized by erosion followed by dilatation, and the effect they have is that of

preserving as much as possible regions of a shape similar to the structural element and

with distinct differences. The opening of an image f by a structuring element s (denoted

by f ◦ s) is an erosion followed by a dilation:

f ◦ s = (f 	 s)⊕ s (2.21)

On the contrary, the closing morphological operators are characterized by an expansion

followed by erosion and have the task of closing any holes inside the segmentation. The

closing of an image f by a structuring element s (denoted by f · s) is a dilation followed

by an erosion:

f · s = (f ⊕ s)	 s (2.22)

For all the experiments used, a “disk” spherical shape is used as a structuring element,

since it is the figure with the most characteristics in common with the form of a tumour.
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MRI segmentation in Metastasis Tumors

Treatment

The solutions investigated in this task are an extension of those presented in a pre-

vious work [28] from which we inherit the idea of using segmentation procedures based

on SVM. In the present work, experiments have been extended by using an enlarged

dataset and by developing and evaluating a second segmentation procedure based on

deep learning approach [29].

The first objective of this study was to investigate whether BM segmentation may

be approached successfully by two supervised ML classifiers belonging to feature-based

and deep learning approaches, respectively. SVM and V-Net Convolutional Neural Net-

work model [53] are selected from the literature as representative of the two approaches.

In the experiments, we consider several configurations of the two methods to segment

brain metastases on contrast-enhanced T1-weighted magnetic resonance images. Perfor-

mances were evaluated and compared under critical conditions imposed by the clinical

radiotherapy domain, using in-house dataset and public dataset created for the Multi-

modal Brain Tumour Image Segmentation (BraTS) challenge. Our results showed that

the feature-based and the deep network approaches are promising for the segmentation

of MRI brain metastases achieving both an acceptable level of performance. Experimen-

tal results also highlight different behaviour between the two methods. SVM improves

performance with a smaller training set, but it is unable to manage a high level of het-

erogeneity in the data and requires post-processing refinement stages. The V-Net model

shows good performances when trained on multiple heterogeneous cases but requires

41
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data augmentations and transfer learning procedures to optimise its behaviour.

A second objective of the present work was the design of a software package imple-

menting an integrated set of procedures for active support in BM segmentation within

the radiotherapy workflow. It was designed to be user-friendly, with a right trade-off

between automation and interactivity.

3.1 Interactive BM segmentation based on supervised learning

models

In line with the above considerations, the present work is aimed to design an interactive

system for active support in the delineation of BM in clinical RT studies. It is designed

to operate in a clinical setting to reduce the workload of health-care professionals but

leaving them full control of the process. It is then conceived semi-automatic but requir-

ing limited user interaction in an attempt to facilitate the insertion in current clinical

practice.

The system implements a segmentation procedure hierarchically structured in three

phases:

• Volume-of-interest (VoI) specification.

• Automated segmentation by supervised learning models.

• Segmentation refinement.

As regards the second phase, we investigated whether automated segmentation may

be approached successfully by conventional, feature-based machine learning and deep

learning models exploiting mutual advantages, limitations and synergies among them.

We mainly studied the potential of the two methods in optimising the balance between

accuracy and demand for training data. The following subsections describe the three

phases of the proposed segmentation procedure.

3.1.1 VoI specification

Conceptually BM segmentation task includes both detection and delineation. Auto-

mated procedures cope with one or both of the two sub-tasks usually. In our context,

the proposed interactive segmentation procedure limits the role of the automated so-

lutions to the delineation task, lying to users the manual detection of BM in the T1c

imagery. The advantage of this strategy is a simplification of the automated segmen-

tation task for the learning model selected. In this preliminary step, a user specifies

a volume of interest (VOI) by drawing a rectangular region on one slice of the input

volume and selecting first and last slices in such a way that the entire pathological area

is bounded within the specified parallelepiped (see Fig. 3.1, 3.2 ).
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Figure 3.1: Show external source
slices of T1c MR scans with the corre-
sponding VoI slice perimeter bound-
ing BM areas.

Figure 3.2: Show medium slices of
T1c MR scans with the correspond-
ing VoI slice perimeter bounding BM
areas.

3.1.2 Supervised classification of pathological and healthy tissues

In the second stage of the segmentation procedure, a supervised machine learning model

is applied to the selected sub-image. The supervised learning task is aimed to perform a

hard binary categorisation, labelling voxels within the selected volume as Brain Metas-

tasis (BM) and Healthy tissue (H). During the training phase, the classifier learns an ap-

proximation for the true input-output relationship based on a given training set of exam-

ples constituted by N input-output pairs {(xi, yi)} , i = 1, ..., N where xi yi ∈ {BM,H}
is a supervised label denoting the membership in the metastasis or healthy class.

We conceived and conducted two sets of experiments. The first used a conventional

supervised classifier built on the top of a hand-crafted feature extraction procedure. In

our previous works, we deal with MRI brain tumour segmentation using several methods

selected from state-of-the-art classifiers in the field of MRI segmentation. In particular,

we investigated the use of Fuzzy connectedness and Graph Cut for glial tumour segmen-

tation [58] and SVM for meningioma and edema segmentation [8]. Fuzzy Connectedness

and Graph Cut methods are interactive, asking experts to provide accurate initialisation

information for each image processed. Results obtained by these methods were accurate

but strongly influenced by the prior knowledge provided by the users or by ancillary

methods. In the RT domain, where a large number of images are needed to be handled,

they can be laborious and time-consuming. We have shown that trained SVM allows

complete delineation of meningioma and edema tissues and accurate volume estimation

by processing both volumetric and non-volumetric imagery in a few minutes, without
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requiring manual selection of example voxels or seeds. Performances obtained were good,

confirming the results obtained in other studies [6]. Approaches based on Random For-

est show similar characteristic and can also be suitable in the RT domain. Bauer et al.

in their review [6] investigate the behaviour of SVM and Random Forest segmentation.

The two methods showed comparable performances. It is worth to note, however, that

evaluations were performed on different datasets and different evaluation metrics, mak-

ing difficult the comparison. Statnikov et al. [66] found that, both on average and in

the majority of data used in the study, Random Forests exhibit larger classification error

than SVM when processing microarray datasets. In the present work, the choice fell on

SVM, not because the best that can be made but as it has been extensively used in MRI

image segmentation and can be considered representative of the conventional learning

approaches.

The second experiment was conducted using the V-Net convolutional neural network

model [53] selected among the deep learning models oriented to MRI volumetric images

[46] and properly adapted for our application context. To make the work self-contained,

we briefly outline the basic concepts of both learning models investigated.

BM delineation using SVM

SVM is a classification algorithm based on kernel methods [73, 64] mapping the input

patters into a high dimensional feature space. Classes which are non-linearly separable

in the original space can be linearly separated in the higher dimensional feature space.

Let {(xi, yi)} be a supervised training set of elements for a two-class classification

problem, with xi ∈ X ⊆ Rn and yi ∈ {−1, 1}. Considering the case of linearly

separable data, the solution to the classification problem consists of the construction of

the decision function:

f (x) = sgn (g (x))with (3.1)

g (x) = wtx+ b (3.2)

that can correctly classify an input pattern x not necessarily belonging to the training

set.

SVM classifier defines the hyperplane that causes the largest separation between

the decision function values for the “borderline” examples from the two classes. This

hyperplane can be found by minimising the cost function, as follow:

J (W ) =
1

2
||W ||2 subject to (3.3)

W TXi + b ≥ +1 for yi = +1 or (3.4)
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W TXi + b ≤ −1 for yi = −1 (3.5)

The extension to the nonlinear classification is based on the function g′ = W Tϕ (X)+

b in which the non-linear operator ϕ (.) hyperparameters.

In this case, the SVM cost function to be minimized is

J(W, ξ) =
1

2
||W ||2 + C

l∑
i=1

ξi (3.6)

yi
(
wtϕ (Xi) + b

)
≥ +1− ξi with ξi ≥ 0, i = 1, 2, . . . l (3.7)

Suykens [19] proposed a new formulation of SVM by adding an LS term in the original

formulation of the cost function. This modification significantly reduces computational

complexity.

The trained SVM classifier receives in input multidimensional patterns, in the form

of vectors of measured features and assigns labels to corresponding T1c MR elements.

Multidimensional input patterns are composed of T1c voxel intensities and corresponding

textural and contextual features extracted from the MR scan. The literature proposes

different sets of features related to the supervised classification of MRI data. Features

are selected in function of the MRI channels used, and the classifiers adopted [31, 6].

Based on our previous works, in addition to image intensities from the T1c MR scan,

we consider features describing neighbour relationships and texture [72]. The feature set

adopted is described in the next section. As detailed in Section 3.2, several strategies

were conceived to conduct the learning stage. Results obtained were analysed, and the

resulting optimal configuration has been used in the comparison analysis.

BM delineation using V-Net

The V-Net model is a Fully Convolutional Neural Network proposed by Milletari et

al. [53] for volumetric medical image segmentation. The name V-Net comes from the

fact that the network can be drawn with the symmetric shape like the letter V. Salient

aspects of the model proposed are the use of volumetric convolution to overcome the

slice-by-slice processing of input image volumes and the use of a novel objective function

based on Dice coefficient maximisation, optimised during training. Both these aspects

are significant for our segmentation task, which is based on volumetric data characterised

by a strong imbalance between the number of voxels belonging to the pathological area

and background.

In our experiment, we adopt the V-Net configuration proposed for Lung Tumor

Segmentation in [57] (see Fig. 3.3). The inputs of the network are T1c MRI sub-

volumes by dimension 64x64x64. The V-Net has an increasing number of convolutional
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filters (16, 32, 64, 128, 256) with a total of 116 layers and 128 connections. The output

layer is a custom Dice loss layer [69].

Figure 3.3: Screenshots of the system interfaces documenting the initial input/output
phases.

Figure 3.3 shows a schematic representation of V-Net architecture adopted, which is

composed of two parts implementing compression and decompression paths. In the left

part, we found a deep residual learning strategy: all the outputs of the convolutional

layers, after non-linearities processing, are added to the output of the last convolutional

layer [34].

In each stage, the compression part of the network computes features two times

higher in number than the one of the previous layers. In the decompression part, the

network extracts features and expands the spatial support of the lower resolution feature

maps. The last convolutional layer implements two outputs of the same size of the input

image volume. A voxel-wise soft-max operation is applied, converting the two outputs

as probabilistic segmentation of background and BM regions.

Results obtained in several segmentation studies show how necessary it is to use

large-scale datasets for effective application of deep learning methods [2, 41]. Whereas

in our context, as in many other biomedical domains, manually segmented reference

volumes are not easy to obtain, our strategy includes data augmentation and transfer

learning tasks to compensate for the limited dataset available and reaching the double

goal of increasing robustness and generalisation capability of the network respectively,

as described in 3.2.
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3.1.3 Segmentation Refinement

In our study, we conceived automated segmentation as an intermediate task within a

typical workflow in radiotherapy planning. The active decision support of the machine

learning procedure reduces user-interaction that is limited to two phases: a preliminary

“detection” phase with which to specify the VoI, as illustrated in Sec.3.1.1, and a post-

processing phase aimed to refine the identified segments. Refinement is made necessary

by commission and omission errors that are most likely to occur when lesions are of small

size, and the tumour area presents inhomogeneity due to necrosis and active parts. Our

strategy provides both for computer-aided manual editing as illustrated in Sec.3.3 and

an automated procedure based on the use of Morphological Operators to refine the

segmented masks in an attempt to reduce omission and commission errors and making

the segmented tumour area more compact. For each selected slice, Opening and Closing

Operators with spherical shape apply consequently. The Opening Operator removes

from the binary input image all the connected components that have a lower number of

pixels than a set value and outputs a new binary image. The Closing Operator closes

holes present in the image and returns the closed binary image. We performed three

different tests, using for all a disk-shaped structuring element, aimed to tune parameters

values of the Morphological Operators and decide the order of application. In the first

test, only the opening morphological operator (Open) was applied by varying the radius;

in the second test, only the morphological closing operator (Close) was applied, varying

the radius; in the third test, we applied both operators in a different sequence. The best

result was obtained by applying first the opening morphological operator with a radius

of 5 and then the closing operator with a radius equal to 10.

Figure 3.4 and Figure 3.5 illustrate the refinement of automated segmentation results

performed manually by the user and by the Morphological Operators, respectively.

Figure 3.4: From left to right: crop of a source T1c MRI slice, superimposition of the
automated segmentation mask, superimposition of the mask manually refined by the
user.
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Figure 3.5: From left to right: crop of a source T1c MRI slice, superimposition of the
automated segmentation mask, superimposition of the mask automatically refined by
Morphological Operators.

3.2 Experiments

We conceived and conducted several experiments to systematically investigate the be-

haviour and quantitatively assess performances of the selected machine learning models

for automated support in the BM segmentation within the RT workflow (see Fig. 3.6).

The experiments used two data sets: one in-house collected and one public, created for

the Multimodal Brain Tumour Image Segmentation (BraTS) challenge for the detection

of gliomas [52]. In-house data are used to train and test SVM classifier and to fine-tune

and test V-Net network pre-trained using data from BraTS.
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Figure 3.6: Flowchart illustrating the experimental design.

3.2.1 In-house data acquisition

The acquired dataset is composed of 45 T1c volumetric MR scans. Volumes are acquired

using a 3D sequence characterised by 0,9 mm isotropic voxels, the pixel spacing of 0,47

mm and the slice thickness of 2,67 mm. The tumour cases considered are heterogeneous

in terms of shape, position and intensity level (see Fig.3.7).

Figure 3.7: Show three source slices of T1c MR Volumes with the delimitation of the
lesion area.
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3.2.2 Evaluation Metrics

We assessed the accuracy of segmentation results by comparing the spatial distribution

of the masks obtained by the automated segmentation with that of the masks obtained

through a manual segmentation of the T1c images performed by radiologists. Metrics

adopted for the accuracy is described below, according to Bouix et al. [69]. The minimal

problem of assessing the agreement between two binary maps B1 and B2, representing

reference and segmented data respectively, is obtained in terms of number of voxels at

which both B1 and B2 score “1” (True Positive Tp) or “0” (True Negative Tn), the

number of voxels at which B1 scores “0” and B2 scores “1” (False Positive Fp) and

vice-versa (False Negative Fn). Several similarity indexes could be defined. We use Dice

(DSC) [34], Precision and (P) and Recall (R) indexes (Olson and David, 2008) defined

as follows:

DSC =
2Tp

(2Tp+ Fn+ Fp)
(3.8)

P =
Tp

(Tp+ Fp)
(3.9)

R =
Tp

(Tp+ Fn)
(3.10)

The DSC index has been used broadly in the field of segmentation as a measure of spatial

overlap, P and R indexes allow to measure under- and over-estimations [69].

3.2.3 Experiments with SVM

Performances of the SVM-based segmentation were evaluated by generating several seg-

mentation procedures obtained by different SVM configurations and using different learn-

ing strategies. We used 25 reference data corresponding to those acquired and available

in our clinical domain at the start of the study. We developed two preliminary tasks.

First, we defined the optimal feature set that composes patterns in input to the SVM.

For this task, the SVM has been configured as a soft-margin leas square (LS) model

with a linear kernel. Contextual and textural features have been analysed systemat-

ically in order to determine the combination that is most appropriate for the current

classification task. In particular, several configurations of the segmentation procedure

have been experimented initially providing in input only intensity values of central voxel

and neighbour voxels. Different neighbourhoods have been considered including incre-

mentally neighbours along with voxel faces, corners and edges up to a maximum of 26

voxels. In a second step, an enlarged feature set has been considered adding textural

features to the best neighbourhood configuration.
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The following set of features has been finally selected (see Fig. 3.8):

• intensities from T1c scan

• first-order texture features: mean (µ), variance (σ), skewness (γ), kurtosis (β) and

entropy (H)

• intensities in 26 neighbourhood voxels

Figure 3.8: Input pattern vector composed of contextual and textural features.

Feature values have been normalised to have zero mean and unit variance.

The second step was to determine the value of the internal parameters of the model.

Different types of kernels were tested, such as linear, quadratic, cubic, fine-medium-

coarse gaussian. Given the results obtained, we confirmed the configuration of SVM as

a soft-margin LS model with a linear kernel. With this optimised configuration, we con-

ducted the first set of experiments by varying the modality for selecting training samples

from the VoIs extracted from the available in-house dataset. In the first modality (M1)

data are extracted from the reference masks selecting elements within the overall VoI

under study. In the second modality (M2), the random selection was limited within a

region built around the contour of the tumour reference masks. After trial and error pro-

cedures, the edge width was tuned to 8 pixels. These experiments have been conducted

in intra-patient modality selecting training and test sets from the reference masks of the

same VoI and built by randomly selecting elements in the proportion of 70% and 30%

respectively. An equal number of elements labelled BM and H was extracted. In the

M1 modality, before the random extraction of BM elements, contour elements of BM

regions were reinserted. Table 3.1 shows the numerical results obtained in terms of mean
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values of DSC, P and R indexes over 25 cases under study. SVM, trained according to

M2 strategy, slightly prevails with a mean DSC value equal to 0.878. P and R values

highlight a significant reduction of omission and commission errors. These results can

be explained by the fact that metastases have little extensions and a high level of het-

erogeneity occurs in the internal part of the pathology due to the presence of necrosis

and/or active parts (see Fig.3.7). This high level of heterogeneity is difficult to learn

during training and, as seen in our experimental context, SVM shows better behaviour

when trained on relatively homogeneous regions.

Table 3.1: Dice (DSC), Precision (P), Recall (R) values obtained using M1 and M2
strategy and tested on the overall cases under study.

M1 M2

DSC Mean 0.808 0.878
Var 0.008 0.003
Min 0.549 0.757
Max 0.908 0.963

P Mean 0.824 0.884
Var 0.006 0.003
Min 0.648 0.749
Max 0.927 0.963

R Mean 0.796 0.873
Var 0.012 0.003
Min 0.476 0.764
Max 0.923 0.963

Using the configuration described above and with the M2 voxel extraction strategy,

we quantified segmentation performances by conducting a second set of experiments

aimed to investigate the ability of the SVM to generalise under increasing levels of

heterogeneity seen in training.

First, 25 SVM models are trained from one case and tested on all the cases under

study. Table 3.2 shows the results obtained by the best configuration. We compute

accuracy values obtained with and without the use of Morphological Operators to isolate

their contribution within the overall segmentation procedure. Secondly, in order to

measure the ability of the SVM to segment under an increased level of heterogeneity,

we select the 10 cases where the SVM gave the best results in intra-patient analysis.

The Series of 6 cases extracted from the 10 cases, previously selected are considered for

training, for a total of 120 learning stages. Table 3.3 shows accuracy values obtained

by the best SVM, with and without the use of Morphological Operators, tested on the

overall 25 cases.
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Table 3.2: Dice (DSC), Precision (P), Recall (R) values obtained by the segmentation
procedure trained on one case according to M2 strategy, with and without the use of
Morphological Operators (MO) and tested on the overall 25 cases under study.

SVM SVM+MO

DSC Mean 0.701 0.693
Var 0.011 0.035
Min 0.462 0
Max 0.844 0.897

P Mean 0.747 0.696
Var 0.026 0.047
Min 0.437 0
Max 0.997 0.997

R Mean 0.737 0.769
Var 0.035 0.057
Min 0.41 0
Max 0.983 0.990

Table 3.3: Dice (DSC), Precision (P), Recall (R) values obtained by the segmentation
procedure with data from a set of VoIs belonging to different scans with and without
the use of Morphological Operators (MO) and tested on the overall cases under study.

SVM SVM+MO

DSC Mean 0.653 0.66
Var 0.008 0.028
Min 0.39 0
Max 0.77 0.82

P Mean 0.681 0.641
Var 0.017 0.025
Min 0.278 0
Max 0.968 0.881

R Mean 0.71 0.762
Var 0.026 0.035
Min 0.482 0
Max 0.955 0.976
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a b
c d

Figure 3.9: First row, from left to right: (a) crop of a source slice (Slice 1) of T1c
MR Volume with superimposed the contour of metastasis reference mask (dimension:
83 elements), (b) slice of the corresponding VoI. Second row from left to right: (c)
segmentation mask produced by SVM, (d) refinement by the Morphological Operators.

Looking at values in Table 3.2 and Table 3.3 in more detail, we notice that the

application of Morphological Operators is not always advantageous. However, when

studying individual cases, we have noticed that under-estimation and over-estimation

errors occur systematically when the pathology occupies a very small volume (under the

100 elements), and it is inserted in a highly heterogeneous context. Figure 3.9 illustrates

an example with a slice (Slice 1) including with a metastasis remarkable small. The

refinement accomplished by the Morphological Operators deletes all the true positive

elements identified by the SVM classifier. On the contrary, the segmentation masks of

the larger pathological area in the slice (Slice 2) shown in Figure 3.10, indicate that the

segmentation strategy benefits from the allied use of SVM and Morphological Operators.

Table 3.4 lists the numerical results of the cases illustrated in Figure 3.9 and 3.10.

Table 3.4: Dice (DSC), Precision (P), Recall (R) values obtained by the segmentation
procedure when processing slices in Figure 3.9 and 3.10.

DSC P R

Slice 1 SVM 0.556 0.656 0.482
SVM+MO 0 0 0

Slice 2 SVM 0.885 0.898 0.873
SVM+MO 0.940 0.926 0.953

Automatic segmentations were evaluated qualitatively through visual inspection.
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a b
c d

Figure 3.10: First row, from left to right: (a) crop of a source slice (Slice 2) of T1c
MR Volume with superimposed the contour of metastasis reference mask (dimension:
644 elements), (b) slice of the corresponding VoI. Second row from left to right: (c)
segmentation mask produced by SVM, (d) refinement by the Morphological Operators.

The complete strategy, including the combined use of SVM and Morphological Op-

erators, have been judged satisfactory. The limitations of the segmentation procedure,

inherent to specific cases, as illustrated above, are considered acceptable and manageable

with interactive phases devoted to manual refinements of the automated results.

3.2.4 Experiments with V-Net

In these experiments, we consider an enlarged in-house data set composed of 45 collected

MRI scans made available for this second phase of the study. These data are used to

fine-tune the V-Net model after a pre-training procedure based on the use of BraTS

data, including 750 4D annotated volumes, each representing a stack of 3D images.

Each 4D volume has size 240x240x155x4, where the first three dimensions correspond to

height, width, and depth of a 3D volumetric image. The fourth dimension corresponds

to different scan modalities. For all the experiments developed, we pre-processed both

in-house and public BraTS data before their use in training, according to the following

strategy. To reduce the amount of data to be processed, we cropped original volumes

to sub-regions containing a significant amount of brain and tumour tissues. Then, we

normalise each data independently by subtracting the mean and dividing by the standard

deviation of the cropped brain region; then, we removed the outliers and, finally, we

applied a data resizing in the interval [0,1]. Data are augmented by randomly rotating

and reflecting image patches to make training more robust. Finally, we randomly extract

patches of 64x64x64 voxels sizes from the cropped data.

Initially, we conduct experiments aimed to assess the utility of transfer learning.
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V-Net was trained directly using the preprocessed in-house collected data. We con-

sidered several learning strategies for training V-Net by varying the number of epochs

with a range from 10 to 30 and splitting the data set into 82% for training, 6% for

validation and 12% for test. We obtained poor, unacceptable results with accuracy close

to zero.

We proceeded then, by pre-training V-Net using pre-processed T1c scans of BraTS

data. During the experiment, the number of epochs varied from 15 to 200 and the

preprocessed dataset was split again into 82% for training, 6% for validation and 12%

for test. The DSC value obtained is equal to 0,53. Performances obtained would not

be acceptable for the final segmentation task, but should be considered acceptable for

pre-training.

The V-Net architecture, pre-trained on glioma segmentation task, was refined using

in-house collected data with different learning strategies. Several configurations of V-

Net-based procedure were considered by varying epoch.

We conceived three experiments addressing the following main questions:

• how did the V-Net compare with SVM when trained on the same data set

• how did performances could be optimised increasing the number of training data

• how did dimension of lesions influence accuracy of segmentation results.

To address the first question, we train and test V-Net with the same strategy used

in the second interpatient analysis conducted with SVM (see section 3.2.3). Results

obtained are shown in Table 3.5. Comparing these results with those obtained by the

SVM, shown in Table 3.3, we found that SVM segmentation prevails.

Table 3.5: Dice (DSC), Precision (P), Recall (R) values obtained by V-Net segmentation
trained according to the second inter-patient analysis conducted for SVM.

P R D

Mean 0,63 0,46 0,51
Var 0,17 0,11 0,13
Min 0,56 0,39 0,46
Max 0,68 0,55 0,59

To address the second question, we used an enlarged dataset composed of 45 T1c

volumes, of which 17 for test and the remaining 28 used in 4-fold cross-validation. Re-

sults obtained were still poor with accuracy values under the value of 0,50 for all the

indexes used. Moving deeper into the experiment conducted and analysing case-by-case

performances obtained, we found that lower accuracy values occur when the pathology
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occupies a very small volume (under the 100 elements), and it has a highly heteroge-

neous context. V-Net has difficulties in identifying a very small lesion, as illustrated in

figure 3.11, where the segmented mask has a spatial distribution quite different from the

reference mask.

Figure 3.11: 3D visualisation of reference mask (left) and V-Net mask superimposed on
a very small lesion in MRI scan under study.

We conducted a third experiment by using a reduced set of data obtained by the

initial in-house data set, by eliminating cases in which pathology occupies volumes under

100 voxels. The final dataset is composed of 39 T1c volumes of which 12 for test and

the remaining 27 used in 3-fold cross-validation. Results obtained are shown in Table 6.

Table 3.6: Dice (DSC), Precision (P), Recall (R) values obtained by V-Net segmentation
trained on the refinement dataset.

P R D

Mean 0,857 0,537 0,641
Var 0,021 0,017 0,010
Min 0,523 0,298 0,455
Max 1,000 0,706 0,802

Comparing performances obtained by the SVM configuration optimised for inter-

patient analysis, shown in Table 3.2, we noticed that performances of the two classifiers

are in this case comparable.

Analysing in detail, the segmentations performed we notice that the masks produced

by V-Net have a higher level of spatial consistency than those produced by SVM, making

the use of MO ineffective. As an example, Figure 3.12 shows results produced by SVM

e V-Net highlighting differences in the computed segmentation masks.

As regard hyperparameters and execution time, the pre-training task takes about
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150 hours on an NVIDIA™ 1080Ti with 11 GB of RAM, and the training with the in-

house data takes about 7 hours. In training we used the stochastic Adam optimizer,

the shuffle in every epoch, InitialLearnRate = 1e-3, LearnRateSchedule = piecewise,

LearnRateDropPeriod = 5, RateDropFactor = 0.97.

Figure 3.12: Crop of the source slice of T1c MR Volume with superimposed reference
mask (a), segmentation mask produced by V-Net (b), segmentation mask produced by
SVM without (c) and with MO (d). The source slice is the last image on the right shown
in Figure 3.7 (c).

3.3 The Software System: Graphical User Interface (GUI) and

sample program runs

The above-illustrated computational procedures are integrated into a unified framework

to support the segmentation of BM within the RT workflow (see Figure 3.13).

Both the SVM-based and deep learning-based procedures have been implemented

in different system configurations to extend the evaluation of the automated results

obtained through an accurate field test with novel clinical subjects.

The software design started with the collection and analysis of requirements to out-

line the user model and operational conditions. We assessed cognitive and perceptual

processes, attitudes and limitations involved in visual inspection and analysis tasks.

Operation requirements concerning hardware facilities and input and output devices are

inherited from protocols in use in neuroradiology domain. The multi-window system

was implemented in MATLAB (MathWorks®).

Figure 3.14 shows the system interfaces documenting the initial phases of the session

and input/output facilities. Visualisation tools are available for a reliable inspection of

the selected MRI scan. By default, the three orthogonal planes of the corresponding

central slice are simultaneously visualised. Several colour maps can be easily selected to

modify the appearance of the axial slice.

On the left part of the GUI we found options made available by the system to

develop segmentation task. The user selects the range of slices that must be processed



3.3 The Software System: Graphical User Interface (GUI) and sample
program runs 59

Figure 3.13: The workflow of the functional structure of the software system implement-
ing the segmentation procedure.

by inserting the numbers of first and last slices and proceed in the VoI specification

(check on “Drow Box”) by using zooming facilities if the case.

Segmentation procedure is run, and the contour of mask obtained is superimposed

on the selected slices in all the projections as illustrated in Figure 3.15.
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Figure 3.14: Screenshots of the system interfaces documenting the initial input/output
phases.

The system allows the user to export the segmentation mask, to refine the segmen-

tation results, to proceed in a further segmentation in the same volume or to return to

the initial phase by unchecking “show Mask” command.
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Figure 3.15: Screenshot of the system interfaces documenting the visualisation of the
segmentation masks computed by SVM.

Figure 3.16 shows options made available by the system to validate the automated

segmentation. The segmented mask is shown superimposed on corresponding T1c source

slice. The user is allowed to modify the contour by checking on “Brush-Eraser” command

or delineating the entire segment in case the automated result occupies a wrong position

(check Pencil).

The software is preliminary installed at the radiotherapy unit of the Hospital ASST-

settelaghi, Varese (Italy) for a field test and then made available online with links in our

institutional website.
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Figure 3.16: Screenshot of the system interfaces documenting the visualisation of the
segmentation masks computed by SVM.

3.4 Discussion and conclusions

As seen in our experimental context, brain metastases can be semi-automatically seg-

mented using automated processing of T1c scans of MR images. The main goal of the

proposed procedure was to facilitate the segmentation task within the radiation therapy

workflow, actively supporting radiologist in the delineation of lesions. Our results showed

that both a feature-based and a deep network approach are promising for the segmen-

tation of MRI brain metastases achieving both an acceptable, although a not very good

level of performance. Nevertheless, it is worth to note that SVM and V-Net achieved

best results under quite different conditions. In the inter-patient analysis, SVM appears

to be unable to manage a high level of heterogeneity in training, producing best results

when trained only on individual cases, plus omitting heterogeneous voxels belonging to

necrosis within the pathological area. On the contrary, V-Net model achieved an accept-

able level of accuracy when trained on multiple cases and selecting voxels from the entire

pathological area. Moreover, the two optimised models show comparable performances,

but segmentation results are qualitatively different in many cases, as illustrated in figure

3.12. Differences are emphasized when segmenting highly heterogeneous lesions. In line

with results obtained in previous works focused on MRI brain tumour segmentation,
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we found that SVM can capture complex multivariate relationships in the data, but

classification results may suffer from spatial inconsistencies. The use of post-processing

refinement stages is usually suggested, as in our strategy that contemplates the use of

morphological operators. V-Net segmentations are more homogeneous on average and

results obtained confirm that no additional processing is required.

We identified some limitations of the study. A very small number of in-house data

was available, and the interpretation of the results would inevitably have to allow for

that. However, as a general consideration, if the use of the deep network, pre-trained

on neighbouring but not equivalent data and then fine-tuned with a very small dataset,

allowed us to obtain acceptable performances, it is reasonable to think that it is possible

to improve these results significantly when a broader dataset becomes available. For

SVM, instead, it is difficult to foresee that there will be a benefit from the use of a wider

training set having shown limitations in learning from varied heterogeneous data.

Moreover, both the classifiers made under-estimation and over-estimation errors

when the pathology occupies a small volume (under the 100 elements) and has a hetero-

geneous context. These errors are because of misclassifications between the vessel and

lesion voxels.

Probably, the simultaneous use of different MRI modalities could improve perfor-

mances than when using single MRI modalities as experimented in [14], but the use

of multimodal procedure would make it difficult the implementation of the automated

segmentation in the radiotherapy clinical practice. Both the learning models showed

advantages and drawbacks, but in the light of a great number of data available, a deep

learning algorithm appears preferable.

The main conclusions of our experimental work can be summarised as follows:

• SVM shows good performances with a smaller training set, but it is unable to

manage a high level of heterogeneity in the data and requires post-processing

refinement stages.

• The V-Net model shows good performances when trained on multiple heteroge-

neous cases but requires data augmentations and transfer learning procedures to

optimise performances.

• Users have found the segmentation strategy implemented either with SVM+Morphological

Operator or V-Net, satisfactory and have considered misclassification errors accept-

able and manageable with interactive phases devoted to manual refinements of the

automated results.

The automated procedure is installed in the RT workflow to measure benefits in

supporting brain metastasis delineation. Taking data is going and retraining of the

segmentation procedure will be possible.
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Mammography segmentation in Breast Cancer

Treatment

This research work was presented at the SPRA thematic conference on pattern recog-

nition and application to be held in Rome in November[30]. The main topic related to

this work is illustrate the development of a deep learning study aimed to process and

classify lesions in mammograms. Mammography has a central role in screening and di-

agnosis of breast lesions, allowing early detection of the pathology and reduction of fatal

cases. Deep Convolutional Neural Networks have shown a great potentiality to address

the issue of early detection of breast cancer with an acceptable level of accuracy and

reproducibility. In the present work, we illustrate the development of a deep learning

study aimed to process and classify lesions in mammograms with the use of slender

neural networks not yet used in literature. For this reason, a traditional convolution

network was compared with a novel one obtained making use of much more efficient

depth wise separable convolution layers. Preliminary numerical results are detailed and

future plans outlined.

65
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4.1 Dataset

A large annotated set of mammograms with pixel-level annotations are needed to train

CNNs for cancer detection and test their performances. Several public datasets of diag-

nosed patients with cancer breast are available. The digital database for mammography

screening (DDSM) [15] and the Mammographic Image Analysis Society (MIAS) [68] are

free mammography datasets available online. The following are available on request:

INbreast database [54], Breast Cancer Digital Repository (BCDR) [50] and Image Re-

trieval in Medical Applications (IRMA) [56]. This other public and datasets are useful,

and they are limited in terms of size and accessibility. This last set of datasets have a

limited size. In the present work, we decided to use as reference dataset of our exper-

iments, DDSM, since it is the one with the most significant number of cases available.

However, the analysis of this dataset revealed some limitations, such as non-standard

format and imprecise segmentation of the tumour area. To overcome these limitations,

we have employed a subset of DDSM, named CIBIS (Curated Breast Imaging Subset of

DDSM) subset [43], publicly available in The Cancer Imaging Archive (TCIA) [17].

The CBIS-DDSM is a significant public digitised screen-film mammography (SFM)

database, including training and test cases of calcifications and masses. Being a subset

of the DDSM, it includes both bilateral craniocaudal (CC) and mediolateral oblique

(MLO) mammograms views, with an image size found equal to 3118x5001 in DICOM

format. Each case was reviewed by a mammogram, also performing an update of the

ROI segmentations [43].

The dataset includes 753 calcification cases and 891 mass cases; this number of data

allows the use of deep learning techniques to train an algorithm for recognising patho-

logical areas.

4.2 Preprocessing

The images of CBIS-DDSM are SFM, characterised by low contrast and noisy, with the

presence of dust or written. In an attempt to simplify the classification task and improve

performances, we have developed a pre-processing phase aimed to reduce the image to

enhance quality, and limit the area visualised in the image to the breast area.

Preliminary images have been scaled to reduce the original large size. Four reduc-

tion factors were tested, reducing the original size at 12.5%, 25%, 50% 75%. The best

resolution factor used was 12.5% which optimise both in terms of computational speed

and work loose, as a side effect we obtain a reduction of noise.

The segmentation algorithm [60] adopted identifies the breast area addressing the

following tasks: detection of the background and the detection of the chest wall.
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The first task separates skin and air present in mammograms [47]; this task is applied

to both the views. The algorithm uses the intensity of the pixels as a random variable

and, uses the Anderson-Darling test to identify the foreground and background pixels

area. Fig.4.1 shows the breast boundaries obtained in the MLO and CC views.

The second task separates the more homogeneous muscle regions from the breast

regions. The Hough transform was used, which identifies the separation line of the two

areas with different homogeneity [4]. The breast segmentation phase ends by performing

the intersection of the masks obtained from the two tasks described above, and the result

is shown in Fig. 4.1.

Figure 4.1: From left to right, the steps for breast detect. First step: segmentation with
threshold; second step: segmentation with Hough transform; third step: intersection of
the two masks and final result applied on the image.

Finally, we randomly extract patches of size 256x256 from the segmented area of

the original images to create the dataset with which to train and test CNN. The crops

extracted from each image are labeled pathological if they have a diseased area greater

than 10% of the overall crop area. An equal number of healthy and pathological patches

for both mass and calcification were extracted to have a balanced representation of

classes. For each image, we have extracted a maximum of 250 healthy patches and 250

pathological patches taking the edge of mass and calcification as central points to be

used for CNN training.

4.3 Proposed Methods

In order to solve the crop classification problem two Convolutional Neural Network

architectures have been proposed and compared.
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4.3.1 Networks Architecture

The first proposed architecture is similar to other neural network proposed for classifi-

cation, and could be divided into two consecutive stages. The first stage, represented by

a cascade of convolutional filters, analyses the input image in order to extract some rel-

evant features. On the other hand, the last one, represented by a single fully connected

layer, executes the actual classification. As can be seen from Tab. 4.1, the proposed net-

work is composed of 8 convolutional layers, using 3x3 kernel filters and ReLu activation

functions, coupled with batch normalization layers for regularization reasons. Most of

these layers make use of a stride of 2 in order to reduce the dimension of the data from

256x256x1 to 2x2x128 (where the first two values represent the spatial dimension and the

last one the number of channels/filters). In the final stage of the network, the last max

pooling layer output is flattened in order to obtain a 512 vector on which a fully con-

nected layer is applied in order to obtain a scalar output. Finally, on the obtained scalar

value a sigmoid function is applied in order to get an output in the [0, 1] range. This

output value represents the probability attributed by the network to the input crop as

depicting a pathological situation (mass or calcification). The second proposed method

exploits depth-wise separable convolution layers, firstly introduced in [36]. These kind

of layers are able to substitute convolutional layers by approximating their behaviour

(using much fewer parameters) by adopting separable convolution layers followed by 1x1

convolutions, and more details could be found in [36]. The difference between the two

architectures is exclusively in the use of Separable Convolution layers instead of tradi-

tional ones. As reported in Tab. 4.1 and Tab. 4.2 in this model, much fewer parameters

are used, the difference is about one order of magnitude.
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Table 4.1: Traditional CNN architecture. Layers reported in blue are considered task
specific.

Layer Output shape Params #

Input 256x256x1 0
Conv (s1) + BN 256x256x32 448
Conv (s2) + BN 128x128x64 18,725
Conv (s2) + BN 64x64x128 743,68
Conv (s2) + BN 32x32x128 148,096
Conv (s2) + BN 16x16x128 148,096
Conv (s2) + BN 8x8x128 148,096
Conv (s2) + BN 4x4x128 148,096
Conv (s2) + BN 2x2x128 148,096

Flatten 512 0
Dense 1 513

Sigmoid 1 0

Total params # 834,561

Table 4.2: Separable Convolution Network architecture. Layers reported in blue are
considered task specific.

Layer Output shape Params #

Input 256x256x1 0
SepConv (s1) + BN 256x256x32 173
SepConv (s2) + BN 128x128x64 2,720
SepConv (s2) + BN 64x64x128 9,536
SepConv (s2) + BN 32x32x128 18,560
SepConv (s2) + BN 16x16x128 18,560
SepConv (s2) + BN 8x8x128 18,560
SepConv (s2) + BN 4x4x128 18,560
SepConv (s2) + BN 2x2x128 18,560

Flatten 512 0
Dense 1 513

Sigmoid 1 0

Total params # 105,742
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4.3.2 Training Procedure

Both networks described in the previous section have been trained using the same pro-

cedure. Considering the two tasks of mass and calcification classification, two models

for each architecture have been trained. For each architecture, a two-step training ap-

proach has been adopted. In particular, in the first stage, the total number of 450’000

256x256 crops have been used. Among these 225’000 represented mammography por-

tions in which no pathology was present, 112’500 depicted a crop of the exam in which

masses were present while the remaining 112’500 were related to calcification. A small

portion of this set, 20%, was randomly selected in order to create the validation set and

so were removed from training. The two networks (one able to detect masses and the

other calcifications) were trained jointly sharing the first five layers. In particular, lay-

ers coloured in black in Tab. 4.1 and Tab. 4.2 were considered shared between the two

tasks (mass and calcification classification) while layers reported in blue were trained

separately between the two networks, since they are considered task-specific. This train-

ing procedure was adopted in order to fully exploits the training dataset size. Binary

cross-entropy and stochastic gradient descent (SGD) were chosen respectively as loss

function and optimization algorithm. Learning rate was set to 0.01 and minibatch of

32 samples were used. An early stop criteria was adopted in order to avoid overfitting.

In particular, the first step of the training was stopped as soon as one of the two net-

works showed overfitting behaviour (in particular validation loss started to increase). In

the second stage of the training, the loss minimization was resumed starting from the

weight obtained in the first stage using the same dataset and training conditions except

for two main differences. The learning rate was reduced to 0.0005 in order to fine-tune

the results obtained in the previous stage in the proximity of the local minimum already

found. Moreover, the value of the weights related to the shared layers is kept frozen (or

fixed) in order to provide a shared structure for the two networks.
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4.4 Results

In this section results related to the models described in Sec.4.3 are reported.

Figure 4.2: Convolution training re-
sults. Dashed lines represent values
obtained without fine tuning.

Figure 4.3: Separable convolution
training results. Dashed lines rep-
resent values obtained without fine
tuning.

Figure 4.4: ROC curve for calcifica-
tion classification task in INbreast.

Figure 4.5: ROC curve for mass clas-
sification task.

4.4.1 Training Results

The training procedure described in Sec.4.3.2 leads to the results depicted in Fig.4.3 and

Fig.4.2. In particular, Fig.4.3 depicts the loss values obtained with Separable convolu-

tional layers while in Fig.4.2 the ones obtained with traditional convolutional layers are

reported. Dashed lines represent values obtained without the adoption of fine tuning.

As can be observed for both models, the early stop procedure coupled with fine-tuning

secure the reaching of a local minimum without overfitting.
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4.4.2 Evaluation Results

Following the training stage described above, the four networks (2 able to deal with mass

classification problem and the other two related to calcification) were tested on patches

extracted from CBIS dataset test images. In particular, each one of the ROC curves

reported in Fig.4.4 and Fig.4.5 is obtained using 10’000 negative and 10’000 positive

patches, created as reported in Sec.4.2. As can be observed from Fig.4.5, both methods

produce similar results, both have AUC (Area Under Curve) scores equal to 0.91, even

if the network obtained with SepConv layers uses significantly fewer parameters (as

explained in Sec.4.3.1). The network based on traditional convolutions proved to work

slightly better in the left part of the curve (small false positive) while the one that uses

separable convolution is able to outperform the other in the right part of the graph.

Regarding the calcificatCion classification task, which is more difficult in respect to the

mass one, as shown in Fig.4.4, traditional convolution based network slightly outperforms

the network that uses separable convolutions.

4.4.3 Experiment with Full Field Digital Mammography (FFDM)

A further experiment was conducted using the transfer learning technique by taking a

pre-trained network and partly retraining it on new data. This experiment was con-

ducted on the INbreast dataset, where, unlike the CBIS-DDSM dataset with SFM im-

ages, the FFDM images are digital and high-resolution. The main difference is that

the CBIS-DDSM images indicate the general position of the lesions, without precise

segmentation, while in the INbreast database the segmentations of the ROI are pixel-

based. For the retraining procedures shown in Fig.4.6 for the traditional convolutions

and in Fig.4.7 for the Separable Convolutions, the same dataset extraction procedure

was performed as described in Sec.4.2 and Sec.4.3.2. In particular, the total number of

110’000 256x256 crops have been used. Among these 55’000 represented mammogra-

phy portions in which no pathology was present, 18’000 depicted a crop of the exam in

which masses were present while the remaining 37’000 were related to calcification. A

small portion of this set, 20%, was randomly selected in order to create the validation

set and so were removed from training. Therefore, thanks to the transference learning

technique, used on the neural networks describe in Tab.4.1 and Tab.4.2 with the same

test procedure described in Sec.4.4.2 on the INbreast dataset, the results obtained are

visible in Fig.4.8 and in Fig.4.9. As can be observed from Fig.4.9, both methods pro-

duce similar results, both have AUC (Area Under Curve) scores equal to 0.94, even if the

network obtained with SepConv layers uses significantly fewer parameters (as explained

in Sec.4.3.1). Regarding the calcification classification task, which is more difficult for

the mass one, as shown in Fig.4.8, the traditional network with AUC scores equal to

0.95, based on convolution, outweighs the network it uses separable convolutions with
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AUC equivalent to 0.87. Compared to the SFM images, performance improvement is

detected, and a corresponding difference between the ROC curves for the detection of

calcifications, probably due to the point-like nature of the pathology.

Figure 4.6: Convolution retraining
results with INbreast dataset.

Figure 4.7: Separable convolu-
tion retraining results with INbreast
dataset.

Figure 4.8: ROC curve for calcifica-
tion classification task with INbreast
dataset.

Figure 4.9: ROC curve for mass clas-
sification task with INbreast dataset.
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4.5 Detection Workflow

The classification of patches within the entire mammography has been developed by

following the workflow described below (Fig.4.10). In the first step, the breast is iden-

tified from the original image with a segmentation described in sec. 4.2, to speed up

the classification operations. In the second step, only the segmented part, including the

breast, is divided into partially overlapped tile images of 256x256 crops using sliding

windows of 64px. In the third phase, each box is classified by CNN, and the result is

combined in order to create a heat map. In particular, the heatmap value in a specific

pixel location, Hij, is obtained as the average between the N outputs obtained applying

the classification method f to the N crops Ck containing that particular pixel.

Hi,j=
1

N

∑
i,j∈Ck

f(Ck) (4.1)

The workflow for lesion detection has been integrated into the medical application, de-

scribed in subsection 4.5.1

Figure 4.10: The workflow for detection lesion in the CIBIS mammogram.

4.5.1 The Software System: Graphical User Interface (GUI) and sam-

ple program runs

The above-illustrated computational procedures are integrated into a unified framework,

to support the segmentation of mass and calc in the mammography screening workflow

(see Fig. 4.11).
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Figure 4.11: The workflow of the functional structure of the software system implement-
ing the segmentation procedure.

The software design started with the collection and analysis of requirements to out-

line the user model and operational conditions. We assessed cognitive and perceptual

processes, attitudes and limitations involved in visual inspection and analysis tasks.

Operation requirements concerning hardware facilities and input and output devices are

obtained from protocols in use in mammography domain. The system was implemented

in MATLAB (MathWorks®).

Fig. 4.12 shows the system interfaces documenting the initial phases of the session and

input/output facilities. Visualisation tools are available for a reliable inspection of the

four images bilateral craniocaudal (CC) left and right and the corresponding mediolat-

eral oblique (MLO) mammograms views.
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Figure 4.12: Screenshots of the system interfaces documenting the initial input/output
phases.

On the left part of the GUI, we found options made available by the system to develop

detecting task. With “Start Detecting” the segmentation procedure is performed, and

the boundary of the mask obtained is superimposed on the four projections, as shown

in Fig.4.13.

Figure 4.13: Screenshot of the system interfaces documenting the visualisation of the
segmentation masks computed by CNN.

The system allows the user to export the segmentation mask, to refine the segmen-

tation results, to proceed in a further segmentation in the same view or to return to the

initial phase by unchecking “show segmentation” command.
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Figure 4.14: Screenshots of the System interfaces documenting the validation of the
computed rectangular segmentation masks.

Figure 4.14 shows options made available by the system to validate the automated

segmentation. The segmented mask is shown superimposed on corresponding projection

selected with the ability to adjust the contrast. The user is allowed to modify the contour

by checking on “Brush-Eraser” command or delineating the entire segment in case the

automated result occupies a wrong position (check Pencil) or draw a new rectangle on

the lesion.

4.6 Conclusion

As seen in our experimental context, breast lesions can be automatically detected by

means of deep learning procedures. Preliminary results obtained are encouraging and

basing on them future work is planned. We aim at developing global methods, i.e.

algorithms able to analyze a clinal exam in its entirety, by combining results obtained

locally. In particular, by using a sliding windows approach, we aim at obtaining a

classification heatmap by combining and averaging the output of the local (i.e. crop)

classifiers described in this work.





5
Conclusions and Future Works

5.1 General Conclusions

AI-based diagnostics uses the patient’s unique history as a baseline against which small

deviations signal a possible health condition that needs further investigation and treat-

ment. AI is likely initially to be adopted as an aid, rather than a substitute, for human

doctors. It will increase doctors’ diagnosis, but in the meantime, it will also provide

valuable information so that AI can continuously learn and improve. This ongoing in-

teraction between human doctors and AI diagnostics will enhance the accuracy of the

systems and, over time, provide enough confidence for humans to fully delegate the task

to the AI system to operate autonomously. Fully automatic systems have both legal and

moral interactions and have not yet been addressed at this time. The first application

developed for the segmentation of metastases was developed thanks to the availabil-

ity offered by the ASST hospital, which provided images of a particular pathology not

treated in the literature with the aid of artificial intelligence algorithms. The algorithms

used were at first the same as those used for gliomas, a pathology that is always cerebral

but with a larger volume of space occupied. For the SVM, the results obtained were

accepted by the experts, as for the V-Net thanks to the fact that manual modification

of the segmentation could then be carried out. The V-Net has been used for this type

of task thanks to the fact that its loss function is based on the Dice index, widely used

in medicine to measure performance. For the second task of mammography screening,

we wanted to tackle a problem extensively treated with neural networks in literature,

addressing it, however with the use of slender neural networks not yet used. It was
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thus comparing a traditional network with one with separable convoluted levels. This

has led to results comparable to traditional neural networks, with the particularity of

decreasing the calculation times and more easily inspected during the training phase,

given the lower parameter space. This algorithm was integrated into an application for

medical use to be tested directly in the hospital to collect new ad hoc data to carry out

an update of the network.

5.2 Future works

Future extensions of MRI segmentation in metastases can be made by acquiring other

images made with a sagittal or coronal acquisition. With this new dataset, you could see

how the models used (V-Net and SVM) behave if, with a re-training, the results of the

classification made improve. However, being a new dataset, they may not respect the

volumetric specifications of the axial acquisitions, and therefore a new set of algorithmic

models should be tested to perform segmentation.

As for research in the field of mammography screening, with the arrival of a dataset

with digital mammograms provided by the hospital, it will be possible to retrain the

network and test the algorithms directly in the field for immediate feedback that can be

used to refine the neural network.



6
Appendixes

6.1 MATLAB Code of chapter 3

Below is an example of the analysis of the results of the V-Net pre-training epochs using

pre-processed T1c scans of BraTS data. In this experiment, the number of epochs is

100, and the preprocessed dataset (43 Volumes in-house) was split again into 82% for

training, 6% for validation and 12% for the test:

• 34 Volumes for the training set.

• 3 Volumes for the validation set.

• 6 Volumes for the test set.
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Criminisi, and Nicholas Ayache. Brain tumor cell density estimation from multi-

modal MR images based on a synthetic tumor growth model. 2012.

[27] Dimitris Glotsos, Jussi Tohka, Panagiota Ravazoula, Dionisis Cavouras, and George

Nikiforidis. Automated diagnosis of brain tumours astrocytomas using probabilistic

neural network clustering and support vector machines. Int J Neural Syst, 15(1):1–

11, 2005.

[28] Gloria Gonella., Elisabetta Binaghi., Paola Nocera., and Cinzia Mordacchini. Semi-

automatic segmentation of mri brain metastases combining support vector machine

and morphological operators. In Proceedings of the 11th International Joint Con-

ference on Computational Intelligence - Volume 1: NCTA, (IJCCI 2019), pages

457–463. INSTICC, SciTePress, 2019.



90 BIBLIOGRAPHY

[29] Gloria Gonella, Elisabetta Binaghi, Paola Nocera, and Cinzia Mordacchini. Semi-

automatic segmentation of MRI brain metastases combining support vector machine

and morphological operators. Accept at International Conference on Neural Com-

putation Theory and Application, 17-19 September 2019, page 7, 2019.

[30] Gloria Gonella, Marco Paracchini, Elisabetta Binaghi, and Marco Marcon. Breast

lesion detection from mammograms using deep convolutional neural networks. Ac-

cept at International Conference on Pattern Recognition and Applications, 2-6

November 2020, 2020.

[31] Nelly Gordillo, Eduard Montseny, and Pilar Sobrevilla. State of the art survey on

MRI brain tumor segmentation. Magn Reson Imaging, 31(8):1426–1438, 2013.

[32] Harry S. Greenberg, William F. Chandler, and Howard M. Sandler. Brain Tumors.

Contemporary Neurology Series. Oxford University Press, 1999.

[33] Endre Grøvik, Darvin Yi, Michael Iv, Elizabeth Tong, Daniel Rubin, and Greg

Zaharchuk. Deep learning enables automatic detection and segmentation of brain

metastases on multisequence MRI. Journal of Magnetic Resonance Imaging, 2019.

[34] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. arXiv:1512.03385 [cs], 2015.

[35] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm

for deep belief nets. Neural computation, 18(7):1527–1554, 2006.

[36] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang,

Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient con-

volutional neural networks for mobile vision applications, 2017.

[37] Elisee Ilunga Mbuyamba, Jorge Cruz-Duarte, Juan Avina-Cervantes, Carlos Ro-

drigo Correa-Cely, Dirk Lindner, and Claire Chalopin. Active contours driven by

cuckoo search strategy for brain tumour images segmentation. Expert Systems with

Applications, 56, 2016.

[38] Michael Jermyn, Kelvin Mok, Jeanne Mercier, Joannie Desroches, Julien Pichette,

Karl Saint-Arnaud, Liane Bernstein, Marie-Christine Guiot, Kevin Petrecca, and

Frederic Leblond. Intraoperative brain cancer detection with raman spectroscopy

in humans. Sci Transl Med, 7(274):274ra19, 2015.

[39] Konstantinos Kamnitsas, Christian Ledig, Virginia FJ Newcombe, Joanna P Simp-

son, Andrew D Kane, David K Menon, Daniel Rueckert, and Ben Glocker. Efficient

multi-scale 3d cnn with fully connected crf for accurate brain lesion segmentation.

Medical image analysis, 36:61–78, 2017.



BIBLIOGRAPHY 91

[40] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification

with deep convolutional neural networks. In Advances in neural information pro-

cessing systems, pages 1097–1105, 2012.

[41] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification

with deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou,

and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems

25, pages 1097–1105. Curran Associates, Inc., 2012.

[42] Carmen Kut, Kaisorn L. Chaichana, Jiefeng Xi, Shaan M. Raza, Xiaobu Ye, El-

liot R. McVeigh, Fausto J. Rodriguez, Alfredo Quinones-Hinojosa, and Xingde Li.

Detection of human brain cancer infiltration ex vivo and in vivo using quantitative

optical coherence tomography. Sci Transl Med, 7(292):292ra100, 2015.

[43] Rebecca Lee, Francisco Gimenez, Assaf Hoogi, Kanae Miyake, Mia Gorovoy, and

Daniel Rubin. A curated mammography data set for use in computer-aided detec-

tion and diagnosis research. Scientific Data, 4:170177, 12 2017.

[44] Constance D Lehman, Robert D Wellman, Diana SM Buist, Karla Kerlikowske,

Anna NA Tosteson, and Diana L Miglioretti. Diagnostic accuracy of digital screen-

ing mammography with and without computer-aided detection. JAMA internal

medicine, 175(11):1828–1837, 2015.

[45] Y Li, H Chen, L Cao, and J Ma. A survey of computer-aided detection of breast

cancer with mammography. J Health Med Inf, 4(7), 2016.

[46] Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud Arindra Adiyoso

Setio, Francesco Ciompi, Mohsen Ghafoorian, Jeroen A. W. M. van der Laak, Bram

van Ginneken, and Clara I. Sánchez. A survey on deep learning in medical image

analysis. Medical Image Analysis, 42:60–88, 2017.

[47] Li Liu, Jian Tao Wang, and Tianhui Wang. Breast and pectoral muscle contours

detection based on goodness of fit measure. 2011 5th International Conference on

Bioinformatics and Biomedical Engineering, pages 1–4, 2011.

[48] Yan Liu, Strahinja Stojadinovic, Brian Hrycushko, Zabi Wardak, Steven Lau,

Weiguo Lu, Yulong Yan, Steve B. Jiang, Xin Zhen, Robert Timmerman, Lucien

Nedzi, and Xuejun Gu. A deep convolutional neural network-based automatic de-

lineation strategy for multiple brain metastases stereotactic radiosurgery. PLoS

ONE, 12(10):e0185844, 2017.

[49] Yan Liu, Strahinja Stojadinovic, Brian Hrycushko, Zabi Wardak, Weiguo Lu, Yu-

long Yan, Steve B. Jiang, Robert Timmerman, Ramzi Abdulrahman, Lucien Nedzi,



92 BIBLIOGRAPHY

and Xuejun Gu. Automatic metastatic brain tumor segmentation for stereotactic

radiosurgery applications. Phys Med Biol, 61(24):8440–8461, 2016.

[50] MA Guevara Lopez, N Posada, Daniel C Moura, Raúl Ramos Pollán, José M Franco
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