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Abstract

This dissertation details our research on random walks seen as simple mathe-
matical models useful to describe the complex dynamics of many physical systems.
In particular, we focus on the role of spatial inhomogeneity in determining the
deviations from the standard behaviour.

In the first chapter we present a general method that can be used to obtain
the continuum limit for the evolution equations of a random walk with nearest
neighbour jumps, from which one can derive the asymptotic properties and deduce
the physical interpretation of the walk itself. Then in the following we adopt this
method to discuss two particular models.

The first model, which we call Gillis random walk, is treated in the second
chapter and consists in a random walk with space-dependent drift. Although
lacking translational invariance, it provides one of the very few examples of a
stochastic system allowing for a number of exact results. From the continuum
limit, one deduces that this model provides a microscopical description for the
problem of Brownian diffusion in a logarithmic potential, and indeed we compare
the results regarding the diffusion problem already present in the literature with
the behaviour of the Gillis random walk, finding good agreement.

The second model, which we have originally introduced in the literature and
deal with in the third chapter, is a correlated random walk closely related to
the Lévy-Lorentz gas, a stochastic system where a particle is scattered by static
points arranged on a line in such a way that the distances between first neighbour
scatterers are independent and identically distributed random variables, drawn
from a heavy-tailed distribution. Our model results from a particular procedure
of average over all possible arrangements of scatterers and it is mathematically
described as a correlated random walk on the integer lattice, where at each step
the particle can be either reflected or transmitted according to a space-dependent
probability. We apply the continuum limit and derive the long-time properties of
the system, which to some extent match those of the original Lévy-Lorentz gas.

In the fourth and last chapter we consider the problem of occupation times
for one-dimensional random walks, showing that for a wide class of processes a
single exponent related to a local property of the system is sufficient to describe
the distributions of the variables of interests. We test our findings using the two
stochastic models presented in the previous chapters and obtain good agreement
with our theory. However, our result breaks down, for example, if we consider
continuous time random walk models in which the distribution of waiting times
between steps does not possess finite mean. Nevertheless, we show how also in
this case the theory developed in the first part of the chapter is useful to obtain the
statistics of occupation times. We revise some of the results already present in the
literature in terms of our theory and test the results on a novel continuous time
model based on the dynamics of the Gillis random walk, finding good agreement
with both the literature and our theory.
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Random walks and the connection with diffusion
processes: the continuum limit 1

The elementary concepts of probability theory arose in the seventeenth century and
found their first applications in the study of games of chance. Over time, the tools
developed by the theory proved to be relevant in more complex contexts, and today their
utility in the solution of scientific and technological problems is widely recognized. In
particular, the theme of random processes plays an essential role, as it has found from
its first introduction an enormous number of fields of applications, including physics,
chemistry, biology, computer science, sociology, economics and finance.

In physics, the notion of random process grows from the need of describing the
behaviour of complex systems by statistical equations of evolution. At first, this may
seem unreasonable, since it is a matter of fact that the laws of physics are deterministic.
However, there are many situations where the resulting motion, although produced
by deterministic evolution equations, is sufficiently erratic that it may be regarded
as random. A paradigmatic example is the case of Brownian motion, named after
Robert Brown, the well-known British botanist who examined the motion of pollen
grains in order to shed light on the mechanism by which the grains moved towards
the ova when fertilising flowers [19]. According to Brown’s first interpretation of the
phenomenon, the erratic motion was a manifestation of life of the grains, but later
experiments showed that the same jittery motion was observable also with apparently
dead pollen, for example coming from inorganic matter.

For many years no satisfactory explanation to Brownian motion was provided. One
of the first descriptions was given in 1880 by the Danish mathematician and astronomer
Thorvald N. Thiele, in a paper on the method of least squares. Twenty years later Louis
Bachelier derived and applied the equations of Brownian motion in his doctoral thesis,
in which he studied the pricing fluctuations of shares and options in the stock market
[4]. The first physical picture appeared in a famous paper by Einstein [36], in 1905,
whose results were also obtained independently by Smoluchovski [109], responsible
for much of the later development of the theory. The pioneering work of these two
scientists was followed by many others - starting from Langevin in 1908 [73] - who
contributed substantially in making clear the fundamental role of Brownian motion,
and in general of stochastic processes, in the description and explanation of complex
physical phenomena.

For the purposes of this thesis, it is worth spending a few words on Einstein’s
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1. Random walks and the continuum limit

solution to the problem of Brownian motion. In his idea, the motion of the pollen
grain was caused by the exceedingly frequent impacts with the particles of the fluid in
which it was suspended. Basing on a discrete-time assumption, he introduced a time
interval g, which could be considered very small compared to the observation time,
but nevertheless sufficiently large that in two successive time intervals g the motions
executed by the particle could be considered independent events. Considering the
G-coordinates of a particle, in a time interval g he expected that the variation of the
position could be described by an increment Δ, which he regarded as a random variable
drawn from a symmetric Probability Density Function (PDF) q(f).

In this setting, let ?(G, C) be the density of particles in the interval (G, G + dG) at time
C. The number of particles which at time C +g are found in the interval (G, G + dG) equals
the number of particles that at time C were found in the interval (G − f, G − f + dG) and
jumped of an amount f:

?(G, C + g)dG = dG
∫ +∞

−∞
?(G − f, C)q(f)df. (1.1)

Since g is small, the left-hand side can be set to

?(G, C + g) = ?(G, C) + m?(G, C)
mC

g, (1.2)

while on the right-hand side ?(G − f, C) can be expanded in powers of f up to second
order. One obtains:

? + m?
mC
g = ?

∫ +∞

−∞
q(f)df + m?

mG

∫ +∞

−∞
fq(f)df + 1

2
m2?

mG2

∫ +∞

−∞
f2q(f)df. (1.3)

By using the properties of normalization and symmetry of q(f), and setting
1
g

∫ +∞

−∞
f2q(f) = �, (1.4)

one arrives at the differential equation for the density of particles:

m?(G, C)
mC

=
1
2
�
m2?(G, C)
mG2 . (1.5)

Eq. (1.5) is the diffusion equation, which at that time was already also known
as heat equation, and � is called the diffusion coefficient. It is worth stressing one
important feature of Einstein’s approach: the evolution of a complex physical system
was modelled with a simple mathematical object, namely a discrete-time random walk
with independent and identically distributed increments; yet many of the important
characteristics of the system could be captured in a satisfactory accuracy, and it was
possible to assign a physical meaning to the parameters describing the motion by
mapping them to those of the underlying mathematical model. For example, from
Eq. (1.4) the diffusion coefficient can be defined as the mean square displacement of
the particle per time interval, and this was the starting point for the second part of
Einstein’s work, where he finally related the diffusion coefficient to measurable physical
quantities.
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1.1. Characterization of the transport properties: normal and anomalous behaviour

1.1 Characterization of the transport properties:
normal and anomalous behaviour

This first example shows the relevance of the mathematical models of random walks in
the description and analysis of complex systems. As for the case of Brownian motion,
the most interesting quantity to derive is usually theMean Square Displacement (MSD)
of the process, which is used to characterize the transport properties of the quantity of
interest.

Returning to the diffusion equation, Eq. (1.5), if we consider an initial condition
where the particles are concentrated at the origin, the solution is the Gaussian PDF:

?(G, C) = 1
√

2c�C
4−

G2
2�C , (1.6)

and the mean square displacement is defined as the second moment of the resulting
distribution. It follows immediately that:

〈G2(C)〉 =
∫ ∞

−∞
G2?(G, C)dG = �C, (1.7)

meaning that the MSD grows linearly with the observation time. Note that such
a behaviour is determined entirely by the the solution of the diffusion equation,
viz., by the PDF of the process. But there exists a well-known result, the Central
Limit Theorem (CLT), stating that under proper rescaling the sum of independent and
identically distributed random variables possessing finite mean and variance approaches,
as the number of terms goes to infinity, the normal distribution. This means that a
wide class of stochastic processes, whose random increments satisfy the hypotheses of
the CLT, fall under the basin of attraction of the normal distribution, hence yielding a
mean square displacement which grows linearly in time. The fact that such a behaviour
is independent of the distribution of the increments makes it a universal result and for
this reason these situations are referred to as normal transport.

Despite the huge range of systems for which transport can be classified as normal,
there are still many cases where the MSD shows deviations from the linear behaviour.
Today anomalous transport refers to an asymptotic power-law growth of the MSD of
the kind:

〈G(C)〉 ∼ Ca, (1.8)

distinguishing between subdiffusion (0 < a < 1) and superdiffusion (a > 1). Subdif-
fusion has been observed in the diffusing motion of macromolecules and organelles
in crowded environments of living cells [54], charge carriers transport in amorphous
solids [105] and tracers dispersion in streamflows [106], to cite a few; superdiffusion
describes for example the motion of microspheres in living eukaryotic cells [23], aphid
movement [88] and even human mobility patterns [48]. Such situations reveal that
the study of the mechanisms leading to anomalous diffusion is important from both a
theoretical and practical point of view.
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1. Random walks and the continuum limit

Recalling Einstein’s derivation of Brownian motion, the result is based on three
main assumptions: the independence of the individual particles; the existence of a
small time scale beyond which individual displacement are statistically independent;
and the existence of a common PDF q(f) describing all displacements, with zero mean
and finite variance. Note that these assumptions respect the hypotheses of the CLT and
hence the Gaussian form of the distribution is not surprising1. In general, one expects
to observe anomalous diffusion when at least one of these assumptions is violated. The
best-known case is probably the scenario of displacements’ distributions not possessing
finite first or second moment, e.g., fat-tailed distributions with a power-law decay:

q(f) ∼ f−1−U, 0 < U < 2. (1.9)

Exponents in such a range imply an infinite second moment, while in the restricted range
0 < U ≤ 1 also the first moment is diverging. In such situations it holds a more general
result, which is known under name of Generalized Central Limit Theorem (GCLT) [44]:
the sum of independent and identically distributed random variables with symmetric
distribution having a power-law tail as in Eq. (1.9) will fall in the basin of attraction
of a Lévy stable law [63] rather than in that of the Gaussian distribution, which is the
origin of the anomalous behaviour. Processes of this type are known in the literature
as Lévy flights. We point out, however, that in these models yield a diverging second
moment [2], therefore in many cases they provide an unphysical description of the
phenomenon. For this reason, the related model of Lévy walk was introduced [108]:
here the jumps length and the time duration of a jump are correlated, so that their ratio
is always equal to a constant representing the fixed velocity of the walker. Thanks to to
the fixed-velocity constraint, it is possible to compute the scaling of all moments, and
in particular one finds that Lévy walks can describe correctly superdiffusion, with a
second moment given by [24]:

〈G2(C)〉 ∼
{
C3−U 1 < U < 2
C2 U ≤ 1.

(1.10)

Conversely, a model used to describe subdiffusion is the Continuous Time Random
Walk (CTRW). Rather than to the step length, the origin of the anomalies is due to
random waiting times between successive steps, all drawn from a common distribution
with density k(C) not possessing a finite first moment. The paradigmatic case is that of
waiting-time distribution with a power-law decay of the kind:

k(C) ∼ C−1−V, 0 < V ≤ 1. (1.11)

The absence of the first moment is related to the absence of a time scale, i.e., a mean
waiting time, characterizing the duration of the steps. The walker can wait for long
times before performing a jump, hence the resulting motion is subdiffusive, with [63]:

〈G2(C)〉 ∼ CV. (1.12)
1The symmetry of the common distribution is not a necessary condition for the CLT to hold, but it

is necessary to have a linear growth of the MSD.
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1.2. Heterogeneous diffusion

Note that for exponents V > 1 the existence of the first moment assures the existence
of a time scale g for the jumps, which corresponds to one of Einstein’s assumptions.
Indeed in that case the process falls in the basin of attraction of the Normal distribution,
and the MSD grows linearly with time2.

It is important to observe that the models presented thus far have the important
property of spatial homogeneity, meaning that the displacements are always identically
distributed along the path. The validity of the two limit theorems we have mentioned is
due to this fact, and also many of the other known results use this as a starting point.
However, there are many examples where a correct modelling of the phenomenon
requires position-dependent distributions of displacements. This may happen, e.g.,
in the presence of an external potential [16, 29, 50] or because of the disorder of the
environment [58]. In general, the analysis of these kind of systems is often related to
the solutions of highly non-trivial problems, which in most cases are very hard to find
[57].

In the following we will focus on two major descriptions for space-dependent
random systems: the first, which we will call heterogeneous diffusion, consists in
processes where the distribution of the displacements has an explicit dependence on the
position of the walker; the second, diffusion in random environments, is characterized
by the fact that the jumps, although identically distributed, are performed only at
random fixed positions, simulating the disorder of the environment in which the walker
diffuses.

1.2 Heterogeneous diffusion
Aswe have seen, diffusion describes the dominant transport process on very small length
scales. In homogeneous systems, the MSD is characterized by a linear time growth and
a constant diffusion coefficient �. When diffusion happens in inhomogeneous systems,
one or both of these features are not conserved. The sources of inhomogeneity may
range from the presence of a temperature gradient [98] to locally varying viscosity
of the solvent [72, 91], but these are just a couple of examples. To cite a specific
case, Brownian motion with a space-dependent diffusion coefficient was used to model
the dynamics of particles in a fluid confined between two nearly parallel walls [71],
with the justification that the variation of the diffusivity � is due to the dependence
of the particles hydrodynamic mobility on the gap width between the walls. Another
example is the diffusion of particles in a medium with spatially dependent friction
[103], where clearly the mobility is position-related: also in this case the dynamics
is modelled by Brownian motion with a diffusion coefficient varying in space. A
different case is the motion of atoms in a one-dimensional optical lattice formed by
two counterpropagating laser beams with linear perpendicular polarization, which can
be described, in momentum space and for large values of ?, by Brownian motion in a
logarithmic potential [81, 62].

2Note that this is true only as long as the dynamics is not influenced by any external field, otherwise
we should expect a different behaviour depending on the nature of the bias.
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1. Random walks and the continuum limit

Off course the examples are not limited to physics: in hydrology heterogeneous
diffusion addresses the question of how to quantify contaminant transport in natural
geological formations [30]. In biology for instance the diffusion of proteins in
mammalian cell cytoplasm is modelled by Brownian motion with a space-dependent
diffusion coefficient [67], and also the diffusion on DNA shows two-state kinetics with
different diffusivities [117]. Many other examples can be encountered in finance [96],
chemistry [41] and related fields.

The full representation of a heterogeneous diffusion process is made through the
Fokker-Planck equation, which generalizes the heat equation, Eq. (1.5). It describes
the time evolution of the probability density of a particle under the effect of drag forces
and random forces. In one dimension it is expressed in the following way:

m?(G, C)
mC

= − m
mG
[`(G, C)?(G, C)] + 1

2
m2

mG2 [� (G, C)?(G, C)] , (1.13)

where `(G, C) is the drift and � (G, C) is the diffusion coefficient. When both the drift
and the diffusion coefficient are time-independent, we say that the process is time-
homogeneous, and in the following we always consider time-homogeneous processes.
Note that the Fokker-Planck equation is in the form of a continuity equation

m?(G, C)
mC

= −m� (G, C)
mG

, (1.14)

where the probability current is given by

� (G, C) = m

mG

{
`(G, C)?(G, C) − 1

2
m

mG
[� (G, C)?(G, C)]

}
. (1.15)

Usually the Fokker-Planck equation in practical problems is associated with the initial
condition

?(G, C0) = X(G − G0), (1.16)

describing a packet of particles initially located at a point G0, which spreads at later
times according to Eq. (1.13). It is not possible to solve the equation in general, but
only for few cases. However, we can still get a picture of the evolution process if we
consider it for short times after C0. Note that the solution will be still close to a delta
function, and hence the derivatives of `(G, C) and � (G, C) will be negligible with respect
to those of ?(G, C). Therefore the probability density will obey, approximately:

m?(G, C)
mC

= −`(G0, C0)
m?(G, C)
mG

+ 1
2
� (G0, C0)

m2?(G, C)
mG2 , (1.17)

where also the time dependence of ` and � has been neglected. The solution is a
Gaussian, with mean G0 + `(G0, C0)C and variance � (G0, C0)C. Therefore the packet
initially spreads under the effect of a Gaussian fluctuation with variance � (G0, C0)C
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1.3. Random walks in random environments

and a systematic drift with velocity `(G0, C0) - hence the names drift and diffusion
coefficient [41].

It is important to observe that the Fokker-Planck equation only describes processes
whose sample paths are continuous. For more general processes, such as Lévy flights,
where the possibility of instantaneous long jumps is not neglected and the corresponding
paths are not continuous, other kinds of evolution equations must be considered [90].
This topic, however, is beyond the scope of this thesis.

1.3 Random walks in random environments
Up to this moment we have considered systems for which the nature of the disorder is
temporal, resulting from random jumps performed by the evolving observable at fixed
time steps. In many situation instead the disorder is frozen in space, resulting from the
irregularity of the "medium" in which the motion occurs. In general, for such situations
not much can be said, except when some degree of homogeneity can be assumed for
the law of the environment. A Random Walk in a Random Environment (RWRE) can
be seen as a random walk on the Z3 lattice, with nearest neighbour jumps, occurring in
a random medium with a stationary law [122].

A motivation for the study of such systems is the modelling of light particle
dynamics in dense gases [49], for which a simple model, the Lorentz gas, provides a
basic description. In the Lorentz gas a particle initially moves with a fixed momentum
and then scatters elastically off randomly located fixed scatterers. This model can also
be studied in one dimension, introducing a transmission probability of the particle
through the heavier molecules. In this sense, the Lorentz gas and, more generally,
a RWRE, can be seen as a generalization of the correlated random walk on Z3 , in
which a moving particle hops between nearest-neighbouring sites choosing at each
step, according to a certain probability t, whether to change or preserve the previous
direction of motion [104]. Note that for t ≠ 1

2 , this model is substantially different from
that of the simple symmetric random walk, because the transition probabilities depend
on the previous state of the walker. In a RWRE, the changes of direction can only be
taken at fixed sites, whose position is randomly chosen when defining the environment.

To take into account both the randomness of the motion and the irregularity of the
environment, there are two ways to study a RWRE. Roughly speaking, let us call Ω
the set of all possible environments, % the law defined on it and l the generic element
of Ω, i.e., a possible environment; each l has law %l, which defines the transition
probabilities of the process defined on it. The law %l is called the quenched law and it
is therefore specific to the individual environment. This corresponds to the study of the
evolution of the process on a fixed environment and we will refer to this case as the
quenched version of the RWRE. On the other hand, to consider the entire randomness
of the system, one defines the annealed law, which measures each individual %l with
respect to %. In other words, one studies the process on each environment and then
considers an "averaged" process with respect to the law of Ω. We will refer to this case
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1. Random walks and the continuum limit

as the annealed version. For more rigorous and mathematically precise definitions, see
[122, 12].

Note that the study of RWRE’s is not in general an easy task. Mathematically, and
especially for dimensions higher than 1, the model leads to the analysis of irreversible,
inhomogeneous Markov chains, to which standard tools of homogenization theory
do not apply well. Furthermore, unusual phenomena such as super and sub-diffusive
behaviour, polynomial decay of probabilities of large deviations and trapping effects,
arise already in one dimension [122]. Therefore it is not surprising that such models
have been extensively used for the study of anomalous transport in complex systems.
For a detailed literature, see also [58].

1.4 The discrete approach: random walks and the
continuum limit

In this thesis we will adopt a discrete approach to the analysis of random processes,
which was already suggested by Smoluchovski and applied to the theory of Brownian
motion. We will focus on the one-dimensional case and we will mainly consider
random walks on the Z lattice with nearest-neighbour jumps. Beside being the natural
model for the treatment of RWRE’s, it is widely recognized that random walk models
also provide us with a good approximation to the theory of diffusion. On the other
hand, it is also known that theories based on the Fokker-Planck equation become
valid only for time and length scales much larger than those at the microscopic level.
This leads to seemingly paradoxical conclusions, e.g., the fact that the velocity of a
Brownian particle is infinite, which result from stretching the theory beyond the bound
of its applicability [59]. Instead, random walks often yield with good approximation a
qualitative description of the process at very short scales. Indeed, random walks on
ordered and disordered lattices have found a number of applications in chemistry and
solid state physics [92, 51].

The connection between random walks and diffusion processes is made through the
continuum limit [38, 57, 43]. This procedure can be seen as an analogy with Einstein’s
description of Brownian motion, according to which the observable effect is caused by
the many molecular shocks experienced by the diffusing particle. Although each impact
provides a negligible contribution, the superposition of a large number of them yields
a macroscopic outcome. In the same way, the continuum limit consists in studying
random walks where the individual steps, though extremely small, occur in such a rapid
succession that in the limit the process produces an observable continuous motion.
This is equivalent to studying the process over scales much greater compared to the
fundamental stepping time and hopping length.

To consider the continuum limit for a random walk on Z with nearest-neighbour
jumps, the starting point is the time evolution of the probability %= (:) of being at site
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: after = steps, which can be expressed in terms of the following quantities:

q' (:) = Probability of jumping to the right when at site :
q! (:) = Probability of jumping to the left when at site :
q( (:) = Probability of not jumping when at site :,

(1.18)
(1.19)
(1.20)

which obey the normalization condition q' (:) + q! (:) + q( (:) = 1. Here we are
considering the case in which the transition probabilities can depend on the position on
the lattice and the walker is not constrained to jump at each step. We define

'= (:) = %= (:)q' (:)
!= (:) = %= (:)q! (:),

(1.21)
(1.22)

where '= (:) and != (:) represent the probabilities of being at site : after = steps and
then jumping to the right or left, respectively. Note that

%= (:) = '= (:) + != (:) + q( (:)%= (:). (1.23)

The Chapman-Kolmogorov equation for the time evolution of the probability is:

%=+1(:) = '= (: − 1) + != (: + 1) + q( (:)%= (:). (1.24)

Let XG the lattice spacing and XC the time between two consecutive steps. To
perform the continuum limit, one seeks a function ?(G, C) of the continuous variables G
and C such that when XG and XC become small, ?(G, C) becomes the probability density
function for the position G of the walker at time C. We have to keep in mind, however,
that for any finite =, the collection of the %= (:) is a set of delta functions rather than
a continuous function. Therefore, the limit should be rather understood in terms of
the sum of %= (:) over an interval approaching the integral of ?(G, C) over the same
interval. In other words, we seek ?(G, C) such that

lim
∑

G0≤:XG≤G1

%= (:) =
∫ G1

G0

?(G, C)dG. (1.25)

In order to find ?(G, C), we call G = :XG and C = =XC and set

%= (:) ≈ ?(:XG, =XC)XG
'= (:) ≈ A (:XG, =XC)XG
!= (:) ≈ ; (:XG, =XC)XG

(1.26)
(1.27)
(1.28)

where A (G, C)XG represents the fraction of particles that at time C are in a small interval
of size XG centred around G, moving to the right, while ; (G, C)XG represents the fraction
in the same interval that at the same instant C are moving to the left. Define:

0(:XG, =XC)XC = A (:XG, =XC)XG − ; (:XG, =XC)XG
= ?(:XG, =XC) [q' (:) − q! (:)] XG (1.29)
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where 0(G, C) represents a probability drift in the positive direction - indeed, it is the
difference between the density of particles that are in (G − 1

2XG, G +
1
2XG) at time C

and moving to the right, and the density of those in the same interval at the same
time moving to the left, times their velocity. We assume that all functions are twice
differentiable with respect to both G and C, and we seek the continuum limit of equation
(1.24):

(i) on the l.h.s we expand up to first order in XC, obtaining:

%=+1(:)
XG

≈ ?(G, C + XC) = ?(G, C) + m?(G, C)
mC

XC + >(XC);

(ii) on the r.h.s. we consider '= (: − 1) + != (: + 1) which is expressed in terms of
continuous functions by

'= (: − 1) + != (: + 1)
XG

≈ A (G − XG, C) − ; (G + XG, C).

By expanding up to second order in XG, we get

A (G − XG, C) − ; (G + XG, C) = A (G, C) + ; (G, C) − mA (G, C)
mG

XG + m; (G, C)
mG

XG

+ 1
2
m2A (G, C)
mG2 XG2 + 1

2
m2; (G, C)
mG2 XG2 + >(XG2).

From the definitions (1.21), (1.22) and (1.29), we can finally substitute

A (G, C) + ; (G, C) = [1 − q( (:)] ?(G, C)XG[
mA (G, C)
mG

− m; (G, C)
mG

]
XG =

m0(G, C)
mG

XC[
m2A

mG2 +
m2;

mG2

]
XG2 =

m2

mG2 {[1 − q( (:)] ?(G, C)} XG
2.

Plugging the two expansions in Eq. (1.24), we get the equation for ?(G, C):

m?(G, C)
mC

= − m
mG

{
0(G, C) − 1

2
XG2

XC

m

mG

[
(1 − q( (:)) ?(G, C)

]}
, (1.30)

which has the form of a Fokker-Planck equation, with the current � (G, C) given by:

� (G, C) = 0(G, C) − 1
2
XG2

XC

m

mG

[
(1 − q( (:)) ?(G, C)

]
. (1.31)

Finally, in order to capture the continuum limit, we let XG and XC go to zero in
such a way that the current � (G, C) remains well-defined. However, note that here the
probability q( (:) is still written in terms of the discrete variable : = G/XG, and the
quantity 0(G, C), representing the probability drift, is defined through the difference
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q' (:) − q! (:) as well, see Eq. (1.29). Therefore, to obtain the correct Fokker-Planck
equation we need to consider the expressions of the jump probabilities in terms of the
continuum variable G and the lattice spacing XG, and take into account how they scale
as the limit XG, XC → 0 is approached. To give a better understanding of this statement,
in the following we will consider some easy practical example for which the continuum
limit can be captured correctly.

1.4.1 Bernoulli random walk
In a Bernoulli random walk a particle moves on Z making steps to the right with
probability ? or to the left with probability @ = 1 − ?:

q' (:) = ?
q! (:) = @
q( (:) = 0.

Therefore, in this case the probability drift is defined as

0(G, C) = XG
XC
(? − @)?(G, C), (1.32)

and hence the current is

� (G, C) = XG
XC
(? − @)?(G, C) − 1

2
XG2

XC

m?(G, C)
mG

. (1.33)

As long as the difference ? − @ remains finite, we see that to have a meaningful limit
XG and XC must approach 0 in such a way that their ratio is kept constant. In this case,
setting 2 = XG/XC, in the limit one obtains

m?(G, C)
mC

= −E m?(G, C)
mG

, (1.34)

where E = (? − @)2. This corresponds to a Fokker-Planck equation with a vanishing
diffusion coefficient, i.e., a deterministic motion. Indeed, in this case the solution
corresponding to the initial condition ?(G, 0) = X(G − G0) is

?(G, C) = X(G − G0 − EC), (1.35)

i.e., a deterministic drift with velocity E. To obtain an equation describing both the
deterministic drift and the random fluctuations, we need both terms on the r.h.s. of
equation (1.33) to be non-vanishing in the limit. This can be achieved by imposing that
the ratio XG2/XC, rather than XG/XC, remains finite, and consequently that the difference
? − @ be of order of XG. Therefore, by setting

? =
1
2
+ E

2�
XG

@ =
1
2
− E

2�
XG,
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the current takes the form

� (G, C) = XG
2

XC

[
E

�
?(G, C) − 1

2
m?(G, C)
mG

]
, (1.36)

and in the limit XG, XC → 0, with XG2/XC = � kept constant, we get the following
Fokker-Planck equation for the probability density function:

m?(G, C)
mC

= −E m?(G, C)
mG

+ 1
2
�
m2?(G, C)
mG2 . (1.37)

Note that this equation can be simplified with the aid of the substitution3

H =
G − EC
√
�C

, (1.38)

from which we obtain

−Hd?
dH

=
d2?

dH2 . (1.39)

It is easy to find the general solution and hence the solution of the original problem.
For an initial condition of the kind ?(G, 0) = X(G − G0) we find:

?(G, C) = 1
√

2c�C
4
− (G−G0−EC)2

2�C . (1.40)

This solution is not surprising, since it is a consequence of the CLT. Indeed the
Bernoulli walk is a sum of independent and identically distributed random variables
with finite mean and variance and hence the probability distribution of the position
expected to follow a Gaussian distribution, in the limit of large number of steps. In
the continuum limit, as observed in [38], the theorem is still valid because the chosen
scaling for the lattice spacing and the time step guarantees the finiteness of both the
mean and the variance of the individual steps. Note that in the previous case we chose to
keep constant the ratio XG/XC, which led to a vanishing variance in the limit, and indeed
the solution in that case is a delta function. This shows that, as we already observed for
the diffusion equation, the choice of the scaling strongly affects the limiting form of the
probability distribution.

1.4.2 Kac random walk
The Kac random walk describes a particle subject to an elastic force directed towards
the centre of coordinates and random fluctuations. The model was presented by Mark
Kac in 1947 [59] to generalize Einstein’s and Smoluchovski’s discrete approaches
to the theory of diffusion, in the presence of deterministic forces. It is defined on

3This substitution is suggested by the CLT.
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Figure 1.1: Cumulative distribution for the position : after = = 103 steps for the
Bernoulli random walk, with ? = 0.7. Data (blue squares) are compared to the result
yielded by the continuum limit, Eq. (1.40)

a box −" ≤ : ≤ " with reflecting boundaries condition, with the following jump
probabilities depending on the walker’s position:

q' (:) =
1
2

(
1 − :

"

)
q! (:) =

1
2

(
1 + :

"

)
q( (:) = 0.

We want to derive in the continuum limit the evolution equation for the probability
of the displacement of the walker. We can obtain the probability drift in terms of the
continuous variables by substituting in the definition (1.29) the discrete indexes : and
= with G/XG and C/XC, respectively:

0(G, C) = −?(G, C) G

"XG

XG

XC
= −?(G, C) G

"XC
. (1.41)

Thus the current is

� (G, C) = −?(G, C) G

"XC
− 1

2
XG2

XC

m?(G, C)
mG

. (1.42)

We see from this expression that when XG and XC approach zero, the second term on the
r.h.s requires that the ratio XG2/XC is kept constant, while the first term suggests that "
must diverge in such a way that the product "XC remains finite. Hence by considering
the limits XG → 0, XC → 0 and " →∞, with

XG2

XC
→ � and

1
"XC

→ W,

13



1. Random walks and the continuum limit

the resulting diffusion equation is

m?(G, C)
mC

= W
m

mG

[
G?(G, C)

]
+ 1

2
�
m2?(G, C)
mG2 , (1.43)

which is the Fokker-Planck equation of the Ornstein-Uhlenbeck process. For the initial
condition ?(G, 0) = X(G − G0), one finds the solution [41]:

?(G, C) =
√

W

c�
(
1 − 4−2WC ) exp

[
− W
�

(
G − G04

−WC )2

1 − 4−2WC

]
. (1.44)

The fact that the probability of the displacement of the walker converges - in the sense
we have mentioned earlier, see Eq. (1.25) - to the solution of the Fokker-Planck equation
of the Ornstein-Uhlenbeck process was proved rigorously by Kac.

Interestingly, the Kac random walk is analogous to the formulation of a problem
proposed by P. and T. Ehrenfest to describe heat exchange between two isolated bodies
[35]. Let us consider 2" balls distributed in two boxes, � and �. At random and with
uniform probability, a ball is chosen and moved to the other box, and the process is
repeated = times. If we denote with 2: the difference between the number of balls in
box � and �, it is easy to see that at each step the probability of increasing the number
of balls in � by one unit is

q+(:) =
" − :

2"
, (1.45)

which is the same probability of jumping to the right for the Kac random walk. In
this model the number of balls in each box represents the temperatures of the two
bodies, and the random process of moving the balls describes the heath exchange. Off
course we expect that the process reaches an equilibrium state, since eventually the two
bodies must acquire the same temperature. The validity of the continuum limit can be
examined by observing that indeed, from the solution of the Fokker-Planck equation,
the process reaches a stationary distribution, which is exponentially decaying for values
outside the origin. Moreover, if we consider the average excess over " of the number
of balls in the first box, it is easy to see that Eq. (1.44) yields:

〈G(C)〉 = G04
−WC , (1.46)

which can be interpreted as Newton’s law of cooling. The same result can be obtained
from the discrete model, and then evaluating the limit for a large number of balls [59].

1.4.3 Kac random walk with bias
We can generalize the Kac random walk by including a constant force towards the
positive direction, and find the corresponding Fokker-Planck equation in the continuum

14



1.4. The discrete approach: random walks and the continuum limit

limit. We define the walk on an asymmetric box −" + < ≤ : ≤ " + <, and

q' (:) =
1
2

(
1 − : − <

"

)
q! (:) =

1
2

(
1 + : − <

"

)
q( (:) = 0.

From the definition of the probability drift (1.25) we have

0(G, C) = −?(G, C)
[ G

"XG
− <
"

] XG
XC
= −?(G, C)

[
G

"XC
− <XG
"XC

]
, (1.47)

and thus the current is

� (G, C) = −?(G, C)
[
G

"XC
− <XG
"XC

]
− 1

2
XG2

XC

m?(G, C)
mG

. (1.48)

This means that with respect to the previous case we ought to add the condition < →∞
in such a way that the product <XG remains finite4. Thus by considering the limits
XG, XC → 0 and ",< →∞, with

XG2

XC
→ �,

1
"XC

→ W and <XG → b, (1.49)

the resulting equation is

m?(G, C)
mC

= −W m
mG

[
(b − G)?(G, C)

]
+ 1

2
�
m2?(G, C)
mG2 , (1.50)

which is a modification of the Ornstein-Uhlenbeck process, known in financial math-
ematics as the Vasicek model. In this case the solution corresponding to the initial
condition ?(G, 0) = X(G − G0) is

?(G, C) =
√

W

c�
(
1 − 4−2WC ) exp

{
− W
�

[
G − G04

−WC − b
(
1 − 4−WC

) ]2

1 − 4−2WC

}
, (1.51)

i.e., a Gaussian with mean

〈G(C)〉 = G04
−WC + b

(
1 − 4−WC

)
(1.52)

and variance

〈G2(C)〉 − 〈G(C)〉2 = �

2W

(
1 − 4−2WC

)
. (1.53)

4Note that this implies that we should take " = $ (<2).
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1. Random walks and the continuum limit

Note that in this case the MSD in the long-time limit converges to

〈[G(C) − G0]2〉 →
�

2W
+ (b − G0)2 , (1.54)

indeed the process reaches a stationary distribution, as suggested by Eq. (1.51), yielding
a finite second moment5:

?B (G) =
√

W

c�
4
− W
�
(G−b)2

. (1.55)

Note that in the limit b → 0 we can recover the results obtained for the Ornstein-
Uhlenbeck process.

Figure 1.2: Cumulative distribution for the position : after = = 104 steps for the Kac
random walk with bias, with " = 100 and < = 10. Data (blue squares) are compared
to the result yielded by the continuum limit, Eq. (1.55)

1.4.4 Moran model
TheMoranmodel is one of the most commonly used reproduction schemes in population
genetics[14, 66, 93]. According to this scheme, an individual is characterized by a set of
hereditary traits which are collectively referred to as its type. The most important trait
governing the dynamics of each type is the fitness 5 , which quantifies the reproductive
success of the individual. In the Moran model individuals reproduce asexually in
a population consisting of a fixed number  of individuals. At each time step, an
individual is chosen randomly for reproduction, with probability proportional to its
fitness, creating an offspring of the same type. At the same time, to maintain the
constraint of fixed population size, an individual is killed at random. All individuals
are equally likely to be killed, except the newborn offspring.

5More generally, it can be shown that all moments are finite.
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1.4. The discrete approach: random walks and the continuum limit

We consider the simple case of a population split in two types, � and �, with
fitnesses denoted as 5� and 5�, respectively. The fitness of the �-type with respect
to the �-type is expressed in terms of the selection coefficient B, which is positive if
5� > 5�, i.e., we can set

5� = 1 + B
5� = 1.

Since there are only two types, it is sufficient to consider the evolution of of the
number of individuals of the �-type, which from now on we will denote with : . In the
Moran model, discrete time steps are considered in such a way that at each iteration
the population can increase or decrease by one unit, or not change. The transition
probabilities are:

q+(:) = (1 + B)
:

 

(
1 − :

 

)
q−(:) =

:

 

(
1 − :

 

)
q0(:) = 1 − q+(:) − q−(:).

Note that the transitions are well defined as long as −1 ≤ B ≤ 2. The process
corresponds to a random walk on {0, . . . ,  } and we seek the evolution equation for
the probability %= (:) of having : �-type individuals at time step C, in the limit where
 → ∞. We call XG the lattice spacing and XC the time between successive steps. In
the continuous variables G = :XG and C = =XC the expression for the current is

� (G, C) = 0(G, C) − 1
2
XG2

XC

m

mG

[
(2 + B) G

 XG

(
1 − G

 XG

)
?(G, C)

]
, (1.56)

where

0(G, C) = B G

 XG

(
1 − G

 XG

) XG
XC
. (1.57)

The product  XG appearing in the denominator suggests that in the continuum limit we
let the population size  increase with the same scale with which the lattice spacing
goes to zero, so that  XG ≡ - remains constant. Note that differently from the previous
case, this implies that the variable G remains bounded. If we conveniently set - = 1,
then G ∈ [0, 1] represents the population fraction of the �-type. At this point, the
resulting diffusion equation depends on how the selection coefficient scales with the
lattice spacing [14, 116]:

i) if B = $ (XG), say B = fXG, then by keeping XG2/XC constant we get the weak
selection regime [66]:

m?(G, C)
mC

= −� m

mG

{
fG(1 − G)?(G, C) − m

mG

[
G(1 − G)?(G, C)

]}
; (1.58)
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1. Random walks and the continuum limit

ii) if B = >(XG), then only the diffusion term is relevant, and we get, by setting
XG2/XC = �:

m?(G, C)
mC

= �
m2

mG2

[
G(1 − G)?(G, C)

]
; (1.59)

iii) if B remains finite in the limit, the dominant term is the drift term. This time,
by keeping XG/XC constant and calling E = BXG/XC the drift velocity, we have the
so-called strong selection regime [66]:

m?(G, C)
mC

= −E m
mG

[
G(1 − G)?(G, C)

]
. (1.60)

We stress once more that the chosen scaling implies a precise relation between
the continuous coordinates G and C, and the population size. Indeed the definition of
the G variable can be reformulated as G = :/ , while the C variable can be defined as
C = =/ 2. See [14, 66] to have an insight regarding the physical implication and the
interpretation of this fact.

1.4.5 Correlated random walk
The correlated random walk, or persistent random walk, is a non-trivial generalization
of the simple symmetric random walk on Z. In this model, a particle starts moving
from G0 with constant velocity in a random direction, and then at each step it can either
reverse or preserve the direction of motion, according to the probabilities r and t = 1− r,
respectively. The model was presented in [104], along with some initial results. Note
that the knowledge of the position of the particle at time = is not sufficient to determine
the state of the process one step later, as it is also required information on the position
at step = − 16. For this reason, the evolution equations ought to be put in a slightly
different manner.

We call

'= (:) = Probability of being at site : after = steps, with velocity to the right
!= (:) = Probability of being at site : after = steps, with velocity to the left,

(1.61)
(1.62)

and

�= (:) = '= (:) − != (:) (1.63)

the probability drift. In this case, it is easier to write first the equations for '= (:) and
!= (:), which read:{

'=+1(:) = t · '= (: − 1) + r · != (: + 1)
!=+1(:) = t · != (: + 1) + r · '= (: − 1).

(1.64)
(1.65)

6Indeed, we say that the correlated random walk is a Markov chain of order 2, which is an example
of Markov chain with memory.
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1.4. The discrete approach: random walks and the continuum limit

By summing and subtracting these two equations, we get a pair of coupled equations
for %= (:) and �= (:):{

%=+1(:) = '= (: − 1) + != (: + 1)
�=+1(:) = (t − r) ['= (: − 1) − != (: + 1)] .

(1.66)
(1.67)

Now we want to obtain the continuum limit for the evolution of %= (:). Proceeding
with the same prescriptions as before, keeping only terms of order XC and XG2 and after
rearranging, we get:

m?

mC
XC = −m0

mG
XC + 1

2
m2?

mG2 XG
2

2r0XC = − (t − r) m?
mG
XG2.

(1.68)

(1.69)

Now letting XG and XC go to zero, and keeping the ratio XG2/XC = Δ constant, we recover
for the first equation the form of the continuity equation, Eq. (1.24), with the probability
drift given this time by

0(G, C) = −t − r
2r

Δ
m?(G, C)
mG

. (1.70)

By plugging this expression into the continuity equation, we get a simple heat equation

m?(G, C)
mC

=
1
2
�
m2?(G, C)
mG2 , (1.71)

where the diffusion coefficient is

� =
t

r
Δ. (1.72)

This result is consistent with what found in [104]. However, we point out that in
the literature another way of performing the continuum limit for the correlated random
walk is considered [119]. If we assume a scaling for the reflection coefficient of the
type

r =
r

)
XC, (1.73)

we need to keep in Eq. (1.67) also terms of order XC2, obtaining:

2r
)
0XC2 + m0

mC
XC2 = −m?

mG
XG2, (1.74)

which means that in this case we have to keep the ratio XG/XC = E constant, when letting
XG and XC go to zero. Consequently, we obtain a pair of coupled equations

m?(G, C)
mC

= −m0(G, C)
mG

E2 m?(G, C)
mG

= −2r
)
0(G, C) − m0(G, C)

mC
,

(1.75)

(1.76)
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1. Random walks and the continuum limit

which can be transformed into a pair of uncoupled telegrapher’s equations:
m2?(G, C)
mC2

+ 2r
)

m?(G, C)
mC

= E2 m?(G, C)
mG2

m20(G, C)
mC2

+ 2r
)

m0(G, C)
mC

= E2 m0(G, C)
mG2 .

(1.77)

(1.78)

Hence, in this case we get a different limiting equation for the evolution of the probability
of the walker’s displacement. However, as it is often stressed when dealing with the
telegrapher’s equation [119], for times much longer than the value of the parameter ) ,
i.e., in the limit ) → 0, a normal diffusion equation is recovered, with the diffusion
coefficient given by

� =
E2)

r
. (1.79)

In other words, the asymptotic regime of a telegrapher’s equation is normal diffusion,
which means that the two procedures we have considered yield the same results in the
long-time limit. Indeed, if we imagine that ) = \XC, in the diffusion limit, i.e., E →∞7,
the previous expression for the diffusion coefficient would become

� =
\

r
Δ, (1.80)

which, interpreting \ and r as the microscopic transmission and reflection coefficients,
is the same expression previously obtained. This is another example of how the
continuum limit may change depending on the scaling of the parameters.

1.5 Summary
In this introductory chapter we have briefly discussed the relation between diffusion
processes and random walk models: while the former provide a correct physical
description for time and length scales much larger than those at the microscopic level,
random walks offer a good approximation of the process at very short scales. The
connection between the two is made through the procedure of the continuum limit,
which consists in considering very small step lengths and hopping times. In practice,
this is obtained by evolving the walk for a very large number of steps, in such a way
that the time scale for a single step can be considered very small. If the evolution time
is large enough, the asymptotic properties of the walk are expected to approach those
of the related diffusion process.

We have also provided a general method to obtain the continuum limit for random
walks with nearest neighbour jumps. This method is based on the structure of the

7In the diffusion limit XG2/XC = Δ is kept constant, hence E = XG/XC diverges. The choice ) = \XC is
made so that the product E2) remains finite.
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1.5. Summary

supposed limiting Fokker-Planck equation, which takes the form of a continuity equation.
We have discussed some examples of random walks and in some cases the continuum
limit obtained with our method has been compared with the results already present in
the literature. In the following, we will use the method presented in this chapter to
discuss the continuum limit for two particular examples of random walks.
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Gillis random walk 2

The Gillis Random Walk (GRW) was introduced in 1956 [42] to study the recurrence
properties of a random process with transition probabilities not possessing translational
invariance. It consists in a 3-dimensional random walk with only nearest-neighbour
jumps transitions defined as follows: let k be the general lattice point (:1, :2, . . . , :3)
and e8 the unit vector parallel to the 8-th axis in the positive direction. The permitted
transitions are those of the type k → k ± e8, so that in a single jump only the 8-th
coordinate of the position vector can change, increasing or decreasing by one unit. The
respective probabilities q8+ and q8− depend on the 8-th coordinate :8 itself and are given
by

q8+(:8) =
1

23

(
1 − n

:8

)
q8−(:8) =

1
23

(
1 + n

:8

)
,

(2.1)

(2.2)

for :8 ≠ 0, while for :8 = 0

q8+(0) = q8−(0) =
1

23
, (2.3)

where n ∈ (−1, 1) and 8 = 1, . . . , 3. Thus the transition probabilities are characterized
by a bias controlled by the parameter n : for positive values the walker is biased to move
towards the origin of coordinates, while for n < 0 there is a tendency to escape from it.
For n = 0 there is no bias and one recovers the simple symmetric random walk in 3
dimensions.

The mathematical relevance of the model lies in the fact that it is one of the few
examples of non-homogeneous random walk for which some analytical computations
can be performed. For example in the original paper by Gillis [42] the author computes,
in the one-dimensional case, the exact form of the generating function of the probability
of being at the origin after = steps, through which it is possible to obtain other results
such as the probability of eventual return to the starting site and the mean number
of steps occurring between two consecutive visits at the origin [56]. However, the
most considered result regards the recurrence of the starting site1 depending both on
the parameter n and the dimensions 3 of the system. For these reasons the GRW was

1A point is defined recurrent if the walk visits it infinitely often with probability 1.
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2. Gillis random walk

the starting point for many papers, see [69, 70, 94, 55], concerning recurrence and
transience, extrema, returns and passage-time moments of stochastic processes.

In the physical literature, at least to our knowledge, the model has attracted little
interest. Nevertheless, we want to show that the GRW can also be of physical relevance,
as it provides a discrete approach to a widely studied problem, that of Brownian motion
in a logarithmic potential. This problem has been deeply studied, see for instance
[29, 53], since it has been recognized as a natural model for a large number of physical
systems: examples can be found in vortex dynamics [16], interaction between probe
particles in a driven fluid [76], time evolution of momenta of cold atoms trapped in
optical lattices [86, 81, 33], and relaxation to equilibrium of long-range interacting
systems [15, 22]. Moreover, diffusion in an effective logarithmic potential also appears
outside the physical context, e.g., in the study of charged particles in the vicinity of a
charged polymer [85], dynamics of DNA denaturation [5] and sleep-wake transitions
during sleep [79].

In the following we will focus on the one-dimensional case. We will first discuss in
detail a number of analytical results, beginning with the computation of the probability
of being at the origin after = steps, having started the walk from a generic site :0 (the
computation can also be found in [57]), from which other related quantities can be
derived; then we will show that in a certain range of n the walk admits a normalizable
stationary distribution, which we are able to compute; finally we will evaluate the
continuum limit of the GRW, showing that it corresponds to the motion of a Brownian
particle in a logarithmic potential * (G) ∼ n log |G |, and derive from this fact the
transport properties of the system.

2.1 Generating function of the probability of being at
the origin and related results

Let us consider a walk starting from :0. In the one-dimensional case, the Gillis random
walk is defined by the jump probabilities from : to :′:

q(:′|:) = 1
2

(
1 − n

:

)
X: ′,:+1 +

1
2

(
1 + n

:

)
X: ′,:−1

q(:′|0) = 1
2
X: ′,−1 +

1
2
X: ′,1.

(2.4)

(2.5)

We want to evaluate the generating function of the transition probabilities from a site
:0 to the origin of coordinates, viz.,

%I (0|:0) =
∞∑
==0

%= (0|:0)I=. (2.6)

We begin by writing the evolution equation for %= (: |:0) which, by the use of the
Markov property, can be written as

%=+1(: |:0) = q' (: − 1)%= (: − 1|:0) + q! (: + 1)%= (: + 1|:0), (2.7)
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2.1. Generating function of the probability of being at the origin and related results

where q' (:′) and q! (:′) are the one-dimensional version of q8+ and q8−, respectively.
By multiplying both sides for I=+1 and summing over =, = = 0, 1, . . . , we obtain an
equation involving generating functions which, by writing the explicit expressions of
q! (:′) and q' (:′), reads

%I (: |:0) − X:,:0 =
I

2
%I (: + 1|:0) +

I

2
%I (: − 1|:0)

+ nI

2 (: + 1)%I (: + 1|:0) −
nI

2 (: − 1)%I (: − 1|:0). (2.8)

We now consider the discrete Fourier transform of this equation, with

%̂I (@ |:0) =
+∞∑
:=−∞

48@:%I (: |:0), (2.9)

obtaining

1 − I cos @
sin @

%̂I (@ |:0) −
48@:0

sin @
= −8n I

∑
:≠0

48@:

:
%I (: |:0). (2.10)

By taking the derivative with respect to @ of both sides we get a linear first-order
differential equation for %̂I (@ |:0), which we put in the following form:

%̂′I (@ |:0) + 5 (@)%̂I (@ |:0) =
sin @

1 − I cos @
d

d@

(
48@:0

sin @

)
− nI sin @

1 − I cos @
%I (0|:0), (2.11)

where

5 (@) = sin @
1 − I cos @

[
d

d@

(
1 − I cos @

sin @

)
− nI

]
. (2.12)

This equation can be solved by means of the usual integrating factor method, yielding
the general solution

%̂I (@ |:0) =
sin @

(1 − I cos @)1−n

∫
d

d@′

(
48@
′:0

sin @′

)
d@′

(1 − I cos @′)n

− nI sin @
(1 − I cos @)1−n

%I (0|:0)
∫

d@′

(1 − I cos @′)n +
2 sin @

(1 − I cos @)1−n
, (2.13)

where we indicated by 2 the integration constant. We can now obtain %I (0|:0) by using
the inversion formula for the discrete Fourier transform. Integrating from 0 to 2c and
dividing both sides by 2c we get, after integrating by parts and rearranging terms:

%I (0|:0) =
∫ 2c

0 48@:0 (1 − I cos @)−1−n d@∫ 2c
0 (1 − I cos @)−n d@

. (2.14)
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2. Gillis random walk

The integrals can be evaluated in terms of hypergeometric functions, see Appendix A,
yielding

%I (0|:0) =
I |:0 |

|:0 |!
Γ(1 + n + |:0 |)
2|:0 |Γ(1 + n)

2�1

(
1+n+|:0 |

2 ,
n+|:0 |

2 + 1; |:0 | + 1; I2
)

2�1

(
1
2n,

1
2n +

1
2 ; 1; I2

) . (2.15)

We point out that putting :0 = 0 one recovers the original result by Gillis [42] regarding
the generating function of the return probability at the origin:

%I (0|0) =
2�1

(
1
2n +

1
2 ,

1
2n + 1; 1; I2

)
2�1

(
1
2n,

1
2n +

1
2 ; 1; I2

) . (2.16)

A number of results can now be derived. For example, we can compute the
generating function of the first return time at the origin. Indeed the first hitting time of
a point : , starting the walk from :0, are related to the transition probability from :0 to
: by the following equation [56, 63, 102]:

%= (: |:0) = X:,:0X=,0 +
=∑

<=1
�< (: |:0)%=−< (: |:), (2.17)

where �< (: |:0) is the probability of reaching : for the first time at the<-th step, having
started from :0. By multiplying each side for I=, summing over = and introducing the
generating function

�I (: |:0) =
∞∑
==1

�= (: |:0)I=, (2.18)

we get

%I (: |:0) = X:,:0 + �I (: |:0)%I (: |:), (2.19)

which for : ≠ :0 reduces to

�I (: |:0) =
%I (: |:0)
%I (: |:)

. (2.20)

Therefore for : = 0 and :0 ≠ 0 we have, by using Eq. (2.15):

�I (0|:0) =
I |:0 |

|:0 |!
Γ(1 + n + |:0 |)
2|:0 |Γ(1 + n)

2�1

(
1+n+|:0 |

2 ,
n+|:0 |

2 + 1; |:0 | + 1; I2
)

2�1

(
1+n

2 ,
1
2n + 1; 1; I2

) . (2.21)
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2.1. Generating function of the probability of being at the origin and related results

In order to compute the generating function of the first return time at the origin, it is
not sufficient to evaluate the previous expression for :0 = 0, because when : = :0 = 0,
�I is no more related to %I by Eq. (2.20); indeed, from Eq. (2.19) we obtain

�I (0|0) = 1 − 1
%I (0|0)

, (2.22)

and thus, by using Eq. (2.16), we get the correct result:

�I (0|0) = 1 −
2�1

(
1
2n,

1
2n +

1
2 ; 1; I2

)
2�1

(
1
2n +

1
2 ,

1
2n + 1; 1; I2

) . (2.23)

For the purposes of this thesis we are interested in evaluating the asymptotic decay
of the probabilities of being at the origin and the first return probabilities at the initial
point, starting the walk from :0 = 0. The former can be obtained from Eq. (2.16), by
using Tauberian theorems for power series, see Appendix B. We get

%2= (0|0) ∼
{
0n · =−(1/2−n) −1 < n < 1

2
4

log = n = 1
2 ,

(2.24)

where the coefficient 0n is

0n =
4n

Γ (1/2 − n)
Γ(1 − n)
Γ(1 + n) , (2.25)

while in the case n > 1
2 the probability converges to a constant value:

%2= (0|0) →
2n − 1
n

. (2.26)

We point out that the same asymptotic results, including the coefficients, are obtained
when computing the probability of reaching : = 0 starting from :0 ≠ 0. However, note
that a walker can reach the origin only in a number of steps whose parity is that of :0,
hence the 2= index must be replaced by 2= + |:0 |. In particular, one has that for n > 1

2
and any :0:

%2=+|:0 | (0|:0) →
2n − 1
n

. (2.27)

This fact will be used in the following section.
Regarding the first return probabilities, an application of Tauberian theorems to the

generating function of Eq. (2.23) yields:

�2= (0|0) ∼


1n · =−(1/2−n) −1 < n < −1

2
4

= log2 =
n = −1

2

2n · =−(3/2+n) −1
2 < n < 1,

(2.28)
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2. Gillis random walk

Figure 2.1: Probability of finding the particle at the origin after 2= steps for the Gillis
random walk, for various values of n . The asymptotic behaviours (dashed red lines)
in the large-= limit are given by 0n · =−(1/2−n) , as predicted by Eq. (2.24). Data are
obtained simulating 106 walks of 103 steps.

where

1n =

(
2n − 1
n

)2 4n

Γ (1/2 − n)
Γ(1 − n)
Γ(1 + n)

2n =

(
2n − 1

2

)
4−n

Γ (1/2 + n)
Γ(1 + n)
Γ(1 − n) .

(2.29)

(2.30)

For the sake of completeness, we point out that the same exponents are obtained for
the first hitting time of the origin starting from :0 = 0, but with different coefficients,
which depend on the starting point.

Let us comment briefly on the last result: the first return probabilities show different
behaviours in the ranges n ∈

(
−1,−1

2

)
and n ∈

(
−1

2 , 1
)
, with the n = −1

2 representing a
"phase transition point". This is related to the recurrence properties of the process: we
recall that a random walk can be classified as recurrent if

∞∑
==0

�= (:0 |:0) = 1. (2.31)

For the GRW every point is recurrent if and only if :0 = 0 is recurrent [42], hence it is
sufficient to evaluate �= (0|0) to show [56, 57] that the Gillis random walk is recurrent
only for n ∈

[
−1

2 , 1
)
, meaning that in this range the first return probabilities sum to 1,

or rather, their generating function approaches 1, in the limit I → 1−. Note that for
n ∈

(
−1,−1

2

)
the sum of the first return probabilities is still finite, but it converges to a
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2.1. Generating function of the probability of being at the origin and related results

Figure 2.2: First return probability at the origin after 2= steps for the Gillis random
walk, for various values of n . The asymptotic behaviours (dashed red lines) in the
large-= limit are those predicted by Eq. (2.28). Data are obtained simulating 107 walks
of 103 steps, except for the case n = 0.9, where a larger number of walks

(
109) is

needed for sufficiently precise results.

value less than 1 - see [56]:

∞∑
==0

�= (0|0) = |n |−1 − 1, −1 < n < −1
2
. (2.32)

Recurrence can be more easily probed by evaluating the occupation probability of the
starting site, since from Eq. (2.19) we have

�I (0|0) = 1 − 1
%I (0|0)

, (2.33)

hence the process is recurrent if and only if %I (0|0) diverges as I approaches 1. The
asymptotic decays of the probabilities of occupying the origin for the Gillis random
walk as given by Eq. (2.24) reveal in fact that their sum diverges for n ≥ −1

2 , and
converges for n < −1

2 .
We also observe that %= (0|0) shows different asymptotic behaviours in the ranges

n ∈
(
−1, 1

2

)
and n ∈

(
1
2 , 1

)
, with n = 1

2 acting as a "phase transition point". Indeed, in
the following we will show that this corresponds to a transition between a non-ergodic
phase and an ergodic phase, which is reached for n > 1

2 . Observe that the occurrence of
the ergodic phase in this range is suggested by the convergence of %= (0|0) to a constant
value, see Eq. (2.26).
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2. Gillis random walk

2.2 Stationary distribution
We now show that for n > 1

2 the Gillis random walk admits a stationary distribution.
For a random walk defined on a state space ( with transition probabilities from state 8
to state 9 given by q( 9 |8), a stationary distribution is a set of non-negative numbers
{c: : : ∈ (} such that:∑

:∈(
c: = 1∑

8

q( 9 |8)c8 = c 9 ,

(2.34)

(2.35)

i.e., c: are the components of an eigenvector of the transition matrix q 98 = q( 9 |8) with
eigenvalue 1. In the case of the one-dimensional GRW, the state space is the set of
integers and the transition probabilities are given by Eqs. (2.4) and (2.5). Due to the
symmetry of walk, the c: must satisfy the symmetry condition c: = c−: , hence we are
left to solve the infinite set of linear equations:

c0 = 2q(0|1)c1

c1 = q(1|0)c0 + q(1|2)c2
...

c: = q(: |: − 1)c:−1 + q(: |: + 1)c:+1
...

By solving this system by iteration, one easily finds the solution

c: =
: (1 − n):−1
(1 + n):

· c0, : > 1, (2.36)

where (G)= is the Pochhammer symbol, see Appendix A, and c0 can be determined by
the normalization condition. If the sum of the c8 can not be normalized, then they do
not represent a proper distribution and we say that the walk does not admit a stationary
distribution. For large values of : , by using the definition of the Pochhammer symbol
in terms of the Gamma function we may deduce that

c: ∼ c0 ·
Γ(1 + n)
Γ(1 − n) :

−2n , (2.37)

hence the GRW admits a stationary distribution only for n > 1
2 , and we can say that the

process is ergodic in this range.
To find c0, let us consider a large ensemble of 2" particles and suppose that each

one starts the walk from a different site, so that " start from even positions and "
from odd positions. We previously showed that for n > 1

2 the probability of finding a
particle at the origin converges to a constant value, which is independent of the starting
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2.2. Stationary distribution

point :0. However, for any number of steps = ≥ |:0 |, a particle can be at the origin
only if = has the same parity of :0, meaning that only " particles are eligible to be
found at : = 0. Therefore we expect that c0 be equal to one half the limiting value of
the occupation probability of the origin:

c0 =
2n − 1

2n
. (2.38)

Moreover, note that for n > 1
2 , from the generating function of Eq. (2.23) it is possible

to compute the mean return time at the origin starting from :0 = 0, which reads:

T =
2n

2n − 1
, (2.39)

see also [56]. It turns out that the value of T is strictly connected to c0: indeed, let us
call G= the position of the random walk starting from :0 = 0 after = steps and '= the
number of returns at the origin:

'= =

=∑
8=1

X0,G8 . (2.40)

From Birkhoff’s ergodic theorem, we have that the time average of '= converges, in the
long-time limit, to the ensemble average of X0,: , i.e., to the stationary probability c0:

lim
=→∞

'=

=
= c0. (2.41)

On the other hand, the mean return time can be evaluated as the ratio of the total time
to the number of returns, hence in the limit:

lim
=→∞

'=

=
=

1
T
, (2.42)

from which one obtains c0 = 1/T , confirming the validity of Eq. (2.38). This may be
double-checked by evaluating numerically the sum

=∑
8=−=

c8 = c0 + 2c0

=∑
8=1

c8 ≡ c0 ·S= (2.43)

for large values of =, and showing that S= converges to

S= → S =
2n

2n − 1
. (2.44)

In Fig. 2.3 we show the behaviour of S= as a function of =, for various values of n
and a number of iterations up to 105. Note that the convergence becomes slower as
n → 1

2 . We also present in the following table the values of S= computed for a larger
number of iterations

(
= = 107) , compared to S . We see that for = → ∞ the partial

sum converges to 2n/(2n − 1).

31



2. Gillis random walk

Figure 2.3: S= versus = for various values of n . The theoretical sums of the
corresponding series are represented by the dashed black lines.

n S=, = = 107 S = 2n/(2n − 1)
0.95 2.111 2.1
0.85 2.4285 2.4286
0.75 2.9995 3

0.65 4.3137 4.3

Finally, in Fig. 2.4 we show that for n > 1
2 the probability of finding a particle at

site : is correctly given by c: , normalized according to Eq. (2.38). However, note that
the agreement is good up to a certain threshold, which moves toward higher values of
: for higher number of steps. Therefore, for any finite time, c: does not reproduce
correctly the high-: range of the distribution. We will see in the following section how
this regime can be instead effectively described.

2.3 The continuum limit

To obtain the continuum limit for the GRW, we proceed as explained in Chapter 1. We
recall that the probabilities of jumping right and left when being at site : are given by:

q' (:) =
1
2

(
1 − n

:

)
q! (:) =

1
2

(
1 + n

:

)
,

(2.45)

(2.46)
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2.3. The continuum limit

Figure 2.4: Distributions of the position : for positive values of : and stationary
distributions. Data are obtained simulating 107 walks for different times. The red
lines correspond to a continuous interpolation of the stationary distribution c: . The
power-law profile is clear, except for the first values of : .

and hence the probability drift function has the expression:

0(G, C)XC =
[
q'

( G
XG

)
− q!

( G
XG

)]
?(G, C)XG

= −n
G
?(G, C)XG2.

(2.47)

(2.48)

Consequently, the resulting current is

� (G, C) = −XG
2

XC

[
n

G
+ 1

2
m

mG

]
?(G, C), (2.49)

and therefore, in the limit XG,XC → 0, by keeping the ratio XG2/XC = � constant, we get
the following Fokker-Planck equation for the evolution of ?(G, C):

m?(G, C)
mC

= n
m

mG

[
?(G, C)
G

]
+ 1

2
m2?(G, C)
mG2 , (2.50)

where for the sake of simplicity we set � = 1. This equation corresponds to the
diffusion of a Brownian particle in the presence of a logarithmic potential tuned by
the parameter n : * (G) ∼ 2n log |G |, and it is related to the Bessel process, representing
the stochastic evolution of the radial displacement of the 3-dimensional Brownian
motion [16, 74, 87, 96]. However, the validity of Eq. (2.50) in describing the long-time
properties of the GRW must be considered along with a small caveat: the definitions
of the probabilities (2.45) and (2.46) are correct as long as : ≠ 0, while at : = 0
the particle has equal probability of jumping right or left. Thus we expect that in
a neighbourhood of the origin the particle experiences no force and diffuses freely.
In other words, the potential must be regularized in such a way that it assumes a
constant value in a neighbourhood (−0, 0) of the origin. Hence we are led to consider
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2. Gillis random walk

a logarithmic potential of the kind:

* (G) = \ ( |G | − 0) · 2n log
(
|G |
0

)
, (2.51)

where

\ (H) =
{

0 if H ≤ 0
1 if H > 0.

(2.52)

The solution of the Fokker-Planck equation with a logarithmic potential as in Eq.
(2.51) has been computed in [29]. Here we only state the results to test the validity
of the continuum limit. First of all, Eq. (2.50) admits a stationary solution for n > 1

2
which, considering the regularized potential, can be written as [29]:

?B (G) =
4−* (G)

/
=


2n − 1

40n
if |G | ≤ 0

2n − 1
40n

���G
0

���−2n
if |G | > 0.

(2.53)

This solution is valid in the limit C → ∞, representing the equilibrium state of the
process. Therefore in this range of n the process is ergodic, as anticipated in the
previous sections. Note that ?B (G) features the same power-law profile of the stationary
distribution of the GRW. It is also possible to evaluate the probability distribution in a
pre-asymptotic regime, with C large but finite. Considering at C0 = 0 the particle located
at G0 = 0, one has that for large C, outside the central region [29]:

?(G, C) ∼ 02n−1

2nΓ (n − 1/2)Γ
(
1
2
+ n, I

2

2

)
|I |−2n C−n (2.54)

where I is the scaling variable

I =
G
√
C
, (2.55)

and Γ(U, H) denotes the incomplete gamma function:

Γ(U, H) =
∫ ∞

H

4−DDU−1dD. (2.56)

Note that for large values of H, Γ (U, H) ∼ HU−14−H, hence all moments of ?(G, C)
are finite. Moreover, we observe that for small I, ?(G, C) reproduces the equilibrium
solution Eq. (2.53) in |G | > 0.

For n < 1
2 , there is no normalizable stationary solution. For a process starting at

G0 = 0 at time C0 = 0 the non-equilibrium solution is given by [29]:

?(G, C) ∼


2n−1/2

0Γ (1/2 − n)

(
02

C

)1/2−n
if |G | ≤ 0

2n−1/2

Γ (1/2 − n) |I |
−2n4−I

2/2C−1/2 if |G | > 0,
(2.57)
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2.3. The continuum limit

valid for large C. We point out that the central part decays with time as C−(1/2−n) , in
agreement with the decay of the probability of being at the origin for the GRW, Eq.
(2.24).

To test the continuum limit, rather than evaluating the distribution of the position :
of the random walk after = steps, we consider the distribution of the variable I = :/

√
=.

In the case n > 1
2 , from Eq. (2.54) one has that for large values of C and |G | > 0

?(G, C) ∼ Q(I)C−n , (2.58)

hence the distribution of I is given by:

?(I, C) ∼ Q(I)C 1
2−n , (2.59)

where

Q(I) = 02n−1

2nΓ (n − 1/2)Γ
(
1
2
+ n, I

2

2

)
|I |−2n . (2.60)

The function Q(I) is called Infinite Covariant Density [29, 62], since it describes the
distribution of I presenting a non-integrable singularity at I = 0. This is connected
to the fact that the scaling I = G/

√
C is not valid in the central region for any finite

time. However, the Infinite Covariant Density correctly reproduces the distribution of
I, outside a small region around I = 0. We point out that in order to match the result of
the continuum limit to that of the GRW, the parameter 0 must be tuned in such a way
that ?(G, C) in Eq. (2.54) correctly reproduces, as I → 0, the asymptotic decay of the
stationary distribution given in Eq. (2.37). In other words, we need to take 0 satisfying:

02n−1

2
=
Γ(1 + n)
Γ(1 − n) . (2.61)

This means that in the ergodic case the validity of the continuum limit is sensitive to
the size of the central region, where the scaling does not hold. In Ref. [29] it has been
suggested that the scaling breaks down for G ≈ 1. We observe that according to the
definition given in Eq. (2.61), the size 0 always assumes values smaller than 1 in the
range 1

2 < n < 1, hence we expect that for the GRW the Infinite Covariant Density only
fails in describing the occupation probability of the origin. This is confirmed by the
simulations presented in Fig. 2.5 regarding the distribution of the scaling variable I:
only the data corresponding to the origin do not agree with Eq. (2.60).

We now turn to n < 1
2 . We see from Eq. (2.57) that the distribution of I = G/

√
C is

?(I, C) ∼


2n−1/2

Γ (1/2 − n)

(
02

C

)−n
if |I | ≤ 0

√
C

P (I) if |I | > 0
√
C
,

(2.62)
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2. Gillis random walk

Figure 2.5: Plot of Cn ?(G, C) versus I = G/
√
C for positive values of G and theoretical

predictions, with n = 0.85. The red line corresponds to Q(I), given in Eq. (2.60).
Data are obtained by evolving the Chapman-Kolmogorov equation, Eq. (2.7), up to
different times. The left panel shows that the agreement is good for C large enough. The
right panel focuses on the small-I region: only data corresponding to the occupation
probability of the origin disagree with Q(I).

where

P (I) = 2n−1/2

Γ (1/2 − n) |I |
−2n4−I

2/2, (2.63)

thus outside the central region
(
− 0√

C
, 0√

C

)
, the distribution is a function of I only. Note

that for positive values of n , P (I) presents a singularity close to I = 0, but this time
the singularity is integrable. Moreover, P (I) does not depend on the parameter 0,
defining the size of the central region. These two facts mark a huge difference with the
ergodic case, which we will discuss later. Nevertheless, as in the ergodic case, P (I)
can not describe the occupation probability of the origin, which is instead represented
by the other branch of Eq. (2.62). In Fig. 2.6 we present the results of our simulations
regarding the distribution of I = :/

√
=, showing indeed good agreement with the

theoretical predictions given by Eq. (2.62), for all values of I but those corresponding
to the origin.

We can naively try to tune the parameter 0 in such a way that the branch of Eq.
(2.62) referring to the central region correctly reproduces the asymptotic decay of the
probability of being at the origin of the GRW. In other words, we can define

02n =
Γ(1 + n)
Γ(1 − n) , (2.64)

having taken into account the correcting factor 1
2 needed to compare the result of

the discrete-time model to that of the continuous-time model2. However, for any
2The factor comes from the fact that in a nearest-neighbour random walk, for = even(old) only

even(odd) positions can be occupied. This does not happen in the corresponding continuous-time model,
where at any given time all positions are accessible.
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2.3. The continuum limit

Figure 2.6: Distributions of the random variable I = G/
√
C for positive values of G and

theoretical predictions (red lines), as given in Eq. (2.62). Data are obtained by evolving
the Chapman-Kolmogorov equation, Eq. (2.7), up to different times. The plots on the
left and right panels on the same row refer to the same n and are represented in different
scales, to show the agreement for both large and small values of I, except for the data
corresponding to the origin.

choice of 0 we can not use Eq. (2.62) to define a continuous function which correctly
reproduces the distribution of I for all possible positions, including the origin, due to
the discontinuity at G = 0. Furthermore, this choice is not consistent with the one of
the ergodic case. Therefore, in both the ergodic and non-ergodic regimes the solutions
provided by the continuum approximation have some limitations in describing the
distribution of the central region, which for the GRW corresponds to the site : = 0,
and the central part of the distribution can only be correctly described by the discrete
model. In the following section we will show how to solve this issue by defining an
uniform solution reproducing both the result of the discrete model, valid for small |G |,
and those of the continuum model, valid for large |G |.
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2. Gillis random walk

2.3.1 Uniform approximation of the probability distribution
In order to find a uniform solution able to describe well both the small and large |G |
regimes for sufficiently large C, we can use the stationary distribution c: of the GRW.
This is defined on the integers, but we can extend its definition on the real line, by
expressing the Pochhammer symbol in terms of the Gamma function [1]:

(G)= ≡
Γ(G + =)
Γ(G) . (2.65)

Hence, for G ≠ 0, we can define

c(G) = 2n − 1
2n

Γ(1 + n)
Γ(1 − n)

Γ( |G | − n)
Γ( |G | + n + 1) |G |, (2.66)

which is the continuum equivalent of c: for : ≠ 0. Ideally, for G = 0 we want
c(0) = (2n − 1)/2n , but the previous expression converges instead to 0. Therefore we
need to introduce a regularizing region around the origin, of size 0, in such a way that
c(G) is continuous and:

c(G) =


2n − 1

2n
if |G | < 0

2n − 1
2n

Γ(1 + n)
Γ(1 − n)

Γ( |G | − n)
Γ( |G | + n + 1) |G | if |G | > 0.

(2.67)

A proper choice for 0 would be to take it as the solution of

Γ(1 + n)
Γ(1 − n)

Γ( |G | − n)
Γ( |G | + n + 1) |G | = 1. (2.68)

Note that this equation can be solved numerically not only for n > 1
2 , i.e., in the ergodic

regime, but also for n < 1
2 , see Fig. 2.7. Hence this particular choice, differently from

those suggested previously, is valid for both regimes.
Now, the potential is related to the stationary distribution by

c(G) = 4
−* (G)

/
, (2.69)

hence for the Gillis model we can introduce the potential

* (G) =


0 for |G | < 0

log
[
Γ(1 − n)
Γ(1 + n)

Γ( |G | + 1 + n)
|G |Γ( |G | − n + 1)

]
for |G | > 0,

(2.70)

while 1// = (2n − 1)/2n is the normalization constant. The potential is indeed of the
form* (G) ∼ 2n log |G | for large |G |, due to the asymptotic decay of c(G), see also Eq.
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2.3. The continuum limit

Figure 2.7: Plot of the size 0 versus n , defined as a solution of Eq. (2.68).

(2.37), but it is of different form for smaller values of |G |. The uniform solution we are
looking for can be written in terms of the potential or the stationary distribution as

?D (G, C) =
4−* (G)

/

Γ(n + 1/2, G2/2C)
Γ(n + 1/2) , (2.71)

as already showed in [29, 62]. This corresponds to the stationary distribution multiplied
by a factor which for large |G | guarantees the matching to the result of the continuum
limit. Indeed the stationary distribution decays as in Eq. (2.37), hence

?D (G, C) ∼
Γ(1 + n)Γ(n + 1/2, G2/2C)
nΓ(1 − n)Γ(n − 1/2) |G |

−2n , (2.72)

which is precisely the solution obtained in the continuum limit with 0 given by Eq.
(2.61), see Eq. (2.54). On the other hand, for small |G | and C sufficiently large, the
factor Γ(n + 1/2, G2/2C)/Γ(n + 1/2) approaches 1, hence ?D (G, C) approaches c(G).
Thus ?D (G, C) correctly describes both the central and the outer part of the distribution.
Indeed, Fig. 2.8 shows the agreement for any value of G between the data obtained
by the evolution of the Chapman-Kolmogorov equations and the respective uniform
solutions, for different times. Data also agree with the stationary distribution c(G), as
long as G2/2C ≈ 0.

In the case n < 1
2 there is not a normalizable steady state, but the uniform solution

can be written instead in terms of the Infinite Invariant Density. The Infinite Invariant
Density is the non-normalizable zero-current solution of the Fokker-Planck equation
[74] and is proportional to the steady state, I (G) ∝ 4−* (G) . It is related to the long-time
properties of the time-dependent solution by

lim
C→∞

CV?(G, C) = I (G), (2.73)

39



2. Gillis random walk

Figure 2.8: Distribution of the position for the Gillis random walk, with n = 0.85.
Data (symbols) are obtained by evolving the Chapman-Kolmogorov equation, Eq.
(2.7), up to different times. Each data set is interpolated with good agreement by the
corresponding uniform approximations ?D (G, C) (dashed lines). As the evolution time
increases, data approach the values predicted by the stationary distribution c(G) (solid
red line).

where V is a proper exponent. The exponent and the proportionality constant can be
thus determined from the knowledge of the probability distribution at a single point,
e.g, the origin. For the Gillis model we know that the probability of being at the origin
is given by Eq. (2.24), which, as we have already observed, must be corrected by the
factor 1/2 to make a comparison with the continuum limit. We hence have

lim
=→∞

=1/2−n%= (0|0) =
2n−1/2

Γ(1/2 − n)
Γ(1 − n)
Γ(1 + n) ≡ N , (2.74)

thus V = 1
2 − n and since 4

−* (0) = 1, we can interpret N as the proportionality constant.
The Infinite Invariant Density of the Gillis model is therefore:

I (G) = 2n−1/2

Γ(1/2 − n)
Γ(1 − n)
Γ(1 + n) 4

−* (G) . (2.75)

The Infinite Invariant Density is indeed non-integrable. It describes the central part of
the distribution, but it fails in describing the outer part, due to its large |G | behaviour.
The uniform solution can be obtained by applying a Gaussian cutoff to I (G) in order
to match the behaviour of the solution given by the continuum limit, namely

?D (G, C) = I (G)Cn− 1
2 4
− G

2

2C , (2.76)

see [29]. Indeed for large |G | we obtain

?D (G, C) ∼
2n−1/2

Γ(1/2 − n) |G |
−2n4−

G2

2C Cn−
1
2 , (2.77)
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2.3. The continuum limit

Figure 2.9: Plot of C1/2−n ?(G, C) versus G, with n = 0.25 and n = −0.25. Data (symbols)
are obtained by evolving the Chapman-Kolmogorov equation, Eq. (2.7), up to different
times. Each data set is interpolated with good agreement by the corresponding uniform
approximations ?D (G, C) (dashed lines). As the evolution time increases, data approach
the values predicted by the infinite invariant density I (G) (solid red line).

which reproduces Eq. (2.57); on the other hand, for small |G | and C sufficiently large,
the Gaussian factor approaches 1 and the distribution is effectively described by I (G).
Fig. 2.9 shows the agreement for any value of G between the data obtained by the
evolution of the Chapman-Kolmogorov equations and the respective uniform solutions,
for different times. Data also agree with the Infinite Invariant Density I (G) as long
as the Gaussian factor can be approximated by 1. For large values of G, the Gaussian
factor cuts off the divergence of I (G).

2.3.2 Transport properties
Given the close relation of the GRW to the diffusion of a Brownian particle in a
logarithmic potential, illustrated by the continuum limit, we expect that the transport
properties of the two systems should be related as well. Indeed, at least where the
scaling I = :/

√
C is valid, if the distribution of I for the random walk is correctly

described by the probability density functions of the corresponding diffusion process,
also the moments of the distribution should behave, at least asymptotically, as those of
the corresponding PDF.

For n < 1
2 we have seen that P (I) describes correctly the distribution of I outside

the central region. Close to I = 0, where the scaling is not valid, this function presents
a singularity, which however is integrable, and one has that |I |@ is measurable with
respect to P (I) for all @. In other words, all the moments of P (I) are constant and
this implies that all the moments of ?(G, C) scale like normal diffusion [29]:

〈|G(C) |@〉 ∼ C
@

2 . (2.78)

The situation is marked differently for n > 1
2 . Here the process reaches eventually

an equilibrium state characterized by the stationary distribution. However, due to its
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2. Gillis random walk

Figure 2.10: Exponents of the asymptotic power-law growth of the @-th moment for
the Gillis random walk, as a function of @, with n = 0.9. Data are obtained by directly
evolving the Chapman-Kolmogorov equation for %= (: |0), Eq. (2.7), up to = = 105.
The red line depicts the theoretical exponents of Eq. (2.79). Note that the convergence
to the theoretical values are slower close to the transition point between the two scales.

power-law decay |G |−2n , only the low-order moments of the stationary distribution
are measurable, while the high-order moments diverge. The time growth of the
corresponding expectation values are given correctly by the Infinite Covariant Density
Q(I) [29], which however presents a non-integrable singularity around I = 0, where
the scaling breaks down. Hence the Infinite Covariant Density and the stationary
distribution yield correctly the expectation values of |G |@ in different ranges of @. Note
that |G |@ is measurable with respect to the stationary distribution as long as @ < 2n − 1,
thus in this range the moments are constant. For higher values of @, the expectation
values are given by ?(I, C); the moments of Q(I) are measurable, hence one has:

〈|G(C) |@〉 ∼ C 1
2 (1+@)−n · 2

∫ ∞

0
|I |@Q(I)dI, @ > 2n − 1. (2.79)

Such a scaling implies that the system exhibits strong anomalous diffusion [24] for
n > 1

2 . Indeed, the exponent a@ featured by the asymptotic power-law growth of the
@-th moment is not characterized by a single scale, as we show in Fig. 2.10. There are
in fact two different scales, acting in 0 ≤ @ < 2n − 1 and 2n − 1 < @ respectively.

It is interesting to focus on the exponent of the second moment, which specify the
transport properties of the system. It should be clear by now that these depend on
the value of n : up to n < 1

2 , the system displays a normal behaviour and the second
moment grows linearly in time, i.e., 〈G2(C)〉 ∼ C. When the systems enters into the
ergodic regime, the moments spectrum becomes anomalous and in particular the second
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2.3. The continuum limit

Figure 2.11: Exponents of the asymptotic power-law growth of the second moment
for the Gillis random walk, as a function of n . Data are obtained by directly evolving
the Chapman-Kolmogorov equation for %= (: |0), Eq. (2.7), up to = = 215. The red line
depicts the theoretical exponents of Eq. (2.81).

moment is given by:

〈G2(C)〉 ∼ C 3
2−n , n >

1
2

(2.80)

displaying a subdiffusive exponent. Summarizing, the exponent fn characterizing the
asymptotic growth of the second moment is

fn =

{
1 for n < 1

2
3
2 − n for n > 1

2 .
(2.81)

This behaviour may be better understood by looking at the problem from a physical
point of view. Let us imagine that the GRW describes the microscopic fluctuations of a
particle in contact with a thermal bath at temperature ) and subject to a logarithmic
potential energy + (G) ∼ +0 log |G |. The parameter n controls the relative strength of the
potential with respect to the thermal energy :�) . Indeed, the steady state is given by
?B (G) ∝ exp [−+ (G)/:�)], which in this case yields the power-law profile |G |−+0/:�) .
Comparing this to Eq. (2.37), we may identify

n =
+0

2:�)
, (2.82)

hence n > 1
2 means +0 > :�) . Then, as long as the thermal energy is stronger than +0,

pure diffusion is in control, while for lower temperatures the dominant contribution
to the dynamics of the particle is that of the deterministic force towards the origin,
resulting in subdiffusion.
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2. Gillis random walk

In Fig. 2.11 we show the results of our simulations, which confirm the prediction
of Eq. (2.81). Note that close to the transition point, the convergence to the expected
results is slower: we can not exclude that this may be due to logarithmic corrections
arising at the critical point n = 1

2 , of which, however, we are not presently able to prove
the existence (or non-existence).

2.4 Summary
In this chapter we have presented the Gillis Random Walk, which can be seen as a
non-trivial generalization of the simple symmetric random walk on the integer lattice.
Focusing on the one-dimensional model and starting from the classical analytical results
regarding the generating function %I (0|:0) [42, 58], we were able to derive other related
results, such as the generating functions of the first hitting time of the origin �I (0|:0)
and the first return time �I (0|0). From the knowledge of such generating functions, we
could derive the asymptotic decay, for large =, of the respective probabilities.

We have also shown, by performing the continuum limit, that the Gillis random
walk is the discrete analogous of a diffusion process in a logarithmic potential* (G) ∼
2n log |G |. For a thermal system, n is proportional to the ratio of the strength of the
potential energy, + (G) = +0 log |G |, to the thermal energy :�) , viz., n = +0/2:�) .
Indeed, we have shown that for n > 1

2 the Gillis random walk admits a stationary
distribution c: , which we have computed, representing the steady state of the thermal
system. Furthermore, we have shown that the results regarding the solution of the
Fokker-Planck equation of a Brownian particle in a logarithmic potential [29] also
apply to the Gillis random walk, provided that the evolution equation are evolved
for sufficiently long times. These results include the distribution of the position in
both the ergodic and non-ergodic regimes and the asymptotic growth of the moments,
showing that the random walk and the diffusion process share the same major dynamical
properties in the long-time regime. We point out that part of the content of this chapter
constitutes the basis of Ref. [97].
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The Lévy-Lorentz gas 3

The Lorentz gas was introduced in 1905 [80] to model transport properties of electrons
in metals. In this model the interactions between electrons are neglected and the
positions of the ions are fixed, so that in its standard form it consists in a point particle
moving in a periodic array of scatterers, with which it collides elastically. Translational
symmetry allows to infer many properties of this extended system from the reduced
dynamics in an elementary cell - see for instance [27]. In particular dynamical and
transport properties are deeply influenced by the shape of scatterers and the geometry
of the lattice: circular obstacles lead to a Sinai billiard for the reduced dynamics, and
the chaotic properties of such a system - see [25] - are crucial in dealing with the
extended case. The geometry of the lattice, and eventually the size of the scatterers,
determine whether particles may travel for arbitrarily long times without experiencing
any collision: the so called infinite horizon case, which leads, in two dimensions, to a
logarithmic correction to the variance of the particle position. For a recent review of
(transport) properties of different types of Lorentz gases see [31].

Much less is known about dynamical and transport properties when the scatterers are
placed randomly, breaking translational symmetry [75]. This motivates the introduction
of simplified models, which however still present, as we will see, considerable
complexity: a major role is played by persistent random walks in one dimension.
Persistency consists in assigning to each site a transmission and a reflection coefficient
in such a way that each step the walker undertakes at time = not only depends on
the position at the same time, but also on where the walker was one time step earlier.
It is interesting to observe that (homogeneous) persistent random walks have been
introduced nearly a century ago, as a model of diffusion by discontinuous movements
[40, 113]: many of the relevant results have been obtained (for different time regimes)
by introducing appropriate continuum limits [47, 60, 104, 119]. Inhomogeneous
persistency arises naturally when we distribute randomly scatterers in the lattice (empty
sites being given a null reflection coefficient): models of this kind have been introduced
in [112] as a variant of Sinai diffusion (see [58]).

In recent years a great interest emerged for the case of a diluted distribution
of scatterers, whose mutual distance is characterized by a heavy tailed distribution
[7, 20, 12, 13]. This model, known in the literature as Lévy-Lorentz (LL) gas, is
made particularly interesting by the fact that the long ballistic flights performed by
the walker are due to the nature of the medium, not to a special law governing the
walker’s decision, which is the case, e.g., of an homogeneous Lévy walk [121, 26]. This
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3. The Lévy-Lorentz gas

Figure 3.1: The trajectory of a light particle in a Lévy glass (red). Note the long
ballistic flights, which are possible for the presence of large non-scattering glass spheres
(from P. Barthelemy, J. Bertolotti and D.S. Wiersma, Nature, 453: 495, 2008).

produces a significant difference in the diffusion properties: for example, a LL gas in an
environment where the distance between obstacles is Lévy-distributed with parameter
U ∈ (1, 2) is diffusive [12], but the Lévy walk whose flights have the same distribution
is not [26, 82]. Besides theoretical interest the LL gas model is tightly connected
to experimentally fabricated Lévy glasses [8], consisting of high-refractive-index
scattering particles of titanium dioxide placed in a glass host. The local density of
scattering particles is modified by including non-scattering glass microspheres of a
highly non-trivial distribution of diameters characterized by a particular power-law
decay. A light particle in a Lévy glass is expected to move alternating between a rapid
succession of scattering events and long ballistic flights, thus resembling the trajectory
of a Lévy walk, see Fig. 3.1.

The LL gas is an interesting example of RWRE and in fact in recent years it has
been considered as the object of study for many works. The system can be studied
from a double prospective: the quenched, where one asks how the properties of the
dynamics are related to each fixed realization of disorder, and the annealed, where one
is interested in the effects of averaging over different processes evolved on different
environments. In order to study a mean field evolution over a fast changing environment,
in [3] we proposed a third viewpoint, that of the averaged process, where the dynamics
is considered on a single, particular environment, which can be seen as the outcome
of an average over all possible realizations of disorder. This construction leads to a
non-homogeneous persistent random walk where the reflection probability depends
non-trivially on the distance from the origin. In the following we will first discuss the
most important results obtained for both the quenched and the annealed versions of the
LL gas and then we will present the averaged model, its relation with other two and
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3.1. Lévy-Lorentz gas: quenched, annealed and averaged

some basic results regarding its transport properties.

3.1 Lévy-Lorentz gas: quenched, annealed and
averaged

We start with a general setting: a one-dimensional persistent random walk on Z
with position-dependent transmission and reflection coefficients. In the canonical
(homogeneous) persistent random walk scheme a particle starts moving with fixed
velocity E from position G0 = 0 in a random direction and then at each site it is reflected
or transmitted according to a certain (constant) probability. In the LL gas scheme
instead reflection may only occur at certain positions, where the scatterers are present.
Scattering sites are placed at random positions in such a way that the relative distances
are distributed according to a Lévy-like PDF, i.e., a distribution that decays with a
heavy polynomial tail for large values of the argument:

`(b) ∼ b−(1+U) , 0 < U < 2. (3.1)

Notice that in this range the variance of the distance diverges, and in the restricted
range 0 < U ≤ 1 also the average distance is infinite.

The set of the positions of the scatterers through which transmittance and reflection
are assigned among the lattice is called the environment, namely

l =
{
: ∈ Z | :-th site is a scatterer

}
.

When defining the environment, one can set the origin in two different ways: in the
nonequilibrium case the process is always conditioned to start with a scattering event,
therefore the starting point is always occupied by a scatterer - note that this situation is
the closest to experimental realizations [20]; in the equilibrium case instead - see [7] -
the starting point is not considered a special point, thus it can be placed at any site of
the lattice, independently of the presence of a scatterer.

Given a realization of the environment, transmittance and reflection among the
lattice are assigned according to

rl: = A · X
l
:

tl: = 1 − rl:
where

Xl: =

{
1 if : ∈ l
0 if : ∉ l

and 0 < A < 1, which in the literature is commonly taken equal to 1
2 . Notice that in the

nonequilibrium case we always have Xl0 = 1. Time evolution is written in its simplest
form once we introduce the quantities 'l

:
(=) and !l

:
(=), representing the probabilities
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3. The Lévy-Lorentz gas

of being at site : after = steps with right and left momentum, respectively. These
probabilities evolve according to the Chapman-Kolmogorov equations:{

'l=+1(:) = t
l
: · '

l
= (: − 1) + rl: · !

l
= (: + 1)

!l=+1(:) = t
l
: · !

l
= (: + 1) + rl: · '

l
= (: − 1)

(3.2)
(3.3)

with initial conditions
'l0 (0) = !

l
0 (0) =

1
2

'l0 (:) = !
l
0 (:) = 0 ∀: ≠ 0.

(3.4)

(3.5)

From (3.2)-(3.3) and (3.4)-(3.5) one can derive the equations and the initial conditions
for the probability of the displacement of the walker %l= (:) = 'l= (:) + !l= (:) and the
probability drift �l= (:) = 'l= (:) − !l= (:):{

%l=+1(:) = '
l
= (: − 1) + !l= (: + 1)

�l=+1(:) = (t
l
: − r

l
: ) ·

[
'l= (: − 1) − !l= (: + 1)

] (3.6)
(3.7)

with {
%l0 (0) = 1
�l0 (0) = 0.

(3.8)
(3.9)

These are the basic equations describing the dynamics of a particle in the LL gas. We
will now discuss, without going too deep into mathematical details, the main known
results for each version of the model.

3.1.1 Quenched model
In general, in the quenched version of a RWRE one is interested in the dynamics on a
single, typical environment. More precisely, let us denote with Ω the set of all possible
environments l, and % the law defined on it - for instance, in the case of the LL gas, %
is a Lévy-like law as in Eq. (3.1), describing the distribution of the distances between
nearest-neighbour scatterers. The object of study in this case is %l, the law of the
process defined on a fixed environment, and one aims at finding properties of the
process which hold for %-a.e. environment, i.e., valid except for a subset Ω0 ∈ Ω of
measure zero.

For the quenched LL gas, few results have been established hitherto. Remarkably,
in the case 1 < U < 2, when considering nonequilibrium initial conditions, it can be
proven that for almost every environment, the process Gl (C) verifies the CLT. Let 〈b〉
denote the mean of the distribution of the distances between scatterers. Then it holds
the following [12]:
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3.1. Lévy-Lorentz gas: quenched, annealed and averaged

Theorem 1. For %-a.e. l ∈ Ω,

lim
C→∞

%l

{
Gl (C)√
C
< I

}
=

1
√

2c

∫ I/〈b〉

−∞
4−

1
2D

2
dD. (3.10)

It is important to stress that this result does not imply a diffusive scaling for the
moments, whose behaviour, indeed, still remains an open question. To our knowledge,
no relevant results are known for the infinite-mean case, neither regarding the transport
properties nor regarding the law of the process.

3.1.2 Annealed model
The objective of the annealed model is to investigate the effects of averaging over all
realizations of disorder. Roughly speaking, the annealed law 〈%l〉 is the average over
all possible environments of the respective %l. For 1 < U < 2 and nonequilibrium
initial conditions, it can be proved that the quenched result of Theorem 1 implies the
validity of the CLT for the annealed process as well [12]. Regarding the infinite-mean
case, it has been recently proved for 0 < U < 1 and nonequilibrium initial conditions the
validity of a generalized CLT - see [13] for a more precise statement. In this case, the
convergence to the limiting process is obtained thanks to a superdiffusive scaling, with
exponent 1/(1 + U). It is worth observing that these mathematically rigorous results
agree with those previously obtained in the physical literature [20], whose starting
point is a scaling hypothesis for the probability distribution of the walker, which is
decomposed into a central part and a subleading term describing the behaviour at large
distances:

〈?l (G, C)〉 =
1
ℓ(C)F

(
G

ℓ(C)

)
+ G (G, C). (3.11)

The correlation length ℓ(C) is determined by using estimates according to the related
resistance model treated in [9], which give

ℓ(C) ∼
{
C

1
1+U 0 < U < 1
C

1
2 U ≥ 1.

(3.12)

The tail function G (G, C) has been recently investigated using the single-big-jump
principle [118]. This term describes the behaviour of the PDF at large distances and
provides important contributions to the higher moments of the distribution. It can be
shown that it exhibits the following scaling [118]:

G (G, C) ∼

C−

1+U+U2
1+U IU

(
|G |
EC

)
0 < U < 1

C−
1
2−UIU

(
|G |
EC

)
U ≥ 1,

(3.13)

where E is the velocity of the particle and IU (I) is a scaling function that can be
evaluated analytically using the big-jump principle. It can be shown that this function
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3. The Lévy-Lorentz gas

is an infinite covariant density that can be used to estimate the moments of the process
[118]. The whole moments spectrum is in fact provided by the competition of the time
scales in (3.12) and (3.13), yielding a strongly anomalous behaviour [20, 118]:

〈|G(C) |@〉 ∼


C
@

1+U if U < 1, @ < U

C
@ (1+U)−U2

1+U if U < 1, @ > U
C
@

2 if U > 1, @ < 2U − 1
C

1
2+@−U if U < 1, @ > 2U − 1.

(3.14)

In particular, the second moment grows as

〈|G(C) |2〉 ∼


C2−

U2
1+U U < 1

C
5
2−U 1 < U < 3

2
C U > 3

2 .

(3.15)

Note that, although the validity of the CLT has been proved for U > 1, only low-order
moments present a diffusive scaling. As a consequence, the second moment grows
linearly in time only in the restricted range U > 3

2 , while for 1 < U < 3
2 the system is

characterized by superdiffusion.
We remark that these results are valid for nonequilibrium initial conditions. Things

are different when considering equilibrium initial conditions: if the origin of the motion
can be placed at any point of the structure, then a major role is played by the random
variable 3 5 describing the distance between the initial position and the first scatterer
in G > 0. For U < 1 the motion is always ballistic [20], while for 1 < U < 2 it can be
shown that the distribution @

(
3 5

)
of the random variable 3 5 decays as 3−U5 , i.e., much

more slowly than the distance between nearest-neighbour scatterers [7]. The first jump
provides a dominant contribution to the MSD, which grows in this case as C3−U [7, 20].

Finally, it is interesting to observe that despite the huge difference in the behaviours
of the moments spectra, equilibrium and nonequilibrium initial conditions share a
common feature in the range 1 < U < 2, viz., the temporal decay of the probability of
being at the origin, which in both cases is characterized by the power-law behaviour
C−1/2, as in standard Gaussian diffusion, see [7, 20].

3.2 Averaged model
Both the quenched and the annealed model present analytical and technical difficulties.
For example, the numerical study of the quenched model is made hard by the large
fluctuations experienced in the construction of different environments, especially in
the infinite mean case, U < 1. Also, very few analytical results are known. For the
annealed model instead we have a larger number of results, which, however, can be
difficult to verify numerically, due to the need of averaging over a huge number of
different environments.
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In [3] we presented the averaged version of the LL gas. In this case, the random
disorder of the environment is replaced by a non-trivial behaviour of the reflection
probability along the lattice. In other words, the averaged LL gas consists in a non-
homogeneous persistent random walk on Z where at each step the particle can be
reflected according to a position-dependent probability r: . The relation with the original
LL gas is thus given by the definition of r: . The aim is to study a mean field evolution
over a fast-changing landscape, by connecting the reflection probability at site : to the
probability of finding a scatterer at the same position, for a quenched environment of
the LL gas.

Let us introduce the averaged environment. For the quenched model of the LL gas,
we call s: the probability of having a scatterer at position : , given the distribution
of distances `(b). We recall that we are considering the motion on the integer lattice,
hence b is integer and strictly positive, and we can consider for simplicity the following
analytical form, in agreement with (3.1):

`(b) = b−1−U

Z (1 + U) , b = 1, 2, . . . , (3.16)

where Z (I) is the Riemann zeta function. We consider only nonequilibrium initial
condition, therefores0 = 1 and this implies the symmetrys: = s−: . We can therefore
write the probability s: in terms of `(b), which reads:

s: =

|: |∑
<=1


∑

∑<
8=1 b8=|: |

<∏
8=1

` (b8)


= ` ( |: |) +
∑

b1+b2=|: |
`(b1)`(b2) + · · · + `(1) |: | . (3.17)

In Appendix C we analytically evaluate the asymptotic value of the probability of
having a scatter at position : , for |: | � 1, which is:

s: ∼ c: =


U sin(cU)

c

Z (1 + U)
|: |1−U

0 < U < 1

Z (1 + U)
Z (U) U > 1.

(3.18)

The expression of c: is the starting point in the definition of the reflection probability
along the lattice for the averaged environment. We recall that in the quenched LL gas
the reversal probability is given by rl

:
= 1

2X
l
:
, where Xl

:
is equal to one if site : is

occupied by a scatterer and zero otherwise. In the averaged LL gas we replace Xl
:
with

c: . Hence we finally define the averaged LL gas as a persistent random walk on Z with
nearest-neighbour jumps and a site-dependent reversal probability r: given by:

r: =
1
2
·
{
c: : ≠ 0
1 : = 0.

(3.19)
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3. The Lévy-Lorentz gas

We remark, however, that such a choice is arbitrary and different models could be
defined starting from (C.9). For instance, in [100] we studied a related model where
the same expression on the right-hand side of Eq. (3.19) is used to determine the
transmission coefficient:

t: =
1
2
·
{
c: : ≠ 0
1 : = 0.

(3.20)

In the following we will discuss some basic properties of both models that can be
obtained thanks to suitable continuum limits, highlight the differences between the two
and explain which features of the original LL gas are recovered in the averaged model.

3.3 Continuum limits
To obtain the limiting equation governing the dynamics of a particle in the averaged LL
gas, we first consider the continuum limit of a persistent random walk characterized by
a reflection probability with a generic spatial dependence. We can proceed as done
in Chapter 1 for the standard persistent random walk scheme. We call XG the lattice
spacing, XC the time step and set G = :XG and C = =XC. We denote with A (G, C) and
; (G, C) the probability densities of being at position G at time C and leaving to the right
or left respectively, and set{

'= (:) = XG · A (G, C)
!= (:) = XG · ; (G, C),

(3.21)
(3.22)

while for the quantities %= (:) = '= (:) + != (:) and �= (:) = '= (:) − != (:) we set{
%= (:) = XG · ?(G, C)
�= (:) = XC · 0(G, C),

(3.23)
(3.24)

where ?(G, C) and 0(G, C) are defined in terms of A (G, C) and ; (G, C) as:


?(G, C) = A (G, C) + ; (G, C)

0(G, C) = XG
XC
· [A (G, C) − ; (G, C)] .

(3.25)

(3.26)

Inserting (3.21)-(3.21) and (3.23)-(3.24) into the Chapman-Kolmogorov equations
(3.6)-(3.7) and expanding the functions A , ;, ?, 0 up to second order in both XG and XC,
one gets the following pair of coupled equations:

¤?XC + 1
2
¥?XC2 = −0′XC + 1

2
?′′XG2

0XC + ¤0XC2 + 1
2
¥0XC3 = (t − r) ·

(
0XC − ?′XG2 + 1

2
0′′XG2XC

) (3.27)

(3.28)
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We get a closed equation for ? by employing the diffusion approximation: we
consider the limit XG, XC → 0 with XG2/XC = Δ kept constant. By dropping higher order
terms we obtain the following set of equations:

m?

mC
= −m0

mG
+ Δ

2
m2?

mG2

0 = −Δ
2
t − r
r

m?

mG
.

(3.29)

(3.30)

Inserting the second one into the first, we finally get

m?

mC
=
m

mG

[
�U (G)

m?

mG

]
(3.31)

where �U (G) is

�U (G) =
Δ

2
t(G)
r(G) (3.32)

and we set Δ = 1. Such an expression for the diffusion coefficient is remarkable, since
in Chapter 1 we showed that in the long-time limit the evolution of the homogeneous
persistent random walk can be described by the heat equation, and the numerical
value of the diffusion coefficient is given by the ratio between the transmission and
reflection probabilities. Now we have obtained that when reflectance and transmittance
possess and explicit spatial dependence, we recover the same structure for the diffusion
coefficient, as expressed by Eqs. (3.31) and (3.32). We also observe that Eq. (3.31)
may characterize diffusion in an inhomogeneous medium with position-dependent
friction coefficient [103], studies of chemical reactions [41] or the stock market in
finances [96] and measurements of proteins’ diffusivity in mammalian cells [67].

For the averaged LL gas, we define the diffusion coefficient by taking as r(G) and
t(G) the continuous-space limit of c: , Eq. (C.9):

c: → c(G) =


U sin(cU)

c

Z (1 + U)
|G |1−U

0 < U < 1

Z (1 + U)
Z (U) U > 1.

(3.33)

Hence we have an explicit expression for �U (G), which may be used to solve the
diffusion equation and obtain the main statistical properties of the system.

3.3.1 Superdiffusive Lévy-Lorentz gas
In the first version of the averaged LL gas presented in [3], the reflection coefficient
is proportional to c(G) and defined as in Eq. (3.19). This means that for U < 1 the
reversal events are less probable as the particle reaches greater distances from the origin,
and we shall see that this implies superdiffusion.
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Figure 3.2: Slope of linear growth of the second moment as obtained by numerically
evolving the forward Kolmogorov equation (3.6)-(3.7) (squares) and the analytic
prediction in terms of the diffusion constant (3.34). Each numerical slope has been
obtained by evolving the system up to time 215.

From Eq. (3.32) we obtain the diffusion coefficient:

�U (G) '
1

c(G) −
1
2
=


Λ|G |1−U − 1

2
0 < U < 1

Z (U)
Z (1 + U) −

1
2

U > 1,
(3.34)

where

Λ =
c

U sin (cU) Z (1 + U) . (3.35)

Note that for 0 < U < 1, Eq. (3.34) leads to negative values of�U (G) in a neighbourhood
of the origin, thus the expression must be considered valid only outside that region.
This issue will be discussed in more detail later.

For U > 1 the diffusion coefficient is constant, hence equation (3.31) becomes a
simple heat equation. This agrees with the fact that for both the quenched and the
annealed models, in the same range of U, the validity of the CLT has been proved. Our
system therefore displays normal diffusion, with the second moment asymptotics given
by

〈G2(C)〉 ∼ 2�U · C. (3.36)

This is confirmed by numerical simulations, see Fig. 3.2, where for each U we supposed
a linear growth of the second moment for the data and obtained the corresponding slope
by a linear fit.

We can also recover other important properties of Gaussian diffusion, such as
the =−1/2 decay of the autocorrelation function %2= (0|0). Note that this feature is in
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3.3. Continuum limits

Figure 3.3: Probability of being at the origin after 2= steps, for different values of U.
For each value of the parameter, data are obtained evolving 105 walks up to 104 number
of steps. The exponent ` of the asymptotic power law decay is estimated by the slope
of the linear fit: each value is close to the theoretic result ` = 0.5.

agreement with the results obtained for the annealed model, where for U > 1 the scaling
G/
√
C is assumed for the bulk part of the PDF, see Eqs. (3.11) and (3.12). Fig. 3.3

displays the asymptotic power law decay of %2= (0|0) for different values of U in the
range U > 1, and we note that the decay is independent of the value of the parameter.
Indeed, the linear fit of the data in the logarithmic plot results in a set of parallel straight
lines.

Finally we observe that the heat equation is also useful to describe the distribution
of the position of the particle. By considering the scaling variable I = G/

√
4�UC, we

expect that in the C →∞ regime:

?(I) = 1
√
c
4−I

2
, (3.37)

which is confirmed by the simulations in Fig. 3.4. Note that although the scaling
depends on U through the diffusion coefficient, the limiting distribution is independent
of it, thus we have Gaussian diffusion for each U > 1.

The interesting regime is of course U < 1, where �U (G) displays a true spatial
dependence, see Eq. (3.34). We note that for large enough values of the distance from
the origin, the diffusion coefficient can be approximated by �U (G) ∼ Λ|G |1−U. The
problem of heterogeneous diffusion with diffusion coefficient displaying a power-law
dependence on space and the system evolving according to Eq. (3.31) has been treated,
for example, in [103], where also the solution of the diffusion equation is provided.
Assuming �U (G) = Λ|G |1−U, in our case the PDF reads:

?(G, C) = ( UC)−
1

1+U

2Γ
(
1 + 1

1+U

) exp
[
− |G |

1+U

 UC

]
, (3.38)
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3. The Lévy-Lorentz gas

Figure 3.4: Distribution of the random variable I = G/
√

4�UC for positive values of G,
compared to the Gaussian probability density function (red line). Data are obtained by
considering different U and evolving the Chapman-Kolmogorov equations (3.2)-(3.3)
up to C = 104 number of steps.

where

 U = (1 + U)2Λ. (3.39)

We point out that this solution is just an approximation, since the structure of the
diffusion coefficient characterizing our system is more complicated than a pure power-
law. Nevertheless, we see from Fig. 3.5 that in the long-time regime data show a good
agreement with Eq. (3.38). In this case we considered the distribution of the scaled
variable

I =
G

( UC)
1

1+U
, (3.40)

which is distributed according to

?U (I) =
4−|I |

1+U

2Γ
(
1 + 1

1+U

) . (3.41)

We note that, differently from the case U > 1, the limiting distribution is not universal
and the distribution of I this time depends explicitly on U. Moreover, the scaling of Eq.
(3.40) is the same scaling involved in the proof of a generalized CLT for the annealed
model [13].

The result regarding the solution of the diffusion equation let us obtain the behaviour
of the moments spectrum. Indeed, the @-th moment of ?U (I) is constant for any @,
hence the average value of |G |@ grows in time as

〈|G(C) |@〉 ∼ C
@

1+U . (3.42)
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Figure 3.5: Distributions of the random variable I = G/( UC)1/(1+U) and theoretical
predictions (red lines), as given in Eq. (3.41). Data are obtained for different values of
U, evolving the Chapman-Kolmogorov (3.2)-(3.3) equations up to C = 104 number of
steps. Note the ballistic peaks for low values of U, which however vanish for higher
numbers of steps.

Therefore we can classify the system as weakly anomalous, meaning that there is a
single scale V(U) ruling the whole moments’ spectrum [24], with the exponent of the
@-th moment given by:

W@ (U) = @ · V(U) =
@

1 + U . (3.43)

This implies, in particular, that the second moment @ = 2 is superdiffusive.
Fig. 3.6 shows the exponents of the @-th moment, for different values of @, computed

by numerical simulations. These are compared to the theoretically predicted exponent
W@ (U). We see that the agreement is good for U far enough from zero, while for
small values of the parameter data show discrepancies with respect to the theoretical
prediction. In particular, the computed exponents are always higher than the theoretical
ones. We may explain this feature by recalling the discussion on the continuum limit
for the homogeneous persistent random walk we made in Chapter 1. Although in the
long-time regime the heat equation approximates well the evolution equation of the
system, there is an intermediate regime where the dynamics can be described by the
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Figure 3.6: Asymptotic growth exponent of @-th moment, 〈|G(C) |@〉 ∼ CW@ (U) , for
different @. The H-axis displays the renormalized exponent V@ (U) = W@ (U)/@, which
agrees with the theoretical scale V(U). Each numerical exponent has been obtained by
directly evolving the evolution equations (3.6)-(3.7) up to time 218.

telegrapher’s equation. We recall that in order to obtain the telegrapher’s equation, one
supposes that the lattice spacing and the time step go to zero with the same "speed",
i.e., their ratio remains constant. In other words, the velocity of the particle remains
well-defined (and fixed), even in the procedure of going to the continuum. Indeed, a
well-known property of the telegrapher’s equation is that for very short times it provides
the same description to the dynamics as a wave equation [119]. This means that in such
a regime the process is governed by ballistic flights, where the particle experiences
a very low number of reversal events. The presence of such ballistic flights yields
ballistic contributions to the MSD, 〈G2(C)〉 ∼ C2, which vanish as time increases and
the number of reflections becomes non-negligible, allowing the system to eventually
reach the diffusion regime. Hence, the discrepancies in the moments spectrum we have
in Fig. 3.6 can be explained by assuming that the system has not been evolved for times
long enough to reach the diffusion regime. Indeed, such discrepancies are observed
only for small values of U, for which the reflection coefficient attains lower values. This
guess is partially confirmed by Fig. 3.7, showing the distribution of the scaled random
variable I for U = 0.3. The system is evolved up to different times: we observe that for
each time the data sets are peaked close to I ≈ 1, which means that in each case the
particle is most-likely found at

|G | ≈ ( UC)
1

1+U . (3.44)

For U = 0.3 and up to the times of our simulations
(
102 − 104) , such a distance is of the

same order of the total evolution time, meaning that the contribution of ballistic flights
is still dominant. We also observe that the ballistic peaks decay as time increases and
data slowly converge to the theoretical diffusion prediction.
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3.3. Continuum limits

Figure 3.7: Distribution of the random variable I = G/( UC)1/(1+U) compared to
the theoretical predictions (red lines), as given in Eq. (3.41). Data are obtained by
considering U = 0.3 and evolving the Chapman-Kolmogorov equations (3.2)-(3.3) up
to C = 104 number of steps. We note that in this case the agreement is not good, due to
the presence of the ballistic peaks, which tend to vanish as the total time is increased.
We also observe, accordingly, that the theoretical prediction overestimates the central
part of the distribution (right panel).

A final remark should be made regarding the diffusion coefficient we defined in Eq.
(3.34). For U < 1, as we have already anticipated, �U (G) can attain negative values in
a neighbourhood of the origin up to a distance

|G2 | = (2Λ)−
1

1−U . (3.45)

This is due to the fact that in the same region the continuous-space version of the
reflection coefficient attains values higher than one, which is unphysical. Hence
the diffusion equation Eq. (3.31) is meaningful only outside of this region and a
regularization procedure should be considered in order to describe the evolution of the
system in the whole space. A similar case in treated in [74]. However, we observe that
this does not affect the prediction of the long-time properties of the system, such as the
asymptotic growth exponent of the moments, as we have already shown with numerical
simulations. Moreover, this does not even affect the asymptotic decay exponent of the
autocorrelation function %2= (0|0), i.e., the probability of being at the origin, which
decays as predicted by Eq. (3.38):

%2= (0|0) ∼ =−
1

1+U . (3.46)

This is confirmed by the simulations presented in Fig. 3.8, where the exponents for
different U have been computed as the result of a linear fit, with a good agreement with
theoretical predictions.

This final result let us conclude that the averaged LL gas, in its superdiffusive
version, and the annealed LL gas share the asymptotic power-law exponent of the
probability of being at the origin, in the whole range 0 < U < 2. The same exponent
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3. The Lévy-Lorentz gas

Figure 3.8: Probability of being at the origin after 2= steps, for different values of U.
For each value of the parameter, data are obtained evolving 105 walks up to 104 number
of steps. The exponent ` of the asymptotic power law decay is estimated by the slope
of the linear fit: each value is close to its corresponding theoretical value `th =

1
1+U .

also gives the scaling of the limiting distribution, for the averaged model, and the
scaling of the bulk part of the PDF, for the annealed model. However, we remark
that this is not sufficient to obtain a correspondence between the moments’ spectra.
Indeed, from Eq. (3.14) we see that only the exponents of low-order moments agree
between the two systems. This is due to the fact that for the averaged model a single
scale is sufficient to determine the exponent of each moment, while for the annealed
model the presence of the tail function provides important contributions, leading to a
more complicated moments’ spectrum. We also observe that in the restricted range
1 < U < 2 the averaged model behaves as Gaussian diffusion, in agreement with the
validity of the CLT proved for both the quenched and the annealed versions of the LL
gas.

3.3.2 Subdiffusive Lévy-Lorentz gas

As we have already said, the second version of the averaged LL gas [100] is obtained by
switching the definitions of the reflection and transmission coefficients of the previous
model, meaning that

r: = 1 − 1
2
c: . (3.47)

Hence in this case for U < 1 the transmission events become less probable as the
distance from the origin increases, yielding subdiffusion.
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3.3. Continuum limits

Figure 3.9: Distribution of the random variable I = G/
√

4�UC for positive values of G,
compared to the Gaussian probability density function (red line). Data are obtained by
considering different U and evolving the Chapman-Kolmogorov (3.2)-(3.3) equations
up to C = 104 number of steps.

From Eq. (3.32) we get the diffusion coefficient for the system:

�U (G) '
1
2
· c(G)

2 − c(G) =
1
2
·


1

2Λ|G |1−U − 1
0 < U < 1

1
2Z (U)/Z (1 + U) − 1

U > 1,
(3.48)

where Λ is the same constant formerly defined, see Eq. (3.35). For U > 1 the situation
is not different from the previous case: �U (G) shows no dependence on space and thus
we still have standard Gaussian diffusion. The distribution of I = G/

√
4�UC is given for

C →∞ by the standard normal distribution:

?(I) = 1
√
c
4−I

2
, (3.49)

see Fig. 3.9.
Moreover, we can also recover the =−1/2 decay of the autocorrelation function and

the linear growth of the MSD, with the slope correctly given by the diffusion coefficient,
Eq. (3.48), see Fig. 3.10.

Once again, the peculiar regime occurs for U < 1. In this case the diffusion
coefficient for high values of the distance from the origin can be approximated by
�U (G) ∼ Σ|G |U−1, where

Σ =
1

4Λ
. (3.50)
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Figure 3.10: Probability of being at the origin after 2= steps and slope of linear
growth of the second moment, for the subdiffusive Lévy-Lorentz gas. In both cases,
the parameters of interest are obtained by linear fits of the data.

Hence, if we assume �U (G) = Σ|G |U−1, the solution of the diffusion equation reads
[103]:

?(G, C) = ("UC)−
1

3−U

2Γ
(
1 + 1

3−U

) exp
[
− |G |

3−U

"UC

]
, (3.51)

with

"U = (3 − U)2 Σ. (3.52)

Such a solution must be considered along with the same caveats of the previous case.
Note that the diffusion coefficient is well-defined in the same region of definition we
identified for the superdiffusive version. By defining the scaled variable

I =
G

("UC)
1

3−U
, (3.53)

we find the U-dependent distribution of I, which reads

?U (I) =
4−|I |

3−U

2Γ
(
1 + 1

3−U

) , (3.54)

see Figure 3.11.
Once again this result predicts a weakly anomalous behaviour for the system, with

the moments’ spectrum given by:

〈|G(C) |@〉 ∼ C
@

3−U , (3.55)
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3.3. Continuum limits

Figure 3.11: Distributions of the random variable I = G/("UC)1/(3−U) for positive
values of G and theoretical predictions (red lines), as given in Eq. (3.54). Data are
obtained by evolving the Chapman-Kolmogorov equations (3.2)-(3.3) up to C = 104

number of steps.
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Figure 3.12: Asymptotic growth exponent of @-th moment and probability of being at
the origin after 2= steps. In the latter case, the theoretic exponents are: `th = 0.4348
(U = 0.7, blue squares), `th = 0.4, (U = 0.5, green asterisks) and `th = 0.3704 (U = 0.3,
light blue triangles).

hence displaying in this case a subdiffusive MSD, with exponent W2(U) = 2/(3 − U).
Moreover, we can obtain the asymptotic power-law decay of the autocorrelation function
%2= (0|0), which in this case is

%2= (0|0) ∼ =−
1

3−U . (3.56)

Fig. 3.12 shows both the behaviour of the moments’ spectrum and the asymptotic
decay of the autocorrelation function. We note that regarding the moments’ spectrum
the discrepancies we observed for the superdiffusive case are not present, due to the
fact that the ballistic peaks in this case decay much faster and thus their contributions
becomes negligible in much shorter times.
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3. The Lévy-Lorentz gas

Let us conclude with an observation regarding the physical meaning of the averaged
model. As we have already said, the superdiffusive version corresponds to a definition
of a reflection probability along the lattice which is the result of a particular averaging
procedure: indeed, if in the original model the probability of being reflected is 1

2 in the
presence of a scatterer, and 0 otherwise, then the expected reflection probability at site
: is

r: =
1
2
·s: + 0 · (1 −s: ) , (3.57)

where s: is the probability of having a scatterer at position : . By substituting s: with
its corresponding asymptotic expression c: , we obtain the definition of the reflection
coefficient in the superdiffusive averaged LL gas. In the subdiffusive version of
the model, instead, we consider the following expression for the expected reflection
probability:

r: =
1
2
·s: + 1 · (1 −s: ) . (3.58)

This means that the related quenched model corresponds to a system similar to the
LL gas, but with empty sites substituted by perfectly reflecting barriers. Such a
system is trivial, since the particle will be confined between two barriers and there
will be no diffusion at all. The averaged version instead keeps track of all the possible
configurations of disorder and shows highly non-trivial features. Therefore, despite
the set of results regarding the LL gas we recovered in the superdiffusive version, we
conclude that in general the averaged model can yield results which can sometimes be
very far from those of the related quenched model.

3.4 Summary
In this chapter we have presented the averaged Lévy-Lorentz gas in both the su-
perdiffusive and subdiffusive versions, which we introduced in [3] and [100]. This
model consists in a one-dimensional non-homogeneous persistent random walk, with
space-dependent reflection probability, which can be seen as a mean-field version
of the original Lévy-Lorentz gas, namely a random walk in a random environment
characterized by a fat polynomial tail of the distribution of scatterers’ distance. By
applying the continuum limit, we have been able to determine the asymptotic properties
of the averaged model, including the distribution of the position, the long-time decay
of the autocorrelation function %2= (0|0) and the growth of the moments. Depending
on the value of the exponent U, the system displays a normal regime (U > 1), where
the major features of Gaussian diffusion are in control, and an anomalous one (U < 1),
where instead the observables of interest are characterized by non-trivial power-laws.

By comparing our results to those previously obtained in the literature [12, 13, 20],
we have been able to point out the similarities and the differences between the
superdiffusive version of the averaged model, and the quenched and annealed models,
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3.4. Summary

depending on the value of U. Remarkably, when the mean distance between scatterers is
finite (U > 1), the Central Limit Theorem holds for both the quenched and the annealed
Lévy-Lorentz gas [12], and indeed in the averaged model we recover the major features
of normal diffusion. Instead, when the mean distance is infinite (U < 1), all models
become highly non-trivial, and show rather different behaviours. However, in this case
for the annealed Lévy-Lorentz gas a generalized Central Limit Theorem holds [13, 20],
which dictates a particular scaling that we recover in the superdiffusive version of the
averaged model. Furthermore, the annealed model [20] and the averaged one share
the same power-law decay of the autocorrelation function ?(0, C |0, 0). This fact is not
trivial and we will discuss in the next chapter how from the exponent of the probability
of being at the origin one can deduce important properties of the stochastic process.
Finally, we point out that this chapter is mainly based on Refs. [3] and [100].
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Statistics of occupation times 4

Until now we have analysed stochastic processes mainly from the point of view of the
transport properties, focusing on the role of heterogeneity and/or disorder. However,
there are many applications where one asks how much a process survives, or persists
in a given state, before a certain condition is verified. This kind of problems are
often considered in the study of critical phenomena in equilibrium and nonequilibrium
systems, for instance spin systems in one or higher dimensions [111], phase-ordering
kinetics [17, 65, 84] and twisted nematic liquid crystals exhibiting planar Ising model
dynamics [120]. Such problems are characterized by the persistence exponent [16, 18],
which gives the scaling of the probability that the order parameter G(C) - for example,
the magnetization of a ferromagnet - of a system quenched from the disordered phase to
its critical point has not changed sign in a time interval C following the quench [83, 95].
In this context the time evolution of the order parameter is treated as a stochastic process
and a number of questions regarding the statistics of G(C) naturally arise: for instance,
one can ask what is the fraction D = C+/C of time in which the process has assumed
positive values [10, 45, 64], which is associated, e.g., with the mean magnetization.

In this regard, a well-known result valid for both Brownian motion [77] and its
discrete counterpart, the simple and symmetric random walk [38], states that in the
long-time limit, D is distributed according to the arcsine law:

lim
C→∞

%{D < I} = 1
c

∫ I

0

dG√
G(1 − G)

=
2
c

arcsin
(√
I
)
. (4.1)

The density in Eq. (4.1) is represented by a U-shaped curve diverging at the outer
values 0 and 1, a behaviour which is indeed recovered for the mean magnetization of
many physical systems [32, 34, 115]. This shows in a surprising fashion that, contrarily
to what one would expect from intuition, the order parameter most likely preserves its
sign during the entire observation time.

It is worthy of note that the exponent of the singularities at the outer values of the U-
shaped curve is closely related to the persistent exponent. This connection can be proved
[45] by considering G(C) as generated by a renewal process: starting from the initial
state G(C0), during the time evolution the process resets itself to the initial condition
at random times C8, 8 = 1, 2, . . . , such that the intervals ΔC8 = C8 − C8−1 are independent
and identically distributed random variables. In this setting it is also worth asking
what is the number of renewals observed up to time C, as it provides an interpretation
to the arcsine law. Indeed, the arcsine law can be qualitatively explained by the fact
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4. Statistics of occupation times

Figure 4.1: Distribution of the fraction of steps spent on the positive side for the simple
symmetric random walk compared to the arcsine law. Data are obtained considering
106 walks of 104 steps. To enhance readability of the outer values, the G-axis represents
the variable arcsin(2D − 1) rather than D.

that enormously many trials are required before the stochastic process returns to the
origin [38]. The number of renewals is found to follow a Mittag-Leffler distribution
of an adequate parameter determining the shape of the distribution. The value of
such a parameter depends on the scaling exponent of the probability density function
of waiting times between renewals: for a distribution which decays asymptotically
as � (ΔC) ∼ ΔC−1−\ , with 0 ≤ \ < 1, one obtains a Mittag-Leffler of parameter \
[52, 74, 89, 107].

The advantage of renewal theory is that it applies to a broad range of stochastic
processes, including, for example, random walks with spatially inhomogeneous tran-
sition probabilities and correlations between steps. However, the major difficulty in
applying renewal theory to general diffusion processes is that one has to determine the
waiting-time distribution, which is often a difficult task to perform, especially when
translational symmetry is broken or for walks of non-Markovian nature. In the language
of random walks, for example, this corresponds to computing the probabilities of first
return to the starting position, which can be analytically done only in few cases. In
[101] we showed that it is possible to obtain the fraction of time spent in the positive
axis, the number of renewals and the persistence exponent just by considering the
autocorrelation function ?(G0, C |G0, C0), i.e., the probability that at time C the process is
at the initial state:

?(G0, C |G0, C0) = Pr {G(C) = G(C0)} . (4.2)

The first part of this chapter is devoted to the discussion of the aforementioned result,
with the following outline: in the next section we introduce the class of processes to
which our results apply; then we present the known results regarding the occupation
time of the positive axis (Sec. 4.2), the number of returns at the origin (Sec. 4.3) and
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the survival probability (Sec. 4.4), and discuss how to establish a connection between
the three, starting from the probability of occupying the initial state; finally in Sec. 4.5
we describe the stochastic processes we have considered in our simulations and show
the numerical results. In the second part of the chapter we show how to generalize the
results of the first part to the case of continuous time random walks, by connecting
the statistics of occupation times to both the exponent of the waiting time distribution
between steps and the properties of the underlying random walk. Even though the
theory in this case has already been well developed in the literature [6, 10, 11, 45, 64],
we revise some of the known result by including our findings, and test our results by
introducing a slight modification of the classical CTRW model [63] (Sec. 4.6). Finally,
in Sec. 4.7 we draw our conclusions.

4.1 The Lamperti class
The class of stochastic processes for which the results of this chapter apply is similar to
that considered in a classic paper by Lamperti [68], and we will call it here the Lamperti
class. This class regroups processes (not necessarily Markovian), whose time evolution
is described by a discrete parameter =, with the property that the states are divided into
two sets, say � and �, which communicate through the occurrence of a recurrent state
G0, assumed as the initial state. More precisely, denoting with G= the state at time = of
the stochastic process, starting from G0, we consider processes such that if G=−1 ∈ �
and G=+1 ∈ � or vice versa, then G= = G0; moreover, the occupation of G0 is a persistent
recurrent event [37], by which we mean that, calling �= the probability that the process
returns to G0 for the first time after = steps, having started from G0, then

∞∑
==1

�= = 1, (4.3)

i.e., the return to G0 is certain. We will furthermore assume that the return to G0 defines
a renewal event, so that G= can be treated as a renewal process, with �= describing the
waiting-time distribution between renewals.

In practice, in this chapter we will consider one-dimensional random walks on the
integer lattice, starting from G0 = 0, with nearest-neighbour jumps (without specifying
the rules followed by the jumps). We will call �(�) the set of positive(negative)
integers, and will assume that the occupation of state G0, i.e., the return to the origin, is
a persistent recurrent event.

4.2 Occupation time of the positive axis
For stochastic processes belonging to the Lamperti class, the result stated in [68]
provides the distribution, as the number of steps tends to infinity, of the fraction of time
spent in the positive(negative) axis, which we call the Lamperti distribution G[,d (b).

69



4. Statistics of occupation times

Such a distribution is defined through two parameters. The first parameter is

[ = lim
=→∞
E

(
#=

=

)
, (4.4)

where #= denotes the occupation time of set �(�) up to step =, using the convention
that the occupation of the origin is counted or not according to whether the last other
state occupied was in �(�) 1. Clearly [ is equal to 1/2 if the process is symmetric with
respect to � and �. The second parameter is defined as the limit

d = lim
I→1−

(1 − I)�′(I)
1 − � (I) , (4.5)

where � (I) denotes the generating function of the recurrence times of G0, i.e., the first
return probabilities �=:

� (I) =
∞∑
==1

�=I
=. (4.6)

We have the following [68]:

Theorem 2 (Lamperti). Let G= be a Lamperti-class process. Then

lim
=→∞

Pr{#=/= ≤ D} ≡ G[,d (D) (4.7)

exists if and only if both limits 0 ≤ [ ≤ 1, Eq. (4.4), and 0 ≤ d ≤ 1, Eq. (4.5), exist. In
this case G[,d (D) is the distribution on [0, 1] which, provided both [ and d ≠ 0, 1, has
the density:

G ′[,d (D) = N
Dd (1 − D)d−1 + Dd−1(1 − D)d

02D2d + 20Dd (1 − D)d cos(cd) + (1 − D)2d
, (4.8)

where

0 =
1 − [
[

N =
0 sin(cd)

c
.

(4.9)

(4.10)

In the particular cases [ = 0, 1 the distribution is:

G[,d (D) =
{

1 for [ = 0
0 for [ = 1

(4.11)

1This is the same convention used in [68]
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4.2. Occupation time of the positive axis

for 0 < D < 1; when d = 1 we have:

G[,1(D) =
{

0 for D < [
1 for D ≥ [,

(4.12)

while for d = 0, 0 ≤ D < 1:

G[,0(D) = 1 − [. (4.13)

An important observation is that the existence of the limit (4.5) is equivalent to a
condition on the form the generating function � (I) must assume, namely - see [68]:

� (I) = 1 − (1 − I)d !
(

1
1 − I

)
, (4.14)

where ! (G) is a slowly-varying function, see Appendix B.
Eq. (4.14) suggests that the distribution of the occupation time can be determined by

evaluating the analytical expression of � (I). As we have already observed, however, in
general the computation of the first return probabilities is hard to perform. Nevertheless,
since we are taking as G0 the site : = 0, one can use a well-known formula, valid for
any renewal process, relating � (I) to the generating function %(I) of the probabilities
of occupying the origin at time =, %=, which reads [56, 63]

� (I) = 1 − 1
%(I) , (4.15)

to recast condition (4.14) as:

%(I) = 1
(1 − I)d�

(
1

1 − I

)
, (4.16)

where � (G) = 1/! (G) is a slowly-varying function. In particular, Eq. (4.16) shows that
the parameter d of the Lamperti distribution appears as an exponent in the generating
function %(I).

A first consequence is that d can be computed by evaluating %=. In order to show
this, we make use of the Tauberian theorem of Appendix B, which we report here for
the sake of ease:

Theorem 3. Let 6= ≥ 0 and suppose that
∞∑
==0

6=I
= = � (I) (4.17)

converges for 0 ≤ I < 1. Then

� (I) ∼ 1
(1 − I)WH

(
1

1 − I

)
, I → 1− ⇐⇒

60 + · · · + 6= ∼
1

Γ(W + 1) =
WH (=), =→∞ (4.18)
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4. Statistics of occupation times

where H (G) is a slowly-varying function and W ≥ 0.
Furthermore, if the sequence {6=} is ultimately monotonic and W > 0, it also holds

� (I) ∼ 1
(1 − I)WH

(
1

1 − I

)
, I → 1− ⇐⇒

6= ∼
1

Γ(W) =
W−1H (=), =→∞. (4.19)

By using Eq. (4.16) and applying the theorem, one has that, for 0 < d ≤ 1, %=
decays as

%= ∼
1

Γ(d)
� (=)
=1−d , (4.20)

meaning that d is related to the exponent appearing in the long-time limit of the
occupation probability of the origin.

We remark that this result connects the behaviour of the process regarding the
occupation time of the sets � and �, which is a non-local property, to a local property.
For instance, for a simple symmetric random walk it is known that %= decays with
the power-law %= ∼ =−1/2, which corresponds to d = 1

2 . In this case the distribution
of the occupation time follows the first arcsine law [38], which is indeed recovered
by Theorem 2 in the case d = [ = 1

2 . In general, for 0 < d < 1 the probability of
being at the origin has the asymptotic decay %= ∼ =−(1−d) , up to a factor given by the
slowly-varying function, and the distribution of the occupation time is represented
by U-shaped or W-shaped curves. From formula (4.8) we see that the divergence of
these curves at D = 0 and D = 1 is given exactly by the exponent 1 − d. The situation
is different for d = 1: we have %= ∼ � (=), hence %= does not decay as a power law.
Instead it must behave for large = as a (ultimately) decreasing slowly-varying function,
converging to a constant (indeed, for each =, %= is a non-negative number). In this case
the occupation time is split among the two sets, in such a way that the process spends a
fraction [ of time in � and the remaining in �. The distribution of the fraction of time
in � is therefore a Dirac delta function centred around D = [ and we will refer to this as
the ergodic case [68]. In the opposite case, d = 0, regarding %= we can only conclude
that

=∑
<=0

%< ∼ � (=), (4.21)

where this time � (=) must be (ultimately) increasing. Since by using Eqs. (4.3)
and (4.15), one can show that a necessary and sufficient condition for recurrence is
the divergence of %(I) [56], we can say that � (=) must diverge, but we expect the
divergence to be slow. In this sense, the case d = 0 corresponds to a crossover for
the occupation of G0 between being or not a persistent recurrent event. This can be
better understood by observing that the distribution of the occupation time has masses
<� = [ on D = 1 and <� = 1 − [ on D = 0, meaning that the process spends all the
time either in �, with probability [, or in �, with probability 1 − [.
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4.3. Number of visits at the origin

4.3 Number of visits at the origin
The number of renewals for a random walk is closely related to the number of visits at
the origin. Indeed, if the return defines a renewal event, # visits at the starting site
for a walker correspond to # − 1 renewals. The distribution of the occupation time of
the origin can be obtained from a classic result by Darling and Kac [28], where they
showed that the limiting distribution of the occupation time of a set of finite measure
for a Markov process is the Mittag-Leffler distribution:

Ma (b) =
1

ab1+ 1
a

!a

(
1
b

1
a

)
, (4.22)

where !a (G) denotes the Lévy one-sided density of parameter a, defined through the
inverse Laplace transform from ? to G: !a (G) = L −1 [exp (−?a)]; the parameter a
depends on the process itself. For the sake of clarity, here we briefly state the result,
limiting ourselves to the case of random walks on a lattice - we point out, however, that
the result holds in a more general setting.

Let G= be a random walk on the integer lattice. Consider the generating function of
the probabilities %= (: |:0) of arriving at site : in = steps, starting from :0:

%I (: |:0) =
∞∑
==0

%= (: |:0)I=. (4.23)

Let + (:) be an integrable, non-negative function and suppose there exists a function
c(I), c(I) → ∞ as I → 1−, and a positive constant 2, such that

lim
I→1−

1
c(I)

∑
:

%I (: |:0)+ (:) = 2, (4.24)

the convergence being uniform in � = {:0 |+ (:0) > 0}. Then the following result holds
[28]:

Theorem 4. For some normalizing sequence {D=} the limiting distribution of

1
D=

=∑
<=0

+ (G<) (4.25)

exists and it is non-singular if and only if, for some 0 ≤ a < 1,

c(I) = 1
(1 − I)aH

(
1

1 − I

)
, (4.26)

where H (G) is a slowly-varying function. Moreover, if (4.26) is satisfied, D= can be
taken to be 2c

(
1 − 1

=

)
and the limiting distribution is the Mittag-Leffler distribution

Ma (b).
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4. Statistics of occupation times

We will use this result to find the distribution of the occupation time of the origin.
In order to do so, we take + (:) = X:,0 so that∑

:

%I (: |:0)+ (:) =
∑
:

%I (: |:0)X:,0 = %I (0|:0), (4.27)

is the generating function of the probabilities of reaching the origin starting from :0.
Now, since X:0,0 > 0 only for :0 = 0, we have to prove the existence of c(I) of the
desired form, Eq. (4.26), such that

lim
I→1−

%I (0|0)
c(I) = 2. (4.28)

Now, by definition,

%I (0|0) ≡ %(I) (4.29)

and we know from the discussion made in section 4.2, see Eq. (4.16), that

%(I) = 1
(1 − I)d�

(
1

1 − I

)
, (4.30)

where � (G) is slowly-varying. Then, for any positive constant 2, we can take

c(I) = 1
2 (1 − I)d�

(
1

1 − I

)
(4.31)

and have

lim
I→1−

%(I)
c(I) = 2. (4.32)

Hence, for the theorem stated above, the limiting distribution of the random variable

)= ≡
1

� (=)=d
=∑

<=0
XG<,0, (4.33)

describing the occupation time of the origin, is the Mittag-Leffler distribution of
parameter d, for 0 ≤ d < 1.

We point out that when d = 0 theMittag-Leffler distribution becomes the exponential
distribution, while for d = 1

2 we have an half-Gaussian:

M1/2(b) = c−1/2 exp
(
−b2/4

)
, (4.34)

which is the limiting distribution of the number of returns for the simple symmetric
random walk [38]. For d = 1 one has a degenerate case, with the convergence:

1
� (=)=

=∑
<=0

XG<,0 → 1 (4.35)
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4.4. Decay of the survival probability

in probability, which is a kind of weak ergodic theorem [28], as the long-time limit
of � (=) gives in this case the probability of occupying the origin, which decays to a
constant (see discussion in Sec. 4.2). This means that the process possesses a stationary
distribution and the value of such a distribution at : = 0 corresponds to the ensemble
average of + (:). Therefore we have the convergence of the time average of + (:) over a
single trajectory to its ensemble average, so that the density of )= converges to a Dirac
delta function centred around b0 = 1.

In Appendix D we show that in the long-time limit )= is proportional to the number
of visits at the origin up to step =, which we denote as "=, rescaled for its mean value:

)= ∼
1

Γ(1 + d)
"=

〈"=〉
. (4.36)

We may therefore conclude that the result states that the random variable

b = lim
=→∞

1
Γ(1 + d)

"=

〈"=〉
(4.37)

follows a Mittag-Leffler distribution of parameter d, for 0 ≤ d < 1, and a degenerate
Mittag-Leffler distribution for d = 1, whose density is

%(b) = X(b − 1). (4.38)

We remark that the result also holds if G= is not a Markov process, provided that the
return to G0 defines a renewal event, so that the transition can be characterized by a
waiting-time distribution between renewals, i.e., by the distribution of the first returns
times. This happens, for example, if G= is symmetric with respect to the starting point,
or more generally whenever Eq. (4.15) holds. Indeed, we could obtain the same from
renewal theory, see [52, 74, 89, 107] and references therein. It is worth observing that
in these cases the parameter characterizing the distribution of the occupation time of
the origin is the same of the Lamperti distribution, which in our setting describes the
occupation time of the positive(negative) axis for a symmetric process. We point out
that a similar connection was proved in [45] by using scaling arguments, and also in
the context of infinite ergodic theory for deterministic systems [114].

4.4 Decay of the survival probability
As we have seen, the Lamperti and the Mittag-Leffler distribution are closely related,
all due to the particular form that the generating functions %(I) and � (I) must assume.
We will show that this is also related to the asymptotic decay of the survival probability
in the set �(�). We define the survival probability in a set for a random walk on the
integers with nearest-neighbour jumps as the probability &= of never leaving the set up
to step =. If � is the set of positive integers, then, following the convention in [68] on
how to count the occupation time, we have

&= = Pr{G1 ≥ 0, G2 ≥ 0, . . . , G= ≥ 0|G0 = 0}, (4.39)
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4. Statistics of occupation times

with &0 = 1. Such a quantity can be computed exactly for random walks with i.i.d.
jumps drawn from a continuous distribution, by using a well-known combinatorial
identity known as the Sparre-Andersen theorem [110]:

&(I) =
∞∑
==0

&=I
= = exp

[ ∞∑
==1

I=

=
Pr{G= ≥ 0}

]
. (4.40)

For any symmetric jump distribution, one obtains the behaviour &= ∼ =−1/2 for large
=, independently of the distribution itself. It can be shown that such a decay also
holds for walks with nearest-neighbour jumps, i.e., a particular case of non-continuous
jump distribution, provided that the jumps are symmetric, independent and identically
distributed [46]. Therefore, in the paradigmatic case of the simple symmetric random
walk on the integers, one finds that the value 1

2 describes the power-law decay of the
survival probability and gives the correct parameter describing both the Lamperti and
the Mittag-Leffler distributions. However, no results for the survival probability are
available if jumps are correlated or not identically distributed.

In our setting, we can obtain a relation between the survival probability &= and the
persistence probability [45], namely the probability*= of not observing any return up
to time =, which can be computed as

*= = 1 −
=∑

<=0
�< . (4.41)

In Appendix E we show that the generating functions&(I) and* (I) satisfy the relation:

&(I) = 1 +* (I)
1 + (1 − I)* (I) (4.42)

and that this implies &(I) ∼ * (I) as I → 1, for 0 ≤ d < 1. This means that the
survival and the persistence probabilities have the same behaviour for large =.

By using Eq. (4.41) and the condition *0 = 1, we can compute the generating
function

* (I) = 1 − � (I)
1 − I (4.43)

and hence, by using equation (4.14), we find that* (I) must be of the form

* (I) = 1
(1 − I)1−d

!

(
1

1 − I

)
, (4.44)

where ! (G) = 1/� (G) is a slowly-varying function, and � (G) is the same appearing in
equation (4.16). Since, as we already stated, for I → 1 we have &(I) ∼ * (I), the use
of the Tauberian theorem implies that the survival probability &= decays as

&= ∼
1

Γ(1 − d)
=−d

� (=) . (4.45)
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Once again, the quantity of interest is characterized by the Lamperti parameter. We
remark that this result holds for the class of processes we are considering, therefore not
only for walks with i.i.d. jumps. For d = 1 the Tauberian theorem only assures that as
=→∞

=∑
<=0

&< ∼
1

� (=) (4.46)

where � (=) is a (ultimately) decreasing slowly-varying function, hence the asymptotic
relation (4.45) is not valid in this regime. We recall that in this case %= does not decay
as a power law, see Sec. 4.2.

4.5 Numerical results
In this section we present numerical results for the two different classes of walks we
introduced in the previous chapters. In order to obtain the analytical predictions to
compare with the simulations results, all we need to do is to evaluate the Lamperti
parameter d.

For the Gillis random walk we use the analytical result regarding the generating
function of the probabilities of being at the origin:

%(I) =
2�1

(
1
2n + 1, 1

2n +
1
2 ; 1; I2

)
2�1

(
1
2n,

1
2n +

1
2 ; 1; I2

) . (4.47)

We recall that the walk is recurrent only for n ≥ −1
2 , see [42, 56], hence we will consider

this range only. By using the properties of the hypergeometric function [1], we can
rewrite %(I) in the form given in Eq. (4.16), obtaining (see Appendix F):

d =


0 for n = −1

2
1
2 + n for − 1

2 < n <
1
2

1 for 1
2 ≤ n < 1.

(4.48)

For the averaged Lévy-Lorentz gas we evaluate d by using the long-time asymptotics
of the probability of occupying the origin, which can be computed performing a
continuum limit. We recall that the probability %= decays as [3, 100]

%= ∼
{
=−1/(1+U) superdiffusive
=−1/(3−U) subdiffusive,

(4.49)

where 0 < U < 1. Since the exponent is connected to d by Eq. (4.20), we immediately
get:

d =

{
1 − 1

1+U superdiffusive
1 − 1

3−U subdiffusive.
(4.50)
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4. Statistics of occupation times

Figure 4.2: Distribution of the fraction of time spent in the positive axis for the Gillis
random walk, in semi-logarithmic scale. To enhance readability of the outer values,
it has been performed the transformation G → arccos(2G − 1) on the G-axis. The left
panel displays the case n = −0.2, the right panel n = 0.2. In both cases the results are
obtained simulating 106 walks of 104 steps.

4.5.1 Occupation time of the positive axis
Here we provide the results of simulations regarding the occupation time of the set �
for the GRW and both versions of the averaged LL gas.

For the GRW we can recognize two different behaviours. When n < 0 there is a
bias away from the origin, and the distribution of the occupation time is represented by
a U-shaped curve, meaning that the particle most likely spends all the time in one of
the two sets. When n > 0 there is a bias towards the origin, so we expect an higher
contribution from walks which spend an equal amount of time in the two sets. This is
confirmed by the plots in Fig. 4.2, where we consider the cases n = −0.2 and n = 0.2.

When the bias towards the origin becomes sufficiently strong, i.e., for n ≥ 1
2 , the

outer values of the distribution cease to be the most probable. The process enters in an
ergodic regime where the fraction of time spent in a set converges to its expected value,
which in our case is [ = 1

2 . In other words, the distribution is a Dirac delta function
centred around [. Fig. 4.3 shows the behaviour of the distribution as the number of
steps grows, for n = 0.8, confirming the convergence to a Dirac delta distribution.

For the averaged LL gas, the behaviour of the distribution depends on which version
of the model we are considering. In the superdiffusive case the reflection probability
decays as a power-law with the distance from the origin, r(:) ∼ |: |−(1−U) , therefore
a particle tends to preserve its direction of motion as the distance from the starting
point increases. As U varies in (0, 1), the Lamperti parameter varies in

(
0, 1

2

)
, see

Eq. (4.49). In the subdiffusive case instead the reflection probability converges to 1 as
the distance from the origin increases, with the transmission coefficient decaying as a
power-law. The Lamperti parameter is in the range 1

2 < d <
2
3 . The behaviour of both

models is presented in Fig. 4.4, for U = 0.7 in the superdiffusive case and U = 0.3 in
the subdiffusive one. We point out that for both versions of the model we never enter
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4.5. Numerical results

Figure 4.3: Distribution of the fraction of time spent in the positive axis for the Gillis
random walk, ergodic case, with n = 0.8. Data are obtained simulating 106 walks of
different numbers of steps. As the maximum number of steps grows, the distribution
converges to a Dirac delta, centred around #=/= = 1/2.

Figure 4.4: Distribution of the fraction of time spent in the positive axis for the
averaged Lévy-Lorentz gas, in semi-logarithmic scale. To enhance readability of the
outer values, it has been performed the transformation G → arccos(2G − 1) on the
G-axis. The left panel displays the superdiffusive case, with U = 0.7. Data are obtained
simulating 106 walks of 104 steps. The right panel displays the subdiffusive version,
with U = 0.3. In this case data are obtained simulating 107 walks of 105 steps.

the ergodic regime, as d ≠ 1 for any value of U.

4.5.2 Occupation time of the origin
As we have already shown, the distribution of the occupation time of the origin
follows a Mittag-Leffler distribution of the same parameter characterizing the Lamperti
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4. Statistics of occupation times

Figure 4.5: Distribution of the random variable b representing the rescaled number
of steps in which the process occupies the origin. The left panel displays the case
n = −0.2, the right panel n = 0.2. In both cases the results are obtained simulating 106

walks of 104 steps.

distribution. We consider the random variable

b = lim
=→∞

1
Γ(1 + d)

"=

〈"=〉
. (4.51)

Once again the GRW is the model displaying the richest behaviour. As shown in
Fig. 4.5, for n < 0 the distribution of b is monotonically decreasing, reflecting the fact
that the particle is biased away from the origin. Indeed, the walks that do not return to
the starting point have the highest probability. For n > 0, instead, the bias is towards the
origin, therefore the probability of returning increases. The shape of the distribution
is quite different, and we have a pronounced peak close to b0 = 1. For values n ≥ 1

2
we enter in the ergodic regime and the distribution converges to a Dirac delta function
centred around b0 = 1, Fig. 4.6.

We can recognize a similar behaviour for the averaged LL gas, as shown in Fig. 4.7.
Here the shape of the distribution depends on which version of the model is considered:
for the superdiffusive case we have a monotonically decreasing curve, while for the
subdiffusive one the distribution presents a peak close to b0 = 1. The values of U
chosen for the two systems are U = 0.7 for the superdiffusive version and U = 0.3 for
the subdiffusive one.

4.5.3 Decay of the survival and persistence probabilities
For both models we also provide simulations regarding the asymptotic decay of the
survival and persistence probabilities. As we have seen, we expect both quantities
to decay as =−d, where d depends on a parameter characterizing the model (n for
Gillis, U for Lévy-Lorentz). We confirm our prediction by plotting the exponent of the
asymptotic decay of &= and*=, obtained from simulations, versus the characteristic
parameter.
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Figure 4.6: Distribution of the random variable b representing the rescaled number of
steps in which the process occupies the origin, ergodic case, with n = 0.8. Data are
obtained simulating 106 walks of different numbers of steps. As the maximum number
of steps grows, the distribution converges to a Dirac delta, centred around b0 = 1.

Figure 4.7: Distribution of the random variable b representing the rescaled number of
steps in which the process occupies the origin. The left panel displays the superdiffusive
case, with U = 0.7. The results are obtained simulating 106 walks of 104 steps. The
right panel corresponds to the subdiffusive version, with U = 0.3. Data are obtained
simulating 107 walks of 105 steps.
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Figure 4.8: Exponents of the asymptotic power-law decay of the persistence and
survival probabilities for the Gillis random walk. Data are obtained simulating 107

walks of 105 steps.

For the GRW we have good agreement between the two computed exponents and
the theoretical values, Fig. 4.8. We point out that n is taken in the range

(
−1

2 ,
1
2

)
, so

that 0 < d < 1. We observe that the agreement gets worse when n gets closer to the
boundaries of the considered interval: we can explain this fact by considering that as
n → −1

2 convergence to the theoretical values becomes slower, while in the opposite
case, n → 1

2 , the system is getting closer to the regime d = 1, where &= and*= are not
guaranteed to decay in the same way.

For the superdiffusive averaged LL gas we have good agreement when U ≥ 0.4,
while for lower values of the parameter we observe a non-negligible difference between
the two computed exponents. However, we point out that this is due to the fact that
the continuum limit used to describe the long-time properties of the system becomes
effective after a preasymptotic regime, which depends on U, and the diffusive asymptotic
regime is not yet captured at the number of steps of our simulations. Indeed, we
observed in Chapter 3 the same discrepancies, in the same range of U, in the evaluation
of the moments. For the subdiffusive version instead the difficulties to capture the
asymptotic regime may be traced back to the fact that in order to observe cleanly the
decay of the quantities of interest we need a larger number of steps with respect to the
superdiffusive version. However, for both versions of the model we have in general a
good agreement with the theoretical predictions, Fig. 4.9.

4.5.4 Comparison of different systems with the same Lamperti
parameter

From the discussion made so far it should be clear that the Lamperti parameter d,
characterizing the distributions of the observables we have considered in this chapter,
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4.6. Extension to Continuous Time Random Walk models

Figure 4.9: Exponents of the asymptotic power-law decay of the persistence and
survival probabilities for the averaged Lèvy-Lorentz gas. The left panel displays the
superdiffusive version, the right panel the subdiffusive one. In both cases data are
obtained simulating 107 walks of 105 steps.

only depends on a local property of the PDF of the process, namely the probability
%= of occupying the origin at time =. It can happen that two stochastic processes
are described by two different sets of evolution laws, but share the same asymptotic
power-law decay for the distribution of the occupation time of the origin, i.e., the %=
decay with the same exponent. As a consequence, the distributions of the occupation
time of the positive axis and the number of returns to the origin will be the same.

In order to show this, we compare the two distributions for the GRW and both
versions of the averaged LL gas. For the latter system we consider the values of U
already chosen in the previous sections, viz. U = 0.7 for the superdiffusive version
and U = 0.3 for the subdiffusive one. The two corresponding values of the Lamperti
parameter are d = 7

17 (superdiffusive) and d = 17
27 (subdiffusive), which are obtained

in the case of the GRW for n = −0.0882 and n = 0.1296, respectively. The results
are presented in Figs. 4.10 and 4.11. In both cases the simulations agree with the
theoretical predictions.

4.6 Extension to Continuous Time RandomWalk
models

The results we have presented previously rely on the validity of the fundamental relation
between the generating functions %(I) and � (I), Eq. (4.15). In general, however, the
quantities we have dealt with are defined by the first-passage exponent, as expressed by
Theorem 2 and widely discussed in the literature [52, 74, 89, 107]. This, in particular,
has been intensively studied in the context of CTRW models with diverging mean
waiting time between steps [6, 10, 11], where indeed there is not a relation analogous
to Eq. (4.15) between the probability of occupying the origin and the first return
probability, see for example [63]. Nevertheless, we will show in the following that also
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Figure 4.10: Distributions of the occupation time (left) and the number of returns
(right) for the averaged Lévy-Lorentz gas, superdiffusive version (green asterisks), and
the Gillis random walk (blue squares), compared to the theoretic result. The values of
the corresponding parameters are U = 0.7 and n = −0.0882, which in both cases yield
d = 7/17. For both systems we considered 107 walks evolved for 104 steps.

Figure 4.11: Distributions of the occupation time (left) and the number of returns
(right) for the averaged Lévy-Lorentz gas, subdiffusive version (green asterisks), and
the Gillis random walk (blue squares), compared to the theoretic result. The values of
the corresponding parameters are U = 0.3 and n = 0.1296, which in both cases yield
d = 17/27. For both systems we considered 107 walks evolved for 104 steps.
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for CTRW Eq. (4.15) can still be useful to determine the correct parameters of the
distributions.

Indeed, a CTRW is a stochastic model where the dynamics is ruled by an underlying
random walk, with the difference that at each step the particle waits a random amount
of time before performing the successive one. For the best-known version of CTRW
model, the underlying random walk model is the one-dimensional simple symmetric
random walk: a particle on the integer lattice performs nearest-neighbour jumps to
the right or left with equal probability, and the waiting times g between steps are
independent random variables drawn from a common distribution k(g) [63]. In order
to study a CTRW the following two quantities are often introduced: the first is the PDF
of the occurrence of the =-th step at time C:

k= (C) = PDF of the occurrence of the =-th step at time C; (4.52)

the second is the probability that the particle has performed = steps up to time C, with
= = 0, 1, 2, . . . :

j= (C) = Pr that the particle has performed = steps up to time C. (4.53)

Now let us consider for the underlying random walk a one-dimensional model with
nearest-neighbour jumps starting at : = 0, and suppose that the return to the origin
defines a renewal event. We denote with %= the probability of being at the origin after =
steps and with �= the probability of returning to the origin for the first time after = steps.
Then the probability of finding the particle at the origin at time C for the CTRW is

?(C) = j0(C) +
∞∑
==1

=∑
<=1

�<%=−<j= (C). (4.54)

We now want to compute the Laplace transform of this quantity. We first need to
evaluate the transform of j= (C), which can be expressed in terms of k= (C) as

j= (C) =
∫ C

0
k= (C′) j0 (C − C′) dC′. (4.55)

Indeed, the probability of performing = steps up to time C is equal to the probability of
having performed the =-th step at time C′ < C and then waiting for a time C − C′. This
equation appears in the form of a convolution, hence by Laplace transforming one gets:

j̃= (B) = k̃= (B) j̃0(B). (4.56)

The PDF of the occurrence of the =-th step at time C can defined recursively:

k= (C) =
∫ C

0
k=−1 (C′) k (C − C′) dC′, (4.57)

hence its Laplace transform reads:

k̃= (B) = k̃= (B), (4.58)
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where k̃(B) is the Laplace transform of the PDF of waiting times between steps. The
quantity j0(C) is defined as

j0(C) =
∫ ∞

C

k (C′) dC′, (4.59)

i.e., it is the probability that the waiting time exceeds C. By Laplace transforming the
previous equation, one easily gets:

j̃0(B) =
1 − k̃(B)

B
, (4.60)

thus Eq. (4.56) yields

j̃= (B) = k̃= (B)
1 − k̃(B)

B
. (4.61)

We are now ready to compute the Laplace transform of Eq. (4.54). Plugging in
Eqs. (4.60) and (4.61) we get:

?̃(B) = 1 − k̃(B)
B

[
1 +

∞∑
==1

=∑
<=1

�<%=−<k̃
= (B)

]
=

1 − k̃(B)
B

[
1 +

∞∑
==1

=∑
<=1

�<k̃
< (B)%=−<k̃=−< (B)

]
=

1 − k̃(B)
B

[
1 + �

(
I = k̃(B)

)
%
(
I = k̃(B)

) ]
,

(4.62)

(4.63)

(4.64)

where %(I) and � (I) are the generating functions of the probability of being at the
origin and the first return probability, relative to the underlying random walk. Now,
assuming that these two functions are related by Eq. (4.15), one obtains:

?̃(B) = 1 − k̃(B)
B

%
(
I = k̃(B)

)
. (4.65)

If, moreover, for the underlying random walk Theorem 2 holds, then %(I) and � (I)
must assume a precise form. In particular, %(I) has the general structure described by
Eq. (4.16), hence we can write

?̃(B) =
[
1 − k̃(B)

]1−a

B
�

(
1

1 − k̃(B)

)
, (4.66)

where 0 ≤ a ≤ 1 and � (G) is a slowly-varying function.
We can also compute the Laplace transform of the first return time to the origin,

which reads [63]:

5 (C) =
∞∑
==1

�=k= (C). (4.67)
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Indeed, the probability of returning to the origin for the first time at time C is equal to
the probability of first return in = steps times the probability of performing the =-th step
exactly at time C, summed over all possible values of =. Hence its Laplace transform is

5̃ (B) = �
(
I = k̃(B)

)
= 1 − 1

%
(
I = k̃(B)

)
= 1 −

[
1 − k̃(B)

] a
!

(
1

1 − k̃(B)

)
,

(4.68)

(4.69)

(4.70)

where we used the relation between %(I) and � (I), Eq. (4.15). Therefore, we find that
the relation between the Laplace transforms 5̃ (B) and ?̃(B) is:

5̃ (B) = 1 − 1 − k̃(B)
B ?̃(B) . (4.71)

We now want to use this equation to deduce the relation between the first return
exponent and the power-law decay of the probability of being at the origin, but we need
to make a distinction: if the distribution of the waiting times possesses a well-defined
first moment, i.e., the mean waiting time is finite, then the Laplace transform of k(C)
admits a small-B expansion of the kind:

k̃(B) ∼ 1 − 〈g〉B, (4.72)

where 〈g〉 is the mean waiting time between steps. Hence, for B→ 0, ?̃(B) and 5̃ (B)
can be written as:

?̃(B) ∼ 〈g〉
1−a

Ba
�

(
1
〈g〉B

)
5̃ (B) ∼ 1 − 〈g〉aBa!

(
1
〈g〉B

)
.

(4.73)

(4.74)

The small-B behaviours of ?̃(B) and 5̃ (B) are related to the long-time behaviours of
?(C) and 5 (C) by Tauberian theorems [39], which we use to obtain:

?(C) ∼ 1
Γ(a)

(
〈g〉
C

)1−a
� (C)

5 (C) ∼ a

Γ(1 − a)
〈g〉a
C1+a

! (C).

(4.75)

(4.76)

We observe that the relation between the first return exponent and the power-law of
the probability of being at the origin is the same as the one we would obtain without
considering the presence of waiting-times between steps. Indeed, when the mean
waiting time is finite, the difference between a CTRW and the relative underlying

87



4. Statistics of occupation times

random walk is just the time scale at which the steps occur, thus we do not expect
differences in the asymptotic properties. This could also be deduced by the fact that the
variable B appears in the Laplace transforms ?̃(B) and 5̃ (B) with the same exponent,
which is what happens for random walk models, as discussed previously in this chapter.
Hence in this case we do not expect any differences in the statistics of occupation times,
as a is sufficient to determine the distributions.

The situation is marked differently when instead the distribution of waiting times
does not posses a finite first moment. The most common example considered in the
physical literature is the case of distributions decaying with a fat tail, such as:

k(C) ∼ U

Γ(1 − U)
gU

C1+U
, 0 < U < 1. (4.77)

The non-existence of a finite time scale for the steps implies that the walker can spend
a large amount of time without performing any jumps, leading to a huge difference
in the behaviours of the CTRW model and the related underlying random walk. For
example, the standard CTRW is subdiffusive with exponent U, while for the related
simple symmetric random walk the transport is normal [63]. In this case, Tauberian
theorems yield the small-B behaviour of the Laplace transform, which is:

k̃(B) ∼ 1 − gUBU, (4.78)

hence by plugging this in Eqs. (4.66) and (4.70) we get

?̃(B) ∼ gU(1−a)

B1−U(1−a)�

(
1

gUBU

)
5̃ (B) ∼ 1 − gUaBUa!

(
1

gUBU

)
.

(4.79)

(4.80)

This reveals that the identity between the two exponents appearing in the Laplace
transforms ?̃(B) and 5̃ (B) in the case of finite mean waiting time - or in the generating
functions %(I) and � (I), for the underlying random walk - does not hold true now.
Upon Laplace inversion, we obtain the time decay of the probability of being at the
origin and the first return probability:

?(C) ∼ 1
Γ (1 − U + Ua)

(g
C

)U(1−a)
�∗(C)

5 (C) ∼ Ua

Γ (1 − Ua)
gUa

C1+Ua
!∗(C),

(4.81)

(4.82)

where �∗(G) and !∗(G) are slowly-varying functions related to � (G) and ! (G), respec-
tively.

Before dealing in detail with the statistics of occupation times, let us consider the
example of the standard CTRW, ruled by the dynamics of the simple symmetric random
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walk. The generating functions of the underlying model are thus

%(I) = 1
√

1 − I2

� (I) = 1 −
√

1 − I2,

(4.83)

(4.84)

which yield the expressions of the Laplace transforms ?̃(B) and 5̃ (B), see Eqs. (4.65)
and (4.68):

?̃(B) = 1 − k̃(B)
B

1√
1 − k̃2(B)

5̃ (B) = 1 −
√

1 − k̃2(B).

(4.85)

(4.86)

Note that both can be rewritten as

?̃(B) =
√

1 − k̃(B)
B

�

(
1

1 − k̃(B)

)
5̃ (B) = 1 −

√
1 − k̃(B)!

(
1

1 − k̃(B)

)
,

(4.87)

(4.88)

where

� (G) =
√

G

2G − 1
(4.89)

is indeed a slowly-varying function and ! (G) = 1/� (G). In the infinite mean waiting
time case, from Eqs. (4.81) and (4.82) we get

?(C) ∼ 1
Γ (1 − U/2)

(g
C

)U/2
�∗(C)

5 (C) ∼ U

2Γ (1 − U/2)
gU/2

C1+U/2
!∗(C),

(4.90)

(4.91)

with

�∗(G) =
√

GU

2GU − 1
, (4.92)

and !∗(G) = 1/�∗(G), which is a textbook result [63], obtained with a different method.

4.6.1 Lamperti theorem for Continuous Time RandomWalks
The extension of Lamperti theorem (Theorem 2) to CTRWmodels has been considered
in many works [6, 10, 11, 45, 64]. The main idea is to consider a two-state process,
where the particle either occupies or not a given state. For example, we can call state 0
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4. Statistics of occupation times

the occupation of the origin and state 1 the occupation of any other site. The time spent
on state 0 is described by a waiting time distribution k0(g), while that spent outside
the origin by k1(g). Let us suppose that the process starts at time C0 = 0 on state 0;
after a random time C1 = g1 drawn from k0(g), the state of the particle is changed to 1;
the particle remains on 1 for a time g2, drawn from k1(g), and then at time C2 = g1 + g2
it returns to state 0. The process is then repeated up to time C, which, assuming there
are = transitions, can be written as

C = C= + g∗, (4.93)

where C= is the time of the last transition and g∗ is the amount of time between C= and C.
Observe that for even = the process ends on the initial state, while for odd = it ends

on the other state. Hence the total times )0 and )1 spent by the particle on state 0 and 1
are:

)0 =

=∑
9 odd

g9 + o=g∗

)1 =

=∑
9 even

g9 + (1 − o=) g∗,

(4.94)

(4.95)

where

o= =

{
1 if = is even
0 if = is odd.

(4.96)

4.6.1.1 Occupation time of the origin

Let us consider the random time )0, and let us denote with 6C ()0) its PDF for a process
observed up to time C. The function 6C ()0) can be written:

6C ()0) =
∞∑
==0

6C,= ()0) , (4.97)

where 6C,= ()0) is the PDF conditioned to the event that = transitions have occurred up
to time C. This can be expressed as:

6=,C ()0) =
〈
X
©«)0 −

=∑
9 odd

g9 − o=g∗
ª®¬ \ (C − C=) \ (C=+1 − C)

〉
, (4.98)

where

\ (G) =
{

1 if G > 0
0 otherwise,

(4.99)
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and the brackets denote the average over all time intervals g9 . This expression is
particularly useful to determine the double Laplace transform

6̃=,B (?) =
∫ ∞

0
4−BC

∫ ∞

0
4−?)06=,C ()0) d)0dC, (4.100)

so that one finds

6̃=,B (?) =


1 − k̃0(? + B)

? + B
[
k̃0(? + B)k̃1(B)

] =
2 = even

1 − k̃1(B)
B

k̃0(? + B)
[
k̃0(? + B)k̃1(B)

] =−1
2 = odd.

(4.101)

Note that when = is even, then = = 2', where ' is the number of returns to state 0;
similarly, when = is odd, it can be written as = = 2' + 1. Therefore the sum over = in
Eq. (4.97) can be replaced by a sum over the number of returns, leading to

6̃B (?) =
[
k̃0(? + B)

1 − k̃1(B)
B

+ 1 − k̃0(? + B)
? + B

] ∞∑
'=0

[
k̃0(? + B)k̃1(B)

]'
=

[
k̃0(? + B)

1 − k̃1(B)
B

+ 1 − k̃0(? + B)
? + B

]
1

1 − k̃0(? + B)k̃1(B)
.

(4.102)

(4.103)

In our setting, the distribution of the waiting times on state 0 is given by the
distribution of waiting times between steps, i.e., k0(g) = k(g); the distribution of
waiting times on state 1 is related to the distribution of the first return time to the origin
by

5 (C) =
∫ C

0
k0(C′)k1(C − C′)dC′. (4.104)

Indeed, since the process starts on state 0, the probability of returning for the first time
at time C is equal to the probability of performing the first jump at time C′ < C, switching
to state 1, and then waiting on state 1 for a time C − C′. In Laplace space this relation
reads:

k̃1(B) =
5̃ (B)
k̃0(B)

, (4.105)

which, as long as the underlying random walk is not ergodic, viz., a ≠ 1, reveals that
the small-B behaviour of k̃1(B) is the same as 5̃ (B). This is not surprising, since the
difference between the first return time and the waiting time on state 1 is just the waiting
time before performing the first jump; in the non-ergodic case the first return time
distribution decays more slowly than the distribution of the waiting times between steps;
hence the contribution coming from the first waiting time becomes negligible in the
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long-time limit. Therefore for small values of their argument, the Laplace transforms
k̃0(A) and k̃1(A) behave as:

k̃0(A) ∼ 1 − gUAU

k̃1(A) ∼ 1 − gUaAUa!∗
(

1
gA

)
,

(4.106)

(4.107)

and by plugging these expressions in Eq. (4.103) we can obtain the small-?, small-B
expansion of 6̃B (?):

6̃B (?) ∼
gU (? + B)U−1 + gUaBUa−1!∗

(
1
B

)
− gU(1+a)BUa−1(? + B)U!∗

(
1
B

)
gU (? + B)U + gUaBUa!∗

(
1
B

)
− gU(1+a)BUa (? + B)U!∗

(
1
B

) . (4.108)

By expanding in powers of ?, one may get the moments of )0(B) in Laplace space
for small B, for instance:

〈)0(B)〉 ∼ gU(1−a)�∗
(
1
B

)
BU(1−a)−2, (4.109)

which can be inverted to the time domain, yielding the C →∞ limit:

〈)0(C)〉 ∼
gU(1−a)

Γ
(
2 − U (1 − a)

)�∗(C)C1−U(1−a) . (4.110)

Moreover, one can check that the @-th moment of )0(C) scales as:〈
)
@

0 (C)
〉
∼ C@−U(1−a) , (4.111)

hence by considering the fraction of time D(C) = )0(C)/C, one has that all the moments
of D(C) vanish. This means that the distribution of the fraction of time spent at the origin
in the long-time limit converges to a Dirac delta X(D), having all mass concentrated at
D = 0.

We point out this result also holds for random walk models, when the mean return
time to the origin is infinite. Indeed, let us consider the particular case where the
waiting time between steps is fixed, i.e., k0(g) = X(g − g0), so that k̃0(B) = 4−Bg0 . In
this case, as we shown previously in this chapter, the Laplace transform of the first
return time for small B is:

5̃ (B) ∼ 1 − ga0 B
a!

(
1
g0B

)
, (4.112)

with 0 ≤ a < 1 (for a = 1, the mean return time is finite). Hence we can consider Eq.
(4.103), with k̃1(B) ∼ 5̃ (B), to obtain the moments of )0(C). We get:〈

)
@

0 (C)
〉
∼ Γ(1 + @)
Γ(1 + @a)

[
g�∗(C)

]@ ( C
g

)@a
, (4.113)
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which means that also in this case the moments of D(C) converge to 0 for C →∞. This
is due to the fact that when the mean return time is infinite and the waiting time at a
point decays faster than the return time, we expect that the fraction of time the process
spends at the origin goes to 0 in the long-time limit. However, note that the scaling of
the moments shows a huge difference with respect to the previous case: indeed, if in
this case we consider the random variable

b (C) = )0(C)
g1−a�∗(C)Ca

, (4.114)

we have

lim
C→∞
〈b@ (C)〉 = Γ(1 + @)

Γ(1 + @a) , (4.115)

which are the moments of the Mittag-Leffler distribution [99], as anticipated in Sec.
4.3. Hence, there exists a scaling function ℎ(C) such that the rescaled occupation time
b (C) = )0(C)/ℎ(C) possesses a limiting distribution - although this random variable
does not represent the fraction of time spent at the origin. Note that this is also true
for any distribution of waiting times k0(g) possessing a finite first moment 〈g〉, and it
is consistent with the fact that when a microscopic time scale exists for the steps, the
physical time of the process is proportional to the number of steps: C ≈ 〈g〉=. Therefore,
the distribution of )0(C) must be the same as the distribution of "=, where "= is the
number of steps spent at the origin by the underlying random walk up to time = (see
Section 4.3). This relation between "= and )0(C) is broken when instead the mean
waiting time between steps is infinite, and indeed for the variable )0(C) we do not find a
similar convergence to the Mittag-Leffler distribution.

We now consider the case where the underlying random walk is ergodic, i.e.,
a = 1. The Laplace transforms k̃(B) and 5̃ (B) are characterized by the same exponent;
moreover, we recall that in the ergodic case both the slowly-varying functions � (G)
and ! (G) decay to a constant. Therefore from Eq. (4.105) we have

k̃1(B) ∼ 1 − gU (! − 1) BU . (4.116)

In this case the difference between 5̃ (B) and k̃1(B) is not negligible, even in the small-B
limit. By plugging the expansion in Eq. (4.103) we get

6̃B (?) ∼
1
B
·
(
1 + ?

B

)U−1 + ! − 1(
1 + ?

B

)U + ! − 1
, (4.117)

which can be inverted, using the method introduced in [45], yielding the limiting
distribution of the fraction of time D(C) = )0(C)/C, viz., the Lamperti distribution
G!−1, U (D):

G ′!−1, U (D) = N
DU (1 − D)U−1 + DU−1(1 − D)U

02D2U + 20DU (1 − D)U cos(cU) + (1 − D)2U
, (4.118)
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with

0 = ! − 1

N =
0 sin (cU)

c
.

(4.119)

(4.120)

We recall that the first parameter of the Lamperti distribution is the expected value of
the fraction of time:

[ ≡ lim
C→∞
E

(
)0(C)
C

)
=

1
!

; (4.121)

moreover, ! is the mean return time to the origin for the underlying random walk.
Indeed, the mean return time is

T =

∞∑
==1

=�= = lim
I→1−

�′(I) = !, (4.122)

hence the expected value of the fraction of time spent at the origin by the CTRW is
equal to the inverse of the mean return time of the underlying random walk, and we
have the following relation between the asymmetry parameter 0 and T :

0 = T − 1. (4.123)

Furthermore, as we showed in Chapter 2, when the mean return time is finite, T is
related to the value of the stationary distribution at the origin by

T =
1
c0
. (4.124)

It follows that 0 can be written in terms of the stationary distribution:

0 =
1 − c0
c0

=
c1
c0
, (4.125)

where c0 and c1 are the stationarymeasures of the sets defining state 0 and 1, respectively,
as already showed in the literature, see [6, 10, 11, 64].

With these results it is straightforward to obtain the distribution of the fraction
)1(C)/C. Indeed, in the non-ergodic case the expected value of )0(C)/C converges to 0
in the long-time limit, and the distribution is the Dirac delta centred around 0. This
implies that the fraction of time spent by the process on state 1 must converge to 1, and
the limiting distribution must be the Dirac delta X(D − 1). In the ergodic case instead
the expected fraction of time spent on 0 in the long-time limit is E ()0(C)/C) = !−1,
hence

E

(
)1(C)
C

)
= 1 − E

(
)0(C)
C

)
=
! − 1
!

. (4.126)
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Since k0(g) and k1(g) decay with the same exponent U, the limiting distribution of
)1(C)/C must be the Lamperti distribution of asymmetry parameter 0 = (! − 1)−1

and exponent U. One can prove this by observing that the Laplace transform of
the distribution of )1(C), which we call ℎC ()1) can be obtained from Eq. (4.103) by
switching the roles of the variables ? + B and B, yielding:

ℎ̃B (?) =
[
k̃0(B)

1 − k̃1(? + B)
? + B + 1 − k̃0(B)

B

]
1

1 − k̃0(B)k̃1(? + B)
. (4.127)

The small-?, small-B behaviour is

ℎ̃B (?) ∼
1
B
·
(
1 + ?

B

)U−1 + (! − 1)−1(
1 + ?

B

)U + (! − 1)−1 , (4.128)

which, upon Laplace inversion, confirms our expectation.

4.6.1.2 Occupation time of the positive axis

From the result regarding the distribution of )1(C) we can deduce the distribution of the
fraction of time spent, e.g, in the positive axis, in the simple case where the process is
symmetric with respect to the origin, as done in Sec. 4.2.

In the non-ergodic case, the fraction of time spent by process away from the origin
converges to 1, and this is mainly due to the fact that the distribution of the waiting
times on state 1 decays with a lower exponent than k0(g). Now suppose that state 1 is
split evenly in two sets, say � and �, where the dynamics is the same. Then the waiting
time distributions k� (g) and k� (g) in � and � must decay with the same exponent as
k1(g), viz., Ua; moreover, we must have k� (g) = k� (g). Hence, since in the long-time
limit the process spends all the time on state 1, we can actually see it as a two-state
process defined by the occupation of sets � and �. The limiting distribution of the
fraction of time spent on one of the two sets, say �, is thus the symmetric Lamperti
distribution of exponent Ua: G 1

2 , Ua
(D). For U > 1, we recover the result valid for the

underlying random walk, and the distribution is G 1
2 , a
(D).

In the ergodic case k0(g) and k1(g) decay with the same exponent, hence by
splitting state 1 evenly in two sets, the process actually becomes a three-state process.
However, by symmetry the expected fraction of time spent in set � must be one half of
the expected fraction on state 1. This means that the limiting distribution must be the
Lamperti distribution with [ = (! − 1)/2! and exponent U. Recalling that ! = 1/c0,
note that the asymmetry parameter 0 can be written as

0 =
1 − c�
c�

, (4.129)

hence 0−1 is equal to the ratio of the stationary measure of the set of interest to the
stationary measure of its complement, see also Eq. (4.125). Finally, when U > 1,
the mean waiting time between steps is finite and thus we must recover the ergodic
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behaviour of the underlying random walk. Hence the limiting distribution is a Dirac
delta centred around the expected fraction of occupation time. This can be shown by
plugging the small-A behaviours of k̃0(A) and k̃1(A), see Eq. (4.116), in Eq. (4.127),
obtaining the small-?, small-B behaviour

ℎ̃B (?) ∼
1

B + 2[?
, (4.130)

with

2[ =
! − 1
!

. (4.131)

Upon Laplace inversion, one gets the distribution of the occupation time )1(C):

ℎC ()1) = X ()1 − 2[C) . (4.132)

Therefore, if state 1 is split evenly in two sets, � and �, the distribution of the fraction
of time spent in � is a Dirac delta centred around [, with

[ =
! − 1
2!

=
1 − c0

2
. (4.133)

4.6.2 Numerical results
To test the results discussed in the previous section we introduce the Gillis Continuous
Time Random Walk (GCTRW), a CTRW governed by the underlying dynamics of the
GRW, see Chapter 2. We recall that the properties of the GRW depend on the value of
the parameter n ∈ (−1, 1); in particular, the process is ergodic for n ≥ 1

2 . Hence by
tuning the value of n we can explore all the different behaviours a CTRW can exhibit
regarding the statistics of occupation times.

For the GRW the generating function of the first return time has the form

� (I) = 1 − (1 − I)a !
(

1
1 − I

)
, (4.134)

where

a =


0 for n < −1

2
1
2
+ n for − 1

2
≤ n < 1

2

1 for n ≥ 1
2
,

(4.135)

and ! (G) is a slowly-varying function. The process is recurrent only for n ≥ −1
2 , so we

will restrict ourselves to this range. In our simulations, the waiting times between steps
are taken from the Pareto distribution

k(g) =
UgU0
g1+U , g > g0, (4.136)
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where g0 is a cut-off. Note that for 0 < U ≤ 2 the second moment in infinite and in the
restricted range 0 < U ≤ 1 also the first moment is infinite. From the knowledge of a
and the exponent U of the waiting time distribution k(g) we are able to determine the
statistics of occupation times for the related CTRW model.

4.6.2.1 Occupation time of the origin

As we have previously shown, the distribution of the occupation time of the origin
depends on both the ergodic properties of the underlying random walk and the waiting
time PDF between steps k(g). In the case of Gillis, the regime n ∈

[
−1

2 ,
1
2

)
is non-

ergodic and we have a = 1
2 + n . Hence if k(g) has a well-defined first moment 〈g〉,

the distribution of )0(C) is the same as the distribution of the number of steps at the
origin "=, which is, upon proper rescaling, a Mittag-Leffler of parameter d = 1

2 + n ,
see Sec. 4.3. The situation changes drastically if we consider waiting time distributions
not possessing a finite first moment: in this case the occupation time of the origin is no
longer proportional to the number of steps and since the distribution of the time spent
away from the origin decays more slowly, in the long-time limit the the fraction of time
D(C) = )0(C)/C converges to 0.

In Fig. 4.12 we consider the distribution of )0(C) for the GCTRW with n = 0.2, for
both finite-mean and infinite-mean waiting time between steps. In the former case we
show data regarding two k(g) with different exponents: U = 1.9 (blue squares) and
U = 3 (green asterisks). In both cases we take g0 = 0.1 and the time of the simulations is
C = 103. The random variable b is the occupation time )0(C) rescaled by its mean value.
We see that in both cases it converges to the Mittag-Leffler distribution of parameter
d = 1

2 + n . For the infinite-mean case we choose instead U = 0.5 and consider the
fraction of time D = )0/C. Note that the shape of the distributions is clearly different
from the previous case: it displays an asymmetric U-shaped curve with a prominent
peak at D = 0 and a lower peak at D = 1. We consider different values of C: as the total
time increases, the peak situated at D = 1 decreases while the one at D = 0 increases,
hinting at the slow convergence to the Dirac delta X(D).

In Fig. 4.13 we present our simulations regarding the distribution of the fraction of
time D(C) = )0(C)/C spent at the origin when the underlying random walk is ergodic.
Here we fix n = 0.9 and choose different values of U < 1. Data agree with the
corresponding theoretical Lamperti distributions G[,U (D), with

[ = c0 =
2n − 1

2n
. (4.137)

Note that in this case we set g0 = 1 and run the simulations for different times depending
on U: we take C = 107 for U = 0.3, 0.5 and C = 106 for U = 0.68, 0.82. As already
observed in the previous literature, as U approaches 1 the ergodic phase of the underlying
random walk is recovered [6, 10, 11]. Indeed, the distribution displays a more and
more pronounced peak appearing in proximity of [, i.e., the expected value of D(C) for
C → ∞. We recall that for the GRW in the ergodic phase the occupation time of the
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4. Statistics of occupation times

Figure 4.12: Distributions of the occupation time of the origin for the Gillis continuous
time random walk, with n = 0.2 and waiting time distribution possessing infinite (left)
and finite (right) mean. The finite mean case is considered with both infinite and finite
variance, with U = 1.9 and U = 3. The infinite mean is considered for different total
times, showing a slow convergence to the Dirac delta X(D).

origin converges to the expected value; more precisely, the distribution of

b ≡ lim
=→∞

"=

〈"=〉
(4.138)

is a Dirac delta centred around b = 1, see Sec. 4.3. Since 〈"=〉 grows as =, this implies
that the fraction of time D= ≡ "=/= converges to its expected value

[ ≡ lim
=→∞
E

(
"=

=

)
, (4.139)

which must be equal to c0, the value of the stationary distribution at the origin. This is
related to the ergodicity of the process. This property is also recovered in the related
continuous time model as long as the mean waiting time between steps is finite. When
the steps do not possess a finite scale, viz., for U < 1, the ergodic behaviour is broken,
and we have a proper distribution for the fraction of occupation time. This feature of
CTRWs is called in the literature ergodicity breaking [6, 10, 11].

4.6.2.2 Occupation time of the positive axis

Due to the symmetry of the GRW, the continuous time model is expected to spend an
equal amount of time in the positive and negative axis. Therefore, in the non-ergodic
case, viz., n < 1

2 , the distribution of the fraction of time is the symmetric Lamperti
distribution G 1

2 ,Ua
(D). In Fig. 4.14 we consider the non-ergodic case for n = −0.2 and

n = 0.2, with waiting time distribution characterized by the exponent U = 0.3. Here we
take g0 = 1 and run the simulations up to C = 1011. The effect of introducing a waiting
time between steps in this case is limited to the modification of the exponent d of the
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4.6. Extension to Continuous Time Random Walk models

Figure 4.13: Distributions of the fraction of time D(C) = )0(C)/C for the Gillis
continuous time random walk, with n = 0.9 and different values of U. Data are
compared to the theoretical Lamperti distributions. As U tends to 1, we approach the
ergodic phase of the underlying Gillis random walk.

Figure 4.14: Distributions of the occupation time of the positive axis for the Gillis
continuous time random walk, with waiting time distribution characterized by the
exponent U = 0.3. Here we choose n = −0.2 (left) and n = 0.2 (right). Data are
compared to the corresponding theoretical Lamperti distributions.

99



4. Statistics of occupation times

Figure 4.15: Distributions of the fraction of time D(C) spent on the positive axis for
the Gillis continuous time random walk, with n = 0.9 and different values of U. Data
are compared to the theoretical Lamperti distributions. As U tends to 1, we approach
the ergodic phase of the underlying Gillis random walk.

Lamperti distribution with respect to the one of the underlying random walk: we have
d = a for the Gillis model and d = Ua for the GCTRW.

The ergodic case is depicted in Fig. 4.15. We choose n = 0.9 and consider different
values of U. The parameter g0 is taken equal to unity and the simulations are run up
to different times depending on U: we took C = 107 for U = 0.3, 0.5 and C = 106 for
U = 0.68, 0.82. Data agree with the corresponding theoretical Lamperti distributions
G[,U (D), with

[ =
1 − c0

2
=

1
4n
. (4.140)

Note that the distributions display the same feature of the previous case, namely as U
approaches 1 the ergodic phase is recovered, with the appearance of a peak centred
around [.

Finally we point out another sign of ergodicity breaking: we recall that in Sec. 4.2
for the GRW the occupation time of the positive axis was counted with the convention
that the origin was included or not according to whether the previous step was in the
positive or in the negative side. Hence the distribution of the fraction of occupation
time of the positive axis in the ergodic regime was a Dirac delta centred around D = 1

2 .
One may be tempted to say that by using the same convention, also for the GCTRW the
expected fraction of occupation time should be 1

2 . This, however, is not true, because
even if the underlying random walk is in the ergodic phase, the related CTRW model
is not, and thus the mean return time to the origin is infinite (while the mean return
time in the ergodic phase is finite for the GRW). This means that if a particle enters the
positive side � = {: |: > 1}, it rarely returns to the origin and counting or not the origin
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Figure 4.16: Comparison between the fraction of occupation time of the positive side
by counting (blue squares) or not (green asterisks) the origin with the convention used
in Sec. 4.2. Data are obtained by simulating 107 walks up to time C = 107 in both cases.

is therefore inessential in the long-time limit2 Indeed, we point out that the data shown
in Fig. 4.15 are obtained by using the same convention of Sec. 4.2; nevertheless, the
limiting distributions are clearly not symmetric and the correct value of the expected
fraction of time is [ = 1

4n . In Fig. 4.16 we show that the outcome of the simulations
does not change if we consider only the time spent in � or we also count the time spent
at the origin according to the convention used in Sec. 4.2, provided that we consider C
long enough to reach the limiting distribution.

4.7 Conclusions and discussion
In the first part of this chapter we have shown that for a general class of stochastic
processes there is a deep connection between the statistics of the occupation times,
the number of visits at the origin and the survival probability. The distributions of
these observables can be characterized by the same exponent, which is related to the
asymptotic power-law decay of the probability of occupying the origin. We point
out that the results of this chapter are also associated with infinite ergodic theory. In
particular, let us consider the Darling-Kac theorem, that we used in Sec. 4.3 to obtain
the statistics of the occupation time of the origin, in its continuous-time version [28].
The theorem firstly requires that, for a given non-negative and integrable function + (G),
one has

lim
B→0

1
c(B)

∫
%B (G |G0)+ (G)dG = 2, (4.141)

2However, this may affect the preasymptotic behaviour as well as the speed of convergence to the
limiting distribution.
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where 2 is a positive constant, %B (G |G0) is the Laplace transform from C to B of the
probability of arriving at G starting from G0 in time C, and c(B) is a function such that
c(B) → ∞ as B→ 0. Now suppose that we have

lim
B→0

%B (G |G0)
c(B) = I (G), (4.142)

where I (G) is the Infinite Invariant Density [74]. Note that in this case, if + (G) is
measurable with respect to the Infinite Invariant Density, the condition given in Eq.
(4.141) is satisfied. Therefore, if c(B) = B−d� (1/B), with � (D) slowly-varying, the
Darling-Kac theorem states that the random variable

b = lim
C→∞

1
2c(1/C)

∫ C

0
+ (G(g))dg

= lim
C→∞

1
2Cd� (C)

∫ C

0
+ (G(g))dg

(4.143)

(4.144)

follows a Mittag-Leffler distribution of order d. Now we observe that using Eq. (4.142)
we can say that as B→ 0:

%B (G |G0) ∼ c(B)I (G) (4.145)

and therefore for the ensemble average of + (G) we have

〈+B〉 =
∫

%B (G |G0)+ (G)dG ∼ 2c(B). (4.146)

In the case c(B) = B−d� (1/B), by using the Tauberian theorem [38] we find that the
ensemble average in the long-time limit behaves as

〈+C〉 ∼
2

Γ(d) C
d−1� (C) (4.147)

and therefore

b = lim
C→∞

1
Γ(d)

+ C

〈+C〉
, (4.148)

where + C indicates the time average of + (G) over a single realization. Such a ratio is
a random variable distributed according to a Mittag-Leffler of order d. This is the
main difference with standard ergodic theory, where instead time averages converge to
ensemble averages, and hence b is expected to be distributed according to a Dirac delta
function centred around b0 = 1. Now the important point is that the scaling function
c(B), which determines the distribution of b, i.e., the value of d, is a property of the
propagator %B (G |G0). In other words, for any function which is measurable with respect
to the infinite density, the distribution of b only depends on the long-time properties of
the propagator. Therefore, it is possible to determine the distribution by just evaluating
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the long-time behaviour of %(G, C) in a given set, as we have done in the paper by
considering the probability of occupying the origin. This fact let us obtain the correct
parameter in the case of the averaged LL gas, relying only on the continuum limit, i.e.,
on the asymptotic properties of the process. Moreover, since the exponent d does not
depend on G0, we would have the same Mittag-Leffler distribution even if we considered
a different point than the origin (this, however, is not true for the Lamperti law, where
the evaluation of the asymmetry parameter depends on how the space is split by the
point G0).

To give an example we can consider the statistics of the occupation time of the
origin for the GRW. This is described by the random variable b, defined as

b = lim
=→∞

1
Γ(1 + d)

"=

〈"=〉
. (4.149)

The observable + (G) in this case is the function + (G) = XG,0, whose time average is

+̄= =
1
=

=∑
<=0

XG<,0 =
"=

=
, (4.150)

while the ensemble-average is

〈+=〉 =
∞∑

G=−∞
XG,0%= (G |0) = %= (0|0) ≡ %=, (4.151)

i.e., the probability of being at the origin. Here we have explicitly used the fact that the
walk starts from :0 = 0. The ensemble average can be related to 〈"=〉. Indeed, as we
showed in the chapter, the generating function of %= is

%(I) = 1
(1 − I)d�

(
1

1 − I

)
, (4.152)

and the occupation probability can be obtained by Tauberian theorems. However, when
we deal with nearest-neighbour random walks, we can not apply directly Tauberian
theorems on %(I), because the sequence of the coefficients is not monotonic - %= is
positive for = even, and vanishes for = odd. The corrections to be applied to the result
of Tauberian theorems in order to take into account this fact are showed in App. F: it
can be proved that one only needs to add a factor 2, hence:

%= ∼
2

Γ(d) =
d−1� (=), = even. (4.153)

It follows then from the asymptotic behaviour of 〈"=〉, see App. D, that as long as = is
even:

〈"=〉 ∼
=

2d
%=. (4.154)

103



4. Statistics of occupation times

For the GRW these quantities can be computed analytically and indeed the expression
of %= was presented in Chap. 2:

%= ∼
2n+1/2

Γ(1/2 − n)
Γ(1 − n)
Γ(1 + n) =

n−1/2, = even (4.155)

The connection with infinite ergodic theory stems from the fact that the infinite density
was defined starting from the probability of being at the origin as

1
2

lim
=→∞

=1/2−n%= = I (0), (4.156)

where the factor 1/2 was justified previously3. It follows that the ensemble-average can
be computed as:

〈+=〉 = %= ∼ 2
I (0)
=1/2−n . (4.157)

On the other hand, by using Eq. (4.154) with d = 1
2 + n , we can write 〈"=〉 in terms of

I (G) as

〈"=〉 ∼
=1/2+n

1/2 + nI (0) =
=1/2+n

(1/2 + n)
2n−1/2

Γ(1/2 − n)
Γ(1 − n)
Γ(1 + n) , (4.158)

where we used the expression of I (0) computed in Chap. 2. This expression is
consistent with the one we would obtain by using Tauberian theorems, suggested in
App. D, hence I (G) can be effectively used to define the random variable b. Indeed

〈"=〉 ∼
=〈+=〉

2(1/2 + n) , (4.159)

therefore the definition of the random variable b can be rewritten in terms of the
averages of the observable + (G) as

b = lim
=→∞

2
Γ(1/2 + n)

+̄=

〈+=〉
, (4.160)

and in particular the ensemble average can be computed in terms of the Infinite Invariant
Density. Note that this equation differs from the definition of Eq. (4.148) by a factor
2, which is again due to the fact that we have considered a nearest-neighbour random
walk.

We remark that the connection between the statistics of the occupation times, the
number of visits at the origin, the survival probability and the probability of being at
the origin holds true for walks possessing a finite time scale for the steps, and is no
longer valid when the time of the process and the total number of steps can not be put in
a relation of proportionality. Indeed, studies on the statistics of occupation times have

3We recall that it is related to the fact that we are considering a nearest-neighbour random walk
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shown that the exponent characterizing the Lamperti law is not related in general to the
probability of occupying the starting point. Examples can be found in the contexts of
continuous-time random walks [11], fractional diffusion [6] and in the quenched trap
model [21], to cite a few. All these cases show that the correct characterization of the
Lamperti and Mittag-Leffler distributions is possible by evaluating the first-passage
exponent. Nevertheless, we have shown in the second part of the chapter that our
general relation is still useful to determine the statistics of occupation time for a CTRW
model by applying the results of the first part to the corresponding underlying random
walk. In particular, the exponent of the probability of being at the origin and the
exponent of the waiting time distribution can be sufficient to determine the correct
distributions. We point out once again, however, that in general if one focuses on a
point different than the origin, splitting the dynamics in two asymmetric sets, it is also
necessary to find the asymmetry parameter.

4.8 Summary
In this chapter we have dealt with the statistics of occupation times for a certain class of
stochastic processes. In the first part, based entirely on Ref. [101], we have shown that
the exponent of the asymptotic power-law of the occupation probability of the initial
state plays a major role to determine the correct limiting distributions. This establishes
an important relation between the occupation time of a set, the survival probability and
the number of returns to the origin.

However, this result is no longer valid if the process does not posses a finite
microscopic time scale, as we have shown in the second part. Nevertheless, in the case
of Continuous Time Random Walks one can still use the results of the first part applied
to the underlying dynamics, to determine the distribution of the required observables.
We point out that the results contained in the second part were mostly proved in the
previous literature, see [6, 10, 11, 64]. However, we have rewritten such results in
terms of the theory developed in the first part of the chapter. Moreover, we have tested
the results by introducing a novel Continuous Time Random Walk model based on the
underlying dynamics of the Gillis Random Walk, confirming our expectations both
theoretically and numerically.
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The hypergeometric function A

A.1 Basic definition
The hypergeometric function, also known as Gaussian hypergeometric function or
ordinary hypergeometric function, is defined by the power series

2�1(0, 1; 2; I) =
∞∑
==0

(0)= (1)=
(2)=

I=

=!
, (A.1)

where (G)= denotes the Pochhammer symbol:

(G)= = G(G + 1) · · · (G + = − 1) = Γ(G + =)
Γ(G) . (A.2)

The series is not defined when 2 is 0 or a negative integer, provided 0 or 1 is not an
integer <, with < < 2 [1]. The series converges for |I | < 1, and also on the unit circle
|I | = 1 if ℜ(2 − 0 − 1) > 0.

A.2 Transformation formulas
To evaluate the behaviour of 2�1(0, 1; 2; I) as I → 1, it is possible to use the linear
transformation formulas [1], valid for |arg(1− I) | < c. In the case 2−0− 1 non-integer,
the first is

2�1(0, 1; 2; I) = Γ(2)Γ(2 − 0 − 1)
Γ(2 − 0)Γ(2 − 1) 2�1(0, 1; 0 + 1 − 2 + 1; 1 − I)

+ (1 − I)2−0−1Γ(2)Γ(0 + 1 − 2)
Γ(0)Γ(1) 2�1(2 − 0, 2 − 1; 2 − 0 − 1 + 1; 1 − I). (A.3)

Different formulas must be considered in the integer case. When 2 = 0 + 1 + <, with
< = 1, 2, . . . , we have, provided |1 − I | < 1:

2�1(0, 1; 0 + 1 + <; I) = Γ(<)Γ(0 + 1 + <)
Γ(0 + <)Γ(1 + <)

<−1∑
==0

(0)= (1)=
=!(1 − <)=

(1 − I)=

− (I − 1)<Γ(0 + 1 + <)
Γ(0)Γ(1)

∞∑
==0

(0 + <)= (1 + <)=
=!(= + <)! (1 − I)=×

× [log(1 − I) − k(= + 1) − k(= + < + 1) + k(0 + = + <) + k(1 + = + <)] , (A.4)
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while for 2 = 0 + 1 − <, with < = 1, 2, . . . , and |1 − I | < 1:

2�1(0, 1; 0 + 1 − <; I) = Γ(<)Γ(0 + 1 − <)
Γ(0)Γ(1)

<−1∑
==0

(0 − <)= (1 − <)=
=!(1 − <)=

(1 − I)=−<

− (−1)< Γ(0 + 1 − <)
Γ(0 − <)Γ(1 − <)

∞∑
==0

(0)= (1)=
=!(= + <)! (1 − I)

=×

× [log(1 − I) − k(= + 1) − k(= + < + 1) + k(0 + =) + k(1 + =)] .

(A.5)

Finally, for 2 = 0 + 1 and |1 − I | < 1:

2�1(0, 1; 0 + 1, I) = Γ(0 + 1)
Γ(0)Γ(1)

∞∑
==0

(0)= (1)=
(=!)2

(1 − I)=
[
2k(= + 1)

− k(0 + =) − k(1 + =) − log(1 − I)
]
, (A.6)

where in all the last three formulas, k(G) = d
dGΓ(G) is the digamma function.

A.3 Evaluation of an integral
Let us consider

� =

∫ 2c

0

48@:

(1 − I cos @)a d@, (A.7)

for |I | < 1, : ∈ Z and a ∈ R. An expansion of the integrand in powers of I yields

� =

∞∑
==0

(a)=
=!

I=
∫ 2c

0
48@: cos= @d@. (A.8)

For each value of =, by using the binomial expansion of cos= @, one deduces that the
integral in the =-th terms of the series vanishes unless = ≥ |: |, and = and : are both
even or odd, in which case one gets:∫ 2c

0
48:@ cos= @d@ =

2c
2=

(
=
=−:

2

)
. (A.9)
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Let us first consider the case = even, so that it can be replaced by 2<. The integral is
then transformed into the series

� = 2c
∞∑

<=
|: |
2

(a)2<
22<

I2<

Γ

(
< − :

2 + 1
)
Γ

(
< + :

2 + 1
) , (A.10)

or, by the simple shift of the index < → < + |: |2 :

� =
2cI |: |

2|: |

∞∑
<=0

(a)2<+|: |
22<

I2<

Γ(< + 1)Γ(< + |: | + 1) . (A.11)

For = odd, we set = = 2< + 1 and obtain a series similar to that in Eq. (A.10), but
starting from < =

|: |−1
2 and with 2< replaced by 2< + 1 in each term. Nevertheless, by

shifting the index < → < + |: |−1
2 , we obtain the same series as in Eq. (A.11). From

the definition of the Pochhammer symbol, we deduce that

(a)2<+|: | = (a) |: | (a + |: |)2< =
Γ(a + |: |)
Γ(a) (a + |: |)2< (A.12)

and moreover, from the properties of the Gamma function, we have

(a + |: |)2< = 22<
(
a + |: |

2

)
<

(
a + |: | + 1

2

)
<

. (A.13)

Plugging the last two formulas in Eq. (A.11), we finally obtain:

� =
2c
|: |!

( I
2

) |: | Γ(a + |: |)
Γ(a) 2�1

(
a + |: |

2
,
a + |: | + 1

2
; |: | + 1; I2

)
. (A.14)
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Tauberian theorems for power series B

Definition 1. We shall say that a real function of a real variableH (G) is slowly-varying
(at infinity) if it is continuous, positive for large-enough G, and ∀0 > 0 satisfies

lim
G→∞

H (0G)
H (G) = 1. (B.1)

When considering functions defined by power series, such as generating functions,
the following result relates the asymptotic behaviour of the function to the large-=
behaviour of the coefficients of the series [39]:

Theorem 5. Let 6= ≥ 0 and suppose that

∞∑
==0

6=I
= = � (I) (B.2)

converges for 0 ≤ I < 1. Then

� (I) ∼ 1
(1 − I)WH

(
1

1 − I

)
, I → 1− ⇐⇒

60 + · · · + 6= ∼
1

Γ(W + 1) =
WH (=), =→∞ (B.3)

where H (G) is a slowly-varying function and W ≥ 0.
Furthermore, if the sequence {6=} is ultimately monotonic and W > 0, it also holds

� (I) ∼ 1
(1 − I)WH

(
1

1 − I

)
, I → 1− ⇐⇒

6= ∼
1

Γ(W) =
W−1H (=), =→∞. (B.4)
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Asymptotic values of the probability of having a
scatterer at site : for the Lévy-Lorentz gas C

Consider a Lévy-Lorentz gas in nonequilibrium initial condition, with site : = 0
occupied by a scatterer. Let `(b) be the probability of having two nearest-neighbour
scatterers at distance b, with the following analytical form:

`(b) = b−1−U

Z (1 + U) , 0 < U < 2, b = 1, 2, . . . . (C.1)

Then the probability s: of having a scatterer at distance |: | from the origin is:

s: =

|: |∑
<=1


∑

∑<
8=1 b8=|: |

<∏
8=1

` (b8)


=

|: |∑
<=1

s
(<)
:
, (C.2)

where s(<)
:

is the probability of having < ≤ |: | scatterers within the distance |: | from
the origin, with the last one placed exactly at position : . For example, s(1)

:
= `(:)

and s( |: |)
:

= [`(1)] |: |.
Define the generating function

LU (I) =
∞∑
==1

s
(1)
= I=

=

∞∑
==1

`(=)I=

=
1

Z (1 + U)Li1+U (I), (C.3)

where LiB (I) denotes the polylogarithm function [78]. The A-th power of LU (I) is an
analytic function whose coefficient of I= is the probability of having A scatterers within
the distance = from the origin, with the last one placed exactly at position =, hence

[LU (I)]A =
∑
=≥A

s
(A)
= I=. (C.4)
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C. Asymptotic values of the probability of having a scatterer at site : for the
Lévy-Lorentz gas

Now consider the generating function of the probabilities s: :

! (I) = 1 +
∞∑
:=1

s: I
: . (C.5)

By Eq. (C.2) the series on the right-hand side can be rewritten as:

∞∑
:=1

s: I
: =

∞∑
:=1

:∑
A=1

s
(A)
:
I:

or, by setting s(A)
:
= 0 for A > ::

∞∑
:=1

s: I
: =

∞∑
A=1

∞∑
:=1

s
(A)
:
I: =

∞∑
A=1
[LU (I)]A . (C.6)

This means that ! (I) can be written as a geometric series with ratio LU (I). By the
definition of the polylogarithm function it can be verified that for |I | < 1 the absolute
value of LU (I) is always bounded by one, hence the series converges and

! (I) = 1
1 −LU (I)

. (C.7)

Such an expression enables us to derive analytically the asymptotic expression of s:

by Tauberian theorems for power series, see Appendix B, once we take into account the
behaviour of Li1+U (I) close to I = 1−. To leading order we have

LU (I) ∼
{

1 + Γ(−U)
Z (1+U) (1 − I)

U 0 < U < 1
1 − Z (U)

Z (1+U) (1 − I) U > 1,
(C.8)

hence the asymptotic values of having a scatter at position : for |: | � 1 are given by:

s: ∼ c: =
{
U sin(cU)

c

Z (1+U)
|: |1−U 0 < U < 1

Z (1+U)
Z (U) U > 1.

(C.9)
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Meaning of the random variable )= D

We consider the random variable

)= ≡
1

� (=)=d
=∑

<=0
XG<,0. (D.1)

The sum

"= =

=∑
<=0

XG<,0 (D.2)

clearly represents the number of times the random walk has visited the origin up to
time =, while it is possible to show that the denominator =d� (=) is connected to the
asymptotics of the mean occupation time. Indeed, for " ≥ 1, let us call k= (") the
probability that the "-th visit occurs at step =, and*= the probability of observing no
returns to the origin up to step =, with the initial conditions k0(") = X",1 and*0 = 1.
We have

*= = 1 −
=∑

<=0
�<

k= (1) = X=,0,

(D.3)

(D.4)

while for " ≥ 2 we can write the recurrence relation

k= (") =
=∑

<=0
�<k=−< (" − 1). (D.5)

From equations (D.3), (D.4) and (D.5) we can compute the generating functions

* (I) = 1 − � (I)
1 − I

kI (") = [� (I)]"−1 .

(D.6)

(D.7)

Now, the probability q= (") of " visits in = steps is equal to the probability that the
"-th visit has occurred at step : ≤ =, and then no other visit occurs up to time =:

q= (") =
=∑

<=0
k: (")*=−<, (D.8)
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D. Meaning of the random variable )=

hence its generating function reads

qI (") = �"−1(I) 1 − � (I)
1 − I . (D.9)

The generating function of the mean number of visits is

〈" (I)〉 =
∞∑
"=1

"qI (") =
1

1 − I
1

1 − � (I) (D.10)

and since we know the relation between � (I) and %(I), Eq. (4.15), and the form that
%(I) must assume, Eq. (4.16), we have

〈" (I)〉 = 1
(1 − I)1+d

�

(
1

1 − I

)
, (D.11)

and the Tauberian theorem implies:

〈"=〉 ∼
1

Γ(1 + d) =
d� (=), (D.12)

which is valid for 0 ≤ d ≤ 1. We conclude that the random variable )= represents, up
to a constant factor, the asymptotic value of the occupation time of the origin rescaled
for its mean value:

)= ∼
1

Γ(1 + d)
"=

〈"=〉
. (D.13)
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The relation between the survival and persistence
probabilities and their asymptotic behaviour E

We consider the survival probability in the set of positive integers, �. Define

�= = Pr{G1 ≠ 0, G2 ≠ 0, . . . , G= = 0|G0 = 0}
&= = Pr{G1 ≥ 0, G2 ≥ 0, . . . , G= ≥ 0|G0 = 0}
*= = Pr{G1 ≠ 0, G2 ≠ 0, . . . , G= ≠ 0|G0 = 0},

(E.1)
(E.2)
(E.3)

with the initial conditions �0 = 0, &0 = 1 and*0 = 1, and the generating functions

� (I) =
∞∑
==1

�=I
=

&(I) =
∞∑
==0

&=I
=

* (I) =
∞∑
==0

*=I
=.

(E.4)

(E.5)

(E.6)

It is easy to see that if the process is symmetric with respect to the two sets, the
following relation holds:

2&= = X=,0 +*= +
=∑

<=1
�<&=−< . (E.7)

By passing to the generating function we get

2&(I) = 1 +* (I) + � (I)&(I) (E.8)

and by using Eq. (D.6) in appendix D, after some algebra we obtain

&(I) = 1 +* (I)
1 + (1 − I)* (I) . (E.9)

To show that &(I) and * (I) have the same I → 1 behaviour, we use a result by
Karamata [61]: if ! (G) is a slowly varying function, then for any W > 0:

lim
G→∞

G−W! (G) = 0

lim
G→∞

GW! (G) = ∞.

(E.10)

(E.11)
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E. The relation between the survival and persistence probabilities and their
asymptotic behaviour

We showed in the main text, Eq. (4.44), that* (I) is of the form:

* (I) = 1
(1 − I)1−d

!

(
1

1 − I

)
, (E.12)

therefore, as I → 1,* (I) diverges and (1 − I)* (I) converges to 0. For d = 0 we still
have the divergence of * (I), but we cannot use the previous result by Karamata for
(1 − I)* (I), because

(1 − I)* (I) = !
(

1
1 − I

)
. (E.13)

However, since in this case

� (I) = 1 − !
(

1
1 − I

)
(E.14)

and recurrence implies � (I) → 1, we still have (1 − I)* (I) → 0. Hence, it follows
from Eq. (E.9) that &(I) ∼ * (I) for any 0 ≤ d < 1.
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Evaluation of the Lamperti parameter for the
Gillis random walk F

The strategy is to make use of the transformation formulas of Appendix A in order to
put the generating function %(I), Eq. (4.47) in the main text, in the form:

%(I) = 1
(1 − I)a�

(
1

1 − I

)
, (F.1)

where � (G) is a slowly-varying function. Now, since the generating function %(I)

%(I) =
2�1

(
1
2n + 1, 1

2n +
1
2 ; 1; I2

)
2�1

(
1
2n,

1
2n +

1
2 ; 1; I2

) (F.2)

is a function of I2, for the sake of simplicity we consider

%
(√
I
)
≡ Π(I) =

∞∑
==0

s=I
=

=
2�1

(
1
2n + 1, 1

2n +
1
2 ; 1; I

)
2�1

(
1
2n,

1
2n +

1
2 ; 1; I

) , (F.3)

so that the =-th coefficient s= corresponds to %2=. It is easy to show that if %(I) is of
the form

%(I) = 1
(1 − I)d�

(
1

1 − I

)
, (F.4)

then also Π(I) can be written as

Π(I) = 1
(1 − I)d�

(
1

1 − I

)
, (F.5)

where � (G) is slowly-varying and related to � (G) by

� (G) = 1

Gd

(
1 −

√
1 − 1

G

) d� ©«
1

1 −
√

1 − 1
G

ª®®¬ . (F.6)
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F. Evaluation of the Lamperti parameter for the Gillis random walk

This means that the transformation does not change the exponent d. By using Eq. (F.3)
we obtain the following results:

1) In the case n = −1
2 we get

Π(I) = �
(

1
1 − I

)
, (F.7)

where the slowly-varying function is

� (G) =

∑∞
==0

(3/4)= (1/4)=
(=!)2 (G)−=

[
2k(= + 1) − k

(
3
4 + =

)
− k

(
1
4 + =

)
+ log(G)

]
4 + 1

4
∑∞
==0

(3/4)= (5/4)=
=!(=+1)! (G)−=−1

[
log(G) + k(= + 1) + k(= + 2) − k

(
3
4 + =

)
− k

(
5
4 + =

)] ;

2) In the range n ∈
(
−1

2 ,
1
2

)
the generating function has the form

Π(I) = 1
(1 − I)1/2+n

�

(
1

1 − I

)
(F.8)

with

� (G) = 01
2�1

(
−1

2n,
1
2 −

1
2n ; 1

2 − n ; 1
G

)
+ 02G

−1/2−n
2�1

(
1
2n + 1, 1

2n +
1
2 ; 3

2 + n ; 1
G

)
2�1

(
1
2n,

1
2n +

1
2 ; 1

2 + n ; 1
G

)
+ 03G−1/2+n 2�1

(
1 − 1

2n,
1
2 −

1
2n ; 3

2 − n ; 1
G

) ,
where 01, 02 and 03 are numerical coefficients (depending on n) which can be
determined from formula (??);

3) For n = 1
2 we have

Π(I) = 1
1 − I�

(
1

1 − I

)
(F.9)

where � (G) has the expression

� (G) =
4 − 1

4
∑∞
==0

(5/4)= (3/4)=
=!(=+1)! (G)

−=−1
[
log(G) + k(= + 1) + k(= + 2) − k

(
5
4 + =

)
− k

(
3
4 + =

)]
∑∞
==0

(1/4)= (3/4)=
(=!)2 (G)−=

[
2k(= + 1) − k

(
1
4 + =

)
− k

(
3
4 + =

)
+ log(G)

] ;

4) Finally when n ∈
(

1
2 , 1

)
the generating function has the same form as the previous

case,

Π(I) = 1
1 − I�

(
1

1 − I

)
, (F.10)
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but with

� (G) = 11
2�1

(
−1

2n,
1
2 −

1
2n ; 1

2 − n ; 1
G

)
+ 12G

−1/2−n
2�1

(
1
2n + 1, 1

2n +
1
2 ; 3

2 + n ; 1
G

)
2�1

(
1 − 1

2n,
1
2 −

1
2n ; 3

2 − n ; 1
G

)
+ 13G1/2−n 2�1

(
1
2n,

1
2n +

1
2 ; 1

2 + n ; 1
G

)
where once again 11, 12 and 13 can be determined from Eq. (??).

We remark that if one wishes to go back to %(I), it is now sufficient to recover the
expression of � (G) by using Eq. (F.6).
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