
Open Access. © 2021 Daniele Cassani and Antonio Tarsia, published by De Gruyter. This work is licensed under the Creative
Commons Attribution alone 4.0 License.

Adv. Nonlinear Anal. 2022; 11: 655–671

Research Article

Daniele Cassani* and Antonio Tarsia

Maximum principle for higher order operators
in general domains
https://doi.org/10.1515/anona-2021-0210
Received June 6, 2021; accepted September 23, 2021.

Abstract:We �rst prove De Giorgi type level estimates for functions inW1,t(Ω), Ω ⊂ RN , with t > N ≥ 2. This
augmented integrability enables us to establish a new Harnack type inequality for functions which do not
necessarily belong to De Giorgi’s classes as obtained in Di Benedetto–Trudinger [10] for functions inW1,2(Ω).
As a consequence, we prove the validity of the strong maximum principle for uniformly elliptic operators of
any even order, in fairly general domains in dimension two and three, provided second order derivatives are
taken into account.
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1 Introduction
One of themost powerful tools in the study of partial di�erential equations and nonlinear analysis is without
any doubts the Maximum Principle (MP in the sequel). It turns out to be fundamental in obtaining existence,
uniqueness and regularity results in the theory of linear elliptic equations, as well as to establish qualitative
properties of solutions to nonlinear equations.Wemainly refer to [22] for classical results andhistorical devel-
opment, where suitable applications also to the parabolic and hyperbolic cases are discussed. Let us merely
mention that the roots of MP date back two centuries in the work of Gauss on harmonic functions, up to the
ultimate version of Hopf [16], and then further extended in the seminal work of Nirenberg [20], Alexandrov
[2] and Serrin [24], within the foundations of modern theory of PDEs.
The underlying idea is simple: positivity of a suitable set of derivatives of a function induces positivity of the
function itself. This is elementary true for real functions of one variable which vanish at the endpoints of an
interval where −u′′(x) ≥ 0 and the validity can be extended to second order uniformly elliptic operators for
which a prototype is the Laplace operator:{

−∆u = f , in Ω ⊂ RN , N ≥ 2
u = 0, on ∂Ω

(1.1)

for which we have
f ≥ 0⇒ u ≥ 0 in Ω .
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Surprisingly, this is no longer true when considering higher order elliptic operators such as the biharmonic
operator ∆2: {

∆2u = f , in Ω
u = ∂u

∂ν = 0, on ∂Ω .
(1.2)

Indeed, in this case in general one has
f ≥ 0 ⇏ u ≥ 0 in Ω .

This is a well known fact as long as the domain Ω is not a ball, for which the positive Green function was
computed by Boggio [6] and which keeps on being positive for slight deformations of the ball [25]. As deeply
investigated in [11] and references therein, the lack of the positivity preserving property is due to the appear-
ance of sets carrying small Hausdor� measure (see [15]) where u < 0 and apparently without robust physical
motivations. Recently the loss of the MP has been established in [1] also in the case of higher order fractional
Laplacians. This paper is a step forward a better understanding of this phenomena and at the same time gives
some general principle in order to recover the validity of the MP in the higher order setting.
Let us brie�y recall some physical interpretation of (1.1)–(1.2). Indeed, (1.1) is modeling, among many other
things, a membrane whose pro�le is u which de�ects under the charge load f and clamped along the bound-
ary ∂Ω. This is the case in which tension forces prevale on bending forces which can be neglected because
of the “thin” membrane. However, the model does not suite the case of a “thick” plate in which bending
forces have to be taken into account. Here higher order derivatives come into play which yield (1.2). As one
expects for (1.1), and there this is true by the MP, upwards pushing of a plate, clamped along the boundary,
should yield upwards bending: this is false for (1.2) in contrast to some heuristic evidences in applications
(see e.g. [17] and references therein).
Our point of viewhere, roughly speaking, is that approaching the boundary,where the bending energy carries
some minor e�ect because of the clamping condition, tensional forces can not be neglected for which the
contribute of lower order derivatives may restore the validity of the MP. As a reference example, consider the
following simple model: {

∆2u − γ∆u = f , in Ω ⊂ RN , γ ≥ 0
u = ∂u

∂ν = 0, on ∂Ω .
(1.3)

Clearly for γ = 0 one has (1.2) whence formally as γ → ∞, in a sense one may expect that (1.3) inherits some
properties of (1.1).
As we are going to see, this is the case and for the more accurate model (1.3) surprisingly the MP holds true,
for fairly general domains, provided γ ≥ γ0 > 0, which is essentially given in terms of Sobolev and Poincaré
best constants. Let us state our main result in the case of (1.3) though it extends to cover the general case of
uniformly elliptic operators of any even order, see Corollary 5.1.

Theorem 1.1. Let Ω ⊂ RN , N = 2, 3, be an open connected and bounded set, with su�ciently smooth boundary
and which satis�es the interior sphere condition. Let u ∈ H2

0(Ω) be a weak solution to (1.3), where f ∈ L2(Ω),
f ≥ 0 in Ω and |{x : f (x) > 0}| > 0. Then, there exists γ0 > 0 (which depends on the diameter of Ω, Sobolev and
Poincaré best constants but does not depend on f ), such that for γ > γ0 one has u > 0 in Ω.

As a consequence of Theorem 1.1, the operator ∆2 − γ∆, which in addition to (1.2) contains the contribute of
lower order derivatives, turns out to be a more natural extension of (1.1) to the higher order setting.

Overview. In Section 2 we prove some preliminary estimates which will be the key ingredient to prove in
Section 3 a new Harnack type inequality. Indeed, in the higher order case, it is well known how truncation
methods fail [11]. Our approach here is to demand some extra integrability on the function entering the Har-
nack inequality in place of being solution to a PDE, which usually yields Caccioppoli’s inequality and the
solution belongs to the corresponding De Giorgi class. In [10] the authors prove a Harnack type inequality
just for functions with membership in some De Giorgi classes. Here we drop this assumption though we as-
sume more regularity in terms of integrability which however enables us to prove De Giorgi type pointwise
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level estimates. In Section 5we apply the results obtained to prove the strongmaximumprinciple for polyhar-
monic operators of any order, which contain lower order derivatives, in su�ciently smooth bounded domains
which enjoy the interior sphere condition. This is done by a limiting procedure starting from compactly sup-
ported functions and then extending the results and estimates to the solutions of higher order PDEs subject
to Dirichlet boundary conditions. Those boundary conditions are in a sense the natural ones as the higher
order operator in this case does not decouple into powers of a second order operator. In one hand the result
we obtain is a �rst step towards the investigation of qualitative properties of higher order nonlinear PDEs,
such as uniqueness, optimal regularity, symmetries and concentration phenomena [5, 7, 13, 18, 19, 21, 23, 26].
On the other hand, we are con�dent the tools introduced here may reveal useful also in di�erent higher order
contexts, such as parabolic problems, in the study of the sign of solutions to quasilinear equations and in the
higher order fractional Laplacian setting [4,8, 14].
This research started in 2010when Theorem 1.1 was settled by the �rst named author in the form of conjecture
in a conference in Pisa. New advances towards the results in this paper have been made in 2014 during the
�rst visit of Louis Nirenberg in Varese, then in New York 2015, Pisa 2016 and Varese again in 2017 (his last
trip), occasions in which Louis has further stimulated this research during long discussions of which we
keep nostalgic memories. Goodbye Louis!

Notation. In the sequel we will use the following basic de�nitions:
– B(x0, r) denotes the ball in RN of center at x0 and radius r;
– ωN is the volume of the unit ball in RN ;
– dΩ denotes the diameter of the bounded set Ω in RN ;
– | · | applied to sets denotes the Lebesgue measure in RN otherwise it is the Euclidean norm in RN with

scalar product (· , ·);
– A+(x0, k, r) := {x : x ∈ B(x0, r), u(x) > k};
– (u − k)+ := max{u − k, 0};
– {f > 0} denotes the set {x ∈ Ω : f (x) > 0};
– Ω satis�es the interior sphere condition if for all x ∈ ∂Ω there exists y ∈ Ω and r0 > 0 such that B(y, r0) ⊂

Ω and x ∈ ∂B(y, r0);
– c and C denote positive constants which may change from line to line and which do not depend on the

other quantities involved unless explicitly emphasized;
– Wm,p(Ω) is the standard Sobolev space endowed with the norm ‖ · ‖pm,p =

∑
0≤|α|≤m ‖D

αu‖pp;
– Wm,p

0 (Ω) is the completion of smooth compactly supported functions with respect to the norm ‖ · ‖m,p;
– the critical Sobolev exponent p* := Np

N−mp , 1 < p < N/m.

2 Preliminaries
Let Ω ⊂ RN , N ≥ 2, be an open bounded set with su�ciently smooth boundary. The following holds true

Lemma 2.1. Let u ∈ W1,t(Ω), t > N and 1 < s < N. Then there exists c(s, t) > 0 such that for all k ∈ R, x0 ∈ Ω
and ρ ∈ (0, r) where 0 < r < dist(x0, ∂Ω) the following holds

∫
A+(x0 ,k,ρ)

(u−k)s
*
dx ≤ c(s, t, N)

(r − ρ)s*
|A+(x0, k, r)|(1−

s
t )
s*
s

 ∫
A+(x0 ,k,r)

(u − k)t dx + rt
∫

A+(x0 ,k,r)

|∇u|t dx


s*
t

. (2.1)

Proof. Consider a standard cut-o� function Θ ∈ C∞0 (RN) given by

Θ(x) =


1, x ∈ B(x0, ρ)

0, x ∉ B(x0, r),
(2.2)
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such that 0 ≤ Θ(x) ≤ 1 and |∇Θ(x)| ≤ c
r − ρ .

AsW1,t(Ω) ↪→ W1,s(Ω), one has from Sobolev’s emedding and Hölder’s inequality∫
A+(x0 ,k,ρ)

(u − k)s
*
dx ≤

∫
A+(x0 ,k,r)

|(u − k)Θ(x)|s
*
dx

≤ c(s)

 ∫
A+(x0 ,k,r)

|∇[(u − k) Θ]|s dx


s*
s

≤ c(s) |A+(x0, k, r)|[1−
s
t ]
s*
s

 ∫
A+(x0 ,k,r)

|∇[(u − k) Θ]|t dx


s*
t

≤ c(s, t) |A+(x0, k, r)|[1−
s
t ]
s*
s

·

 c
(r − ρ)t

∫
A+(x0 ,k,r)

(u − k)t dx +
∫

A+(x0 ,k,r)

|∇u|t dx


s*
t

Remark 2.1. The condition 0 < r < dist(x0, ∂Ω), namely that x0 lies in the interior of Ω, is crucial to extend to
the whole RN the function (u − k)Θ. Therefore when x0 approaches ∂Ω, necessarily r = r(x0) tends to zero.

Lemma 2.2. Let u ∈ W1,t(Ω), t > N ≥ 2 and1 < s < N. Let l, k ∈ R such that l > k, x0 ∈ Ω and r < dist(x0, ∂Ω).
Then for all ρ ∈ (0, r) one has

∫
A+(x0 ,l,ρ)

(u − l)2 dx ≤ c(t) |A
+(x0, k, r)|β

(r − ρ)
2(p−1)
p

 ∫
A+(x0 ,k,r)

(u − k)2 dx


1
p

(2.3)

·

 ∫
A+(x0 ,k,r)

(u − k)t dx + rt
∫

A+(x0 ,k,r)

|∇u|t dx


2(p−1)
pt

,

where β = 1 − 2
q +

(
1 − st

) s*
s
2p − q
pq , s = 2qN(p − 1)

N(2p − q) + 2q(p − 1) and 2 < q < 2p, p > 1.

Proof. Let x0 ∈ Ω, r < dist(x0, ∂Ω) and for simplicity let us write A+(k, r) in place of A+(x0, k, r).
For l, k ∈ R and ρ ∈ (0, r), since A+(l, ρ) ⊂ A+(k, ρ) we have∫

A+(l,ρ)

(u − l)2 dx ≤
∫

A+(k,ρ)

(u − k)2 dx. (2.4)

Let q > 2 for which one has

∫
A+(k,ρ)

(u − k)2 dx ≤ |A+(k, ρ)|1−
2
q

 ∫
A+(k,ρ)

(u − k)q dx


2
q

. (2.5)

Let now p > 1 and 2 < q < 2p and estimate by Hölder’s inequality

∫
A+(k,ρ)

(u − k)q dx ≤

 ∫
A+(k,ρ)

(u − k)2 dx


q
2p
 ∫
A+(k,ρ)

(u − k)
2q(p−1)
(2p−q) dx


2p−q
2p
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≤ c(p, q, t)
(r − ρ)

q(p−1)
p

|A+(k, r)|(1−
s
t )
q(p−1)
sp

 ∫
A+(k,ρ)

(u − k)2 dx


q
2p

·

 ∫
A+(k,r)

(u − k)t dx + rt
∫

A+(k,r)

|∇u|t dx


q(p−1)
tp

, (2.6)

where in the last inequality we have used Lemma 2.1 with s* = 2q(p−1)
2p−q . Combine (2.5) and (2.6) to get

∫
A+(k,ρ)

(u − k)2 dx ≤ c(p, q, t, N)
(r − ρ)2

p−1
p
|A+(k, r)|(1−

2
q )+(1−

s
t )

2(p−1)
sp

 ∫
A+(k,ρ)

(u − k)2 dx


1
p

·

 ∫
A+(k,r)

(u − k)t dx + rt
∫

A+(k,r)

|∇u|t dx


2(p−1)
tp

. (2.7)

Inwhat followswewill use the following result from [3] in order to prove a version of thewell known Poincaré
inequality.

Theorem 2.1 (Theorem A. 28, p. 184 in [3]). Let u ∈ W1,1(Br), such that u ≥ 0 and |{x : u(x) = 0}| ≥ |Br|
2 .

Then ∫
Br

u1
*
dx

 1
1*

≤ c
∫
Br

|∇u| dx, (2.8)

where c = c(N) depends only on the dimension N.

Lemma 2.3. Let u ∈ W1,p(Br) be such that |{x : u(x) = 0}| ≥ |Br|
2 , with p ≥ N

N−1 and N ≥ 2. Then, the following
holds ∫

Br

|u|p dx

 1
p

≤ c ω
1
N
N p

N − 1
N r

∫
Br

|∇u|p dx

 1
p

, (2.9)

where c = c(N) is the constant in (2.8).

Proof. Apply Theorem 2.1 to the function |u|p, taking p ≥ N
N−1 and N ≥ 2, to get

∫
Br

|u|p dx =
∫
Br

(
|u|p

N−1
N
) N

N−1 dx ≤ c
N
N−1

∫
Br

|∇
(
|u|p

N−1
N
)
| dx

 N
N−1

= c
N
N−1

∫
Br

pN − 1N |u|p
N−1
N −1|∇u| dx

 N
N−1

= c
N
N−1 p

N
N−1

(
N − 1
N

) N
N−1

∫
Br

|u|p
N−1
N −1|∇u| dx

 N
N−1
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= c
N
N−1 p

N
N−1

(
N − 1
N

) N
N−1

∫
Br

|u|p(
N−1
N −

1
p )(|∇u|p)

1
p 1

1
N dx

 N
N−1

≤ c
N
N−1 p

N
N−1

(
N − 1
N

) N
N−1

∫
Br

|u|p dx

( N−1N − 1
p )

N
N−1

·

∫
Br

|∇u|p dx

 1
p

N
N−1

|Br|
1
N−1 .

Since (
N − 1
N − 1

p

)
N

N − 1 = 1 − 1
p

N
N − 1 ,

we have ∫
Br

|u|p dx

 1
p

N
N−1

≤ c
N
N−1 p

N
N−1

(
N − 1
N

) N
N−1

ω
1
N−1
N r

N
N−1

∫
Br

|∇u|p dx

 1
p

N
N−1

.

3 A Harnack type inequality
Next we derive a De Giorgi type level estimate (see [3, 12]) for functions u ∈ W1,t, t > N ≥ 2 which will be
the key ingredient in establishing a new Harnack type inequality. Let us emphasize that in De Giorgi’s theo-
rem [9], level estimates hold for u ∈ W1,2 which is a solution to a uniformly elliptic second order equation
with bounded and measurable coe�cients. As a consequence, Caccioppoli’s inequality holds and u ∈ W1,2

belongs to the corresponding so-called De Giorgi class. Later, Di Benedetto and Trudinger relaxed the frame-
work and in [10] they merely assume u ∈ W1,2 belonging to some De Giorgi class. Here, we further improve
the setting, without requiring any of those previous assumptions, though demanding for some augmented
integrability which turns out to be necessary, as it is well known, functions inW1,N(Ω), Ω ⊂ RN , may not be
bounded.

Theorem 3.1. Let u ∈ W1,t(Ω), t > N ≥ 2, Ω ⊂ RN be open and bounded set with su�ciently smooth boundary
∂Ω. For all k ∈ R, y ∈ Ω, r > 0 such that r < dist(y, ∂Ω), the following holds

sup
B(y, r2 )

u ≤ k + d, (3.1)

where

d = c

r
ξ (p−1)
ηp

 ∫
A+(k,r)

|u(x) − k|t dx + rt
∫

A+(k,r)

|∇u(x)|t dx


ξ (p−1)
tpη
 ∫
A+(k,r)

|u(x) − k|2 dx


ξ (θ−1)
2η

|A+(k, r)|
θ−1
2 .

Remark 3.1. Here we write for simplicity A+(k, ρ) in place of A+(y, k, ρ) and c = c(t, p, ξ , η, θ) is a positive
constant which depends on the parameters p > 1, t > N obtained in Lemma 2.2, while ξ > 0, η > 0, θ > 1 are
de�ned by suitable equations stated in the proof.

Proof of Theorem 3.1. Let us set:

I(l, ρ) =
∫

A+(l,ρ)

|u − l|2 dx ,
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M(r, k, t, p) = c(t)

 ∫
A+(k,r)

|u − k|t dx + rt
∫

A+(k,r)

|∇u|t dx


2(p−1)
pt

,

where c(t) is the constant of (2.3). For all l, k ∈ R, such that l > k and for all ρ ∈ (0, r), one has

|A+(l, ρ)| ≤ 1
(l − k)2 I(k, ρ) (3.2)

and clearly |A+(l, ρ)| ≤ |A+(k, ρ)|, for l > k.
Set

Φ(l, ρ) = I(l, ρ)ξ |A+(l, ρ)|η , (3.3)

then from (3.2) and (2.3) we have

Φ(l, ρ) ≤ 1
(r − ρ)2ξ

p−1
p (l − k)2η

Φ(k, r)θ M(r, k, t, p)ξ , (3.4)

where η, ξ , θ > 0 satisfy the following algebraic equations
ξ
p + η = θ ξ

β ξ = θ η

(3.5)

from which we have θ2 − θ/p − β = 0 and we take θ = θ1 given by

θ1 = 1/p +
√
1/p2 + 4β
2 . (3.6)

As one can easily check θ1 > 1, for all 2 < q < 2p, t > N and 1 < s < N.
From (3.4) we are done provided we prove that for all k ∈ R and r < dist(y, ∂Ω) there exists d > 0 satisfying

Φ
(
k + d, r2

)
= 0,

which in turn by (3.3) yields ∣∣∣A+ (k + d, r2)∣∣∣ = 0 .

Next we proceed by using the iterative scheme from the proof of De Giorgi’s theorem. For m ∈ N set

rm = r
2 + r

2m+1 , km = k0 + d −
d
2m ,

where the parameter d > 0 has to be chosen in the sequel and k0 = k. The idea is to exploit the inequality
(3.4) with r = rm and ρ = rm+1 where the sequence {rm}m∈N is decreasing so that B(rm+1) ⊂ B(rm). On the
other hand {km}m∈N is increasing, and we set in (3.4) l = km+1 and k = km. With this choice we obtain from
(3.4) the following inequality

Φ(km+1, rm+1) ≤
22

(p−1)
p (m+2)ξ+2(m+1)η

r2
(p−1)
p ξ d2η

Φ(km , rm)θ M(rm , km , t, p)ξ . (3.7)

Now multiply (3.7) by 2µ(m+1), µ > 0 and set

Ψm = 2µmΦ(km , rm) (3.8)

to obtain form (3.7)

Ψm+1 ≤
[
22

(p−1)
p (m+2)ξ+2(m+1)η

r2
(p−1)
p ξ d2η

2µ[1+m(1−θ)]
]
Ψ θ
m M(rm , km , t, p)ξ . (3.9)
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Let us choose µ > 0 to avoid the dependence on m in the �rst factor in the right hand side of (3.9), namely

µ =
2 (p−1)

p ξ + 2η
θ − 1 , (3.10)

and thus (3.9) becomes

Ψm+1 ≤
24

(p−1)
p ξ+2η+µ

r2
(p−1)
p ξ d2η

Ψ θ
m M(rm , km , t, p)ξ ≤

24
(p−1)
p ξ+2η+µ

r2
(p−1)
p ξ d2η

Ψ θ
m M(r, k0, t, p)ξ .

Set

A = 24
(p−1)
p ξ+2η+µ

r2
(p−1)
p ξ

M(r, k0, t, p)ξ ,

so that for all m ∈ N one has
Ψm+1 ≤

A
d2η Ψ

θ
m .

At this point we choose d > 0 such that

A
d2η Ψ

θ−1
0 = 1, (3.11)

and by induction on m ∈ N we have

Ψm ≤ Ψ0, for all m ∈ N .

Finally by (3.8) we obtain
Φ(km , rm) ≤

1
2µm Φ(k0, r)

and the proof is complete by letting m → ∞.

Remark 3.2. It is important to note that in Lemma 2.2 as t → N one has β → (p − 1)/p so that θ1 → 1 in (3.6).
As a consequence, from (3.10) one has µ → ∞ and this, as expected, prevents the result to hold.

Next we prove the following Harnack type inequality

Theorem 3.2. Let u ∈ W1,t(Ω), t > N ≥ 2, and Ω ⊂ RN be an open bounded set with su�ciently smooth
boundary ∂Ω. Let B(x0, r) ⊂ Ω, then there exists a constant c > 0, which depends only on N, such that

sup
B(x0 , r2 )

u ≤ inf
B(x0 ,r)

u + c r[(
ξ
η +

N
2 )(θ−1)]

 ∫
B(x0 ,r)

|∇u|t dx


ξ
η
p−1
tp
 ∫
B(x0 ,r)

|∇u|2 dx


ξ (θ−1)
2η

. (3.12)

Proof. Set M = sup
B(x0 ,r)

u, m = min
B(x0 ,r)

u, and let

I1 =
{
k : k ∈ (m, M) :

∣∣{x : x ∈ B(x0, r), u(x) > k}∣∣ < |B(x0, r)|2

}
,

I2 =
{
k : k ∈ (m, M) :

∣∣{x : x ∈ B(x0, r), u(x) ≥ k}∣∣ ≥ |B(x0, r)|2

}
.

If I1 ≠ ∅ then we prove for all k ∈ I1 the following

sup
B(x0 , r2 )

u ≤ k + c r[(
ξ
η +

N
2 )(θ−1)]

 ∫
B(x0 ,r)

|∇u|t dx


ξ
η
p−1
tp
 ∫
B(x0 ,r)

|∇u|2 dx


ξ (θ−1)
2η

. (3.13)
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Indeed, by Theorem 3.1 we have for all k ∈ I1

sup
B(x0 , r2 )

u ≤ k + c r−
ξ (p−1)
ηp |A+(k, r)|

θ−1
2

 ∫
A+(k,r)

|u − k|t dx + rt
∫

A+(k,r)

|∇u|t dx


ξ
η
p−1
tp
 ∫
A+(k,r)

|u − k|2 dx


ξ (θ−1)
2η

.

(3.14)

Since k ∈ I1 one has
|{x : (u(x) − k)+ = 0}| ≥ |B(x0, r)|2 ,

and apply Lemma 2.3 to the function (u(x) − k)+ to get ∫
A+(k,r)

|u(x) − k|2 dx


1
2

=

 ∫
B(x0 ,r)

|(u(x) − k)+|2 dx


1
2

≤ c(N)r

 ∫
B(x0 ,r)

|∇u|2 dx


1
2

,

 ∫
A+(k,r)

|u(x) − k|t dx


1
t

=

 ∫
B(x0 ,r)

|(u(x) − k)+|t dx


1
t

≤ c(N)r

 ∫
B(x0 ,r)

|∇u|t dx


1
t

.

In the case I2 ≠ ∅, for all k ∈ I2 set h = −k and v(x) = −u(x). Thus h ∈ (−M, −m) and the following holds∣∣{x : x ∈ B(x0, r) : u(x) ≥ k}∣∣ = ∣∣{x : x ∈ B(x0, r) : −u(x) ≤ −k}∣∣
=
∣∣{x : x ∈ B(x0, r) : v(x) ≤ h}∣∣ ≥ |B(x0, r)|2 .

Therefore, the function v enjoys (3.13), namely

sup
B(x0 , r2 )

v ≤ h + c r[(
ξ
η +

N
2 )(θ−1)]

 ∫
B(x0 ,r)

|∇v|t dx


ξ
η
p−1
tp
 ∫
B(x0 ,r)

|∇v|2 dx


ξ (θ−1)
2η

. (3.15)

From
sup
B(x0 , r2 )

v = − inf
B(x0 , r2 )

u

and (3.15) we have

− inf
B(x0 , r2 )

u ≤ −k + c r[(
ξ
η +

N
2 )(θ−1)]

 ∫
B(x0 ,r)

|∇u|t dx


ξ
η
p−1
tp
 ∫
B(x0 ,r)

|∇u|2 dx


ξ (θ−1)
2η

.

As a consequence, for all k ∈ I2 we get

k ≤ inf
B(x0 , r2 )

u + c r[(
ξ
η +

N
2 )(θ−1)]

 ∫
B(x0 ,r)

|∇u|t dx


ξ
η
p−1
tp
 ∫
B(x0 ,r)

|∇u|2 dx


ξ (θ−1)
2η

. (3.16)

Next we distinguish three cases, precisely:
i) I1 ≠ ∅ and I2 = ∅. In this case any k ∈ (m,M) belongs to I1, for which (3.13) which holds for all k ∈ I1, it holds

for k = m as well;
ii) I1 = ∅ and I2 ≠ ∅. In this case any k ∈ (m,M) belongs to I2, and thus (3.16) which holds for all k ∈ I2, in

particular holds for k = M;
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iii) I1 ≠ ∅ and I2 ≠ ∅. In this case we consider inf I1 and sup I2 and it is standard to prove there exists a unique
k0 = inf I1 = sup I2 which enjoys both (3.13) and (3.16) and the theorem follows.

In order to state the next result let us introduce the following

De�nition 3.1. Let Ω be an open set inRN , N ≥ 2with non-empty and su�ciently smooth boundary and which
enjoys the interior sphere condition. Let x ∈ ∂Ω and consider balls of radius r, Bx(r) ⊂ Ω which are tangent in
the interior to ∂Ω at point x and let δ(x) = sup r. We de�ne the narrowness index of Ω as follows:

δ = inf
x∈∂Ω

δ(x) . (3.17)

Theorem 3.3. Let Ω ⊂ RN , N ≥ 2 be open, connected, with su�ciently smooth boundary and which enjoys
the interior sphere condition. Let δ be the narrowness index of Ω as in De�nition 3.17. Let xmax and xmin be
respectively a local maximum and local minimum for u ∈ W1,t(Ω), t > N.
Then, there exists h ∈ N and r ∈ (0, δ), such that

u(xmax) ≤ u(xmin) + c h r(
ξ
η +

N
2 )(θ−1)

∫
Ω

|∇u(x)|t dx


ξ (p−1)
tpη

∫
Ω

|∇u(x)|2 dx


ξ (θ−1)
2η

, (3.18)

with c = c(N) provided by Thorem 3.2 andwhere in particular h depends only on dist(xmax , ∂Ω), dist(xmin , ∂Ω)
and δ.

Proof. Let r > 0 be such that:
i) for all x ∈ B(xmin , r) ⊂ Ω one has u(x) ≥ u(xmin);
ii) B(xmin , r) ⊂ Ω;
iii) B(xmax , r) ⊂ Ω .

Consider the arc g : [0, 1] → Ω such that g(0) = xmin and g(1) = xmax. Let t0 = 0 < . . . th = 1 be a partition of
[0, 1] such that setting xi = g(ti) one has

B
(
xi ,

r
2

)
∩ B

(
xi+1,

r
2

)
≠ ∅, i = 0, . . . , h − 1 (3.19)

and where r is such that B(xi , r) ⊂ Ω.
By Theorem 3.2 we have

sup
B(x0 , r2 )

u ≤ u(xmin) + c r(
ξ
η +

N
2 )(θ−1)

 ∫
B(x0 ,r)

|∇u(x)|t dx


ξ (p−1)
tpη

 ∫
B(x0 ,r)

|∇u(x)|2 dx


ξ (θ−1)
2η

,

which we rewrite in the following form

∀x ∈ B
(
x0,

r
2

)
, u(x) ≤ u(xmin) + N0, (3.20)

where we have set for i = 0, . . . , h

Ni := c

 ∫
B(xi ,r)

|∇u(x)|t dx


ξ (p−1)
tpη

 ∫
B(xi ,r)

|∇u(x)|2 dx


ξ (θ−1)
2η

.

Now inequality (3.20) in particular holds for

x ∈ B
(
x1,

r
2

)
∩ B

(
x0,

r
2

)
and thus

inf
B(x1 , r2 )

u ≤ u(x) ≤ u(xmin) + N0 . (3.21)
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By applying iteratively Theorem 3.2 we end up with

sup
B(xh+1 , r

2 )
u ≤ u(xmin) + Nh + · · · + N1 + N0 ,

which completes the proof.

Remark 3.3. One may wonder what happens if in the construction of Theorem 3.3 we consider a sequence of
balls with increasing radius and center converging to a point on the boundary of Ω. For this purpose consider
{xn}n∈N ⊂ Ω converging to a point x∞ ∈ ∂Ω. Consider balls of center xn and radius rn such that:
(i) B(xn , rn) ⊂ Ω;
(ii) rn < dist(xn , ∂Ω) = dist(xn , x∞);
(iii) B(xn ,

rn
2 ) ∩ B(xn+1,

rn+1
2 ) ≠ ∅.

Applying to this sequence the reasoning carried out in the proof of Theorem 3.3 where x0 = xmax, we get

u(xmax) ≤ u(x∞) + c
∞∑
n=0

r
( ξη +

N
2 )(θ−1)

n

1
γ

∫
Ω1

f (x) dx


ξ
2η (θ−1)

u(xmax).

We would get a contradiction if the above series converge. Actually as we are going to see this is not the case.
Consider B(xn , rn2 ) and B(xn+1,

rn+1
2 ) and let C ∈ ∂B(xn , rn2 )∩ ∂B(xn+1,

rn+1
2 ) and D its projection on the segment

with endpoints A = xn and B = xn+1. Set AD = ρn, DB = ρn+1, so that considering the triangles ADC and CDB

one has r
2
n
4 − ρ

2
n =

r2n+1
4 − ρ2n+1, and then

rn
4 + ρn

rn+1
4 + ρn+1

=
rn+1
4 − ρn+1
rn
4 − ρn

.

We can apply Kummer’s test to the series with general terms an =
( rn
4 + ρn

)a
and bn =

( rn
4 − ρn

)a
, a > 0,

from which since an
an+1

= bn+1
bn

, for all n ∈ N, and
∞∑
n=0

1
bn

= +∞ we obtain
∞∑
n=0

an = +∞. From an < ran we have

∞∑
n=0

ran = +∞ .

4 Towards the Positivity Preserving Property
Next we apply the results so far obtained to prove the strongmaximum principle for the biharmonic operator
perturbed by the Laplacian for compactly supported data. As we are going to see, here it comes for the �rst
time the restriction on the Euclidean dimension N < 4 and the fact that we deal with the solution to a PDE.
Precisely, this section is devoted to proving the following

Theorem 4.1. Let Ω ⊂ RN , N = 2, 3 be an open and bounded set, with su�ciently smooth boundary andwhich
enjoys the interior sphere condition. Let u ∈ W4,2(Ω) ∩ H2

0(Ω) be a solution to

∆2u(x) − γ∆u(x) = f (x), x ∈ Ω, (4.1)

where γ > 0, f ∈ L2(Ω), f ≥ 0 in Ω and |{x : f (x) > 0}| > 0. Moreover, f (x) = 0 on Ω \ Ω1, with Ω1 a bounded
subset of Ω such that dist(∂Ω1, ∂Ω) > 0. Then, there exists γ0 > 0 such that for all γ > γ0 the solution to (4.1)
satis�es u(x) > 0, for all x ∈ Ω.
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Assuming the hypotheses of Theorem 4.1 we have the following preliminary lemmas:

Lemma 4.1. The following holds true
sup
Ω1

u > 0 . (4.2)

Proof. By multiplying (4.1) by u and integrating by parts∫
Ω

|∆u(x)|2 dx + γ

∫
Ω

|∇u(x)|2 dx =
∫
Ω

f (x) u(x) dx ≤ sup
Ω1

u
∫
Ω1

f (x) dx (4.3)

In order to apply the Harnack inequality established in Section 3 we next estimate �rst order derivatives of
the solution to (4.1). Though from one side elliptic regularity yields enough summability, on the other side we
need estimates which are uniform with respect to the parameter γ, and for this reason we restrict ourself to
dimensions N < 4.

Lemma 4.2. There exists a constant c = c(N) > 0 which does not depend on γ in (29) such that

‖∇u‖Lt(Ω) ≤ cd
2
t (3−N)
Ω

∫
Ω

f (x) u(x) dx

 1
2

,

for any t > 2 when N = 2 and for t = 6 when N = 3.

Proof. Since u = ∇u = 0 on ∂Ω, one has∫
Ω

|∆u(x)|2 dx =
n∑

i,j=1

∫
Ω

|Diju(x)|2 dx =
∫
Ω

‖D2u(x)‖2 dx .

By Sobolev’s embedding, Poincaré inequality and from (4.3), when N = 3 and t = 6 we have,

‖∇u‖Lt(Ω) ≤
cS
dΩ
‖∇u‖L2(Ω) + cS‖D

2u‖L2(Ω) ≤ c‖D
2u‖L2(Ω) = c‖∆u‖L2(Ω) ≤ c

∫
Ω

f (x) u(x) dx

 1
2

.

Similarly when N = 2 and t ≥ 1 we obtain

‖∇u‖Lt(Ω) ≤
cS
d1−

2
t

Ω

‖∇u‖L2(Ω) + cSd
2
t
Ω‖D

2u‖L2(Ω) ≤ cd
2
t
Ω‖D

2u‖L2(Ω) = cd
2
t
Ω‖∆u‖L2(Ω) ≤ cd

2
t
Ω

∫
Ω

f (x)u(x) dx

 1
2

.

Proof of Theorem 4.1. Let xmax be an absolute maximum point for u in Ω1 and xmin a local minimum for u in
Ω. Set

a = ξ (θ − 1)2η + ξ (p − 1)2ηp , b =
(
ξ
η + N2

)
(θ − 1), c = ξ

η
p − 1
p .

From (30) of Theorem 3.3, (36) and Lemma 4.2 we have

u(xmax) ≤ u(xmin) + ch rb d
[ 2t (3−N)]c
Ω

(∫
Ω f (x)u(x) dx

)a
γ

ξ
2η (θ−1)

(4.4)

where a = ξ (θ − 1)2η + ξ (p − 1)2ηp < 1. If sup
Ω1

u ≥ 1 then we have

u(xmax) ≤ u(xmin) + ch rb d
[ 2t (3−N)]c
Ω

(∫
Ω f (x) dx

)a u(xmax)
γ

ξ
2η (θ−1)

.
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The thesis follows as γ is large enough. If sup
Ω1

u < 1, let k > 0 be such that k sup
Ω1

u ≥ 1. Set wk(x) := k u(x),

which satis�es 
wk ∈ W4,2(Ω) ∩ H2

0(Ω)

∆2wk(x) − γ∆wk(x) = k f (x), x ∈ Ω,
(4.5)

Peforming the change of variable x = sy, with s > 0, vk(y) = wk(sy), g(y) = f (sy), ymin = xmin
s , ymax = xmax

s , we
obtain 

vk ∈ W4,2(Ωs) ∩ H2
0(Ωs)

∆2vk(y) − γ s−2 ∆vk(y) = s−4 k g(y), y ∈ Ωs ,
(4.6)

where Ωs = {y : y = x/s, x ∈ Ω}. Next apply (4.4) to the solution of (4.6) to get

vk(ymax) ≤ vk(ymin) + ch
( r
s

)b (dΩ
s

)[ 2t (3−N)]c
(∫

Ωs g(x) dx
)a
vk(ymax)

γ
ξ
2η (θ−1)

ka
s3a . (4.7)

With respect to the original variables it reads as follows

u(xmax) ≤ u(xmin) + ch
( r
s

)b (dΩ
s

)[ 2t (3−N)]c
(∫
Ω f (x) dx

)a u(xmax)
γ

ξ
2η (θ−1)

ka

s(N+3)a
. (4.8)

Let us now observe that thanks to the interior sphere condition, the number h of balls covering the path from
ymax to ymin does not depend on the parameter s. The same happens for the parameter k. Thus we choose the
parameter s such that

h ka

sb+[ 2t (3−N)]c+(N+2)a
= 1, (4.9)

namely the thesis of the theorem follows for all

γ > c
2η

ξ (θ−1) d
2η

ξ (θ−1){[
2
t (3−N)]c+b}

Ω

∫
Ω

f (x) dx

a 2η
ξ (θ−1)

, (4.10)

and thus γ0 is the right hand side of (4.10) with optimal constant c. When γ = γ0 we just get the weak inequal-
ity u ≥ 0.

5 The validity of the strong maximum principle for higher order
elliptic operators

In this section we �rst prove Theorem 1.1 for which we have to remove the restriction to compactly supported
data of Theorem 4.1. Then, we will extend the result obtained to polyharmonic operators and to more general
uniformly elliptic operators of any even order with constant coe�cients.

Proof of Theorem 1.1. Consider the following family of sets {Ωm}m∈N such that for all m ∈ N satisfy:
i) Ωm ⊂ Ωm+1 ⊂ Ωm+1 ⊂ Ω;
ii) ∪∞m=1Ωm = Ω;
iii) {x ∈ Ω : |{f > 0}| > 0} ∩ Ω1 ≠ Ω1;
iv) dist(∂Ωm , ∂Ω) → 0 as m → ∞.
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Let χm be the characteristic function of Ωm

χm(x) =


1, x ∈ Ωm ,

0, x ∈ ̸ Ωm .

and set

gm(x) :=
1
S(x)

χm(x)
m2 f (x), x ∈ Ω, (5.1)

where

S(x) =
+∞∑
m=1

χm(x)
m2 ,

converges pointwise on Ω. Moreover, notice that gm ∈ L2(Ω).
Next consider the following problems

um ∈ W4,2 ∩ H2
0(Ω)

∆2um(x) − γ∆um(x) = gm(x), x ∈ Ω,
(5.2)

where by construction gm(x) = 0 for x ∈ Ω \ Ωm and thus by Theorem 4.1 there exists γm > 0 such that for all
γ > γm, one has um(x) > 0, for all x ∈ Ω, m ∈ N.
It is crucial here that by (4.9) and (4.10) the parameter γm does not depend on h, namely does not depend on
the distance of the maximum point of um from the boundary (recall the proof of Theorem 3.3). Indeed, this
prevents γm to blow up and actually remain bounded since from (4.10)

γm = c
2η

ξ (θ−1) d
2η

ξ (θ−1){[
2
t (3−N)]c+b}

Ω

∫
Ωm

gm(x) dx


a 2η
ξ (θ−1)

≤ c
2η

ξ (θ−1) d
2η

ξ (θ−1){[
2
t (3−N)]c+b}

Ω

∫
Ω

f (x) dx

a 2η
ξ (θ−1)

= γ∞ .

Therefore, for all γ > γ∞ and for all m ∈ N one has

um(x) > 0, x ∈ Ω (5.3)

Finally, we prove that the function

v(x) =
∞∑
m=1

um(x) (5.4)

solves the following 
v ∈ W4,2 ∩ H2

0(Ω)

∆2v(x) − γ∆v(x) = f (x), x ∈ Ω
(5.5)

and thus by (5.3) we conclude that for all γ > γ∞ and for all x ∈ Ω one has

v(x) > 0 .

By uniqueness of the solution to the Dirichlet problem (4.1) the Theorem follows. Hence, it remains to show
that vm → v ∈ W4,2 ∩ H2

0(Ω) which is a solution to (5.5).
Set

fm =
m∑
i=1

gi , vm =
m∑
i=1

ui .
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By Lebesgue’s dominated convergence fm → f in L2(Ω) and notice that vm solves the following
vm ∈ W4,2 ∩ H2

0(Ω)

∆2vm(x) − γ∆vm(x) = fm(x), x ∈ Ω .
(5.6)

Thus for all m, l ∈ N we have
vm − vl ∈ W4,2 ∩ H2

0(Ω)

∆2[vm(x) − vl(x)] − γ∆[vm(x) − vl(x)] = fm(x) − fl(x)

(5.7)

and multiplying by vm − vl and integrating by parts we get∫
Ω

|∆[vm(x) − vl(x)]|2 dx ≤
∫
Ω

|fm(x) − fl(x)|2 dx

which together with the equation (5.6) yields∫
Ω

|∆2[vm(x) − vl(x)]|2 dx ≤ c (2γ2 + 2)
∫
Ω

|fm(x) − fl(x)|2 dx .

Thus {vm} is a Cauchy sequence inW4,2(Ω) which converges to v ∈ W4,2(Ω), the solution to (5.5).

Remark 5.1. Observe that in (5.5) the solution can be normalized dividing the equation by
∫
Ω f dx > 0, so that

the parameter γ0 identi�ed in (4.10) does not depend e�ectively on f .

What we have seen so far naturally extends to polyharmonic operators of any order and more in general to
uniformly elliptic operators of any even order as established in the following

Corollary 5.1. Let u ∈ W2m,2 ∩Wm,2
0 (Ω), m ≥ 2 be the solution to the following equation

(−1)mA2m(D)u(x) − γA2(x, D)u(x) = f (x), x ∈ Ω, (5.8)

where f ∈ L2(Ω),
A2m(D) =

∑
|α|=|β|=m

aαβDα+β

and

A2(x, D) =
n∑

i,j=1
Di[aij(x)Dj],

are uniformly elliptic operators on Ω, namely there exist νm > 0 and ν1 > 0 such that for all ξ ∈ RN and x ∈ Ω

νm‖ξ‖2m ≤
∑

|α|=|β|=m

aαβξ α+β , ν1‖ξ‖2 ≤
n∑

i,j=1
aij(x)ξiξj ,

with aαβ ∈ R and aij(x) ∈ L∞(Ω). Then, there exists γ0 > 0 such that for all γ > γ0 one has u(x) > 0 for all
x ∈ Ω.

Proof. We have to estimate intermediate derivatives of suitable order avoiding the dependance on γ. Multi-
plying the equation (5.8) by u and integrating by parts we get∫
Ω

∑
|α|=|β|=m

aαβDαu(x)Dβu(x) dx + γ

∫
Ω

n∑
i,j=1

aij(x)Dju(x)Diu(x) dx ≤
∫
Ω

f (x) u(x) dx ≤ ‖f‖L2(Ω)‖u‖Wm
0 (Ω) .
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By the ellipticity condition and Gårding’s inequality one has

νm‖u‖2Wm
0 (Ω)

+ γν1‖u‖2W1,2
0 (Ω) ≤

∫
Ω

|f (x)| |u(x)| dx

together with Poincaré’s inequality

νm‖u‖2Wm
0 (Ω)

≤ c(N, Ω)
∫
Ω

|f (x)|2 dx .

We conclude by the Sobolev embedding theorem as follows:
– If N ≤ 2(m − 1) one has∇u ∈ Lt(Ω), for all t ≥ 1 and in particular for t > N and

‖∇u‖Lt(Ω) ≤ c‖u‖Wm,2(Ω) ≤ c‖f‖L2(Ω) ;

– If N = 2m − 1 one has∇u ∈ Lt(Ω) with t = 4m − 2 and

‖∇u‖Lt(Ω) ≤ c‖u‖Wm,2(Ω) ≤ c‖f‖L2(Ω) ,

where the constant c does not depend on γ.

It is well known from [11] that the positivity preserving property of the ball for polyharmonic operators carries
over to small deformations of the ball. Actually on those domains what we have proved yields the positivity
preserving property of the γ-perturbed polyharmonic operator for all γ ≥ 0. For simplicity let us state the
result in the case of the biharmonic operator:

Corollary 5.2. Let Ω ⊂ RN be an open bounded domain such that for all f ∈ L2(Ω) with f ≥ 0 and |{x ∈ Ω :
f (x) = 0}| = 0, the solution u ∈ W4,2 ∩W2,2

0 (Ω) to

∆2u = f (5.9)

enjoys u(x) > 0, a.e. in Ω. If there exists γ0 > 0 such that the solution v ∈ W4,2 ∩W2,2
0 (Ω) to

∆2v − γ0∆v = f (5.10)

enjoys v(x) > 0, a.e. in Ω, then for all γ ∈ [0, γ0] the solution w ∈ W4,2 ∩W2,2
0 (Ω) to ∆2wγ − γ∆wγ = f enjoys

wγ(x) > 0, a.e. in Ω.

Proof. Set wτ = τv + (1 − τ)u, γτ = τγ0, hence ∆2wτ − γτ∆wτ = f . For τ = 0, wτ is a solution to (5.9) whence
for τ = 1, wτ enjoys (5.10) and then wτ > 0 a.e. in Ω for all τ ∈ [0, 1]. By uniqueness of the Dirichlet problem
wτ = wγ and the claim follows.

From Corollary 5.2 we also have

Corollary 5.3. Let Ω ⊂ RN be an open bounded domain such that for all f ∈ L2(Ω) with f ≥ 0 and |{x ∈ Ω :
f (x) = 0}| = 0, the solution u ∈ W4,2 ∩W2,2

0 (Ω) to ∆2u = f enjoys u(x) > 0, a.e. in Ω. Then, if N = 2, 3, we have
for all γ ∈ [0, +∞) that wγ > 0.
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