An Empirical Evaluation of the “Cognitive Complexity”
Measure as a Predictor of Code Understandability

Luigi Lavazza, Abedallah Zaid Abualkishik, Geng Liu, Sandro Morasca

Abstract

Background: Code that is difficult to understand is also difficult to inspect
and maintain and ultimately causes increased costs. Therefore, it would
be greatly beneficial to have source code measures that are related to code
understandability. Many “traditional” source code measures, including for
instance Lines of Code and McCabe’s Cyclomatic Complexity, have been
used to identify hard-to-understand code. In addition, the “Cognitive Com-
plexity” measure was introduced in 2018 with the specific goal of improving
the ability to evaluate code understandability.

Aims: The goals of this paper are to assess whether (1) “Cognitive Com-
plexity” is better correlated with code understandability than traditional
measures, and 2) the availability of the “Cognitive Complexity” measure
improves the performance (i.e., the accuracy) of code understandability pre-
diction models.

Method: We carried out an empirical study, in which we reused code un-
derstandability measures used in several previous studies. We first built
Support Vector Regression models of understandability vs. code measures,
and we then compared the performance of models that use “Cognitive Com-
plexity” against the performance of models that do not.

Results: “Cognitive Complexity” appears to be correlated to code under-
standability approximately as much as traditional measures, and the perfor-
mance of models that use “Cognitive Complexity” is extremely close to the
performance of models that use only traditional measures.

Conclusions: The “Cognitive Complexity” measure does not appear to ful-
fill the promise of being a significant improvement over previously proposed

Email addresses: luigi.lavazza@uninsubria.it (Luigi Lavazza),
abedallah.abualkishik@aue.ae (Abedallah Zaid Abualkishik), 1iugeng@hdu.edu.cn
(Geng Liu), sandro.morasca@uninsubria.it (Sandro Morasca)

Preprint submitted to Journal of Systems and Software September 30, 2022

measures, as far as code understandability prediction is concerned.

Keywords: Software understandability, cognitive complexity, software code
measures, complexity measures, static code measures

1. Introduction

Program comprehension absorbs a large part of the time and effort spent
by professionals during software development [1, 2]. Thus, knowing whether
there is a relationship between code understandability and some code mea-
sures would be greatly beneficial for software development: software modules
that appear hard to understand could be revised, to improve their readabil-
ity, thus favoring subsequent maintenance activities. In addition, coding
rules could be established based on code measures, to proactively keep un-
derstandability adequate and make maintenance less painful.

Code measures such as McCabe’s Complexity (also known as cyclomatic
complexity, which we denote as McCC') [3], various Maintainability Indices [4,
5], and Halstead measures [6] have been used to this end in the past. How-
ever, none of them has turned out to be effective enough to predict and
control code understandability. A new source code measure, called “Cogni-
tive Complexity,” was introduced in 2018 [7] with the goal of assessing code
understandability, while overcoming some of the pitfalls of existing code mea-
sures, notably McCC. In the remainder of this paper, we denote this measure
as CoCo.

However, the proposers of CoCo did not provide solid empirical evidence
that CoCo is actually better than existing code measures in indicating code
that is difficult to understand. Our goal here is to seek for evidence that sup-
ports or contradicts the claims that accompanied the proposal of CoCo, and
specifically the fact that it is more effective in predicting understandability
than existing measures. This is common practice [8, 9, 10, 11, 12], as it is not
simply sufficient to show that the newly introduced measure CoCo is itself
related to understandability. This certainly is a necessary, but preliminary
step, which must be followed by providing evidence that C'oCo is also better
than the existing measures.

In this paper, we report on an empirical study that we carried out to inves-
tigate whether CoCo provides a real improvement in the assessment of code
understandability. Before adopting any measure for this purpose, practition-
ers need to know how effectively it can help them spot hard-to-understand

software code. First, there are costs incurred for the collection of the mea-
sure, related to acquiring new tools, updating historical datasets, updating
data analysis procedures, etc. So, practitioners need to know if adopting the
measure is worth the effort. Second, and perhaps more important, adopting
a new measure for practical use entails taking actions based on it. For in-
stance, one can set a threshold on the measure to separate supposedly easy-
from hard-to-understand code, so that the latter may undergo modifications.
All of this is justified and beneficial only if there is solid evidence that that
measure is truly related to understandability. Lacking this evidence, using
the measure during software development may increase software cost and,
possibly, even lower software quality as the result of needless modifications.

Therefore, our empirical study first addresses the following Research
Question, thus extending the work by Munoz Barén et al. [13] by consid-
ering “traditional” measures:

RQ1 How well is CoCo correlated with software understandability, also in
comparison with “traditional” measures?

Since it would be impossible to answer RQ1 for the thousands of source code
measures that have been defined in the past, we concentrate on the source
code measures provided by a state-of-the-art measurement tool, which mea-
sures code properties similar to those considered by CoCo, or have been pro-
posed and widely used as predictors of code understandability. Thus, these
are measures that are likely to be used in a software production environment.
An empirical study showing that CoCo provides substantial improvements
over existing measures would give CoCo greater credentials to be applied in
practice. If, instead, this were not the case, CoCo would appear to be much
less useful, since other existing measures perform as well as it does, if not
better.

CoCo was introduced as an alternative to existing source code measures,
though without a real empirical or theoretical validation. A first evaluation
of how well C'oCo can be used to assess code understandability was performed
by Mufioz Barén et al. [13]. They collected published data from empirical
studies on code understandability, measured the CoCo of the source code
used in the experiments, and evaluated the statistical association between
various types of understandability indicators and CoCo (see Section 3.2).
They found moderate associations in some cases.

In this paper, we investigate the claim based on which CoCo was intro-
duced, i.e., that it is better suited than existing source code measures for

assessing code understandability, whereas the goal of Munoz Barén et al.’s
article [13] was to assess CoCo per se.

Thus, we addressed the following second Research Question in our em-
pirical study.

RQ2 Using CoCo, is it possible to build better predictors of code under-
standability than using only traditional source code measures?

To answer both Research Questions, we reuse the data collected by Munoz
Barén et al. from several papers reporting the results of experiments involv-
ing the evaluation of different aspects of code understandability.

The remainder of this paper is organized as follows. Section 2 provides
some background on code understandability and its measurement. Section 3
reviews the source code measures we use in our empirical study and specifi-
cally CoCo, which is the most recent one, along with some of its precursors.
The empirical study is described in Section 4 and its results are illustrated
in Section 5. In Section 6 we answer the Research Questions. The threats to
the validity of the empirical study are discussed in Section 7. Section 8 illus-
trates the conclusions and outlines future work. Appendix A and Appendix
B provide further details about the building of prediction models and the
evaluation of our results.

2. Source Code Understandability

Software maintenance is responsible for the majority of software costs
(60% on average, according to Glass [14]). The unfamiliarity of maintainers
with the software code they need to maintain is one of the main reasons why
they must spend a disproportionate part of their time understanding code [1].
So, it is hardly surprising that software maintainability and understandability
have been widely studied and measures for them have been proposed.

Qualities like maintainability or understandability are so-called “exter-
nal” software attributes [15], since they depend on the knowledge of both
the software code at hand and its relationships with its “environment,” i.e.,
how and by whom it is maintained or understood. For instance, maintaining
or understanding a piece of software code is generally less effort-consuming
for the developer that originally wrote it than for other developers.

In this paper, we focus on understandability, whose measures play the role
of dependent variables in our empirical study. These measures may quantify
different aspects of understandability. For instance, a measure may be related

4

to the effort needed to understand some software code, while another may
address the depth with which that software code was understood. Thus,
software understandability has been quantified in a variety of ways in the
literature.

Here, we summarize the ways in which understandability is measured in
the primary studies that we use in our empirical analysis, i.e., the under-
standability aspects that were taken into account. We review these studies
in more detail in Section 4.1. Each of these ways corresponds to a different
aspect of understandability.

— Time. A first typical understandability measure is the time taken to
carry out some comprehension task on some software code. This mea-
sure was used in all of the primary studies we considered except [16, 17].

— Correctness. Correctness is usually defined operationally. Specifically,
some tasks that require understanding a specific portion of software
code are defined first, and the degree of success in performing these
tasks is taken as an understandability measure. This practice is widely
adopted [18, 19, 20, 21, 22]. However, different authors carried out
different experiments involving different tasks, hence the is no unique
definition of correctness. As an example, correctness can be assessed by
(1) having a maintainer read a piece of code, (2) asking the maintainer
a number of questions on the code, and (3) counting the number of
correct answers.

— Subjective rating. Maintainers can be asked to rate their subjective
perception of how well they understood the given code, typically on an
ordinal scale. This kind of ratings was used in [16, 21, 22].

— Physiological measures. A number of studies [23, 24, 25, 26] investi-
gated the physiological activities occurring in the human body when
understanding software code, involving for instance the brain, heart,
and skin. Physiological measures were also used to quantify under-
standability in one of the primary studies whose data we reuse [27].

The measures used in our empirical study for these four aspects of under-
standability are described in Section 4.1. The details about the definitions
of these measures can be found in the aforementioned papers.

3. Source Code Structural Measures

Many software measures have been defined to capture so-called “internal”
software attributes [15], which are defined as those attributes of an entity
(source code, in our case) that can be measured based only on the knowledge
of the entity. Examples of internal software attributes are size, complexity,
cohesion, and coupling. The measures of internal attributes are especially
useful when they are associated with some process variable of interest (e.g.,
software development cost) or with some external software attribute [15, 28]
(e.g., software understandability).

In our empirical study, we investigate whether a number of source code
measures are correlated with the understandability measures described in
Section 2. Specifically, we considered the following measures.

Logical Lines Of Code The lines of code are the first characteristic of code
that was measured. LOC (or the logical LOC, i.e., LLOC') are so widely
used that performing a study on code measures without considering
LOC (or LLOC) is almost inconceivable.

McCabe’s complexity McCC was originally proposed to identify software
modules that are difficult to test or maintain, by counting the indepen-
dent paths in the control flow graph of code. It has been used exten-
sively as an indicator of difficult understandability and maintainability.
In the introduction of the document that proposed “Cognitive Com-
plexity” [7], McCC is depicted as a measure that is inadequate to rep-
resent code understandability, while “Cognitive Complexity” addresses
the inadequacies of McCabe’s complexity. It is therefore interesting
to evaluate to what extent (if at all) CoCo achieves the purpose of
successfully identifying the code that is hard to understand.

Nesting Level Else-If Nesting Level Else-If (NLE) measures the depth of
the maximum embeddedness of a method’s conditional, iteration, and
exception handling block scopes, whereas in the if-else-if construct only
the first if instruction is considered. Deep nesting of control structures,
hence a high value of NLE, is expected to make code harder to under-
stand.

As we show in Section 3.1, CoCo accounts for both the decision points (which
are the basic elements for measuring McCC') and the nesting level (which is
measured by NLE). Hence, it is reasonable to expect that CoCo is able

6

to identify unreadable code more effectively than each of McCC and NLE.
However, it is not clear whether McCC and NLE together may achieve better
results, or if McCC, NLE, and CoCo together may be even more accurate at
discovering unreadable code. Our study provides some evidence.

Several software measures were proposed long ago and have been widely
used (with varying levels of success) to identify hard to understand code. It
is thus interesting to verify also whether CoCo provides better performance
with respect to those metrics. We considered the following ones.

HVOL Halstead identified measurable properties of software in analogy
with the measurable properties of matter [6]. Halstead Volume (HVOL)
is computed as follows:

HVOL = N % loga(n) (1)

where N = Ny + Ns is the “program length,” Nj is the total number of
operators, N, is total number of operands; n = 1 + 1 is the “program
vocabulary,” n; is the number of distinct operators and 7, is the number
of distinct operands. According to Fitzsimmons and Love, “For each of
the N elements of a program, logs n bits must be specified to choose one
of the operators or operands for that element. Thus HVOL measures
the number of bits required to specify a program.” [29]

HCPL Halstead Calculated Program Length (HCPL) is computed as fol-
lows:

HCPL = my % loga(11) + 12 * loga(1)2) (2)

Maintainability Index The Maintainability Index, whose original defini-
tion by Coleman et al. [30] was then simplified by Welker et al., [31],
is computed by the following formula:

MI =171 = 5.2 % In(HVOL) — 0.23 % (McCC) — 16.2 % In(LLOC) (3)

The usage of the measures described above for maintainability evaluation
was evaluated by several authors, and some of these measures were considered
inappropriate (see for instance the discussion by Ostberg and Wagner [32]).
Nonetheless, we included these measures in our empirical study as a sort of
benchmark for the evaluation of CoCo.

In summary, we used C'oCo, which is described in more detail in Section
3.1, and the measures listed in Table 1, which are collected by SourceMeter?.

Table 1: The measures from SourceMeter that we used.

Measure name Abbreviation
Halstead Calculated Program Length HCPL
Halstead Volume HVOL
Maintainability Index MI
McCabe’s Cyclomatic Complexity McCC
Nesting Level Else-If NLE

Logical Lines of Code LLOC

We used SourceMeter because it is a fairly consolidated and robust tool,
it supports all of the programming languages involved in our analysis (except
Scala), and it is efficient and well documented.

3.1. The “Cognitive Complexity” Measure

In 2018, SonarSource introduced “Cognitive Complexity” [7] as a new
measure for the understandability of a given piece of code. C'oCo takes into
account several aspects of code. Like McCabe’s complexity, it takes into
account decision points (conditional statements, loops, switch statements,
etc.), but, unlike McCabe’s complexity, gives them a weight equal to their
nesting level plus 1. So, for instance, in the following code fragment

void firstMethod() {
if (conditionl)
for (int i = 0; i < 10; i++)
while (condition2) { ... }
+

the if statement at nesting level 0 has weight 1, the for statement at nesting
level 1 has weight 2, and the while statement at nesting level 2 has weight
3, thus CoCo =142+ 3 = 6. The same code has McCC = 4 (3 decision
points+1).

Consider instead the following code fragment, in which the three control
structures are not nested.

thttps:/ /www.sourcemeter.com/

void secondMethod() {

if (conditionl) { ... }
for (int i = 0; i < 10; i++) { ... }
while (condition2) { ... }

b

It has CoCo = 3, because all the three control instructions are at nesting
level 0 and have weight 1; its McCabe complexity is still McCC = 4. It
is thus apparent that nested structures increase CoCo, while they have no
effect on McCC.

Boolean predicates are also taken into account. Specifically, a Boolean
predicate contributes to CoCo depending on the number of its sub-sequences
of logical operators. For instance, consider the following code fragment,
where a, b, c, d, e, f are Boolean variables:

void thirdMethod() {

if (@& b&kc |l dlle&f){...7%
}

Predicate a && b && c || d || e && f contains three sub-sequences
with the same logical operators, i.e., a && b && c, ... || d || e, and

. && £, so it adds 3 to the value of CoCo.

Other aspects of code contribute to incrementing CoCo, but they are
much less frequent than those described above. For a complete description
of CoCo, see the definition [7].

As a sort of validation of the proposed measure, Campbell performed
an investigation of the developers’ reaction to the introduction of CoCo in
the measurement and analysis tool SonarCloud. In an analysis of 22 open-
source projects, they assessed whether a development team “accepted” the
measure, based on whether they fixed those code areas indicated by the
tool as characterized by high CoCo. Around 77% of developers expressed
acceptance of the measure [33].

The next section describes the first study that provided a validation of
CoCo.

3.2. Empirical Validation of CoCo

An objective validation of the CoCo measure was performed by Munoz
Barén et al. [13]. In the first phase of their work, they conducted a literature

search to find datasets from published studies that measured the under-
standability of source code from the perspective of human developers. They
selected the papers with publicly available datasets, and collected the data
concerning various aspects of understandability, as well as the code snippets
used in the experiments carried in the selected papers. They proceeded to
measure CoCo using SonarQube? to obtain the CoCo value for each source
code snippet. This work resulted in a dataset, whose main characteristics are
described in Tables 2 and 3, where: Did is the dataset identifier, SNo indi-
cates the number of code snippets involved in the empirical study, while PNo
and Demographic are the number and the type of participants, and Task indi-
cates the activity through which understandability was assessed. The dataset
was published in the supplemental material [34] of the published study [13].

Table 2: Characteristics of the datasets retrieved from relevant studies

Did Ref Language SNo PNo Demographic Task Understandability aspects
1 [18] Java 23 41 Students Calculate output Time, correctness, rating
2 [27] Java 12 28 Students Calculate output Time, physiological
3 [16] Java 100 120 Students Rate snippet Rating
4 [19] C/C++ 20 51 Prof. & Stud. Answer questions Time, correctness
5 [20] Scala 20 38 Students Answer questions Time, correctness
6 [21] Java 50 63 Professionals Rate and answer Time, correctness, rating
7 [35] C# 6 72 Professionals Find bug Time
8 [36] JavaScript 40 220 Professionals Calculate output Time
9 [22] Java 30 104 Students Rate and cloze test Time, correctness, rating

10 [17] C/C++ 126 73 Students Calculate output Time, correctness

Table 3: Characteristics of the datasets retrieved from relevant studies
Cognitive Complexity
Did Mean Med Min Max StDev Understandability measures

1 3.26 3 0 9 243 time (time), correct (correctness), confidence, difficulty (rating)
2 250 2 0 6 1.88 resp_time (time), BA31_ant, BA31_post, BA32 (physiological)

3 134 1 0 10 1.74 perceived. readability (rating)

4 255 2 0 8 2.35 time_ta, time_tb, (time), correct_ta, correct_tb (correctness)

5 255 2 0 7 1.82 time (time), correct (correctness)

6 856 75 0 46 8.53 tnpu (time), au (correctness), pbu (rating)

7217 2 1 4 1.33 first_impression, thinking time, duration (time)

8 6.50 4 1 14 3.6 correct_and_wrong (time)

9 8.00 4 0 16 6.81 tr, ta (time), acc (correctness), r1, r2 (rating)

10 1.17 1 0 8 1.4 duration, (time), correct (correctness)

By analyzing the dataset, Munoz Barén et al. evaluated the association
of CoCo with the measures of the various aspects of understandability: the

https://www.sonarqube.org/

10

time taken to understand a code snippet, the percentage of correctly an-
swered comprehension questions on a code snippet, subjective ratings of a
comprehension task, and physiological measures on the subjects engaged in
understanding code.

Munoz Barén et al. reported the correlation between CoCo and each of
the mentioned aspects of understandability for each of the 10 experiments
reported in the selected papers, as well as a summary obtained via meta-
analysis. Munoz Barén et al. concluded that CoCo correlates with the time
it takes a developer to understand source code, with a combination of time
and correctness, and with subjective ratings of understandability.

The work by Munoz Barén et al. has two relevant merits. It is the first
attempt at deriving an objective evaluation of the capability of CoCo in in-
dicating practically relevant aspects of understandability. It also provided
a valuable dataset that is available to researchers that would like to extend
the research on CoCo. However, the work by Munoz Barén et al. does not
address the base claim underlying the introduction of CoCo. In fact, CoCo
was proposed with the aim “to remedy Cyclomatic Complexity’s shortcom-
ings and produce a measurement that more accurately reflects the relative
difficulty of understanding, and therefore of maintaining methods, classes,
and applications” [7]. Therefore, before embracing the use of CoCo, we need
to understand whether CoCo is really correlated with understandability bet-
ter than the measures that were proposed in the past for the same purpose
(e.g., those listed in Table 1). This kind of verification was not undertaken
by Munoz Barén et al., hence we decided to carry out this investigation.

3.3. Related Work on Nesting Measures

The issue of the impact of nesting on source code complexity was ad-
dressed in previous software measurement literature especially with the goal
of overcoming some limitations of McCC. For instance, methods firstMethod
and secondMethod in Section 3.1 above have the same McCC, but from an in-
tuitive point of view, the first routine should be considered more “complex,”
i.e., more difficult to write or understand, than the second one.

A number of nesting-aware measures were proposed in the literature. We
now concisely review a few of them. Howatt and Baker [37] provided a for-
mal definition of nesting that can be applied to structured and unstructured
programming. This formal definition was used as a framework for several
nesting-based measures, which we now list.

11

— Piwowarski [38] introduced a complexity measure N as the sum of two
terms. The first one is a modified version of McCC, in which all switch
statements, regardless of the number of their branches, are counted as
if they were if statements. The second one is the sum of the nesting
levels at which predicates in the control structures are found. For
instance, firstMethod in Section 3.1 has N = 6, while secondMethod
has N = 3.

— Dunsmore and Gannon [39] defined a measure based on the average
control flow nesting of a program.

— Harrison and Magel introduced two measures for structured program-
ming. The “Scope Number” [40] takes into account the nesting level
of each control structure. The “Scope Ratio” [41] is the ratio of the
number of nodes in a control flow graph to the “Scope Number.”

— Chen [42] defines an entropy-based complexity measure that also ac-
counts for nesting of predicate nodes.

Also, Li [43] introduces a measure similar to CoCo, in which each control
structure is weighted according to its nesting level. Binary logical opera-
tors, instead, are not weighted according to the nesting level of the control
structure they belong to.

4. The Empirical Study

Our empirical study is based on the same primary studies as the empir-
ical study by Munoz Barén et al. We concisely review them in Section 4.1.
We describe how we obtained the data about these primary studies by com-
plementing the data used by Munoz Barén et al. in Section 4.2. The data
analysis procedure we used is described in Section 4.3.

4.1. Primary Studies on Code Understandability

Dolado et al. [19] investigated whether side effects due to auto-increments
(e.g., “i++” “++i”) and auto-decrements (e.g., “i-=" “~-i”) have an impact
on program comprehension. They (1) built pairs of equivalent C code frag-
ments with and without auto-increments and auto-decrements; (2) asked the
same set of comprehension questions for both members of each pair; (3) mea-
sured the number of correct answers and the time spent in answering. The

12

results showed that these side effects significantly reduced performance in
comprehension-related tasks.

Buse and Weimer [16] used a set of characteristics of Java code (e.g., the
number of assignments, the number of keywords, the number of parentheses)
to build readability classifiers. They checked whether the classifiers were sta-
tistically related with a two-valued (“more readable,” “less readable”) read-
ability rating. They carried out an empirical study with 120 participants,
each of whom evaluated the readability of 100 Java snippets, each of which
consisted of precisely three consecutive simple statements. Readability eval-
uation was done by the participants on a 5-value ordinal readability scale,
which was later split into the two-valued “more readable,” “less readable”
scale. The results found that some of the classifiers achieve fairly good values
of F-measure [44] (around 0.8). The classifiers also appeared to be related
with code defects, code churn, and self-reported stability.

Borstler and Paech [22] examined the role of method chains and code
comments in software readability and comprehension through an empirical
study that included 104 students with different degrees of programming expe-
rience. Readability and comprehension were captured by means of perceived
readability, reading time, and performance on a simple cloze test [45]. The
results show that code comments affect perceived readability, but not com-
prehension as measured by the accuracy of answers to cloze questions. There
does not seem to be any impact of the presence of method chains on per-
ceived readability or comprehension, contrary to conventional wisdom. Also,
perceived readability does not appear to be related to comprehension.

Ajami et al. [36] conducted an experiment involving 220 professional de-
velopers to investigate how some syntactical code structures influence code
comprehension in terms of time and correctness. Among other results, they
found that some programming control structures are harder than others,
e.g., for loops are more difficult than if statements, loops counting down
are slightly harder to understand than loops counting up.

Scalabrino et al. [21] studied the existence of statistical associations be-
tween 121 code measures and perceived and actual code understandability in
terms of time, correctness, and subjective rating, but none of these associa-
tions was at a medium or strong level. Using combinations of some of these
measures improves the results, but not to the point that they are practically
usable.

Gopstein et al. [17] studied code patterns and identified atoms of confu-
sion that usually confuse developers and might lead them to make mistakes.

13

They empirically showed that these patterns can produce a significant rate
of misunderstanding against code without these patterns. Removing these
patterns improved substantially the developers’ ability to grasp the code.

Hofmeister et al. [35] investigated the effects of identifiers naming styles
(letters, abbreviations, words) on program comprehension. They conducted
an empirical study with 72 professional C# developers and measured the
time needed to find defects in code snippets. They found that using full
words as identifiers (e.g., a variable spelled out as first) led to 19%-time
improvement to find defects compared to using abbreviations (e.g., a variable
frs) or single letters (e.g., a variable g). No statistically significant time
difference was found between the use of abbreviations and single letters.

Salvaneschi et al. [20] performed an empirical study that showed that Re-
active Programming code was more understandable than Object-Oriented in
terms of time (for performing tasks on the code) and correctness (in answer-
ing questions about the code).

Siegmund et al.[18] conducted a controlled experiment on 41 participants
to observe what happens inside the brain during program comprehension. Us-
ing functional Magnetic Resonance Imaging (fMRI), they identified the brain
areas that are activated during the cognitive process needed for program com-
prehension (specifically, locating syntax errors in short code snippets). They
observed the activation of brain regions that are responsible functions related
to bottom-up program comprehension, i.e., working memory, attention, and
language processing.

Peitek et al. [27] used fMRI scanner to measure program comprehen-
sion. They observed 28 participants who had the task of understanding 12
source code snippets during the fMRI. One of the Research Questions inves-
tigated whether source code complexity was related to concentration levels
during bottom-up program comprehension. Specifically, the code measures
chosen were: LOC, McCC, Halstead’s “complexity” (probably Halstead Dif-
ficulty), and DepDegree, defined in [46] as the number of dependency edges in
the definition-use graph and believed to be related to readability and under-
standability. The data analysis checked whether these measures were linearly
correlated with the average value across the participants of some physiolog-
ical variables, so the dataset used was composed of 12 datapoints, one for
each snippet. Reasonably high linear correlations were found with Halstead’s
“complexity” and DepDegree, but not with LOC or McCC. Overall, it ap-
pears that this avenue of research has potential for further developments.

It is worth noticing that, like Munoz Barén et al., we used the datasets of

14

each of these primary studies, regardless of the fact that the data associated
with a study had been fully used in the corresponding publication. For
instance, Gopstein et al. reported only about correctness results in their
paper [17], but Munoz Barén et al. were able to retrieve also timing data
concerning the experiment by Gopstein et al. [34].

4.2. The Dataset

The data we analyzed were obtained as follows.

— We first retrieved the supplemental material of the paper by Munoz
Barén et al. [34] and we used the dataset.xlsx spreadsheet where
CoCo measures and understandability evaluations were recorded.

— We then retrieved the source code used in the studies selected by Munoz
Baron et al., whose data populate the dataset.x1sx file. In doing this,
we used the links to the code provided in the supplemental material
provided by Munoz Barén et al.

— Finally, we used SourceMeter on the retrieved source code to obtain the
code measures listed in Table 1, which we added to the dataset.xlsx
file. The descriptive statistics of code measures are in Table 4.

Table 4: Descriptive statistics of code measures
Measure Mean St.dev. Median Min Max available
for datasets

CoCo 334 494 2 0 46 all
LLOC 13 12 9 3 66 all
McCC 3.08 262 2 1 19 all
NLE 104 111 10 6 all
MI 60 51 80 0 136 12,369
HVOL 473 474 273 24 2613 1,2,3,6,9
HCPL 158 118 117 18 633 12369

Our resulting dataset therefore contains, for each empirical study selected
by Munoz Barén et al., the value of the understandability aspects considered
(time, correctness, rating, physiological) and CoCo along with the more tra-
ditional source code measures listed in Table 1 (or a subset thereof, in some
cases).

Note that not all the considered measures were available for all datasets.
In fact, the support provided by SourceMeter for the C family languages

15

and for Javascript is not complete: MI, HVOL, and HCPL are not mea-
sured. Therefore such measures were neither available for projects 4, 7 and
10 (which are written in C/C++ and C#) nor for project 8 (which is writ-
ten in Javascript). In addition, SourceMeter does not support the Scala
language at all. Therefore, we manually extracted some measures (namely
LLOC, McCC and NLE), but neither Halstead measures nor the maintain-
ability index for project 8, which is written in Scala.

Column “available for datasets” of Table 4 indicates the datasets for which
each measure was available.

4.3. Method

To address the research questions, we built models that predict under-
standability aspects based on source code measures. In an exploratory phase,
we tried building models using a few machine learning techniques, namely
Support Vector Regression (SVR), Neural Networks (NN), and Random
Forests (RF). In the great majority of cases, SVR provided more accurate
predictions than the other techniques, so we adopted SVR as the technique
to build models.

The detailes concerning the construction of SVR models are given in Ap-
pendix A.

To evaluate the performance of models, since the datasets are not very
large (the biggest one contains 126 data points, as shown in Table 2), we opted
for leave-one-out cross validation: the understandability of every snippet was
evaluated via a model built using all the remaining snippets.

The accuracy of the obtained predictions was evaluated via MAR, which
is an unbiased indicator, recommended by several authors (e.g., [47]). Given
a set of observations Y, the residual (or error) of the i prediction 9; is v; — s,
where y; is the i’ observation (i.e., the actual value of the considered under-
standability factor). The MAR is then computed as the mean of absolute
residuals, as follows:

1 & R
MAR = EZ lyi — Uil
=1

Unfortunately, the MAR obtained for different datasets and different
understandability factors are not comparable, because each factor in each
dataset represents a different concept. This is evident when considering fac-
tor time in the dataset having Did=1 and factor time_ta in the dataset
having Did=2. Even though in both cases the measured aspect is the time

16

taken to complete a task concerning code understanding, the differences of
tasks, conditions, and performers make the measures not directly compara-
ble. In fact, time in dataset 1 is in the [19.4, 360.2] range, with mean 90.5
and median 77.5, while time_ta in dataset 2 is in the [15.2, 54.7] range, with
mean 29.4 and median 25.5.

This is the same situation you face when comparing two cars, that you
test by several short trips entirely in town and several longer trips mainly
on highway. If you need to evaluate a model that predicts fuel consumption,
when comparing predictions, you have to take into account that the in-town
trip is shorter and slower, while the country trip is longer and faster. Dividing
all measures by the mean consumption observed for the corresponding type
of trip is a way to normalize measures and make them comparable.

We make a similar normalization: to get error indicators that are com-
parable across datasets and understandability factors, we normalize them by
dividing errors by the mean actual value of the measured aspect; i.e., we
use the mean actual value as the unit of measure of each understandability
aspect. Specifically, we proceed as follows: given a set of observations Y,

The residual of the " prediction g; is y; — ¥;, where y; is the i** obser-
vation.

The mean actual value 4 is y = %2?21 Y;, where n is the number of
observations in Y.

We consider the ratio rr between absolute residuals and the mean of
actuals: rr; = |y1y lyi—dl

Then, we compute MR, the mean of rr, as follows:

ZTTz— Z|yl yz :112’:% Az —MA;R

=1

In this way, we get MR values that are comparable across datasets. For
instance, the MAR obtained for dataset Did=1 when predicting time is 28.78,
and the MAR obtained for dataset Did=2 when predicting time_ta is 7.73.
Although 7.73 <« 28.78, we cannot state that the former prediction is much
more accurate than the latter, since time has a different meaning (and is
obtained under different conditions) with respect to time ta. By considering
that the mean time in dataset Did=1 is 90.5 and the mean time _ta in dataset

17

Did=2 is 29.4, we get MR=0.31 for time and MR=0.26 for time ta: the
prediction of time_ta is more accurate than the prediction of time, but to
a much lesser extent than indicated by MAR.

Unlike MMRE;, i.e., the Mean Magniture of Relative Errors, defined as
% Yo %, MR is not biased, since in the computation of MR the absolute
residuals of a given dataset are all divided by the same number (the mean
value of the considered measure in that dataset).

Now, we have to consider that our data tend to be skewed, since the
experiments that produced the data involved mainly small and simple pieces
of code. Therefore, to provide a more adequate evaluation of the situation,
we also computed indicators that are less sensitive to skewness than MAR
and MR. Specifically we computed the median of absolute residuals (MdAR)
and the ratio MdR between MdAR and the median absolute value of the
considered understandability factor. The evaluations based on MdAR and
MdR are reported in Appendix B. They confirm the evaluations based on
MAR and MR.

We must also consider that, when considering a specific understandabil-
ity factor and a specific dataset, we can find that two measures (or sets of
measures) obtain very close MAR values. In those cases, it is critical to eval-
uate to what extent a prediction is better than the other one. To perform
this type of evaluation, we also computed the effect size on absolute residuals.
The effect size was computed via Hedges’s g, i.e., via Cohen’s d statistics [48]
with Hedges correction [49].

To answer RQ1, we built and compared models using one independent
variable, and compared the models based on CoCo with the models based
on traditional code measures.

To answer RQ2, we built models using as many independent variables as
possible without overfitting, and compared the models that use CoCo as an
independent variables with the models that do not, i.e., those based only on
traditional code measure. In this way we evaluated whether using C'oCo im-
proves the predictability of understandability aspects.

5. Results

5.1. Results Concerning RQ1

In this section, we report about the models based on a single measure,
which we built to answer research question RQ1.

18

5.1.1. Results Concerning the Time Required to Understand Code

We obtained SVR models of the time required to understand code for all
the datasets, and for all the available code measures, with one exception: for
dataset 4 (task a) no model using NLE could be found.

Table 5 illustrates the performance values of the models for predicting
the time required to understand software code. Column Did provides the
identifier of the dataset and the name of the understandability factor in
parentheses, when more than one factor was evaluated from the same dataset.
The other columns provide MAR and MR (as a percentage) for each of the
considered measures.

“NoData” indicates that the software measure was not available, so no
model based on it could be built. “NoModel,” instead, denotes that no
model could be built, even though the data for the corresponding measure
were available. This is the case for measure NLE: no model based on NLE
could be found for datasets 4(ta), 5 and 7 because NLE is very close to being
a constant in these datasets.

Table 5: Accuracy of models based on source code measures, when predicting the time

needed to understand code, evaluated via MAR and MR.
Did CoCo McCC LLOC NLE MI HVOL HCPL

1 28.78 (32%) 37.33 (41%) 38.67 (43%) 42.00 (46%) 43.15 (43%) 30.76 (34%) 45.80 (51%)
2 773 (26%) 8.64 (20%) 6.32 (22%) 9.93 (34%) T.74 (26%) 6.52 (22%) 4.99 (17%)
4 (ta) 17.71 (32%) 15.17 (28%) 25.69 (47% NoModel NoData NoData NoData
4 (tb) 7.02 (13%) 11.95 (22%) 35.15 (66%) 10.34 (19%) NoData NoData NoData
5 35.92 (26%) 43.87 (32%) 36.05 (26% NoModel NoData NoData NoData
6 44.72 (50%) 57.62 (65%) 45.73 (52%) 45.20 (51%) 48.33 (55%) 49.11 (55%) 47.80 (54%)

)
)
)
)
)
7 (first imp.) 15.39 (16%) 16.13
7 (thinking) 8.51 (27%)
)
)
)
)
)

))

(29%) (22%)

(28%) (47%)

(22%) (66%)

(32%) (26%)

(65%) (52%)

(17%) 15.69 (16%) NoModel NoData NoData NoData
9.01 (28%) 8.73 (28%) NoModel NoData NoData NoData

(20%) (17%)

(21%) (23%)

(21%) (18%)

(17%) (21%)

(33%) (32%)

7 (duration) 25.08 (18%) 27.06 (20%) 24.20 (17% NoModel NoData NoData NoData
8 58.00 (27%) 46.26 (21%) 49.43 (23%) 54.58 (25%) NoData NoData NoData
9 (tr) 2477 (21%) 24.67 (21%) 20.85 (18%) 23.70 (20%) 19.23 (16%) 24.40 (21%) 23.64 (20%)
9 (ta) 17.00 (18%) 15.89 (17%) 19.23 (21%) 15.88 (17%) 21.70 (23%) 22.40 (24%) 21.69 (23%)
10 7.10 (34%) 6.88 (33%) 6.67 (32%) 6.68 (32%) NoData NoData NoData

Table 5 shows that the ability of code measure in predicting the time
needed to understand code is not very good, in general. For instance, for
dataset 1 we have that even the best predictor has MR=32%, indicating that
the average absolute error is close to one third of the average time actually
needed to understand the code.

Table 5 shows that there is no measure that supports the best predictions
across the datasets. It is also apparent that the various measures achieve
similar accuracy, except in rare cases (e.g., LLOC does not work well with

19

dataset 4).

To evaluate to what extent a model is more accurate than others, we
computed the effect size using Hedges’ g [50], as described in Section 4.3.
Table 6 shows the results we obtained. Every cell of the table represents
a comparison with CoCo absolute residuals: the minus sign indicates that
CoCo performed better, while the plus sign reports that CoCo performs
worse than the concerned measure. Gray cells indicate that the measure was
not available for the considered dataset, hence no comparison was possible.

To make the table easier to read, we report the interpretation suggested
by Cohen [48], rather than the sheer value of g:

o |g| < 0.2 indicates a negligible effect size: the cell is empty.

o 0.2 < |g| < 0.5 indicates a small effect size: the cell contains “*.

o 0.5 <|g| < 0.8 indicates a medium effect size: the cell contains **’.

o 0.8 < |g| indicates a large effect size: the cell contains “***.

Table 6: Effect size for time models, computed via Hedges’ g.

Did McCC LLOC NLE MI HVOL HCPL
1 % % 3 %
2 +* _k +* _|_>k>(<
4 (ta) T

4 (tb) % gk x

5 _k

6 X

7 (first imp.)
7 (thinking)
7 (duration)

8 +*

9 (tr) +*

9 (ta) * * *
10

In practice, Table 6 confirms that no variable appears consistently better
than the others in predicting the time needed to understand code. In ad-
dition, the effect size is generally negligible or small. Only HCPL achieves
a medium positive effect size over CoCo in dataset 2, and LLOC shows a
large negative effect size with respect to CoCo in datset 4 (task b). It is
interesting to note that for two datasets (7 and 10) CoCo appears to provide

20

a performance level that is only (at best) marginally different from the other
code measures.

Finally, we can note that in only one case out of 13, namely, for datset
4 and task b, CoCo outperforms all the other available code measures. In
the remaining 12 cases it is always possible to use a model that does not use
CoCo and performs not worse than the model using CoCo.

5.1.2. Results Concerning Understandability Ratings

We obtained models of the understandability rating for datasets 1, 3, 6,
and 9, that is, for all the datasets that provide understandability rating data.

The MAR and MR values for each dataset and each variable are given
in Table 7. Also in this case, there is no measure that supports the best
predictions across all datasets, although HCPL always gets close to best
performance. In general, the achieved accuracy is better than for the time
taken to understand code (Table 5).

Table 7: Accuracy of models based on source code measures, when predicting understand-

ability rating, evaluated via MAR and MR.
Did CoCo McCC LLOC NLE MI HVOL HCPL

1 (confidence) 0.44 (14%) 0.46 (15%) 0.34 (11%) 0.44 (14%) 0.43 (14%) 0.41 (14%) 0.34 (11%)
1 (difficulty) 045 (16%) 042 (15%) 0.38 (13%) 0.41 (14%) 0.53 (18%) 0.37 (13%) 0.34 (12%)
3 0.50 (15%) 0.55 (17%) 0.49 (15%) 0.51 (16%) 0.50 (15%) 0.41 (13%) 0.42 (13%)
6 0.15 (22%) 0.14 (21%) 0.15 (22%) 0.16 (22%) 0.17 (24%) 0.17 (25%) 0.16 (23%)
9 (r1) 026 (9%) 0.24 (9%) 0.24 (9%) 0.24 (9%) 0.25 (9%) 0.26 (10%) 0.26 (9%)
9 (r2) 0.28 (11%) 0.28 (11%) 0.28 (11%) 0.29 (11%) 0.28 (11%) 0.29 (11%) 0.30 (12%)

Table 8 shows the results obtained from the evaluation of the effect size. It
is easy to see that CoCo performs approximately as accurately as traditional
measures: in 31 comparisons out of 36, the effect size is negligible, and in
the remaining 5 cases it is small.

Table 8: Effect size for understandability rating models.

Did McCC LLOC NLE MI HVOL HCPL
1 (confidence) +* +*
1 (difficulty) +*
3 +* +*
6

9 (r1)

9 (r2)

21

5.1.3. Results Concerning Correctness of Code Understanding

We obtained models of the correctness of understanding for all the datasets
that provide understanding correctness data, with one exception: for dataset
4 (task a) no model using NLE could be found.

The MAR values for each dataset and each variable are given in Table 9.

Table 9: Accuracy of models based on source code measures, when predicting understand-

ability correctness, evaluated via MAR and MR.

Did CoCo McCC LLOC NLE MI HVOL HCPL

1 0.25 (15%) 0.27 (17%) 020 (13%) 026 (16%) 0.22 (14%) 0.22 (L4%) 0.23 (14%)
4 (ta) 0.33 (45%) 0.31 (42%) 0.18 (25%) NoModel NoData NoData NoData
4 (tb) 0.19 (34%) 0.18 (33%) 0.22 (39%) 0.19 (34%) NoData NoData NoData
5 0.12 (16%) 0.12 (17%) 0 14 (19%) NoModel NoData NoData NoData
6 0.14 (30%) 0.14 (31%) 0.14 (32%) 0.13 (30%) 0.15 (34%) 015 (34%) 015 (33%)
9 0.07 (15%) 0.07 (16%) 0 07 (15%) 0.07 (17%) 0.06 (15%) 0.07 (16%) 0.06 (15%)
10 0.20 (28%) 0.20 (28%) 9 (27%) 0.20 (28%) NoData NoData NoData

As in the former cases, no measure provides the most accurate predic-
tions across the datasets. Noticeably, CoCo never achieves the best results,
although it gets close to the best, like several other measures. In fact, all
measures achieve very similar accuracy.

Table 10 shows the results obtained from the evaluation of the effect size.
It is easy to see that C'oCo performs approximately as traditional measures
in all but two cases.

Table 10: Effect size for understanding correctness models.
Did McCC LLOC NLE MI HVOL HCPL

1 +*
4 (ta) R
4 (tb)

5

6

9

10

5.1.4. Results Concerning Physiological Aspects of Code Understanding
Only dataset 2 provides data concerning the physiological aspects of code
understanding. It supported the derivation of models for all the understand-
ability aspects it covers.
The MAR and MR values for each model are given in Table 11. Also in
this case there is no measure that always achieves the best accuracy.

22

Table 11: Accuracy of models based on source code measures, when predicting Physiolog-
ical Aspects of understandability, evaluated via MAR and MR.

Did CoCo McCC LLOC NLE MI HVOL HCPL

2 (BA3lant) 0.13 (21%) 0.14 (22%) 0.13 (22%) 0.14 (23%) 0.14 (23%) 0.12 (20%) 0.07 (11%)
2 (BA3lpost) 0.13 (21%) 0.16 (25%) 0.17 (27%) 0.13 (20%) 0.16 (26%) 0.20 (31%) 0.20 (31%)
2 (BA32) 0.19 (26%) 0.20 (27%) 0.17 (22%) 0.19 (26%) 0.19 (25%) 0.17 (23%) 0.12 (17%)

Table 12 shows the results obtained from the evaluation of the effect size.
With respect to the previous cases, the difference in accuracy appears larger,
with two medium and one large effect sizes. However, in all cases there is
at least one traditional code measure whose performance is not appreciably
different form CoCo’s.

Table 12: Effect size for models of physiological aspects of understandability.

Did McCC LLOC NLE MI HVOL HCPL
2 (BA3lant) AR
2 (BA3lpost) —* —* —H R ok
2 (BA32) +* X

5.2. Results Concerning RQ2

In this section, we report about the models based on multiple measures,
which we built to answer research question RQ2.

To avoid overfitting, we used a maximum number of measures equal to
| i5), where n is the number of data points in the considered dataset. For
instance, dataset 1 includes 23 data points, hence we built models with no
more than two independent variables for dataset 1.

We built 1) models using all the available measures (including CoCo) and
2) models using only traditional measures. The idea is that if models that
use C'oCo do not get appreciably better perfomance than models that do not
use CoCo, the contribution of CoCo to models’ performances is negligible.

Table 13 describes the best multivariate models that we found for each
dataset and understandability aspect. In general, the best model found for
a dataset and understandability aspect uses only a subset of the measures;
in some cases, the best model happens to use just one measure. For some
dataset and aspect, the best models both with and without CoCo were based
on a single measure: these models are not reported here, since they were
already shown in Section 5.1. For each dataset and understandability aspect,
Table 13 reports

23

The variables that support the best model using CoCo;

The MAR and MR of the best model that uses CoCo;

The variables that support the best model that does not use CoCo;

— The MAR and MR of the best model that does not use CoCo.

Table 13: Accuracy of best models using multiple variables, evaluated via MAR and MR.

aspect Did variables MAR (MR) variables MAR (MR)
6 CoCo,McCC,LLOC 40 (46%) McCC,NLE 41 (47%)
timing 9(tr) CoCo,MI 22 (19%) MI 19 (16%)
9(ta) CoCoMcCC 16 (17%) McCC,NLE 16 (17%)
10 CoCoMcCC,LLOC 6.4 (30%) LLOC,NLEMI 6.6 (31%)
3 CoCo,LLOC,MI 0.37 (11%) McCC,LLOC,NLE,MLHCPL 0.37 (11%)
rating 6 CoCoMcCC,HVOL,HCPL 0.15 (21%) McCC 0.14 (21%)
9(rl) CoCoMI 0.24 (9%) McCC,HCPL 0.22 (8%)
6 CoCoMcCCNLEHVOL 0.13 (20%) McCC,NLEHVOL 0.13 (29%)
correct. 9 CoCo,HCPL 0.05 (12%) NLE,HVOL 0.05 (12%)
10 CoCo,NLEMI 0.19 (26%) LLOC 0.19 (27%)

Table 13 shows that for each dataset and understandability aspect, the
best models achieve extremely similar accuracy. The effect size indicates
negligible accuracy differences for all dataset and aspect pairs.

6. Answers to Research Questions

6.1. Answer to Research Question RQ1

RQ1 (“How well is CoCo correlated with software understandability, also
in comparison with ‘traditional’ measures?”) actually involves two issues:

RQ1.1 How well is CoCo correlated with software understandability in ab-
solute terms, i.e., does CoCo provide reliable indications concerning
understandability?

RQ1.2 Is CoCo any better at predicting code understandability than other
measures?

To answer RQ1.1, we can consider the models described in Section 5.1
and for each one compute rr, the ratio between its absolute residuals and the
mean of actuals. Figure 1 shows the boxplots of rr. The yellow diamonds

24

Figure 1: Boxplots of MR (the ratio between absolute residuals and mean actuals), for all
the models using CoCo as the independent variable (outliers not shown).

BAZlant —| o e e SUTM
BA3Z —| —e—r————- - - -~
2(bA31post o | i=--- _— -
ar2) — =
g[r']] —| - = = = i i K+ R]
6 o bk---- L -t T — s
3 - == = = R]
1 (difficulty) — e e
1iconfidence) — p-c—=i
10 — e — - ------------——— -~
g — Tf e s PP PR
6 — - = e~ - -
8 - [-----+- - — -~ =~ = === ======
4(th) — -~
@) o | e oo
10 — == = et
g[ta] —_ === L i | L3 L
atr) — ._—4:':@ —————————
&8 q p----]
7(duration) —| |-G -----------s
F(think) — [e SRR
7(firstimp.) 4 fp--e——p-------=
b = CEREEN = m i - s R
5 4 f-cmbo-----
dith) q p-—=m—m3--b----
4(ta) — R e
2 - R e o o s P
1 " N
I I
[| [I [I I
o oy =+ o @ =) oy -
=} =3 = =] =1 - - -

indicate the mean values, i.e., MR. To keep the figure readable, outliers have
been omitted from the boxplots.

Although it is not easy to set a threshold that partitions “good predic-
tions” and “bad” predictions, it is safe to assume that rr below 10% indicate
reliable results, while rr above 20% indicate not sufficiently reliable ones.
Therefore, we represent these thresholds in Figure 1 as dashed lines.

It can be observed that in 11 cases out of 29 the median is above the 20%
threshold, while in only 6 cases it is below the 10% threshold. In addition,
except for time models 4(tb) and 5, at least 25% of the predictions have
MR greater than 20%. Accordingly, we can conclude that CoCo appears
correlated to understandability aspects, but not so well as to yield reliable
predictions concerning readability aspects.

Let us now address RQ1.2. To this end, we consider both the data given
in Tables 5, 7, 9, and 11 as well as the effect size data given in Tables 6, 8,
10, and 12.

The results reported in the mentioned tables indicate a large variability:

25

no measure seems to perform consistently better than the other ones. In
addition, all measures provide similar performances on most datasets.

The evaluation of the effect size shows that in the vast majority of cases
CoCo provides performances that are extremely close to other measures’. In
the remaining cases, we have that

— In 23 cases out 29 the differences in performance by CoCo and McCC
are negligible. In 4 cases out of 6, CoCo performs slightly better than
McCC (effect size small), while in the remaining two cases McCC per-
forms better (effect size small).

— In 20 cases out 29, the differences in performance by CoCo and LLOC
are negligible. In the remaining 9 cases, CoCo performs better 4 times
(3 times with small and once with large effect size), while in the other
5 cases LLOC performs better (4 times with small and once with large
effect size).

— In 8 cases out 17, the differences in performance by CoCo and HPCL
are negligible. In the remaining 9 cases CoCo performs better 3 times
(2 times with small and once with medium effect size), while in the
6 cases HCPL performs better (3 times with small, two with medium
and once with large effect size).

So, the answer to RQ1.2 is that CoCo appears to provide a level of cor-
relation with understandability aspects that is quite similar to most of the
other measures’. There is no evidence that CoCo can be considered a better
predictor of understandability than other measures. On the contrary, a few
measures that were defined long ago, namely LLOC and Halstead HCPL,
appeared to perform marginally better than CoCo .

6.2. Answer to Research Question RQ2

RQ2 asks “Using CoCo, is it possible to build better predictors of code
understandability than using only traditional source code measures?”

To answer RQ2, we proceeded to search, for each dataset and understand-
ability factor, the best model that does not use CoCo and the best model
that uses CoCo. Then we checked whether using CoCo increases our ability
to predict readability aspects with increased accuracy.

As described in Section 5.2, for eleven datasets and understandability fac-
tors we found multivariate models (see Table 13) with improved performance

26

over the univariate ones (described in Section 5.1). Table 13 shows that mod-
els using CoCo have a level of accuracy that is extremely close to models not
using CoCo. Therefore, the multivariate models do not change the conclu-
sions we reached when considering RQ1.2: using C'oCo, it is possible to build
predictors of code understandability that are neither substantially better nor
substantially worse than predictors that do not use CoCo.

In summary, according to our data, CoCo appears neither better nor
worse than well-established static code measures, with respect to evaluating
code understandability.

6.3. Additional Observations

CoCo, as well as other measures, appear to correlate fairly well with some
understandability factor in some cases. For instance, Table 9 shows that both
CoCo and other measures can predict understanding correctness for datasets
1, 5 and 9, while performances are definitely poor with datasets 4, 6, and 10.

This observed performance variability might be in part due to two reasons.

o In a relatively large number of datasets, measures mildly correlated
to understandability can be used to build fairly acceptable models by
chance every now and then, though in an inconsistent way. The higher
the correlation, the higher the likelihood that these measures can con-
sistently be used for understandability models.

o Given a dataset and an understandability aspect, most measures tend
to achieve similar estimation accuracy. This phenomenon is probably
due to the fact that most code measures appear correlated with each
other [51].

At any rate, these are preliminary explanations that may be further refined
by future studies with a larger number of independent variables and with a
larger number of datasets, which may also provide indications for additional
reasons.

7. Threats to Validity

As already mentioned, we reused the data collected by Munoz Barén
et al. [34]. Therefore, the same threats reported by Munoz Barén et al.
apply [13]. They can be summarized as follows.

27

— In the search for reusable data concerning experiments on code under-
standability, some relevant study may have been missed.

— Some code snippets had to be marginally altered in order to free them of
syntax errors and dependency issues so that CoCo could be calculated
automatically.

— Many of the code snippets featured low values of CoCo.

Concerning our extension of the work by Munoz Barén et al., we also had
to slightly modify the code in order to make it measurable by SourceMeter.
However, just as Munoz Barén et al. did, we took care not to alter the code
properties that were going to be measured.

The estimation of software understandability requires that models be
built [28], but building the most accurate understandability models is not
the goal of our investigation, nor was it of the previous study by Munoz
Barén et al. [13], nor of the claim about the relationship between CoCo and
understandability made in [7]. So, it is possible that some other model build-
ing technique yields models that are more accurate than those illustrated in
this paper; nonetheless, it is quite unlikely that in such models the considered
code measures behave in a significantly different way than described here.

Both of our RQs—as well as the goal of the investigation in [13]—are
about finding correlations between some source code measures (described in
Section 3) and one or more understandability measures. Since understand-
ability is an external software attribute, it must be borne in mind that it is
unlikely that models based on code measures alone can be practically used
for understandability prediction/estimation purposes, as they do not use any
information about how the software code is dealt with by its “environment.”
Thus, this kind of correlational studies serve the purpose of finding possi-
ble predictors for understandability, and provide evidence for the potential
usefulness of a source code measure.

8. Conclusions and Future Work

Being able to find statistical correlations between code understandability
and source code measures would be greatly beneficial for the software devel-
opment process, which involves a great deal of activities involving program
comprehension |1, 2].

28

In 2018, a new measure, named “Cognitive Complexity” (CoCo) was
proposed, with the purpose of providing code-based indications of code un-
derstandability that are more reliable than those provided by previously pro-
posed code measures, such as McCC [3] or maintainability indices [4, 5].

A first objective validation of CoCo was performed by Munoz Barén et
al. [13]. They reported the levels of association between CoCo and several
aspects of understandability, based on data retrieved from previously pub-
lished studies. They concluded that CoCo is moderately well associated with
the time it takes a developer to understand source code, with a combination
of time and correctness, and with subjective ratings of understandability.

The work by Munoz Baron et al. was a necessary first step and provided
the first empirical-based assessment of CoCo. However, the evidence reported
by Munoz Barén et al. does not address the claim underlying the definition
of CoCo (“a new metric that breaks from the use of mathematical models to
evaluate code in order to remedy Cyclomatic Complexity’s shortcomings and
produce a measurement that more accurately reflects the relative difficulty of
understanding, and therefore of maintaining methods, classes, and applica-
tions.” [7]). Our paper aims to provide evidence about this underlying claim
of CoCo.

To this end, we extended the work by Munoz Barén et al. as an n vitro
study to check whether the claim that CoCo provides advantages over other
static measures, notably McCabe’s Cyclomatic Complexity, was supported
by evidence. We have thus studied the correlation between code understand-
ability and several well-established source code measures. To this end, we
reused the same data already used by Munoz Barén et al. and built Support
Vector Regression models of understandability aspects, based on source code
measures.

Our results show that no code measure is consistently better correlated
with code understandability than other measures. Specifically, CoCo does
not appear to fulfill the promise of being a significant improvement with
respect to previously proposed measures, as far as code understandability
is concerned. Actually, CoCo does not seem to perform markedly worse or
better than “traditional” source code measures. Noticeably, this conclusion
applies to other measures as well: for instance, Halstead’s HVOL does not
seem to provide any advantages over other measures.

We expect that the results reported in this paper will be useful for both
practitioners and researchers. Practitioners already using or considering to
use CoCo may want to take into account the results provided by CoCo with

29

a different degree of confidence, based on the evidence of our paper. Re-
searchers may be interested in carrying out more empirical studies by using
the results by Munoz Barén et al. and the ones we provide. They may
also come up with a different measure that leverages on the ideas underlying
CoCo and other measures.

The code measures that supported both the study by Munoz Barén et
al. [13] and ours concern mostly small code snippets. Code understanding
performed during maintenance activities usually deals with bigger pieces of
code. Thus, future work will encompass the following activities needed to
generalize the results reported in papers (including this one) dealing with
code understandability.

— It will be necessary to carry our empirical studies based on software
code with bigger size and complexity.

— The association of several more source code measures with understand-
ability will be investigated.

— Based on the results of the previous items, understandability models
will be built, to support code understandability and maintenance by
practitioners. Such models will be based not only on code measures,
but also on measures of the “environment,” including the professionals
who have to understand the code and the goals of code understanding.

— Understandability will be investigated at higher abstraction levels than
the detailed intra-method level. For instance, we will study the degree
to which the coupling between two classes may influence the under-
standability of either class.

Acknowledgments

This work has been partially supported by the “Fondo di ricerca d’Ateneo”
of the Universita degli Studi dell’Insubria.
Appendix A. Details on the Construction of SVR Models

Data analysis was carried out using the R programming language and
environment [52]. Specifically, we used the 1071 library (https://cran.r-
project.org/web/packages/e1071/index.html).

30

Since the used datasets contain predictors and a dependent variable, and
values are all continuous, we chose a supervised and computationally not de-
manding method like SVR. Also the small size of the datasets was a criterion
for choosing a robust approach like SVR. Finally, considering the problem at
hand, we used a radial kernel.

To build models, a fundamental step was the configuration of the model
with proper parameters (i.e., the so-called hyperparameters of the model).
To this end, we exploited the tune.svm function of the 1071 library. The
tune.svm function was designed to find the best set of parameters for the
data in a ranged or full parameter space for each parameter; we used this
function passing a proper hyperparameter range for each tuning parameter:

cost is a regularization parameter used when transforming mathematically
the problem into a Lagrangian formulation. We provided the tuning
function with the [272,25] range.

epsilon is the margin of tolerance for not penalizing errors. We provided
the tuning function with the set of values {0.1, 0.01, 0.001}.

gamma controls the distance of the influence of a single training point.
Low (respectively, large) values of gamma indicate a large (respectively,
small) similarity radius which results in more (respectively, fewer) points
being grouped together. We provided the tuning function with the
[27123] range, which does not include large gamma values that could
cause overfitting.

In addition, the tune.svm function has a tune.control argument, which
enables the choice of common parameters like the sampling method, the size
of the bootstrap samples, the returning of the error measure, and the re-
turning of the performance of all the parameters combined at each tuning
iteration. Among the tune.control arguments, cross allows the program-
mer to instruct the tuning function to look for the best parameters via an
internal cross-fold cross validation: we set cross=5.

Since the tune.svm function explores only a subset of the parameters
space, we executed it ten times for each dataset, computing the resulting
MAR; we then selected the parameters that obtained the lowest MAR.

31

Appendix B. Evaluations Based on Medians

In this appendix, we provide evaluations of understandability predictions
based on MdAR and MdR. These evaluations are meant to complement those
using MAR and MR shown above.

Appendiz B.1. Evaluations Concerning the Time Required to Understand
Code

Table B.14 illustrates the accuracy of the models by providing the MdAR
and MdR of the predictions. It is easy to see that Table B.14 confirms the
results in Table 5 in that no code measure appears a consistently better
predictor than other measures.

Table B.14: Accuracy of models based on source code measures, when predicting the time

needed to understand code, evaluated via MdAR and MdR.
Did CoCo McCC LLOC NLE MI HVOL HCPL

1 1638 (21%) 20.80 (27%) 21.10 (27%) 26.30 (34%) 30.53 (39%) 1L.49 (15%) 35.56 (46%)
2 757 (30%) 6.97 (27%) 5.73 (23%) 7.99 (31%) 5.89 (23%) 4.68 (18%) 4.13 (16%)
4 (ta) 15.63 (36%) 12.67 (29%) 14.75 (34%) NoModel NoData NoData NoData
4 (tb) 482 (13%) 9.58 (26%) 27.90 (76%) 8.33 (23%) NoData NoData NoData
5 33.48 (24%) 40.00 (29%) 31.12 (23%) NoModel NoData NoData NoData
6 26.50 (12%) 3747 (59%) 26.44 (41%) 29.54 (46%) 35.83 (56%) 34.69 (54%) 29.87 (47%)
7 (first imp.) 12.06 (13%) 12.87 (14%) 12.36 (14%) NoModel NoData NoData NoData
7 (thinking) 4.35 (16%) 4.36 (16%) 4.35 (16%) NoModel NoData NoData NoData
7 (duration) 10.18 (8%) 10.11 (8%) 10.20 (8%) NoModel NoData NoData NoData
8 30.84 (20%) 34.50 (17%) 34.99 (18%) 40.57 (21%) NoData NoData NoData
9 (tr) 20.00 (17%) 19.10 (16%) 9.47 (8%) 19.09 (16%) 11.63 (10%) 15.59 (13%) 16.20 (14%)
9 (ta) 12.70 (14%) 10.82 (12%) 14.03 (16%) 10.49 (12%) 16.89 (19%) 18.32 (21%) 16.24 (18%)
10 6.10 (31%) 5.83 (29%) 5.86 (29%) 5.16 (26%) NoData NoData NoData

Appendiz B.2. Evaluations Concerning Understandability Ratings

Table B.15 illustrates the accuracy of the models by providing the MdAR
and MdR of the predictions. It is easy to see that Table B.15 confirms the
results in Table 7 in that no code measure appears a consistently better
predictor than other measures.

Appendiz B.3. Evaluations Concerning Correctness of Code Understanding

Table B.16 illustrates the accuracy of the models by providing the MdAR
and MdR of the predictions. It is easy to see that also in this case the
evaluations based on medians confirm the evaluations based on means, and
there is no code measure that consistently outperforms the other ones.

32

Table B.15: Accuracy of models based on source code measures, when predicting under-
standability rating, evaluated via MdAR and MdR.

Did CoCo McCC LLOC NLE MI HVOL HCPL
1 (confidence) 0.26 (8%) 0.28 (9%) 0.24 (7%) 0.24 (7%) 0.25 (8%) 0.27 (8%) 0.18 (6%)
1 (difficulty) 0.17 (5%) 0.7 (5%) 0.30 (10%) 0.37 (12%) 0.52 (17%) 0.30 (10%) 0.24 (8%)
3 0.49 (14%) 0.54 (16%) 0.41 (12%) 048 (14%) 042 (12%) 0.34 (10%) 0.39 (11%)
6 0.12 (18%) 0.11 (17%) 0.14 (21%) 0.13 (20%) 0.17 (26%) 0.16 (23%) 0.12 (18%)
9 (r1) 0.21 (8%) 0.20 (7%) 021 (8%) 0.19 (%) 020 (7%) 0.25 (9%) 0.26 (10%)
9 (12) 0.25 (10%) 0.28 (11%) 0.25 (10%) 0.27 (11%) 0.21 (8%) 0.24 (9%) 0.30 (12%)

Table B.16: Accuracy of models based on source code measures, when predicting under-

standability correctness, evaluated via MdAR and MdR.

Did CoCo McCC LLOC NLE MI HVOL HCPL

1 0.25 (16%) 020 (12%) 0.13 (8%) 0.27 (16%) 0.17 (11%) 0.12 (7%) 0.17 (10%)
4 (ta) 0.31 (38%) 0.31 (38%) 0.15 (18%) NoModel NoData NoData NoData
4 (tb) 0.25 (46%) 0.21 (40%) 0.21 (40%) 0.23 (43%) NoData NoData NoData
5 0.10 (13%) 0.10 (13%) 0.10 (13%) NoModel NoData NoData NoData
6 0 11 (26%) 0.11 (25%) 0.12 (28%) 0.11 (26%) 0.12 (28%) 0.14 (32%) 0.14 (32%)
9 5 (13%) 0.06 (15%) 0.06 (14%) 0.07 (17%) 0.06 (15%) 0.06 (13%) 0.06 (15%)
10 0 19 (25%) 0.19 (25%) 0.18 (24%) 0.17 (23%) NoData NoData NoData

Appendiz B.4. FEvaluations concerning physiological aspects of code under-
standing

Table B.17 illustrates the accuracy of the models by providing the MdAR
and MdR of the predictions. It is easy to see that Table B.17 confirms the
results in Table 11 in that no code measure appears a consistently better

predictor than other measures.

Table B.17: Accuracy of models based on source code measures, when predicting Physio-
logical Aspects of understandability, evaluated via MdAR and MdR.

Did CoCo McCC LLOC NLE MI HVOL HCPL
2(BA3lant) 0.12 (20%) 0.16 (27%) 0.12 (19%) 0.16 (26%) 0.14 (23%) 0.11 (18%) 0.04 (7%)
2(BA31post) 0.10 (15%) 0.12 (19%) 0.17 (27%) 0.14 (21%) 0.12 (18%) 0.20 (32%) 0.19 (30%)
2(BA32) 0.17 (22%) 0.16 (21%) 0.18 (23%) 0.18 (24%) 0.14 (18%) 0.12 (15%) 0.09 (11%)

Appendiz B.5. Evaluations of multivariate models

Table B.18 illustrates the performance of the multivariate models by pro-
Table B.18 confirms the
results in Table 13 in that no code measure appears a consistently better

viding the MdAR and MdR of the predictions.

predictor than other measures.

33

Table B.18: Accuracy of best models using multiple variables, evaluated via MdAR and

MdR.

aspect Did variables MdAR (MdR) variables MdAR (MdR)
6 CoCo,NLE 20 (32%) McCC,MI (33%)
timing 9(tr) CoCo,MI 13 (11%) LLOC 9 (8%)
9(ta) CoCo,NLE 11 (12%) NLE 10 (12%)
10 CoCo,LLOCMI 5.5 (28%) NLE 5.2 (26%)
3 CoCo,LLOC,NLE,MI,HCPL 0.27 (8%) NLE,HCPL 0.27 (8%)
rating 6 CoCoMcCC,LLOC,HCPL 0.11 (16%) McCC 0.11 (17%)
9(r1) CoCoMI 0.17 (6%) LLOC,HVOL 0.17 (6%)
9(12) CoCo,LLOC 0.24 (9%) MI 0.21 (8%)
CoCo,LLOC,M[,HVOL 0.9 (21%) NLE,MI 0.9 (21%)
correct. 9 CoCoHCPL 0.05 (12%) LLOC,HCPL 0.05 (11%)
10 CoCo,LLOC,NLE-MI 0.15 (20%) McCC,LLOC,MI 0.15 (20%)

References

1]

R. Minelli, A. Mocci, M. Lanza, I know what you did last summer-an
investigation of how developers spend their time, in: 2015 IEEE 23rd
International Conference on Program Comprehension, IEEE, 2015, pp.
25-35.

X. Xia, L. Bao, D. Lo, Z. Xing, A. E. Hassan, S. Li, Measuring pro-
gram comprehension: A large-scale field study with professionals, IEEE
Transactions on Software Engineering 44 (10) (2017) 951-976.

T. J. McCabe, A complexity measure, IEEE Transactions on software
Engineering (4) (1976) 308-320.

P. Oman, J. Hagemeister, Metrics for assessing a software system’s main-
tainability, in: Proceedings Conference on Software Maintenance 1992,
IEEE Computer Society, 1992, pp. 337-338.

I. Heitlager, T. Kuipers, J. Visser, A practical model for measuring
maintainability, in: 6th international conference on the quality of infor-
mation and communications technology (QUATIC 2007), IEEE, 2007,
pp. 30-39.

M. H. Halstead, Elements of software science, Elsevier North-Holland,
1977.

34

[7]

[10]

[11]

[12]

[13]

[14]

[15]

G. A. Campbell, Cognitive complexity - a new way of measuring
understandability (2018).
URL https://www.sonarsource.com/docs/CognitiveComplexity.pdf

V. Y. Shen, S. D. Conte, H. E. Dunsmore, Software science revisited: A
critical analysis of the theory and its empirical support, IEEE Transac-
tions on Software Engineering (2) (1983) 155-165.

M. Shepperd, A critique of cyclomatic complexity as a software metric,
Software Engineering Journal 3 (2) (1988) 30-36.

R. Subramanyam, M. S. Krishnan, Empirical analysis of CK metrics
for object-oriented design complexity: Implications for software defects,
IEEE Transactions on software engineering 29 (4) (2003) 297-310.

G. Denaro, L. Lavazza, M. Pezze, An empirical evaluation of object
oriented metrics in industrial setting, in: The 5th CaberNet Plenary
Workshop, Porto Santo, Madeira Archipelago, Portugal, 2003.

J. Padilha, J. Pereira, E. Figueiredo, J. Almeida, A. Garcia,
C. Sant’Anna, On the effectiveness of concern metrics to detect code
smells: An empirical study, in: International Conference on Advanced
Information Systems Engineering, Springer, 2014, pp. 656-671.

M. Munoz Barén, M. Wyrich, S. Wagner, An empirical validation of
cognitive complexity as a measure of source code understandability, in:
Proceedings of the 14th ACM/IEEE International Symposium on Em-
pirical Software Engineering and Measurement (ESEM), 2020, pp. 1-12.

R. L. Glass, Frequently forgotten fundamental facts about software en-
gineering, IEEE software 18 (3) (2001) 112.

N. E. Fenton, J. M. Bieman, Software Metrics: A Rigorous and Prac-
tical Approach, Third Edition, Chapman & Hall/CRC Innovations in
Software Engineering and Software Development Series, Taylor & Fran-
cis, 2014.

URL https://books.google.es/books?id=1x OBQAAQBAJ

R. P. L. Buse, W. Weimer, Learning a metric for code readability, IEEE
Trans. Software Eng. 36 (4) (2010) 546-558. doi:10.1109/TSE.2009.70.
URL https://doi.org/10.1109/TSE.2009.70

35

[17]

[18]

[19]

[20]

[21]

[22]

D. Gopstein, J. lannacone, Y. Yan, L. DeLong, Y. Zhuang, M. K. Yeh,
J. Cappos, Understanding misunderstandings in source code, in: E. Bod-
den, W. Schéfer, A. van Deursen, A. Zisman (Eds.), Proceedings of the
11th Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2017, Paderborn, Germany, September 4-8, 2017, ACM, 2017, pp. 129-
139. doi:10.1145/3106237.3106264.

URL https://doi.org/10.1145/3106237.3106264

J. Siegmund, A. Brechmann, S. Apel, C. Kastner, J. Liebig, T. Leich,
G. Saake, Toward measuring program comprehension with functional
magnetic resonance imaging, in: W. Tracz, M. P. Robillard, T. Bultan
(Eds.), 20th ACM SIGSOFT Symposium on the Foundations of Software
Engineering (FSE-20), SIGSOFT/FSE’12; Cary, NC, USA - November
11 - 16, 2012, ACM, 2012, p. 24. doi:10.1145,/2393596.2393624.

URL https://doi.org/10.1145/2393596.2393624

J. J. Dolado, M. Harman, M. C. Otero, L. Hu, An empirical in-
vestigation of the influence of a type of side effects on program
comprehension, IEEE Trans. Software Eng. 29 (7) (2003) 665-670.
doi:10.1109/TSE.2003.1214329.

URL https://doi.org/10.1109/TSE.2003.1214329

G. Salvaneschi, S. Amann, S. Proksch, M. Mezini, An empirical study
on program comprehension with reactive programming, in: S. Cheung,
A. Orso, M. D. Storey (Eds.), Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineer-
ing, (FSE-22), Hong Kong, China, November 16 - 22, 2014, ACM, 2014,
pp. 564-575. doi:10.1145/2635868.2635895.

URL https://doi.org/10.1145/2635868.2635895

S. Scalabrino, G. Bavota, C. Vendome, M. Linares-Vasquez,
D. Poshyvanyk, R. Oliveto, Automatically assessing code under-
standability, IEEE Trans. Software Eng. 47 (3) (2021) 595-613.
doi:10.1109/TSE.2019.2901468.

URL https://doi.org/10.1109/TSE.2019.2901468

J. Borstler, B. Paech, The role of method chains and comments in soft-
ware readability and comprehension - an experiment, IEEE Trans. Soft-
ware Eng. 42 (9) (2016) 886-898. doi:10.1109/TSE.2016.2527791.
URL https://doi.org/10.1109/TSE.2016.2527791

36

23]

[24]

[25]

28]

[29]

[30]

Y. Ikutani, H. Uwano, Brain activity measurement during program com-
prehension with nirs, in: 15th IEEE/ACIS International Conference
on Software Engineering, Artificial Intelligence, Networking and Par-
allel/Distributed Computing (SNPD), IEEE, 2014, pp. 1-6.

B. Floyd, T. Santander, W. Weimer, Decoding the representation of
code in the brain: An fmri study of code review and expertise, in:
2017 IEEE/ACM 39th International Conference on Software Engineer-
ing (ICSE), IEEE, 2017, pp. 175-186.

D. Fucci, D. Girardi, N. Novielli, L. Quaranta, F. Lanubile, A replication
study on code comprehension and expertise using lightweight biometric
sensors, in: 2019 IEEE/ACM 27th International Conference on Program
Comprehension (ICPC), IEEE, 2019, pp. 311-322.

Z. Sharafi, Y. Huang, K. Leach, W. Weimer, Toward an objective mea-
sure of developers’ cognitive activities, ACM Transactions on Software
Engineering and Methodology (TOSEM) 30 (3) (2021) 1-40.

N. Peitek, J. Siegmund, S. Apel, C. Kastner, C. Parnin, A. Beth-
mann, T. Leich, G. Saake, A. Brechmann, A look into program-
mers’ heads, IEEE Trans. Software Eng. 46 (4) (2020) 442-462.
doi:10.1109/TSE.2018.2863303.

URL https://doi.org/10.1109/TSE.2018.2863303

S. Morasca, A probability-based approach for measuring external at-
tributes of software artifacts, in: Proceedings of the 2009 3rd In-
ternational Symposium on Empirical Software Engineering and Mea-
surement, ESEM 09, Lake Buena Vista, FL, USA, October 15-16,
2009, TEEE Computer Society, Washington, DC, USA, 2009, pp. 44—
55. doi:http://dx.doi.org/10.1109/ESEM.2009.5316048.

URL http://dx.doi.org/10.1109/ESEM.2009.5316048

A. Fitzsimmons, T. Love, A review and evaluation of software science,

ACM Computing Surveys (CSUR) 10 (1) (1978) 3-18.

D. Coleman, D. Ash, B. Lowther, P. Oman, Using metrics to evaluate
software system maintainability, Computer 27 (8) (1994) 44-49.

37

[31]

[32]

[33]

[34]

[36]

[37]

[38]

K. D. Welker, P. W. Oman, G. G. Atkinson, Development and appli-
cation of an automated source code maintainability index, Journal of
Software Maintenance: Research and Practice 9 (3) (1997) 127-159.

J.-P. Ostberg, S. Wagner, On automatically collectable metrics for soft-
ware maintainability evaluation, in: 2014 Joint Conference of the In-
ternational Workshop on Software Measurement and the International
Conference on Software Process and Product Measurement, IEEE, 2014,
pp. 32-37.

G. A. Campbell, Cognitive complexity: An overview and evaluation, in:
Proceedings of the 2018 International Conference on Technical Debt,
2018, pp. H7-58.

M. Munoz Barén, M. Wyrich, S. Wagner, An empirical validation of
cognitive complexity as a measure of source code understandability —
data, code and documentation (2020).

URL https://doi.org/10.5281/zenodo.3949828

J. C. Hofmeister, J. Siegmund, D. V. Holt, Shorter identifier names
take longer to comprehend, in: M. Pinzger, G. Bavota, A. Mar-
cus (Eds.), IEEE 24th International Conference on Software Analy-
sis, Evolution and Reengineering, SANER 2017, Klagenfurt, Austria,
February 20-24, 2017, IEEE Computer Society, 2017, pp. 217-227.
doi:10.1109/SANER.2017.7884623.

URL https://doi.org/10.1109/SANER.2017.7884623

S. Ajami, Y. Woodbridge, D. G. Feitelson, Syntax, predicates, idioms -
what really affects code complexity?, Empir. Softw. Eng. 24 (1) (2019)
287-328. doi:10.1007/s10664-018-9628-3.

URL https://doi.org/10.1007/s10664-018-9628-3

J. W. Howatt, A. L. Baker, Rigorous definition and analysis of program
complexity measures: An example using nesting, J. Syst. Softw. 10 (2)
(1989) 139-150. doi:10.1016/0164-1212(89)90025-3.

URL https://doi.org/10.1016/0164-1212(89)90025-3

P. Piwowarski, A nesting level complexity measure, ACM SIGPLAN
Notices 17 (9) (1982) 44-50. doi:10.1145/947955.947960.
URL https://doi.org/10.1145/947955.947960

38

[39]

[40]

[41]

[42]

H. E. Dunsmore, J. D. Gannon, Data referencing: An empirical investi-
gation, Computer 12 (12) (1979) 50-59. doi:10.1109/MC.1979.1658576.
URL https://doi.org/10.1109/MC.1979.1658576

W. A. Harrison, K. I. Magel, A complexity measure based on nesting
level, SIGPLAN Not. 16 (3) (1981) 63-74. doi:10.1145/947825.947829.
URL https://doi.org/10.1145/947825.947829

W. Harrison, K. Magel, A topological analysis of the complexity of com-
puter programs with less than three binary branches, SIGPLAN Not.
16 (4) (1981) 51-63. doi:10.1145/988131.988137.

URL https://doi.org/10.1145/988131.988137

E. T. Chen, Program complexity and programmer produc-
tivity, IEEE Trans. Software Eng. 4 (3) (1978) 187-194.
doi:10.1109/TSE.1978.231497.

URL https://doi.org/10.1109/TSE.1978.231497

E. Y. Li, A measure of program nesting complexity, in: 1987 AFIPS
National Computer Conference (NCC), AFIPS, 1987, pp. 531-538.

C. Van Rijsbergen, Information retrieval: theory and practice, in: Pro-
ceedings of the Joint IBM /University of Newcastle upon Tyne Seminar
on Data Base Systems, 1979, pp. 1-14.

C. E. Osgood, T. A. Sebeok, J. W. Gardner, J. B. Carroll, L. D. New-
mark, S. M. Ervin, S. Saporta, J. H. Greenberg, D. E. Walker, J. J.
Jenkins, et al., Psycholinguistics: a survey of theory and research prob-
lems., The Journal of Abnormal and Social Psychology 49 (4p2) (1954)
i.

D. Beyer, A. Fararooy, A simple and effective measure for com-
plex low-level dependencies, in: The 18th IEEE International Confer-
ence on Program Comprehension, ICPC 2010, Braga, Minho, Portu-
gal, June 30-July 2, 2010, IEEE Computer Society, 2010, pp. 80-83.
doi:10.1109/1CPC.2010.49.

URL https://doi.org/10.1109/ICPC.2010.49

M. Shepperd, S. MacDonell, Evaluating prediction systems in software
project estimation, Information and Software Technology 54 (8) (2012)
820-827.

39

[48] J. Cohen, Statistical power analysis for the behavioral sciences, Aca-
demic press, 2013.

[49] L. V. Hedges, I. Olkin, Statistical methods for meta-analysis, Academic
press, 2014.

[50] R. Rosenthal, H. Cooper, L. Hedges, et al., Parametric measures of effect
size, The handbook of research synthesis 621 (2) (1994) 231-244.

[51] L. Lavazza, A Large Scale Empirical Evaluation of the Accuracy of Func-
tion Points Estimation Methods, International Journal on Advances in

Software 13 (3-4) (2020) 182-193.

[52] R core team, R: a language and environment for statistical computing
(2015).

40

