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Abstract 

Background:  High dietary glycaemic index (GI) and load (GL) have been associated with increased risk of various 
cardiometabolic conditions. Among the molecular potential mechanisms underlying this relationship, DNA methyla-
tion has been studied, but a direct link between high GI and/or GL of diet and global DNA methylation levels has not 
been proved yet. We analyzed the associations between GI and GL and global DNA methylation patterns within an 
Italian population.

Results:  Genomic DNA methylation (5mC) and hydroxymethylation (5hmC) levels were measured in 1080 buffy coat 
samples from participants of the Moli-sani study (mean(SD) = 54.9(11.5) years; 52% women) via ELISA. A 188-item 
Food Frequency Questionnaire was used to assess food intake and dietary GI and GL for each participant were calcu-
lated. Multiple linear regressions were used to investigate the associations between dietary GI and GL and global 5mC 
and 5hmC levels, as well as the proportion of effect explained by metabolic and inflammatory markers. We found 
negative associations of GI with both 5mC (β (SE) = − 0.073 (0.027), p = 0.007) and 5hmC (− 0.084 (0.030), p = 0.006), 
and of GL with 5mC (− 0.14 (0.060), p = 0.014). Circulating biomarkers did not explain the above-mentioned associa-
tions. Gender interaction analyses revealed a significant association of the gender-x-GL interaction with 5mC levels, 
with men showing an inverse association three times as negative as in women (interaction β (SE) = − 0.16 (0.06), 
p = 0.005).

Conclusions:  Our findings suggest that global DNA methylation and hydroxymethylation patterns represent a 
biomarker of carbohydrate intake. Based on the differential association of GL with 5mC between men and women, 
further gender-based separate approaches are warranted.
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Background
Excessive intake of carbohydrates favoring higher glucose 
levels has been extensively linked to clinical outcomes 
including cardiometabolic diseases [1] and neurological 
disorders [2]. Indeed, increasing evidence in population 
studies supports a strong relationship between quality 
and quantity of carbohydrates ingested with foods and 
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increased risk of certain types of cancers [3, 4], diabe-
tes [5, 6] and cardiovascular diseases [7–9]. This is likely 
explained through carbohydrates’ direct implications 
in regulating blood glucose levels, as well as in chang-
ing postprandial hormonal and metabolic responses in 
humans [10]. For these reasons, increasing attention has 
been given in the last decades to control the quantity and 
quality of carbohydrates’ dietary intake in clinical prac-
tice, through specific indices.

Among these, glycaemic index (GI) and glycaemic load 
(GL) represent two common dietary indices increas-
ingly used to measure and control carbohydrate intake in 
people affected by cardiometabolic disorders, like diabe-
tes [11]. GI [12], generally calculated from International 
GI tables [13, 14], is a measure of carbohydrate quality 
and refers to the postprandial blood glucose increase in 
response to a given carbohydrate intake, when compared 
with a reference food (either glucose or white bread). 
GL represents instead an indicator of both quality and 
quantity of carbohydrates and is calculated by multi-
plying the GI of a food item with the available carbohy-
drate content [11]. While both higher GI and higher GL 
have been associated with increased disease risk [3–9], 
their relationship with potential molecular mechanisms 
underlying cardiometabolic dysfunction remains largely 
neglected.

Altered DNA methylation patterns, particularly the 
level of methylation (5mC) and hydroxymethylation 
(5hmC) in the genome, have been often associated with 
type 2 diabetes (T2D) and with a general oxidative stress 
status [15–18].

Investigations focusing on the relationship between 
DNA methylation patterns and dietary GI and GL mainly 
consist of interventional studies on maternal dietary 
habits, aimed at detecting methylation changes in the 
offspring [19]. Geraghty et al. [20] analyzed DNA meth-
ylation levels at 771,484 CpGs sites across the genome 
in free DNA from cord blood serum in 60 newborns 
involved in the ROLO study. The methylome of low GI 
intervention newborns was found to be significantly 
lower than in controls [20]. By comparing two groups of 
pregnant women following a reduced vs. an increased 
carbohydrate diet, Yan et  al. observed specific placenta 
DNA methylation changes at genes involved in insulin 
regulation, namely PLIN1, CPT1B, SSTR4 and CIDEA 
[21]. In a recent observational study, Alick et  al. [22] 
found out that a maternal periconceptional diet charac-
terized by a high glycaemic loading was associated with 
poorer neurodevelopmental status of children, in par-
ticular anxiety-related behavior, and with an increased 
mean methylation level of the imprint control region of 
SGCE/PEG10.

In spite of these suggestive independent lines of evi-
dence, we are not aware of any study so far investigating 
the relationship between global methylation patterns and 
glycaemic index and load of diet, assessing both meas-
ures in the same subjects. Such a design would help in 
(1) building a closer relationship between nutritional 
and genome methylation patterns and (2) identifying 
the potential implications of dietary habits, which are of 
remarkable importance for cardiometabolic patients, on 
novel epigenetic measures.

In the present study, we aimed at investigating the asso-
ciations between both GI and GL and global DNA meth-
ylation within an Italian population cohort enrolled in 
the Moli-sani study. We already reported a fine-grained 
analysis of global DNA methylation patterns at different 
nutritional levels in the same cohort, identifying a direct 
relationship between daily intake of zinc and global DNA 
methylation [23]. Here, we focused on dietary glycaemic 
indices to build a bridge with altered epigenetic patterns 
potentially underlying metabolic conditions.

Results
The characteristics of the analyzed sub-cohort (N = 1080 
with at least an epigenetic measure available) are sum-
marized elsewhere [23] and in Table  1. Compared to 
the whole Moli-sani cohort, the population under study 
showed similar sex ratio (48.0% vs 48.1% men) but slightly 
lower age (mean (SD) age 54.9 (11.5) year vs 55.8 (12.0) 
years, p < 0.0001), due to the removal of prevalent CVD 
cases. Similarly, in the analyzed sub-cohort there was a 
lower prevalence of diabetes (3.6% vs 5.0%, p = 0.02) and 
hyperlipidemia (4.2% vs 7.9%), as well as a higher energy 
intake (2210.19  kcal/d vs 2079.01  kcal/d, p < 0.0001). 
Overall, there was no systematic difference between the 
analyzed sub-cohort and the whole Moli-sani population, 
except those due to removal of individuals with history of 
CVD.

Association analyses of glycaemic parameters in the 
analyzed sub-cohort (Table 2) revealed significant nega-
tive associations of GI with both 5mC (standardized β 
(Standard Error) = − 0.073 (0.027), p = 0.007) and 5hmC 
(β (SE) = − 0.084 (0.030), p = 0.006) measured on buffy 
coat samples from the studied subjects. A significant neg-
ative association was also observed between GL and 5mC 
(β (SE) = − 0.146 (0.060), p = 0.015), but not with 5hmC. 
These associations remained significant after additional 
adjustments for other potential confounding factors like 
use of metformin (Additional file 1: Table S1).

In the mediation analysis of different circulating bio-
markers—including C-reactive protein (CRP), glucose, 
C-peptide, insulin, total cholesterol, LDL, HDL—no sig-
nificant proportion of the above- mentioned associations 
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was explained by any of the circulating markers tested 
(Table 3).

Gender interaction analyses revealed a significant asso-
ciation of the interaction term between gender and gly-
caemic load with 5mC levels (interaction β (SE) = − 0.16 
(0.06), p = 0.005), with men showing an inverse asso-
ciation more than three times as large as in women 
(Table  4). No other significant interactive associations 
were detected.

Table 1  Baseline characteristics of the analyzed sub-cohort (N = 1080) compared to the whole Moli-sani cohort (N = 24,325)

MDS Mediterranean diet score, BMI body mass index, WHR waist to hip ratio, CVD cardiovascular disease

Variable Sub-cohort Whole Moli-sani cohort

N Mean SD N Mean SD

Age (years) 1080 54.91 11.52 24,325 55.79 11.96

MDS 1080 4.73 1.6 24,221 4.35 1.64

Leisure time physical activity (met-h/d) 1080 3.6 4.03 24,325 3.48 4.02

BMI (kg/m2) 1079 28.04 4.54 24,308 28.06 4.78

Energy intake (Kcal/d) 1080 2210.19 682.57 24,225 2079.01 667.66

Abdominal Obesity (WHR) 1079 0.92 0.07 24,297 0.92 0.08

Monocytes (%) 1037 5.93 2.04 23,544 7.09 2.12

Granulocytes (%) 1037 60.69 7.68 23,542 60.25 7.82

Lymphocytes (%) 1037 33.33 7.39 23,545 32.63 7.34

Glucose (mg/dL) 1075 100.01 25.52 23,099 101.55 25.39

C-Peptide (ng/mL) 1040 1.39 0.61 22,379 1.78 0.84

Insulin (pmoli/L) 1046 49.81 29.29 22,458 60.49 44.63

Glycemic index 1080 54.26 3.05 23,178 54.32 3.19

Glycemic load 1080 140.95 51.47 23,178 131.42 50.52

Categorical variables N n % N n %

Males (n. %) 1080 518 47.96 24,325 11.702 48.11

Education

Primary 1080 223 20.65 24,286 6.268 25.81

Lower secondary 1080 285 26.39 24,286 6.742 27.76

Upper secondary 1080 405 37.5 24,286 8.259 34.01

Post-secondary 1080 167 15.46 24,286 3.017 12.42

Health conditions

CVD 1068 0 0 24,023 1.427 5.94

Cancer 1076 35 3.25 24,198 788 3.26

Diabetes 1065 38 3.57 24,017 1.214 5.05

Metformine 1065 31 2.91 24,017 803 3.34

Hyperlipidaemia 1061 45 4.24 24,092 1.911 7.93

Drinking status (drinkers)

Ever 1080 151 13.98 24,325 6.156 25.31

Current 1080 774 71.67 24,325 14.650 60.23

Former 1080 96 8.89 24,325 1.032 4.24

Occasional 1080 57 5.28 24,325 1.515 6.23

Missing 1080 2 0.19 24,325 972 4

Smoker status (smokers)

Ever 1078 527 48.89 24,296 12.050 49.6

Current 1078 263 24.4 24,296 5.582 22.97

Former 1078 288 26.72 24,296 6.664 27.43

Table 2  Association of dietary glycaemic parameters with 
methylation (5mC) and hydroxymethylation (5hmC) measures

These associations were adjusted for age, sex and educational attainment, white 
blood cell fractions, smoking, leisure time physical activity, abdominal obesity, 
alcohol intake, prevalent diabetes, hyperlipidaemia and cancer

Glycaemic parameter Epigenetic 
marker

Beta SE T-stat P value

Glycaemic load 5mC − 0.146 0.060 − 2.441 0.015

Glycaemic index 5mC − 0.073 0.027 − 2.699 0.007

Glycaemic load 5hmC − 0.028 0.068 − 0.412 0.680

Glycaemic index 5hmC − 0.084 0.030 − 2.77 0.006
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Discussion
Here we report, for the first time, a concordant negative 
association between two measurements reflecting car-
bohydrates’ quality and quantity (GI and GL), and global 
methylation levels measured within the same subjects 
from a general population. These associations resisted 
correction for several factors influencing hypomethyla-
tion, including use of metformin [24, 25] or self-reported 
diabetic status.

Nutritional factors, among all the environmental 
stimuli, can affect epigenetics both transiently and 
chronically [26–28]. The specific epigenetic changes 
caused by sustained hyperglycaemia are the basis for 
the establishment of the so-called metabolic memory 

[29] and are the means by which exposure to high 
glucose exerts its long-lasting detrimental effects on 
human health in the context of cancer [30], diabetes 
[31–34] and CVD [35–37]. Global hypomethylation is 
a generally accepted hallmark of cancer [38]. More con-
troversial are the published studies that consider global 
DNA methylation levels and CVD or diabetes. How-
ever, lower global DNA methylation (5mC), evaluated 
with a similar technique to the one used in this study, 
has been generally associated with clinical and subclini-
cal CVD phenotypes including hypertension, athero-
sclerosis, coronary artery disease and increased CVD 
risk in postmenopausal women [38–42]. Very few stud-
ies have investigated global DNA methylation in the 

Table 3  Mediation analysis of metabolic parameters on the association between dietary glycaemic parameters and methylation/
hydroxymethylation measures

Proportion of the association mediated (along with 95% Confidence Interval in squared brackets) and relevant p value is reported for each potential mediator tested. 
Note: since the proportion of mediated effect is computed as the proportion of average causal mediation effect (ACME) over total effect of the exposure on the 
outcome (TE), this may have also negative values when ACME and TE are not concordant. This scenario suggests no proportions of the association are mediated, as 
further supported by p values

LDL low-density lipoprotein, HDL high-density lipoprotein, CRP C-reactive protein, GL Glycaemic Load, GI Glycaemic Index

Potential mediator 5mC versus GI 5hmC versus GI 5mC versus GL

Glucose − 0.017 [− 0.119; 0.020],
0.37

− 0.007 [− 0.082; 0.020],
0.52

0.060 [− 0.014; 0.330],
0.10

C-peptide 0.002 [− 0.030; 0.050],
0.74

0.010 [− 0.039; 0.080],
0.56

1.69e−03 [− 4.97e−02; 0.06],
0.80

Insulin − 3.32e−04 [− 3.87e−02; 0.03],
0.94

0.002 [− 0.026; 0.05],
0.77

9.30e−04 [− 4.99e−02; 0.07],
0.86

Total cholesterol 0.0002 [− 0.0308; 0.03],
0.93

7.02e−05 [− 2.66e−02; 0.03],
0.97

− 8.22e−03 [− 1.53e−01; 0.07],
0.65

LDL 0.002 [− 0.027; 0.06],
0.75

− 0.006 [− 0.076; 0.03],
0.68

− 1.06e−04 [− 3.95e−02; 0.04],
0.98

HDL 4.46e−04 [− 3.29e−02; 0.04],
0.90

3.91e−05 [− 2.63e−02; 0.03],
0.98

1.41e−03 [− 9.13e−02; 0.12],
0.93

CRP (log-scale) 5.69e−04 [− 3.45e−02; 0.04],
0.88

9.63e−04 [− 3.22e−02; 0.04],
0.83

− 2.48e−04 [− 5.30e−02; 0.04],
0.93

Table 4  Gender interaction associations of dietary glycaemic parameters with 5mC and 5hmC

Association of dietary glycaemic parameters and their interaction terms with gender with 5mC and 5hmC. Note: as per interaction analysis output, we report Beta (SE) 
and p of the index-by-gender (men) interaction term, as well as the Beta (SE) values of the association in women. Associations Beta values in men can be computed by 
summing the two Betas

 GL Glycaemic Load, GI Glycaemic Index

Epigenetic signature Exposure Beta (SE) interaction p for interaction Beta (SE) women

5mC GL – – − 0.042 (0.070)

GL * gender (men) − 0.159 (0.057) 0.005 –

GI – – − 0.044 (0.036)

GI * gender (men) − 0.068 (0.055) 0.216 –

5hmC GL – – 0.037 (0.080)

GL * gender (men) − 0.099 (0.064) 0.123 –

GI – – − 0.092 (0.040)

GI * gender (men) 0.017 (0.061) 0.78 –
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context of diabetes and metabolic syndrome, generally 
reporting lower 5mC and 5hmC levels [16, 17] although 
not always consistently [18].

Consuming high GL foods is known to cause an 
increase in blood glucose and insulin levels with con-
sequent increase in plasma-free fatty acids [43]. All 
together these factors contribute to lower insulin sensi-
tivity and to the development of dyslipidemia [10, 43, 44]. 
Though some controversial data have been published on 
the topic, several observational studies have supported 
these findings by identifying a direct association between 
dietary GL and glucose metabolism parameters [45–52]. 
Based on this, GI and GL have been extensively consid-
ered and validated as risk factors for chronic diseases 
[3–9]. Therefore, identifying a possible molecular mech-
anism linking these variables to health outcomes could 
bare important opportunities to identify a novel marker 
for clinical risk assessment.

Higher GI and GL in the studied Moli-sani sub-
cohort were associated with lower global methyla-
tion and hydroxymethylation levels in the genome. 
Although to our knowledge there are no such compa-
rable studies in the field, we evaluated our findings in 
relation to previous studies on the link between T2D 
and genomic methylation patterns. Indeed, our obser-
vations are partly concordant with previous epidemio-
logical evidence of lower hydroxymethylation levels 
found in diabetic patients compared to controls and 
with the functional evidence that glucose treatment 
increases 5hmC levels in specific cell lines like PBMCs, 
HUVECs and TF-1 [16]. This mechanism is mediated 
by downregulation of TET2 (ten-eleven translocation 
2 protein) levels, an enzyme involved in the conver-
sion of 5-methylcytosine into 5-hydroxymethylcytosine 
in the genome. This effect is counterbalanced by met-
formin treatment, which increases TET2 stability and 
5hmC levels [16]. Our findings are also in line with pre-
vious reports of decreased 5mC levels in T2D patients 
compared to controls, also after adjustment for use of 
metformin. Conversely, contrasting evidence of higher 
5mC and 5hmC levels in peripheral blood cells of 
poorly controlled compared to well-controlled diabetic 
patients and healthy controls has been reported [18]. 
Moreover, the lack of evidence of mediation by glucose, 
insulin and C-peptide in the link between dietary gly-
caemic indices and methylation patterns suggests that 
other biomarkers should be investigated to explain the 
significant associations observed here. Therefore, fur-
ther studies aimed at disentangling the link between 
dietary glycaemic parameters and altered genomic 
methylation are needed to clarify the mechanisms 

linking nutrition, methylation patterns and diabetes-
related traits.

Another interesting finding in our study was that 
some of the significant associations observed were not 
concordant between genders. Prominently, the decrease 
in methylation levels per SD increase of glycaemic load 
was more than three times as negative in men com-
pared to women. If supported by independent studies, 
these findings may open a gender-based perspective 
on the investigation of potential effects of dietary gly-
caemic quantity, with immediate translational implica-
tions for the control of carbohydrate intake in patients 
also based on their gender. In view of the known link 
between metabolic and cardiovascular diseases [7–9], 
5hmC could represent a specific novel marker for car-
diometabolic risk prediction in women.

Limitations and implications for future studies
Although this study has the merit to provide a contri-
bution to the molecular epidemiology of the relation-
ship between DNA methylation and glucose-related 
dietary patterns, an aspect very scarcely investigated 
yet in the field of nutrigenomics, we need to acknowl-
edge some limitations of the present work. The FFQ 
used in this study was not specifically designed to 
evaluate dietary GI and GL, but to provide estimates 
of total carbohydrate and total energy intake. Further-
more, GI and GL estimates derived from FFQs may not 
take into account several factors that can influence the 
postprandial glycaemic response, such as varying meal 
frequency, varying cooking methods or chewing hab-
its. Also, dietary data were self-reported and this may 
lead to recall bias. Similarly, the cross-sectional setting 
does not allow to establish clear directionality of effect 
between glycaemic parameters and epigenetic modifi-
cations, nor does it give any precise information linking 
glycaemic nutritional parameters, altered methylation 
patterns and chronic disease risk. Also, the possibility 
of residual confounding by unmeasured factors cannot 
be fully excluded. This—along with the low number of 
T2D cases (< 40) in the analyzed sub-cohort—did not 
allow to test potential mediation effects of methylation 
patterns in the link between dietary parameters and 
diabetes, which was instead used as a covariate. Finally, 
our global measure of DNA methylation/hydroxym-
ethylation does not allow to further explore potential 
mechanisms linking a specific gene or pathway to qual-
ity and quantity of carbohydrate intake, which makes it 
difficult to understand the functional meaning of these 
associations.
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Conclusions
This study represents, to the best of our knowledge, the 
first attempt to investigate the relationship between 
methylation patterns in the genome and dietary glycae-
mic parameters in the same individual from an adult 
population cohort. Our findings suggest that global 
DNA methylation and hydroxymethylation patterns can 
be used as biomarkers of carbohydrate intake. Further 
approaches are necessary to better understand the gen-
der-based potential effects of dietary GI and GL.

Methods
Study population
The study population was already described in Noro et al. 
[23] and composed of a randomly selected sub-cohort 
of 1,160 participants of the Moli-sani study (N = 24,325; 
49.20% men; age ≥ 35 years, recruited between 2005 and 
2010) [53, 54]. Subjects with incomplete dietary ques-
tionnaires or with missing values in the studied variables 
were excluded from the analysis to a final number of 1080 
subjects.

DNA extraction and global DNA methylation assessment
We used a silica matrix-based method to extract buffy 
coat DNA as described in [55]. Out of the original 1160 
DNA samples, 1140 were selected based on their DNA 
quality to be further used in the methylation study (see 
below). We used the MethylFlash Global DNA Methyla-
tion (5mC) ELISA Easy Kit (colorimetric) and the Meth-
ylFlash Hydroxymethylated DNA 5hmC Quantification 
Kit (colorimetric) (EpiGentek), according to the manu-
facturer’s instructions, to assess global levels of 5-methyl-
cytosine (5mC) and 5-hydroxymethylcytosine (5hmC), 
respectively. DNA methylation quality control and sta-
tistical analyses were performed using R (The R Project, 
2020; https://​www.r-​proje​ct.​org/).

We overall measured 5mC and 5hmC global levels 
for 1214 samples (including 1,140 original and 74 dupli-
cate samples). Of these, samples with absorbance optical 
density (OD) values below the mean of negative controls 
plus 2 standard deviations (SDs) for both global methyla-
tion measurements were set to missing as described [23]. 
We additionally excluded: (1) 17 and 2 outlier samples 
for 5mC and 5hmC, respectively, defined as samples with 
absolute values of standardized methylation levels above 
3 standard deviations; and (2) all prevalent CVD cases 
(56 and 58 samples for 5mC and 5hmC, respectively) to 
exclude reverse causality of CVD on methylation levels 
[56]. Finally, 1067 samples for 5mC and 1075 samples for 
5hmC were used in the following statistical analyses. 5mC 
and 5hmC showed a modest but significant inverse cor-
relation (Pearson’s r = − 0.21, p = 1.1 × 10–11). For both 

5mC and 5hmC, the study population distributions were 
approaching normality (Additional file 1: Figure S1a, b).

Dietary assessment and calculation of dietary glycaemic 
index and load
Food intake during the year before enrollment was 
assessed by the Italian version of the semiquantitative 
EPIC food frequency questionnaire (FFQ) [57]. The FFQ 
contains 14 sections (i.e., pasta/rice, soup, meat (exclud-
ing salami and other cured meats), fish, raw vegetables, 
cooked vegetables, eggs, sandwiches, salami and other 
cured meats, cheese, fruit, bread/wine, milk/coffee/cakes 
and herbs/spices) with 248 questions concerning 188 dif-
ferent food items.

Frequencies and quantities of each food were linked 
to Italian Food Tables [58] using a specifically designed 
software in order to obtain estimates of daily intake of 
macro- and micronutrients plus energy.

The average dietary GI for each volunteer was calcu-
lated as the sum of the GIs of each food item consumed, 
multiplied by the average daily amount consumed and 
the percentage of carbohydrate content, all divided by the 
total daily carbohydrate intake. The GL was calculated 
similarly except that there was no division by total carbo-
hydrate intake.

Generally, the more digestible a carbohydrate is, the 
higher its GI will be. Some carbohydrates are absorbed 
quickly and lead to rapid rise in blood glucose (high GI), 
while others release glucose more slowly (low GI).

The glycaemic load (GL), instead, was calculated by 
multiplying the GI of each specific food for its total car-
bohydrate content (g), then dividing by 100 [59]. GL is 
therefore meant to represent the actual increase of blood 
glucose caused by ingesting a given quantity of carbohy-
drates contained in a portion of food.

Dietary GI and GL for each study participant were 
calculated as the sum of the GIs and GLs of all foods 
consumed in the diet [60]. GI and GL showed a modest 
positive correlation (r = 0.13, p = 1.3 × 10–5) and were 
their distributions approached normality in the popula-
tion under study (Additional file 1: Figure S2a, b).

Covariates assessment and selection
Several covariates were considered or tested as potential 
confounders of the relationship between glycaemic index 
(GI) and load (GL) and global DNA methylation levels 
(5mC/5hmC).

Among them, sex and age were selected by default, 
since they are typical confounding factors which influence 
both methylation measures [61, 62] and nutritional pat-
terns [63]. Similarly, energy intake (kcal/day) was included 
because also the amount of eaten food might influence 

https://www.r-project.org/
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participant methylation levels [64], as was educational 
attainment (defined as completed school level: primary, 
lower, upper secondary and post-secondary), which is 
associated with both methylation [65] and nutritional 
patterns [66]. White blood cell (granulocytes, monocytes, 
lymphocytes) fractions were also included by default to 
account for their heterogeneity, since global DNA meth-
ylation was measured on DNA extracted from these cells.

Other variables—including smoking habits, leisure 
time physical activity, abdominal obesity, alcohol intake, 
diabetes, hyperlipidaemia and cancer (as defined previ-
ously)—were added to the models since they showed a 
univariate trend of association with both the nutritional 
exposure and the methylation outcome (p < 0.2). The defi-
nition of covariates is reported in Additional file 1.

Statistical analyses
Statistical analyses were carried out in R (https://​www.r-​
proje​ct.​org/). The association between GI and GL of diet 
(exposures) and standardized global methylation levels 
(outcome) was analyzed through linear regressions (lm() 
function in R), separately for 5mC and 5hmC, adjusting 
for different potential confounders of these relationship, 
which included age, sex and educational attainment, 
white blood cell fractions, smoking, leisure time physi-
cal activity, abdominal obesity, alcohol intake, prevalent 
diabetes, hyperlipidaemia and cancer (see Supplementary 
Methods for definitions and details on selection).

Sensitivity analyses were carried out to disentangle sig-
nificant associations detected, through further adjusting 
them for use of metformin—an antidiabetic drug with 
known altering effects on DNA methylation (24)—so as 
to ensure that the detected associations were independ-
ent from this factor.

Moreover, we performed mediation analyses through the 
mediate function of the mediation package (https://​cran.r-​
proje​ct.​org/​web/​packa​ges/​media​tion/), to estimate the pro-
portion of association between dietary glycaemic indices (GI 
and GL) and methylation measures (5mC/5hmC) explained 
by different circulating biomarkers, including high sensitiv-
ity C-reactive protein (CRP, tagging circulating inflamma-
tion), glucose, insulin and C-peptide levels (tagging glucose 
homeostasis) and total, LDL and HDL cholesterol.

Similarly, we performed gender interaction association 
analyses for both exposures and both outcomes mentioned 
above, to detect potential gender-specific associations.

Abbreviations
5mC: 5-Methylcitosine; 5hmC: 5-Hydroxymethylcitosine; CRP: C-reactive 
protein; CVD: Cardiovascular disease; FFQ: Food frequency questionnaire; 
GI: Glycaemic index; GL: Glycaemic load; HDL: High-density lipoprotein; LDL: 
Low-density lipoprotein; MDS: Mediterranean Diet Score; OD: Optical density; 
SD: Standard deviation; T2D: Type 2 diabetes; TET: Ten-eleven translocation 
protein.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13148-​022-​01407-3.

Additional file 1. Definition of covariates. Definition of all the covariates 
used in the study. Table S1. Sensitivity analyses of glycaemic dietary 
parameters with methylation and hydroxymethylation measures.

Acknowledgements
BI was supported by the Fondazione Umberto Veronesi, Milan, Italy, that is 
gratefully acknowledged. The Moli-sani study research group thanks the Asso-
ciazione Cuore Sano ONLUS (Campobasso, Italy) for cultural support, and is 
grateful to the BiomarCaRE (Biomarkers for Cardiovascular Risk Assessment in 
Europe) Consortium. Moli-sani Study Investigators: The enrollment phase of the 
Moli-sani study was conducted at the Research Laboratories of the Catholic 
University in Campobasso (Italy), the follow-up of the Moli-sani cohort is being 
conducted at the Department of Epidemiology and Prevention of the IRCCS 
Neuromed, Pozzilli, Italy. Steering Committee: Licia Iacoviello*°(Chairperson), 
Giovanni de Gaetano* and Maria Benedetta Donati*. Scientific Secretariat: 
Marialaura Bonaccio*, Americo Bonanni*, Chiara Cerletti*, Simona Costanzo*, 
Amalia De Curtis*, Augusto Di Castelnuovo§, Alessandro Gialluisi*°, Francesco 
Gianfagna°§, Mariarosaria Persichillo*, Teresa Di Prospero* (Secretary). Safety 
and Ethical Committee: Jos Vermylen (Catholic University, Leuven, Belgio) 
(Chairperson), Renzo Pegoraro (Pontificia Accademia per la Vita, Roma, Italy), 
Antonio Spagnolo (Catholic University, Roma, Italy). External Event Adjudicat-
ing Committee: Deodato Assanelli (Brescia, Italy), Livia Rago (Campobasso, 
Italy). Baseline and Follow-up Data Management: Simona Costanzo* (Coor-
dinator), Marco Olivieri (Campobasso, Italy), Teresa Panzera*. Data Analysis: 
Augusto Di Castelnuovo§ (Coordinator), Marialaura Bonaccio*, Simona 
Costanzo*, Simona Esposito*, Alessandro Gialluisi*°, Francesco Gianfagna°§, 
Sabatino Orlandi*, Emilia Ruggiero*, Alfonsina Tirozzi*. Biobank, Molecular and 
Genetic Laboratory: Amalia De Curtis* (Coordinator), Sara Magnacca§, Fabrizia 
Noro*, Alfonsina Tirozzi*. Recruitment Staff: Mariarosaria Persichillo* (Coordina-
tor), Francesca Bracone*, Teresa Panzera*. Communication and Press Office: 
Americo Bonanni*. Regional Institutions: Direzione Generale per la Salute—
Regione Molise; Azienda Sanitaria Regionale del Molise (ASReM, Italy); Agenzia 
Regionale per la Protezione Ambientale del Molise (ARPA Molise, Italy); Molise 
Dati Spa (Campobasso, Italy); Offices of vital statistics of the Molise region. 
Hospitals: Presidi Ospedalieri ASReM: Ospedale A. Cardarelli—Campobasso, 
Ospedale F. Veneziale—Isernia, Ospedale San Timoteo—Termoli (CB), 
Ospedale Ss. Rosario—Venafro (IS), Ospedale Vietri—Larino (CB), Ospedale San 
Francesco Caracciolo—Agnone (IS); Casa di Cura Villa Maria—Campobasso; 
Ospedale Gemelli Molise—Campobasso; IRCCS Neuromed—Pozzilli (IS). 
*Department of Epidemiology and Prevention, IRCCS Neuromed, Pozzilli, Italy. 
°Department of Medicine and Surgery, University of Insubria, Varese, Italy. 
§Mediterranea Cardiocentro, Napoli, Italy. Moli-sani Study Past Investigators 
are available at https://​www.​moli-​sani.​org/?​page_​id=​173.

Author contributions
BI, LI and AG designed the research; FN conducted the methylation analysis; 
AM and FS contributed to the methylation experiments; MB, SC, AT and 
ADeC provided essential materials; AG and FS analyzed data and performed 
statistical analysis; FG and SO contributed to the statistical analysis; FB and SC 
managed the database; FN, FS, BI and AG wrote the paper; BI, AG and LI had 
primary responsibility for final content; and CC, MBD, GdG, ADiC and LI con-
ceived the Moli-sani study. All authors read and approved the final manuscript.

Funding
The enrollment phase of the Moli-sani study was supported by research 
grants from the Pfizer Foundation (Rome, Italy), the Italian Ministry of Univer-
sity and Research (MIUR, Rome, Italy)–Programma Triennale di Ricerca, Decreto 
no.1588 and Instrumentation Laboratory, Milan, Italy. This work was also 
partially funded by the European Union’s Horizon 2020 research and innova-
tion program under the Marie Sklodowska-Curie (grant agreement No 798841 
to BI), by the Italian Ministry of Health (GR 2018-12366528 to BI and AG and 
Ricerca Corrente 2022–2024). Funders had no role in study design; collection, 
analysis or interpretation of data, the writing of the manuscript or the decision 
to submit the article for publication.

https://www.r-project.org/
https://www.r-project.org/
https://cran.r-project.org/web/packages/mediation/
https://cran.r-project.org/web/packages/mediation/
https://doi.org/10.1186/s13148-022-01407-3
https://doi.org/10.1186/s13148-022-01407-3
https://www.moli-sani.org/?page_id=173


Page 8 of 9Noro et al. Clinical Epigenetics          (2022) 14:189 

Availability of data and materials
The data underlying this article will be shared on reasonable request to 
the corresponding author. The data are stored in an institutional repository 
(https://​repos​itory.​neuro​med.​it) and access is restricted by the ethical approv-
als and the legislation of the European Union.

Declarations

Ethics approval and consent to participate
The Moli-sani study complies with the Declaration of Helsinki and was 
approved by the Ethical Committee of the Catholic University of Rome, Italy. 
All participants provided written informed consent.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Epidemiology and Prevention, IRCCS Neuromed, Via 
Dell’Elettronica, 86077 Pozzilli, IS, Italy. 2 EPIMED Research Center, Depart-
ment of Medicine and Surgery, University of Insubria, Varese, Italy. 3 Mediter-
ranea Cardiocentro, Naples, Italy. 4 Department of Food and Drug, University 
of Parma, Parma, Italy. 5 Present Address: Human Technopole, Viale Rita Levi 
Montalcini 1, 20157 Milan, Italy. 6 Present Address: European School of Molecu-
lar Medicine, University of Milan, 20122 Milan, Italy. 7 Present Address: Center 
of Predictive Molecular Medicine, Center for Excellence on Ageing and Transla-
tional Medicine (CAST), University of Chieti-Pescara, Chieti, Italy. 

Received: 4 July 2022   Accepted: 13 December 2022

References
	1.	 Sievenpiper JL. Low-carbohydrate diets and cardiometabolic health: 

the importance of carbohydrate quality over quantity. Nutr Rev. 
2020;78(Suppl 1):69–77.

	2.	 Carneiro L, Leloup C. Mens Sana in Corpore Sano: does the glycemic 
index have a role to play? Nutrients. 2020;12(10):2989.

	3.	 Long T, Liu K, Long J, Li J, Cheng L. Dietary glycemic index, glycemic load 
and cancer risk: a meta-analysis of prospective cohort studies. Eur J Nutr. 
2022.

	4.	 Turati F, Galeone C, Augustin LSA, La Vecchia C. Glycemic index, 
glycemic load and cancer risk: an updated meta-analysis. Nutrients. 
2019;11(10):2342.

	5.	 Bhupathiraju SN, Tobias DK, Malik VS, Pan A, Hruby A, Manson JE, et al. 
Glycemic index, glycemic load, and risk of type 2 diabetes: results 
from 3 large US cohorts and an updated meta-analysis. Am J Clin Nutr. 
2014;100(1):218–32.

	6.	 Livesey G, Taylor R, Livesey HF, Buyken AE, Jenkins DJA, Augustin LSA, 
et al. Dietary glycemic index and load and the risk of type 2 diabetes: 
a systematic review and updated meta-analyses of prospective cohort 
studies. Nutrients. 2019;11(6):1280.

	7.	 Mirrahimi A, Chiavaroli L, Srichaikul K, Augustin LS, Sievenpiper JL, Kendall 
CW, et al. The role of glycemic index and glycemic load in cardiovascular 
disease and its risk factors: a review of the recent literature. Curr Athero-
scler Rep. 2014;16(1):381.

	8.	 Jayedi A, Soltani S, Jenkins D, Sievenpiper J, Shab-Bidar S. Dietary 
glycemic index, glycemic load, and chronic disease: an umbrella review 
of meta-analyses of prospective cohort studies. Crit Rev Food Sci Nutr. 
2020:1–10.

	9.	 Dwivedi AK, Dubey P, Reddy SY, Clegg DJ. Associations of glycemic index 
and glycemic load with cardiovascular disease: updated evidence from 
meta-analysis and cohort studies. Curr Cardiol Rep. 2022.

	10.	 Ludwig DS. The glycemic index: physiological mechanisms relat-
ing to obesity, diabetes, and cardiovascular disease. JAMA. 
2002;287(18):2414–23.

	11.	 Willett W, Manson J, Liu S. Glycemic index, glycemic load, and risk of type 
2 diabetes. Am J Clin Nutr. 2002;76(1):274S-S280.

	12.	 Jenkins DJ, Wolever TM, Taylor RH, Barker H, Fielden H, Baldwin JM, et al. 
Glycemic index of foods: a physiological basis for carbohydrate exchange. 
Am J Clin Nutr. 1981;34(3):362–6.

	13.	 Atkinson FS, Foster-Powell K, Brand-Miller JC. International tables 
of glycemic index and glycemic load values: 2008. Diabetes Care. 
2008;31(12):2281–3.

	14.	 Atkinson FS, Brand-Miller JC, Foster-Powell K, Buyken AE, Goletzke J. 
International tables of glycemic index and glycemic load values 2021: a 
systematic review. Am J Clin Nutr. 2021;114(5):1625–32.

	15.	 Wu X, Zhang Y. TET-mediated active DNA demethylation: mechanism, 
function and beyond. Nat Rev Genet. 2017;18(9):517–34.

	16.	 Wu D, Hu D, Chen H, Shi G, Fetahu IS, Wu F, et al. Glucose-regulated 
phosphorylation of TET2 by AMPK reveals a pathway linking diabetes to 
cancer. Nature. 2018;559(7715):637–41.

	17.	 Luttmer R, Spijkerman AM, Kok RM, Jakobs C, Blom HJ, Serne EH, et al. 
Metabolic syndrome components are associated with DNA hypometh-
ylation. Obes Res Clin Pract. 2013;7(2):e106–15.

	18.	 Pinzon-Cortes JA, Perna-Chaux A, Rojas-Villamizar NS, Diaz-Basabe A, 
Polania-Villanueva DC, Jacome MF, et al. Effect of diabetes status and 
hyperglycemia on global DNA methylation and hydroxymethylation. 
Endocr Connect. 2017;6(8):708–25.

	19.	 Lecorguille M, Teo S, Phillips CM. Maternal dietary quality and dietary 
inflammation associations with offspring growth, placental development, 
and DNA methylation. Nutrients. 2021;13(9):3130.

	20.	 Geraghty AA, Sexton-Oates A, O’Brien EC, Alberdi G, Fransquet P, Saffery 
R, et al. A low glycaemic index diet in pregnancy induces DNA methyla-
tion variation in blood of newborns: results from the ROLO randomised 
controlled trial. Nutrients. 2018;10(4):455.

	21.	 Yan W, Zhang Y, Wang L, Yang W, Li C, Wang L, et al. Maternal dietary 
glycaemic change during gestation influences insulin-related gene 
methylation in the placental tissue: a genome-wide methylation analysis. 
Genes Nutr. 2019;14:17.

	22.	 Alick CL, Maguire RL, Murphy SK, Fuemmeler BF, Hoyo C, House JS. 
Periconceptional maternal diet characterized by high glycemic loading is 
associated with offspring behavior in NEST. Nutrients. 2021;13(9):3180.

	23.	 Noro F, Marotta A, Bonaccio M, Costanzo S, Santonastaso F, Orlandi 
S, et al. Fine-grained investigation of the relationship between 
human nutrition and global DNA methylation patterns. Eur J Nutr. 
2021;61:1231–43.

	24.	 Elbere I, Silamikelis I, Ustinova M, Kalnina I, Zaharenko L, Peculis R, et al. 
Significantly altered peripheral blood cell DNA methylation profile as a 
result of immediate effect of metformin use in healthy individuals. Clin 
Epigenetics. 2018;10(1):156.

	25.	 Solomon WL, Hector SBE, Raghubeer S, Erasmus RT, Kengne AP, Matsha 
TE. Genome-wide DNA methylation and LncRNA-associated DNA 
methylation in metformin-treated and -untreated diabetes. Epigenomes. 
2020;4(3):19.

	26.	 Jirtle RL, Skinner MK. Environmental epigenomics and disease suscepti-
bility. Nat Rev Genet. 2007;8(4):253–62.

	27.	 Portela A, Esteller M. Epigenetic modifications and human disease. Nat 
Biotechnol. 2010;28(10):1057–68.

	28.	 Simmons R. Epigenetics and maternal nutrition: nature v. nurture. Proc 
Nutr Soc. 2011;70(1):73–81.

	29.	 Berezin A. Metabolic memory phenomenon in diabetes mellitus: achiev-
ing and perspectives. Diabetes Metab Syndr. 2016;10(2 Suppl 1):S176–83.

	30.	 Lee C, An D, Park J. Hyperglycemic memory in metabolism and cancer. 
Horm Mol Biol Clin Investig. 2016;26(2):77–85.

	31.	 Sommese L, Zullo A, Mancini FP, Fabbricini R, Soricelli A, Napoli C. Clinical 
relevance of epigenetics in the onset and management of type 2 diabe-
tes mellitus. Epigenetics. 2017;12(6):401–15.

	32.	 Intine RV, Sarras MP Jr. Metabolic memory and chronic diabetes com-
plications: potential role for epigenetic mechanisms. Curr Diab Rep. 
2012;12(5):551–9.

	33.	 El-Osta A, Brasacchio D, Yao D, Pocai A, Jones PL, Roeder RG, et al. 
Transient high glucose causes persistent epigenetic changes and 
altered gene expression during subsequent normoglycemia. J Exp Med. 
2008;205(10):2409–17.

https://repository.neuromed.it


Page 9 of 9Noro et al. Clinical Epigenetics          (2022) 14:189 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	34.	 Cooper ME, El-Osta A. Epigenetics: mechanisms and implications for 
diabetic complications. Circ Res. 2010;107(12):1403–13.

	35.	 Paneni F, Beckman JA, Creager MA, Cosentino F. Diabetes and vascular 
disease: pathophysiology, clinical consequences, and medical therapy: 
part I. Eur Heart J. 2013;34(31):2436–43.

	36.	 Paneni F, Volpe M, Luscher TF, Cosentino F. SIRT1, p66(Shc), and Set7/9 
in vascular hyperglycemic memory: bringing all the strands together. 
Diabetes. 2013;62(6):1800–7.

	37.	 Costantino S, Ambrosini S, Paneni F. The epigenetic landscape in 
the cardiovascular complications of diabetes. J Endocrinol Investig. 
2019;42(5):505–11.

	38.	 Wilson AS, Power BE, Molloy PL. DNA hypomethylation and human 
diseases. Biochim Biophys Acta. 2007;1775(1):138–62.

	39.	 Soriano-Tarraga C, Jimenez-Conde J, Giralt-Steinhauer E, Mola M, Ois A, 
Rodriguez-Campello A, et al. Global DNA methylation of ischemic stroke 
subtypes. PLoS ONE. 2014;9(4): e96543.

	40.	 Castro R, Rivera I, Struys EA, Jansen EE, Ravasco P, Camilo ME, et al. 
Increased homocysteine and S-adenosylhomocysteine concentra-
tions and DNA hypomethylation in vascular disease. Clin Chem. 
2003;49(8):1292–6.

	41.	 Nanayakkara PW, Kiefte-de Jong JC, Stehouwer CD, van Ittersum FJ, 
Olthof MR, Kok RM, et al. Association between global leukocyte DNA 
methylation, renal function, carotid intima-media thickness and plasma 
homocysteine in patients with stage 2–4 chronic kidney disease. Nephrol 
Dial Transplant. 2008;23(8):2586–92.

	42.	 Ramos RB, Fabris V, Lecke SB, Maturana MA, Spritzer PM. Association 
between global leukocyte DNA methylation and cardiovascular risk in 
postmenopausal women. BMC Med Genet. 2016;17(1):71.

	43.	 Augustin LS, Franceschi S, Jenkins DJ, Kendall CW, La Vecchia C. Glycemic 
index in chronic disease: a review. Eur J Clin Nutr. 2002;56(11):1049–71.

	44.	 Aston LM. Glycaemic index and metabolic disease risk. Proc Nutr Soc. 
2006;65(1):125–34.

	45.	 van Aerde MA, Witte DR, Jeppesen C, Soedamah-Muthu SS, Bjerregaard 
P, Jorgensen ME. Glycemic index and glycemic load in relation to glucose 
intolerance among Greenland’s Inuit population. Diabetes Res Clin Pract. 
2012;97(2):298–305.

	46.	 Hosseinpour-Niazi S, Sohrab G, Asghari G, Mirmiran P, Moslehi N, Azizi F. 
Dietary glycemic index, glycemic load, and cardiovascular disease risk 
factors: Tehran Lipid and Glucose Study. Arch Iran Med. 2013;16(7):401–7.

	47.	 Murakami K, Sasaki S, Takahashi Y, Okubo H, Hosoi Y, Horiguchi H, et al. 
Dietary glycemic index and load in relation to metabolic risk factors in 
Japanese female farmers with traditional dietary habits. Am J Clin Nutr. 
2006;83(5):1161–9.

	48.	 Levitan EB, Cook NR, Stampfer MJ, Ridker PM, Rexrode KM, Buring JE, 
et al. Dietary glycemic index, dietary glycemic load, blood lipids, and 
C-reactive protein. Metabolism. 2008;57(3):437–43.

	49.	 Ma Y, Li Y, Chiriboga DE, Olendzki BC, Hebert JR, Li W, et al. Associa-
tion between carbohydrate intake and serum lipids. J Am Coll Nutr. 
2006;25(2):155–63.

	50.	 Denova-Gutierrez E, Huitron-Bravo G, Talavera JO, Castanon S, Gallegos-
Carrillo K, Flores Y, et al. Dietary glycemic index, dietary glycemic load, 
blood lipids, and coronary heart disease. J Nutr Metab. 2010;2010.

	51.	 Slyper A, Jurva J, Pleuss J, Hoffmann R, Gutterman D. Influence of glyce-
mic load on HDL cholesterol in youth. Am J Clin Nutr. 2005;81(2):376–9.

	52.	 Fernandes AC, Marinho AR, Lopes C, Ramos E. Dietary glycemic load and 
its association with glucose metabolism and lipid profile in young adults. 
Nutr Metab Cardiovasc Dis. 2022;32(1):125–33.

	53.	 Iacoviello L, Bonanni A, Costanzo S, De Curtis A, Di Castelnuovo A, Olivieri 
M, Zito F, Donati MB, de Gaetano G. The MOLI-SANI Project, a randomized, 
prospective cohort study in the Molise region in Italy; design, rationale 
and objectives. Ital J Public Health. 2007;4:110–8.

	54.	 Di Castelnuovo A, Costanzo S, Persichillo M, Olivieri M, de Curtis A, Zito F, 
et al. Distribution of short and lifetime risks for cardiovascular disease in 
Italians. Eur J Prev Cardiol. 2012;19(4):723–30.

	55.	 Malferrari G, Monferini E, DeBlasio P, Diaferia G, Saltini G, Del Vecchio E, 
et al. High-quality genomic DNA from human whole blood and mononu-
clear cells. Biotechniques. 2002;33(6):1228–30.

	56.	 Zhong J, Agha G, Baccarelli AA. The role of DNA methylation in cardio-
vascular risk and disease: methodological aspects, study design, and data 
analysis for epidemiological studies. Circ Res. 2016;118(1):119–31.

	57.	 Pala V, Sieri S, Palli D, Salvini S, Berrino F, Bellegotti M, et al. Diet in the Ital-
ian EPIC cohorts: presentation of data and methodological issues. Tumori. 
2003;89(6):594–607.

	58.	 Salvini S PM, Gnagnarella P, Maissoneuve P, Turrini A. Banca dati compo-
sizione degli alimenti per studi epidemiologici in Italia. Milano: European 
Isntitute of Oncology. 1998.

	59.	 Sieri S, Agnoli C, Pala V, Grioni S, Brighenti F, Pellegrini N, et al. Dietary 
glycemic index, glycemic load, and cancer risk: results from the EPIC-Italy 
study. Sci Rep. 2017;7(1):9757.

	60.	 Sieri S, Krogh V. Dietary glycemic index, glycemic load and cancer: an 
overview of the literature. Nutr Metab Cardiovasc Dis. 2017;27(1):18–31.

	61.	 Horvath S. DNA methylation age of human tissues and cell types. 
Genome Biol. 2013;14(10):R115.

	62.	 Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, et al. 
Genome-wide methylation profiles reveal quantitative views of human 
aging rates. Mol Cell. 2013;49(2):359–67.

	63.	 Drewnowski A, Shultz JM. Impact of aging on eating behaviors, food 
choices, nutrition, and health status. J Nutr Health Aging. 2001;5(2):75–9.

	64.	 Samblas M, Milagro FI, Martinez A. DNA methylation markers in obesity, 
metabolic syndrome, and weight loss. Epigenetics. 2019;14(5):421–44.

	65.	 van Dongen J, Bonder MJ, Dekkers KF, Nivard MG, van Iterson M, Willem-
sen G, et al. DNA methylation signatures of educational attainment. NPJ 
Sci Learn. 2018;3:7.

	66.	 Bonaccio M, Di Castelnuovo A, de Gaetano G, Iacoviello L. Socioeconomic 
gradient in health: mind the gap in “invisible” disparities. Ann Transl Med. 
2020;8(18):1200.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Association of nutritional glycaemic indices with global DNA methylation patterns: results from the Moli-sani cohort
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Results
	Discussion
	Limitations and implications for future studies
	Conclusions
	Methods
	Study population
	DNA extraction and global DNA methylation assessment
	Dietary assessment and calculation of dietary glycaemic index and load
	Covariates assessment and selection
	Statistical analyses

	Acknowledgements
	References


