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We introduce an efficient way to improve the accuracy of projected wave functions, widely used to study the

two-dimensional Hubbard model. Taking the clue from the backflow contribution, whose relevance has been

emphasized for various interacting systems on the continuum, we consider many-body correlations to construct

a suitable approximation for the ground state at intermediate and strong couplings. In particular, we study the

phase diagram of the frustrated t− t8 Hubbard model on the square lattice and show that, thanks to backflow

correlations, an insulating and nonmagnetic phase can be stabilized at strong coupling and sufficiently large

frustrating ratio t8 / t.
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I. INTRODUCTION

Recently, the interest in the role of frustrating interactions

in electronic systems has considerably increased, since in

this regime new exotic phases may appear. Many experi-

ments suggest the possibility to have disordered phases down

to very low temperatures smuch smaller than what one would
expect from a mean-field approachd or even to zero tempera-
ture. Such phases are generically called spin liquids. In this

respect, the organic molecular materials k-sETd2X, X being a

monovalent anion,1,2 represent an interesting example, since

they show a particularly rich phase diagram. In the conduct-

ing layers, ET molecules are strongly dimerized and form a

two-dimensional s2Dd triangular lattice. Since the valence of
each ET dimer is +1, the conduction band is half filled. By

acting with an external pressure, it is possible to vary the

ratio between the on-site Coulomb repulsion and the band-

width, driving the system through a metal-insulator transi-

tion.

The minimal model to describe the physics of correlated

electrons is the Hubbard model

H = − o
i,j,s

tijci,s
†
c j,s + H.c. + Uo

i

ni,↑ni,↓, s1d

where ci,s
† sci,sd creates sdestroysd an electron with spin s on

site i, ni,s=ci,s
† ci,s, tij is the hopping amplitude that deter-

mines the bandwidth, and U is the on-site Coulomb repul-

sion. In this work, we focus our attention on the half-filled

case with N electrons on N sites stilted by 45°d, and consider
the square lattice with both nearest- and next-nearest-

neighbor hoppings, denoted by t and t8, respectively. This

model represents the prototype for frustrated electronic

materials,3 and, recently, it has been widely studied by dif-

ferent numerical techniques, with contradictory outcomes.4–8

Here, we present the results for the zero-temperature phase

diagram, obtained by using projected wave functions.

II. VARIATIONAL APPROACH

Variational wave functions for the unfrustrated Hubbard

model, describing the antiferromagnetic phase, can be con-

structed by considering the ground state uAFl of a mean-field
Hamiltonian containing a band contribution and a magnetic

term HAF=DAFo je
iQ·RjS j

x, where S j
x is the x component of the

spin operator S j= sS j
x ,S j

y ,S j
zd. In order to have the correct

spin-spin correlations at large distance, we have to apply a

suitable long-range spin Jastrow factor, namely, uCAFl
=JsuAFl, with Js=expf− 1

2
oi,jui,jSi

zS j
zg, which governs spin

fluctuations orthogonal to the magnetic field DAF.
9

On the other hand, spin-liquid si.e., disorderedd states can
be constructed by considering the ground state uBCSl of a

Bardeen-Cooper-Schrieffer sBCSd Hamiltonian and then ap-
plying to it the so-called Gutzwiller projector, uRVBl
=PGuBCSl, where PG=pis1−gni,↑ni,↓d and g=1.10,11 In pure

spin models, where the U is infinite and charge fluctuations

are completely frozen, these kinds of states can be remark-

ably accurate and provide important predictions on the sta-

bilization of disordered spin-liquid ground states.12,13 How-

ever, whenever U / t is finite, the variational state must also

contain charge fluctuations. In this regard, the simplest gen-

eralization of the Gutzwiller projector with g,1, which al-

lows doubly occupied sites, is known to lead to a metallic

phase.14 In order to obtain a Mott insulator with no magnetic

order, it is necessary to consider a sufficiently long-range

Jastrow factor J=expf− 1

2
oi,jvi,jnin jg, ni=osni,s being the lo-

cal density.15 Nevertheless, the accuracy of the resulting

wave function uCBCSl=JuBCSl can be rather poor in 2D for

large on-site interactions,16 especially in the presence of frus-

tration ssee belowd. Therefore, other contributions beyond

the Jastrow factor must be included. In this respect, some

improvement on small clusters can be also obtained by per-

forming one Lanczos step, s1+aHduCBCSl,
9 or by consider-

ing expshKdPGuBCSl swhere h and g are variational param-

eters and K is the hopping Hamiltoniand.17 However, the first
case is clearly not size consistent, while the second one be-

comes highly inefficient on large clusters.

III. BACKFLOW WAVE FUNCTION

The poor accuracy of uCBCSl is particularly evident in the
strong-coupling limit, where the super-exchange-energy
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scale is not correctly reproduced. Here, we want to modify

the single-particle orbitals18 in the same spirit of the back-

flow correlations, which have been proposed a long time ago

by Feynman and Cohen19 to obtain a quantitative description

of the roton excitation in liquid Helium. In our context, the

backflow term makes it possible to mimic the effect of the

virtual hopping, which leads to the super-exchange mecha-

nism. In the following, we will show that backflow correla-

tions will be particularly important for the BCS wave func-

tion, whereas they are less crucial in all magnetically ordered

phases, where already the mean-field state can satisfy the

single-occupancy sstrong-couplingd constraint and contains

the virtual hopping processes, which are generated by the

kinetic term.

The backflow has been implemented within quantum

Monte Carlo calculations to study bulk liquid 3He,20,21 and

used to improve the description of the electron jellium both

in two and three dimensions.22,23 More recently, it has been

applied to metallic hydrogen.24 Originally, the backflow term

corresponds to consider fictitious coordinates of the electrons

ra
b , which depend on the positions of the other particles, so to

create a return flow of current,

ra
b = ra + o

b

ha,bfxgsrb − rad , s2d

where ra are the actual electronic positions and ha,bfxg are
variational parameters depending in principle on all the elec-

tronic coordinates, namely, on the many-body configuration

uxl. The variational wave function is then constructed by

means of the orbitals calculated in the new positions, i.e.,

fsra
bd. Alternatively, the backflow can be introduced by con-

sidering a linear expansion of each single-particle orbital:

fksra
bd . fk

bsrad ; fksrad + o
b

ca,bfxgfksrbd , s3d

where ca,bfxg are suitable coefficients. Definition s3d is par-
ticularly useful in lattice models, where the coordinates of

the particles may assume only discrete values. In particular,

in the Hubbard model, the form of the new “orbitals” can be

fixed by considering the U@ t limit, so to favor a recombi-

nation of neighboring charge fluctuations si.e., empty and

doubly-occupied sitesd,

fk
bsri,sd ; efksri,sd + ho

j

tijsDiH jdfksr j,sd , s4d

where we used the notation that fksri,sd= k0uci,sufkl, ufkl are
the eigenstates of the mean-field Hamiltonian, Di=ni,↑ni,↓,

and Hi=hi,↑hi,↓, with hi,s= s1−ni,sd, so that Di and Hi are

nonzero only if the site i is doubly occupied or empty, re-

spectively; finally e and h are variational parameters swe can
assume that e=1 if DiH j=0d. As a consequence, the determi-
nant part of the wave function already includes correlation

effects due to the presence of the many-body operator DiH j.

The previous definition of the backflow term preserves the

spin SUs2d symmetry. A further generalization of the new

“orbitals” can be made by taking all the possible virtual hop-

pings of the electrons:

fk
bsri,sd ; efksri,sd + h1o

j

tijsDiH jdfksr j,sd

+ h2o
j

tijsni,shi,−sn j,−sh j,sdfksr j,sd

+ h3o
j

tijsDin j,−sh j,s + ni,shi,−sH jdfksr j,sd ,

s5d

where e, h1, h2, and h3 are variational parameters. The latter

two variational parameters are particularly important for the

metallic phase at small U / t, whereas they give only a slight

improvement of the variational wave function in the insula-

tor at strong coupling. For simplicity, we take the same pa-

rameters for up and down electrons. The definition Eq. s5d
may break the SUs2d symmetry, however, the optimized

wave function always has a very small value of the total spin

square, i.e., kS2l,0.001 for 50 sites. All the parameters of

the wave function scontained in the mean-field Hamiltonian,
in the Jastrow term, and in the backflow termd can be opti-

mized by using the method of Ref. 13. Finally, the varia-

tional results can be compared to more accurate sand still

variationald ones obtained by Green’s function Monte Carlo

implemented with the so-called fixed-node sFNd appro-

ximation.25

IV. RESULTS

Let us start by considering the comparison of the varia-

tional results with the exact ones on the 18-site cluster at half

filling. In Fig. 1, we show the accuracy of the variational

BCS state swith and without backflow correlationsd and the

overlap with the exact ground state for two values of the

frustrating ratio, i.e., t8 / t=0 and 0.7. The backflow term is
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FIG. 1. sColor onlined Results for 18 electrons on 18 sites as a
function of U / t. Upper panels: Accuracy of energy DE= sE0−Ev

d,
E

v
, and E0 being the variational and the exact values, respectively.

Lower panels: Overlap between the exact ground state and the

variational wave functions. The BCS state with long-range Jastrow

factor is denoted by blue triangles, the BCS state with backflow

correlations and Jastrow term by red circles. The results for DE

considering one Lanczos step upon the BCS state, i.e., s1
+aHduCl, are also shown sblack squaresd.

TOCCHIO et al. PHYSICAL REVIEW B 78, 041101sRd s2008d

RAPID COMMUNICATIONS

041101-2



able to highly improve the accuracy both for weak and

strong couplings. We also notice that backflow correlations

are more efficient than applying one Lanczos step, i.e.,

s1+aHduCBCSl, which was used in previous calculations.9

The overlap between the exact ground state and the backflow

state remains very high even for large U, especially in the

frustrated regime.

Backflow correlations remain efficient also for larger sizes

and provide much lower energy than the Lanczos step wave

function, e.g., for 98 sites with U / t=20 and t8 / t=0.7, the

energy per site with the backflow wave function is Eb / t

=−0.2352s1d, while the one with one Lanczos step is Els / t

=−0.2310s1d sfor 18 sites they are Eb / t=−0.23741 and

Els / t=−0.23566d. The FN energy obtained with the backflow

state is EFN / t=−0.2395s1d, rather close to our estimation of
the exact value sbased upon an extrapolation obtained with

zero and one Lanczos stepd that is E / t,−0.246.

By increasing U / t, the variational energy extrapolates to

the one obtained by taking the fully projected state uRVBl in
the spin model. On the contrary, without using backflow

terms, the energy of the BCS state, even in the presence of a

fully optimized Jastrow factor, is few hundredths of J

=4t2 /U higher than the expected value ssee Fig. 2d. More-

over, whenever frustration is large enough, backflow corre-

lations are also useful in the antiferromagnetic state uCAFl,
while for t8=0 they are not necessary to extrapolate to the

value of the spin model ssee Fig. 2d.
In order to draw the ground-state phase diagram of the

t− t8 Hubbard model, we consider three different wave func-

tions with backflow correlations: Two antiferromagnetic

states uCAFl with Q= sp ,pd and Q= sp ,0d, relevant for small
and large t8 / t, and the nonmagnetic state uCBCSl. The varia-
tional phase diagram is reported in Fig. 3. The first important

outcome is that without backflow terms, the energies of the

spin-liquid wave function are always higher than those of the

magnetically ordered states for any value of frustration t8 / t.

Instead, by inserting backflow correlations, a spin-liquid

phase can be stabilized at large enough U / t and frustration

ssee also Fig. 2d. The small energy difference between the

pure variational and the FN energies demonstrates the accu-

racy of the backflow states, see Fig. 3. Notice that uCAFl and
uCBCSl have different nodal surfaces, implying different FN

energies.

For small Coulomb repulsion and finite t8 / t the static

density-density correlations Nsqd= kn−qnql swhere nq is the

Fourier transform of the local density nid have a linear be-
havior for uqu→0, typical of a conducting phase. A very

small superconducting parameter with dx2−y2 symmetry can

be stabilized, suggesting that long-range pairing correlations,

if any, are tiny. By increasing U / t, a metal-insulator transi-

tion is found and Nsqd acquires a quadratic behavior in the

insulating phase, indicating a vanishing compressibility. This

behavior does not change when considering the FN ap-

proach, although the metal-insulator transition may be

slightly shifted. In Fig. 4, we show the variational results for

Nsqd as a function of U / t for t8 / t=0.75. The insulator just

above the transition is magnetically ordered and the varia-

tional wave function has a large DAF; the transition is likely

to be first order. By further increasing U / t, there is a second

transition to a disordered insulator. Indeed, for U / t*14, the

energy of the BCS wave function becomes lower than the

one of the antiferromagnetic state. In this respect, the key

ingredient to have such an insulating behavior is the presence

of a singular Jastrow term vq,1 /q2, which turns a BCS

superconductor into a Mott insulator.15 In contrast to previ-

ous investigations,4–8 for intermediate on-site couplings, our

calculations indicate the possibility to have a direct sfirst-
orderd transition between two magnetic states ssee Fig. 3d.

In order to verify the magnetic properties obtained within

the variational approach, we can consider the static spin-spin

correlations Ssqd= kS−q
z Sq

zl over the FN ground state. Al-

though the FN approach may break the SUs2d spin symme-

try, favoring a spin alignment along the z axis sthis is what
we find for small lattices by a direct comparison with exact
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FIG. 2. sColor onlined Variational energies per site sin unit of

J=4t2 /Ud for the BCS state with a Jastrow factor, with and without

backflow correlations, and 98 sites. The results for the wave func-

tion with antiferromagnetic order and no BCS pairing are also

shown. Arrows indicate the variational results obtained by applying

the full Gutzwiller projection to the mean-field states for the corre-

sponding Heisenberg models.
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resultsd, Ssqd is particularly simple to evaluate within this

approach,25 and it gives important insights into the magnetic

properties of the ground state. In Fig. 4, we report the com-

parison between the variational and the FN results by con-

sidering the nonmagnetic state uCBCSl. Remarkably, in the

unfrustrated case, where antiferromagnetic order is expected,

the FN approach is able to increase spin-spin correlations at

q= sp ,pd, even by considering the nonmagnetic wave func-
tion to fix the nodes. A finite value of the magnetization is

also plausible in the insulating region just above the metallic

phase at strong frustration si.e., t8 / t,0.75d, confirming the

variational calculations. On the contrary, by increasing the

electron correlation, the FN results change only slightly the

variational value of Ssp ,pd, indicating the stability of the

disordered state. In this case, a qualitatively correct represen-

tation of the ground state is obtained by the simple uCBCSl.
In conclusion, we have introduced a wave function that

highly improves the accuracy of the projected states used so

far. Our variational ansatz is particularly useful to describe

nonmagnetic phases, which can be stabilized in the strong-

coupling regime of the t− t8 Hubbard model on the square

lattice.
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