CuxO (x=1,2) nanomaterials with tailored composition and properties—a hot topic in sustainable technologies—may be fabricated from molecular sources through bottom-up processes that involve unexpected changes in the metal oxidation state and open intriguing challenges on the copper redox chemistry. How copper(II) sources may lead to copper(I) species in spite of the absence of any explicit reducing agent, and even in the presence of oxygen, is one such question—to date unanswered. Herein, we study copper “reduction without reductants” within one molecule and reveal that the actual reducing agent is abstracted atomic hydrogen. By investigating the fragmentation of a copper(II) precursor for copper oxide nanostructures by combined ESI-MS with multiple collisional experiments (ESI/MSn) and theoretical calculations, we highlight a copper-promoted C[BOND]H bond activation, leading to reduction of the metal center and formation of a CuI-C-NCCN six-membered ring. Such a novel ring system is the structural motif for a new family of cyclic copper(I) adducts, which show a bonding scheme, herein reported for the first time, that may shed unprecedented light on copper chemistry. Beyond the relevance for the preparation of copper oxide nanostructures, the hydrogen-abstraction/proton-delivery/electron-gain mechanism of copper(II) reduction disclosed herein appears to be a general property of copper and might help to understand its redox reactivity.

How Does CuII Convert into CuI? An Unexpected Ring-Mediated Single-Electron Reduction

FOIS, ETTORE SILVESTRO;TABACCHI, GLORIA
2011-01-01

Abstract

CuxO (x=1,2) nanomaterials with tailored composition and properties—a hot topic in sustainable technologies—may be fabricated from molecular sources through bottom-up processes that involve unexpected changes in the metal oxidation state and open intriguing challenges on the copper redox chemistry. How copper(II) sources may lead to copper(I) species in spite of the absence of any explicit reducing agent, and even in the presence of oxygen, is one such question—to date unanswered. Herein, we study copper “reduction without reductants” within one molecule and reveal that the actual reducing agent is abstracted atomic hydrogen. By investigating the fragmentation of a copper(II) precursor for copper oxide nanostructures by combined ESI-MS with multiple collisional experiments (ESI/MSn) and theoretical calculations, we highlight a copper-promoted C[BOND]H bond activation, leading to reduction of the metal center and formation of a CuI-C-NCCN six-membered ring. Such a novel ring system is the structural motif for a new family of cyclic copper(I) adducts, which show a bonding scheme, herein reported for the first time, that may shed unprecedented light on copper chemistry. Beyond the relevance for the preparation of copper oxide nanostructures, the hydrogen-abstraction/proton-delivery/electron-gain mechanism of copper(II) reduction disclosed herein appears to be a general property of copper and might help to understand its redox reactivity.
2011
copper, density functional calculations, fragmentation reactions, MS, reaction mechanisms
Barreca, D.; Fois, ETTORE SILVESTRO; Gasparotto, A.; Seraglia, R.; Tondello, E.; Tabacchi, Gloria
File in questo prodotto:
File Dimensione Formato  
news_chemeurj.jpg

accesso aperto

Tipologia: Altro materiale allegato
Licenza: DRM non definito
Dimensione 274.49 kB
Formato JPEG
274.49 kB JPEG Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/1730805
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 30
social impact