The iron hormone hepcidin is inhibited by matriptase-2 (MT2), a liver serine protease encoded by the TMPRSS6 gene. Cleaving the bone morphogenetic protein (BMP) coreceptor hemojuvelin (HJV), MT2 impairs the BMP/son of mothers against decapentaplegic homologs (SMAD) signaling pathway, down-regulates hepcidin, and facilitates iron absorption. TMPRSS6 inactivation causes iron-deficiency anemia refractory to iron administration both in humans and mice. Genome-wide association studies have shown that the SNP rs855791, which causes the MT2 V736A amino acid substitution, is associated with variations of serum iron, transferrin saturation, hemoglobin, and erythrocyte traits. In the present study, we show that, in vitro, MT2 736(A) inhibits hepcidin more efficiently than 736(V). Moreover, in a genotyped population, after exclusion of samples with iron deficiency and inflammation, hepcidin, hepcidin/transferrin saturation, and hepcidin/ferritin ratios were significantly lower and iron parameters were consistently higher in homozygotes 736(A) than in 736(V). Our results indicate that rs855791 is a TMPRSS6 functional variant and strengthen the idea that even a partial inability to modulate hepcidin influences iron parameters and, indirectly, erythropoiesis.

Extracellular matrix structure and nano-mechanics determine megakaryocyte function.

RASPANTI, MARIO;
2011-01-01

Abstract

The iron hormone hepcidin is inhibited by matriptase-2 (MT2), a liver serine protease encoded by the TMPRSS6 gene. Cleaving the bone morphogenetic protein (BMP) coreceptor hemojuvelin (HJV), MT2 impairs the BMP/son of mothers against decapentaplegic homologs (SMAD) signaling pathway, down-regulates hepcidin, and facilitates iron absorption. TMPRSS6 inactivation causes iron-deficiency anemia refractory to iron administration both in humans and mice. Genome-wide association studies have shown that the SNP rs855791, which causes the MT2 V736A amino acid substitution, is associated with variations of serum iron, transferrin saturation, hemoglobin, and erythrocyte traits. In the present study, we show that, in vitro, MT2 736(A) inhibits hepcidin more efficiently than 736(V). Moreover, in a genotyped population, after exclusion of samples with iron deficiency and inflammation, hepcidin, hepcidin/transferrin saturation, and hepcidin/ferritin ratios were significantly lower and iron parameters were consistently higher in homozygotes 736(A) than in 736(V). Our results indicate that rs855791 is a TMPRSS6 functional variant and strengthen the idea that even a partial inability to modulate hepcidin influences iron parameters and, indirectly, erythropoiesis.
2011
PROPLATELET FORMATION; THROMBOPOIESIS; PATHWAY
Malara, A.; Gruppi, C.; Pallotta, I.; Spedden, E.; Tenni, R.; Raspanti, Mario; Kaplan, D.; Tira, M. E.; Staii, C.; Balduini, A.
File in questo prodotto:
File Dimensione Formato  
Blood.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: DRM non definito
Dimensione 476.11 kB
Formato Adobe PDF
476.11 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/1732004
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 45
  • ???jsp.display-item.citation.isi??? 45
social impact