In this work a new class of numerical methods for the BGK model of kinetic equations is presented. In principle, schemes of any order of accuracy in both space and time can be constructed with this technique. The methods proposed are based on an explicit–implicit time discretization. In particular the convec- tive terms are treated explicitly, while the source terms are implicit. In this fashion even problems with infinite stiffness can be integrated with relatively large time steps. The conservation properties of the schemes are investigated. Numerical results are shown for schemes of order 1, 2 and 5 in space, and up to third- order accurate in time.

Implicit-Explicit schemes for BGK kinetic equations

PUPPO, GABRIELLA ANNA
2007-01-01

Abstract

In this work a new class of numerical methods for the BGK model of kinetic equations is presented. In principle, schemes of any order of accuracy in both space and time can be constructed with this technique. The methods proposed are based on an explicit–implicit time discretization. In particular the convec- tive terms are treated explicitly, while the source terms are implicit. In this fashion even problems with infinite stiffness can be integrated with relatively large time steps. The conservation properties of the schemes are investigated. Numerical results are shown for schemes of order 1, 2 and 5 in space, and up to third- order accurate in time.
2007
BGK model; kinetic equations; high-order schemes; implicit–explicit schemes
Pieraccini, S.; Puppo, GABRIELLA ANNA
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/1789562
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 144
  • ???jsp.display-item.citation.isi??? 137
social impact