This article presents a tool based on a simplified model developed for the combustion processes in a rotary kiln incinerator (slightly inclined rotating primary combustion chamber). The model was developed with the aim of supporting the design phase of the incinerator combustion chamber and, at the same time, of investigating possible technical changes in existing plants in order to optimise the combustion process and the dimension of the rotary kiln (length, diameter) as a function of the characteristics of the fed waste. The tool has been applied and the obtained results compared with a real incineration plant operating on healthcare waste located in Rome (Italy). The mass and thermal balances were taken into account, together with kinetic parameters for the combustion of the specific waste stream. The mass balance considered only the major mass components (carbon, hydrogen, oxygen, nitrogen and sulphur). The measured external temperatures appear to be in good agreement with the simulated results. A sensitivity analysis of the plant under different operating conditions was carried out using different input flow rates and excess air ratios, and an assessment was made of the refractory and insulator properties of the kiln’s behaviour. Some of the simulated results were used during the periodical maintenance to improve the refractory characteristics in order to reduce the fret and corrosion process.

Waste incineration in rotary kilns: a new simulation combustion tool to support design and technical change

TORRETTA, VINCENZO
2013-01-01

Abstract

This article presents a tool based on a simplified model developed for the combustion processes in a rotary kiln incinerator (slightly inclined rotating primary combustion chamber). The model was developed with the aim of supporting the design phase of the incinerator combustion chamber and, at the same time, of investigating possible technical changes in existing plants in order to optimise the combustion process and the dimension of the rotary kiln (length, diameter) as a function of the characteristics of the fed waste. The tool has been applied and the obtained results compared with a real incineration plant operating on healthcare waste located in Rome (Italy). The mass and thermal balances were taken into account, together with kinetic parameters for the combustion of the specific waste stream. The mass balance considered only the major mass components (carbon, hydrogen, oxygen, nitrogen and sulphur). The measured external temperatures appear to be in good agreement with the simulated results. A sensitivity analysis of the plant under different operating conditions was carried out using different input flow rates and excess air ratios, and an assessment was made of the refractory and insulator properties of the kiln’s behaviour. Some of the simulated results were used during the periodical maintenance to improve the refractory characteristics in order to reduce the fret and corrosion process.
2013
Waste combustion; simulation model; rotary kiln; thermal and mass balances; refractory
Lombardi, F.; Lategano, E.; Cordiner, S.; Torretta, Vincenzo
File in questo prodotto:
File Dimensione Formato  
32-WMR-kiln-Torretta.pdf

accesso aperto

Tipologia: Abstract
Licenza: DRM non definito
Dimensione 1.47 MB
Formato Adobe PDF
1.47 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/1812118
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 24
social impact