We identified 13 new gene expression markers that were elevated and one marker, ANKRD15, that was down-regulated in patients with polycythemia vera (PV). These 14 markers, as well as the previously described PRV1 and NF-E2, exhibited the same gene expression alterations also in patients with exogenously activated granulocytes due to sepsis or granulocyte colony-stimulating factor (G-CSF) treatment. The recently described V617F mutation in the Janus kinase 2 (JAK2) gene allows defining subclasses of patients with myeloproliferative disorders based on the JAK2 genotype. Patients with PV who were homozygous or heterozygous for JAK2-V617F exhibited higher levels of expression of the 13 new markers, PRV1, and NF-E2 than patients without JAK2-V617F, whereas ANKRD15 was down-regulated in these patients. Our results suggest that the alterations in expression of the markers studied are due to the activation of the Jak/signal transducer and activator of transcription (STAT) pathway through exogenous stimuli (sepsis or G-CSF treatment), or endogenously through the JAK2-V617F mutation.

Altered gene expression in myeloproliferative disorders correlates with activation of signaling by the V617F mutation of Jak2

PASSAMONTI, FRANCESCO;
2005-01-01

Abstract

We identified 13 new gene expression markers that were elevated and one marker, ANKRD15, that was down-regulated in patients with polycythemia vera (PV). These 14 markers, as well as the previously described PRV1 and NF-E2, exhibited the same gene expression alterations also in patients with exogenously activated granulocytes due to sepsis or granulocyte colony-stimulating factor (G-CSF) treatment. The recently described V617F mutation in the Janus kinase 2 (JAK2) gene allows defining subclasses of patients with myeloproliferative disorders based on the JAK2 genotype. Patients with PV who were homozygous or heterozygous for JAK2-V617F exhibited higher levels of expression of the 13 new markers, PRV1, and NF-E2 than patients without JAK2-V617F, whereas ANKRD15 was down-regulated in these patients. Our results suggest that the alterations in expression of the markers studied are due to the activation of the Jak/signal transducer and activator of transcription (STAT) pathway through exogenous stimuli (sepsis or G-CSF treatment), or endogenously through the JAK2-V617F mutation.
2005
http://bloodjournal.hematologylibrary.org/cgi/content/full/106/10/3374
JAK2; signaling; gene expression; myeloproliferative disease
Kralovics, R; Teo, Ss; Buser, As; Brutsche, M; Tiedt, R; Tichelli, A; Passamonti, Francesco; Pietra, D; Cazzola, M; Skoda, Rc
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2023258
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 41
  • Scopus 157
  • ???jsp.display-item.citation.isi??? 139
social impact