UV-maps are required in order to apply a 2D texture over a 3D model. Conventional UV-maps are defined by an assignment of uv positions to mesh vertices. We present an alternative representation, volume-encoded UV-maps, in which each point on the surface is mapped to a uv position which is solely a function of its 3D position. This function is tailored for a target surface: its restriction to the surface is a parametrization exhibiting high quality, e.g. in terms of angle and area preservation; and, near the surface, it is almost constant for small orthogonal displacements. The representation is applicable to a wide range of shapes and UV-maps, and unlocks several key advantages: it removes the need to duplicate vertices in the mesh to encode cuts in the map; it makes the UVmap representation independent from the meshing of the surface; the same texture, and even the same UV-map, can be shared by multiple geometrically similar models (e.g. all levels of a LoD pyramid); UV-maps can be applied to representations other than polygonal meshes, like point clouds or set of registered range-maps. Our schema is cheap on GPU computational and memory resources, requiring only a single, cache-coherent indirection to a small volumetric texture per fragment. We also provide an algorithm to construct a volume-encoded UV-map given a target surface.

Volume-encoded UV-maps

TARINI, MARCO
2016-01-01

Abstract

UV-maps are required in order to apply a 2D texture over a 3D model. Conventional UV-maps are defined by an assignment of uv positions to mesh vertices. We present an alternative representation, volume-encoded UV-maps, in which each point on the surface is mapped to a uv position which is solely a function of its 3D position. This function is tailored for a target surface: its restriction to the surface is a parametrization exhibiting high quality, e.g. in terms of angle and area preservation; and, near the surface, it is almost constant for small orthogonal displacements. The representation is applicable to a wide range of shapes and UV-maps, and unlocks several key advantages: it removes the need to duplicate vertices in the mesh to encode cuts in the map; it makes the UVmap representation independent from the meshing of the surface; the same texture, and even the same UV-map, can be shared by multiple geometrically similar models (e.g. all levels of a LoD pyramid); UV-maps can be applied to representations other than polygonal meshes, like point clouds or set of registered range-maps. Our schema is cheap on GPU computational and memory resources, requiring only a single, cache-coherent indirection to a small volumetric texture per fragment. We also provide an algorithm to construct a volume-encoded UV-map given a target surface.
2016
http://dl.acm.org/citation.cfm?id=2925898
http://vcg.isti.cnr.it/volume-encoded-uv-maps/
Seamless parameterization; Texture mapping; Computer Graphics and Computer-Aided Design
Tarini, Marco
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2056969
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 10
social impact