On a star graph made of N≥3 halflines (edges) we consider a Schrödinger equation with a subcritical power-type nonlinearity and an attractive delta interaction located at the vertex. From previous works it is known that there exists a family of standing waves, symmetric with respect to the exchange of edges, that can be parametrized by the mass (or L2-norm) of its elements. Furthermore, if the mass is small enough, then the corresponding symmetric standing wave is a ground state and, consequently, it is orbitally stable. On the other hand, if the mass is above a threshold value, then the system has no ground state.Here we prove that orbital stability holds for every value of the mass, even if the corresponding symmetric standing wave is not a ground state, since it is anyway a local minimizer of the energy among functions with the same mass.The proof is based on a new technique that allows to restrict the analysis to functions made of pieces of soliton, reducing the problem to a finite-dimensional one. In such a way, we do not need to use direct methods of Calculus of Variations, nor linearization procedures.

Stable standing waves for a NLS on star graphs as local minimizers of the constrained energy

CACCIAPUOTI, CLAUDIO;
2016-01-01

Abstract

On a star graph made of N≥3 halflines (edges) we consider a Schrödinger equation with a subcritical power-type nonlinearity and an attractive delta interaction located at the vertex. From previous works it is known that there exists a family of standing waves, symmetric with respect to the exchange of edges, that can be parametrized by the mass (or L2-norm) of its elements. Furthermore, if the mass is small enough, then the corresponding symmetric standing wave is a ground state and, consequently, it is orbitally stable. On the other hand, if the mass is above a threshold value, then the system has no ground state.Here we prove that orbital stability holds for every value of the mass, even if the corresponding symmetric standing wave is not a ground state, since it is anyway a local minimizer of the energy among functions with the same mass.The proof is based on a new technique that allows to restrict the analysis to functions made of pieces of soliton, reducing the problem to a finite-dimensional one. In such a way, we do not need to use direct methods of Calculus of Variations, nor linearization procedures.
2016
http://www.elsevier.com/inca/publications/store/6/2/2/8/6/8/index.htt
Analysis
Adami, Riccardo; Cacciapuoti, Claudio; Finco, Domenico; Noja, Diego
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2057796
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 49
  • ???jsp.display-item.citation.isi??? 47
social impact