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Abstract

We present numerical methods based on high-order semi-Lagrangian schemes cou-
pled with Essentially Non-Oscillatory interpolation techniques, in the field of the
Level Set Method and Hamilton-Jacobi equations. The first application arises in
the context of surface reconstruction from point clouds, where we consider a varia-
tional formulation with a curvature constraint that minimizes a suitable functional in
order to reconstruct an unknown surface from a set of unorganized points. The level
set formulation of this model consists in solving an equivalent advection-diffusion
equation that evolves until steady-state an initial surface described implicitly by a
level set function, actually a signed distance one. In order not to be prohibitively
limited by a parabolic-type time-stepping constraint, the semi-Lagrangian approach
is employed, coupled with a multi-linear interpolator and a Weighted Essentially
Non-oscillatory one to get a high-quality reconstruction. To concentrate the compu-
tational effort, this method is also presented in the framework of Adaptive Mesh Re-
finement based on octrees, since either the semi-Lagrangian approach and the Level
Set Method are apt to be exploited for local refinement. In both cases, an extensive
list of numerical tests, in two and three dimensions, is presented. On the other
hand, the second application is devoted to high-order numerical schemes for time-
dependent first-order Hamilton-Jacobi-Bellman equations. In particular, we propose
to resort to a Central Weighted Non-Oscillatory interpolation and we prove a conver-
gence result in the case of state- and time-independent Hamiltonians. Moreover, the
expected computational advantages of the central reconstruction, compared to the
traditional one, are validated by numerical simulations in one and two dimensions,
also for more general state- and time-dependent Hamiltonians. Special attention
is paid to the parallel implementation of the algorithms presented in this thesis,
especially in the surface reconstruction application, where the three-dimensionality
of the problem could make the computations extremely expensive.
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Introduction

This PhD thesis finds its very first motivation in the problem of reconstructing
surfaces from a set of unorganized points, which arises in a huge variety of con-
texts and applications. Essentially, every time a digital representation of a physical
shape is not available, one possibility is to obtain a point cloud that samples its
surface, and from which we can infer the original shape. Fields related to this topic
include physics, computer graphics, medical imaging, urban planning and cultural
heritage; especially in the latter, real artistic manufacts are obviously not Cartesian
domains, instead they usually present complicated geometries and topologies, and
their shape must be acquired from the real object itself, e.g. via 3d laser scanning
or photogrammetry [117, 98, 99].

In its core, the problem of surface reconstruction can then be stated as follows:
one is given a set of points P = {Q1, . . . , QN} in a bounded region of R3 and the
task is to derive from P a mathematical description of the original shape as a three-
dimensional object whose boundary passes through or near the points in P . As a
matter of fact, the information carried by the point cloud only reveals the location of
the points but does not say anything about the ordering or the connection between
them, making the process of surface reconstruction complex and time-consuming. In
addition, as an infinite number of surfaces may pass through or near the data points,
this problem tuns out to be ill-posed, with no unique solution. The challenge is thus
to get a good approximation of the data set that should have some smoothness
properties while being able to retain as many details as possible. Moreover, one
would like to have a reconstruction which is useful not only for static representations,
but also for dynamic operations.

In particular, we are interested in the possibility to produce a high-quality de-
scription of complex objects, which can be later used as a domain definition in partial
differential equations (PDEs) computations. A prototypical application of this topic
in the field of cultural heritage has been presented in [37], where a reaction-diffusion
model [39, 37] is applied to a reconstructed domain having the shape of a work of art
in order to investigate the evolution of damage caused by the interaction between
pollutants in the air and the work of art itself. More complex models including ab-
lation [35] or swelling [36] of the material would require the computational domain
to evolve in time.

In general, to represent a surface, one can follow two approaches: the explicit one
and the implicit one. The former includes mesh-based techniques, such as Delaunay
triangulations and Voronoi diagrams [48, 4, 32] and parametric techniques, e.g.
NURBS [93, 60]. Despite its popularity, the main problem with this approach is to
ensure a watertight reconstruction in cases when an evolution of the surface occurs.
Recent works, for example [44], propose to overcome this difficulty by considering
an additional mesh adjustment in order to control the quality of the mesh during
the evolution. However, the state of the art agrees that explicit reconstructions are
difficult to handle when dealing with moving boundaries or complex and changing
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topologies.
On the other hand, using an implicit approach, one has the advantage of simpler

handling topological flexibility, while having a representation of the objects that
also allows Boolean operations to be easily performed. Among implicit methods,
traditional ones enclose interpolation techniques to approximate the desired implicit
function as a combination of some smooth basis functions. The problem here is of
course related to the large linear system that need to be solved, resulting in high
computational costs and, even worse, in ill-conditioned matrices when the number
of interpolated points is very large. Radial Basis Functions (RBFs) with global and
local support have found many applications along this line [29, 30, 118] and some
least-squares-based methods [34] belong to this family, too. Other methods rely
instead on local estimators in order to associate an oriented plane to each point
in the cloud and hence recover the implicit representation [71]. A different and
widespread approach for the processing of point cloud data is based instead on the
application of the Level Set Method (LSM) [91]. This last line of research actually
constitutes the starting point of this thesis.

For a broader overview about the reconstruction of real objects starting from
point clouds, the reader can refer to [14, 13, 73]. Significant advancements in sur-
face reconstruction are also being driven by the integration of machine learning
techniques, especially deep learning models, which have shown remarkable results
in learning implicit surface representations directly from unorganized point clouds
[107, 82].

Since its introduction, the LSM has emerged as a powerful and versatile tool in a
wide range of applications [112, 106, 90] which include image processing and surface
reconstruction [124, 85]. The core of the method consists in representing both a d-
dimensional object Ω(t) ⊆ Rd and its boundary Γ(t), which are evolving in time, by a
so-called level set function φ : Rd ×R+ → R such that Γ(t) = {~x ∈ Rd : φ(~x, t) = 0}
and the level set function φ(~x, t) has negative values inside Ω(t) and positive outside.
The association between the interface Γ(t) and the level set function φ(~x, t) makes
moving the interface equivalent to updating φ, which can be done by solving a
Hamilton-Jacobi (HJ) type equation of the form

φt + Vn |∇φ| = 0.
In the above equation, the evolution of φ is driven in the direction normal to its
zero level set and the velocity Vn can be a functional of Γ itself and of possible
other unknowns of the problem. The advantages of this capturing approach are
well-known by now and we suggest [57, 102] for a recent survey and references.
Specific applications to the computation of multiphase flows can be found in [122,
123], while unstable fronts are treated in [64, 63]. A comprehensive review on LSM
and its applications can be found in [90].

In this thesis the LSM is applied to the problem of surface reconstruction following
the model introduced by Zhao in [124] where an initial surface Γ0 is evolved until
steady-state minimizing a suitable energy functional. The level set formulation
derived in [124] contains a hyperbolic term designed to drive Γ(t) towards P , but
also a second-order parabolic curvature regularization term. This latter allows to
trade the exact vanishing of φ on P for the maximum curvature of the resulting zero
level set surface.
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As a consequence, the numerical solution of this problem via explicit schemes
would require to take into account the well-known stability constraints imposed
by the Courant-Friedrichs-Levy (CFL) condition, which, given the presence of the
parabolic term, would force us to a relation of type ∆t = O(∆x2) between the sizes
∆x and ∆t of the spatio-temporal discretization. One strategy to overcome this
issue, while also remaining explicit, is to apply a semi-Lagrangian (SL) scheme for
the numerical solution of the second-order level set equation. This will be in fact
our choice.

First introduced in [41] for first-order systems of linear equations, SL schemes
have been extended to HJ equations and to the treatment of parabolic terms with
the main purpose of obtaining methods which are unconditionally stable with respect
to the choice of the time step (see [54] for a comprehensive explanation).

In addition, the possibility to overcome the parabolic-type CFL restriction is
very tempting in the LSM context since this method usually focuses just on what
is happening in the vicinity of the zero level set of φ, thus one can naturally be
prompted to employ Adaptive Mesh Refinement (AMR) techniques to refine the
computational grid in this area. While the CFL condition will frustrate the adaptive
approach when a general explicit scheme is employed, this will not be such an issue
in the SL framework where one is allowed to work at large Courant numbers with a
hyperbolic CFL restriction of type ∆t = O(∆x).

In the context of LSM, a first application of SL schemes can be found in [110].
Specifically regarding our problem of surface reconstruction, we decide to employ a
SL method following the scheme of [26], first presented in [50] for curvature-related
equations, but resorting to a local interpolator, instead on a global one, for space
reconstructions. In particular, we will employ both a simple multilinear interpolator
and third-order Weighted Essentially Non-Oscillatory (WENO) techniques in order
to improve the accuracy in the reconstruction. Regarding this application, also other
techniques will be put together in other to localize the computational effort [94] and
to keep our level set function close to the signed distance function (SDF), usually
consisting in the application of a reinitialization procedure [94, 66, 67]. This choice
is actually motivated by either the numerical accuracy of the scheme and the further
usefulness of the mathematical description of the recovered shape. For instance, the
use of the SDF is preferable when dealing with PDEs computations via ghost-cell
methods [38, 58].

What had originally started as a surface reconstruction problem, then prompted
also an investigation on the coupling of SL schemes with Essentially Non-Oscillatory
(ENO) techniques of high-order accuracy. As a matter of fact, when increasing the
order of the reconstruction, the unconditional stability that characterizes SL schemes
is not trivially guaranteed since monotonicity might be lost. In fact, polynomial
interpolation processes that are linear in the data are best avoided in non-smooth
contexts due to Gibbs oscillations phenomena, while they can be replaced by ENO
and WENO techniques for which some convergence results in the SL framework have
been proven; see [56].

To explore this context we focus in particular on the numerical approximation of
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the following hyperbolic Hamilton-Jacobi-Bellman (HBJ) equation:vt(~x, t) +H(~x, t,∇v(~x, t)) = 0, for ~x, t ∈ Rd × (0, T ),
v(~x, 0) = v0(~x), for ~x ∈ Rd,

where v : Rd × (0, T ) → R, ∇v is the spatial gradient, v0 : Rd → R is the initial data
and H : Rd × (0, T ) × Rd → R is the Hamiltonian function, which will be assumed
to be convex with respect to ∇v.

Numerous schemes have been proposed to approximate the solution of this HJB
equation, but only a small number are aimed at high-order accuracy. High-order
finite difference schemes based on ENO reconstruction, defined in [65], were pro-
posed in [92] and extended to unstructured grids in [1]. Second-order Godunov-type
schemes based on global projection operators are discussed in [81]. WENO schemes
were introduced in [76, 83] and combined with finite difference schemes for HJ equa-
tions in [75]. A fifth-order central scheme based on WENO reconstruction has been
developed in [18].

Concerning SL, in [53], a high-order semi-discrete SL scheme is proposed to dis-
cretize stationary HJB equations, while in [56], SL schemes are applied to evolution-
ary HJB equations. A high-order SL scheme for HJB equations is presented in [27]
by combining the SL technique with WENO reconstructions.

We will develop our theory for the HJB equation related to a finite horizon
optimal control problem, relying on the Dynamic Programming Principle to get
the representation formula for v(~x, t), and thus applying a numerical scheme which
involves a minimization procedure over the set of controls in order to approximate
the solution, which requires, as a consequence, a high number of function evaluations
to be performed in the scheme. In this respect, WENO reconstructions, especially
in higher space dimensions, are not efficient, due to the dependence of the WENO
linear weights on the reconstruction point.

A novel paradigm for non-oscillatory reconstruction operators has been intro-
duced in [80], where the authors suggested to blend, in a WENO-like fashion, poly-
nomials of different degrees, allowing to overcome some difficulties of non-existence,
non-positivity and dependence on the reconstruction point of the WENO linear
weights. The idea has been further developed into the so-called CWENO recon-
struction and exploited in multiple spatial dimensions, also in the case of AMR and
non-uniform grids [8, 128, 5, 126, 47]. The technique has also been exploited in finite
difference schemes for HJ equations on Cartesian meshes via dimensional splitting
[127, 125], as well as on general meshes [129]. General results for establishing the
convergence order of a CWENO reconstruction have been presented in [43, 42, 104].

One of the main advantages of CWENO over the traditional WENO is that the
central approach provides a reconstruction polynomial that is defined everywhere
in the reconstruction cell and that can be later evaluated, with no essential extra
cost, at many different reconstruction points. This is guaranteed by the indepen-
dence of the linear weights from the reconstruction point. Furthermore, as shown
in [103, 47, 31, 43], the CWENO approach allows to avoid the dimensional splitting
procedure and this is advantageous also on Cartesian meshes when the number of
reconstruction points per cell is high.
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Relying on this feature, we want to exploit the positive features of CWENO to
obtain a high-order SL scheme that is more efficient than the one in [27], which is
based on WENO. Also, we prove a convergence result in the framework of [56] for
the CWENO reconstruction.

Finally, we have also explored another important feature of the SL approach,
namely the potential of this type of approach when employing local grid refinement,
referring in particular to the LSM context. In [111] the idea of using tree-based
grids for level set calculations was first introduced. Later, it was extended to fluid
simulations in [95, 84] and to second-order accuracy in [87]. In particular, the use of
adaptive tree-based grids in LSM context is quite advantageous because it gives a
fine-grained control over errors in the vicinity of the interface, while also effectively
reducing the dimensionality of the discrete problem by focusing most of the grid
cells close to the interface. Also, the refinement process is naturally driven by the
values of |φ|.

However, even though the use of adaptive grids can dramatically reduce the com-
putational cost, performing high-resolution calculations, especially in three dimen-
sions, could still be prohibitively expensive, or even impossible on serial machine.
Thus, in this case like in the Cartesian one, it is of paramount importance to employ
an efficient implementation based on parallelization. In fact, parallel implementa-
tion constitutes also an important background aspect of most of the computational
topics presented in this thesis and its features will be recalled when needed in the
course of the dissertation.

Contributions

Summarizing, this thesis revolves around three main topics, which are LSM for
surface reconstruction, high-order SL schemes and the application of AMR to LSM.
The applications are mainly focused on surface reconstruction from point clouds
and HJB equations related to finite horizon optimal control problems. The results
obtained within the research presented here have been collected in the following
papers:

• [37], From Point Clouds to 3D Simulations of Marble Sulfation, collects a pre-
liminary version of the surface reconstruction method described in Chapters 1
and 4, applied to a PDE model simulation in the field of cultural heritage;

• [96], Surface reconstruction from point cloud using a semi-Lagrangian scheme
with local interpolator, presents the complete workflow, as detailed in Chapter 4,
of the surface reconstruction method relying on the WENO interpolator;

• [28], A CWENO large time-step scheme for Hamilton-Jacobi equations, is based
on the topics presented in Chapters 2 and 3 and presents a convergence result
and many tests to validate the computational aspects related to WENO and
CWENO in a minimization procedure;

• the materials of Chapter 5 on AMR will be the object of another paper.
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All the algorithms that we used in our work have been implemented in C++,
relying on the PETSc library [7, 6] for Cartesian grid management, and on the
P4EST library [19] for Quadree and Octree grid management. The above libraries,
with the support of the Message Passing Interface (MPI) protocol, are also apt
for handling the parallel implementation. The tests have been performed on the
cluster Galileo 100 hosted at CINECA1, exploiting the resources assigned to ISCRA-
C Projects2.

Organization

The thesis is organized as follows.
In Chapter 1 we introduce the Level Set Method of Osher and Sethian [91],

mainly following the book [90] and focusing on the main ingredients used to deal
with the evolution of level set functions: extension of the velocity, reinitialization
and localization of the method.

In Chapter 2 we prepare the setting for the SL approximation schemes, starting
by introducing first-order schemes for simple hyperbolic equations and then moving
to high-order schemes and HJ equations. The convergence theory will be briefly
recalled here for the case of WENO interpolator.

In Chapter 3 we present our work devoted to the numerical solution of HJB equa-
tions via a SL scheme coupled with CWENO interpolator. A proof for convergence
will be given and the dissertation will be accompanied by an extensive number of
numerical examples to validate the scheme and the computational advantages of
using the CWENO interpolator, rather than the traditional WENO one.

Chapter 4 details our surface reconstruction method from point clouds. Although
this was the starting point of our research, it is placed here since it will make use
of most of the ingredients presented before. The mathematical model of [124] is
recalled, together with its level set formulation. Also, we will recall all the auxiliary
techniques needed to complete the algorithm and we will highlight the key points
for its parallel implementation. Numerical tests in two and three dimensions will be
presented in order to illustrate the performances of the method.

In Chapter 5 we conclude the thesis by presenting some preliminary results of
the extension of the surface reconstruction method to AMR based on octrees, em-
phasizing the potential of the LSM coupled with the SL approach in the adaptive
context.

1 https://www.hpc.cineca.it/systems/hardware/galileo100/
2 Surface Reconstruction with Level Set Method (HP10CPQ93M)

Parallel Scalability of Surface Reconstruction with Level Set Method (HP10COSEJL)
Adaptive Mesh Refinement in Level Set Methods (HP10C7HWOL)
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Chapter 1

Level Set Method

In this chapter we introduce implicit surfaces and their representation via level set
functions and in particular via the signed distance. We discuss the main advantages
of this approach starting from the static case and then moving on to the case of
evolving interfaces, for the treatment of which a powerful method, the Level Set
Method (LSM), has been introduced in 1988 by Osher and Sethian [91]. Our disser-
tation will start with the general case of d dimensions and will be then focused on
curves and surfaces, since our interest will be mainly devoted to modelling problems
regarding the real case of two and three dimensional objects. For the different topics
presented here we mainly refer to [90, 94, 110].

In what follows, we will indicate with ~x the points ~x ∈ Rd and t will represent
the time; we will however omit the arguments ~x and t when they can easily be
deducted from the context. Unless otherwise specified, the norm used in Rd will
be the Euclidean one, indicated with |~x|, ~x ∈ Rd. When deriving in space and
making explicit the discretization schemes in two or three dimensions, we will use
the subscript and superscript notations with indexes x, y, z in order to denote the
spatial directions in two or three dimensions.

Finally, in Chapters 1 to 4, we mainly refer to a Cartesian uniform framework,
thus the size of the grid will be indicated with ∆x and the subscripts i, j, k, (i, j, k) ∈
Z3, will be used to index the nodal points of the computational grid. For the
discretization in time we will consider a time step of uniform size ∆t and denote
with the superscript n the temporal evolution step such that, given an initial time t0
and a final time T , we will denote tn = t0 + n∆t, for n = 0 . . . NT , with NT = d T

∆t
e.

Thus, following this notation, the value of a generic function α : Rd × R → R in
a point (~x, t) indexed by (i, j, k) and n, will be denoted by αn

i,j,k. Nonetheless we
point out that many steps of the algorithms presented in the following sections can
be generalized to non-uniform grids by considering ∆x to be the local mesh size and
a suitable indexing of the nodes.

1.1 Implicit representation
Let us consider a closed region Ω ⊂ Rd, such that its boundary Γ = ∂Ω is an interface
of codimension one which separates the interior and the exterior parts of the region
Ω, denoted respectively with Ω− and Ω+. In this thesis we are interested only in the
cases d = 2, 3, thus in two spatial dimensions our lower-dimensional interface will
be a curve, while in three spatial dimensions it will represent a surface.

Instead of explicitly describing all the points that belong to Γ, or resort to a
parametrization, an alternative way to distinguish between Ω− and Ω+, and describe
the interface separating them, is to use a scalar continuous function φ : Rd → R
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such that

φ(~x)


< 0 for ~x ∈ Ω−,

= 0 for ~x ∈ Γ,
> 0 for ~x ∈ Ω+.

(1.1)

The interface Γ is thus implicitly defined by the zero level set {~x ∈ Rd : φ(~x) = 0},
and the interior and exterior parts of Ω are easily identified by the sign of φ. Such
a function is what is usually called a level set function.

As a matter of fact, for a fixed interface Γ, there are infinite functions φ for which
Γ corresponds to their zero level set, but a common choice of level set function is
the signed distance function (SDF) to Γ, given by

φ(~x) = ± min
~y∈Γ

|~x− ~y|, (1.2)

where the sign in (1.2) is chosen accordingly to (1.1). In particular, the SDF is safer
to use in numerical algorithms since its gradient ∇φ and its zero level set can be
readily computed numerically in a stable way.

On the other hand, at first glance, the implicit representation might seem wasteful
since the implicit function φ is defined on all ~x ∈ Rd, while the interface has only
dimension d − 1, but we will see that a number of very powerful tools are easily
available when using this type of approach.

1.1.1 Geometric properties
From a geometrical point of view, many properties of Γ have simple expressions in
terms of the level set function φ. This is because the gradient ∇φ is perpendicular to
the isocontours of φ and points in the direction of increasing φ. Also, the direction
of the local unit normal ~n to the interface Γ can be recovered from the values of ∇φ
on the zero isocontour.

Normals Given the level set function φ, we can define a vector field ~n : Rd → Rd

on the entire domain by
~n(~x) = ∇φ(~x)

|∇φ(~x)| , (1.3)

which agrees with the outward unit normal to the interface for points ~x placed on Γ.
Singular cases, of course, can occur and need to be treated properly. Nonetheless,
if Γ is smooth enough, cases where the gradient vanishes or is undefined usually
occur in regions of the domain which are further away from the interface, which are
not in our interest when φ is used to represent the region Ω or its boundary Γ in a
numerical method.

As an example, we can consider the simple two dimensional case of the signed
distance function to the circle of radius 1 centered in (0, 0), depicted in Figure 1.1.
In this case φ(~x) = |~x| − 1 and the gradient is defined everywhere, except for the
origin where the tip of the reversed cone is placed. Usually, when one resorts to
LSM, he is mainly interested in what happens in the vicinity of the circle, thus the
singularity in the center should not pose any problem.
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Figure 1.1: A two dimensional example of the level set function φ(~x) = |~x| − 1 corre-
sponding to the signed distance function associated to the circle of radius 1, centered in
(0, 0). The graph of φ is shown on the left, while a few isocontours are depicted on the
right.

Ω+ = {φ > 0}

Ω− = {φ < 0}

κ > 0

κ ≈ 0

κ < 0

Γ = {φ = 0}

Figure 1.2: The interior and exterior regions of Ω are separated by Γ ≡ {φ = 0} and
correspond to φ < 0 and φ > 0, respectively. The curvature κ is approximately zero where
the curve Γ is becoming straight, while convex regions have κ > 0 and concave regions
have κ < 0.



10 1 - Level Set Method

In this latter case, and more in general when dealing with SDFs, since |∇φ| = 1,
the function defining the normals (1.3) simply takes the form

~n(~x) = ∇φ(~x). (1.4)

Furthermore, when φ is not a SDF but ∇φ ≈ 1, the formula (1.3) can be computed
numerically in a reliable and stable way, since the denominator will be well away
from zero.

Curvature The mean curvature of the interface is defined as the divergence of the
normals and, also in this case, except for singular cases, can be defined as a function
κ : Rd → R on the whole domain by

κ(~x) = ∇ · ∇φ(~x)
|∇φ(~x)| , (1.5)

so that κ(~x) > 0 for convex regions, κ(~x) < 0 for concave regions, and κ(~x) = 0 for
a plane or a straight line; see Figure 1.2.

Also for the curvature, when φ is close to being a SDF the formula (1.5) is
numerically stable, and, when φ is a SDF, the definition (1.5) takes the simpler
form

κ(~x) = ∇ · ∇φ(~x). (1.6)

Global quantities Other global quantities like the Hausdorff measure |Γ| of the
interface Γ or the Lebesgue measure |Ω| of the region Ω can be computed in terms
of φ. Their expressions read

|Γ| =
∫
δ(φ) |∇φ| d~x, (1.7)

|Ω| =
∫
H(−φ) d~x, (1.8)

where δ(φ) is the one dimensional δ-function and H(φ) is the one dimensional Heav-
iside function which takes the value 0 for φ < 0 and 1 otherwise. In two dimensions,
|Γ| is simply the arclength of Γ and |Ω| is the area of Ω, while in three dimensions
these quantities represent respectively the area of Γ and the volume of Ω.

1.1.2 Embedding in a larger domain
The key point when dealing with implicit representations is that we are changing
our perspective allowing the interface Γ, and the region Ω, to be embedded in a
larger domain, in general the space Rd. In this way, it is first of all very easy to
detect if a point ~x ∈ Rd belongs to the interior or exterior part of the region Ω, by
simply checking the sign of φ(~x). Also, simple Boolean operations such as union of
subdomains, their intersection and complement are readily reinterpreted in terms of
level set functions resorting to minimum, maximum and change of sign operations.

Above all, the most important aspect is that we can choose to embed the domain
Ω into a regular domain Ω′ ⊃ Ω on which we can apply common numerical techniques
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Figure 1.3: An arbitrary domain Ω (light blue area) is embedded in a square domain
Ω′ discretized by a Cartesian uniform mesh, where the level set function φ is given. The
boundary Γ is represented by a thick red line. Internal nodal points are represented by blue
dots, while ghost points are depicted with red empty circles. The first ones correspond to
non-positive values of the level set function φ which identifies the domain Ω, the second
ones are detected by both being first neighbours of some internal points and corresponding
to positive values of φ.

based on uniform or, more in general, Cartesian meshes which are easier to handle,
see Figure 1.3. The possible complex parametrization or explicit representation of
Γ is replaced by the level set function associated to Γ and defined on Ω′, and the
preferred discretization can be used in the background to work with φ instead of
Γ, directly. This is often a cheaper alternative to the explicit discretization of Ω.
A wide variety of computational physics applications, including free surface flows,
multiphase gas or gas-liquid interactions, fluid-solid interactions, moving boundaries
in fluid dynamics, etc, are recollected in Part IV of the book [90]. An example in
the area of cultural heritage can be found in [40, 39], where the authors, since they
were dealing with complex and finely detailed domains, propose to completely avoid
the problem of mesh generation by describing the computational domain via a level
set function.

Furthermore, the level set approach is suitable for treating boundary conditions,
for instance for PDEs computations via ghost-cell methods [38, 59]. See again
Figure 1.3 in which the internal points are filled with blue color and the ghost
ones are depicted with red empty circles. The difficulties in detecting these points
are delegated to the structure of the mesh and to the stencil of the discretization
of the differential operator at hand. In general, the ghost points are the points
involved in the discretization of the PDE, which are not internal points. In the
case of a P1 Finite Element discretization of an elliptic operator they would be the
external vertices connected to internal ones by an edge. The simple case of a 2d
domain with the usual 5-point finite-difference discretization of an elliptic operator
is depicted in Figure 1.3. Once detected, the ghost points are the ones involved
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in the computations of the boundary conditions and, since the projection on Γ
will be needed, also these computations take advantages of the level set implicit
representation; see [38, 59].

1.2 Moving interfaces
The importance of the implicit approach for interface representation is not just con-
fined to the static case. In their formulation of the LSM [91], the authors highlighted
the potential of level set functions for representing evolving boundaries or interfaces,
rather than static ones, turning this technique to a powerful and versatile tool in a
large variety of applications [90].

A moving front is now identified with a closed interface Γ(t) in Rd with codimen-
sion one, enclosing a region Ω(t), to which we can associate a level set function of
both space and time φ : Rd × R+ → R, which, similarly to (1.1), fulfills

φ(~x, t)


< 0 for ~x ∈ Ω(t)−,

= 0 for ~x ∈ Γ(t),
> 0 for ~x ∈ Ω(t)+,

(1.9)

where Ω(t)− and Ω(t)+ are the interior and the exterior part of the region Ω at time
t, respectively.

If we know the level set function φ, we can locate the interface by finding the
zero level set of φ at each time t, that is Γ(t) = {~x ∈ Rd : φ(~x, t) = 0}. Therefore,
adding some dynamics to the interface Γ is equivalent to updating φ, which, as we
will see, can be done by solving a PDE type equation for φ, namely the level set
equation.

The motion of Γ(t) can be prescribed a-priori or even be assigned in terms of the
solution of another PDE (typically of fluid-dynamic or elasto-dynamic type) set in
Ω+(t) or Ω−(t).

The power of this approach can be much appreciated especially in cases when
Ω(t) and Γ(t) undergo topological changes during their evolution: in this case it
would be very cumbersome to represent them via a volume (resp. surface) mesh.

1.3 The level set equation
Suppose now that the velocity of each point on the interface Γ(t) is given by ~V (~x, t).
Using a Lagrangian approach, one could move all the points ~x(t) ∈ Γ following their
particle trajectory, thus solving the ordinary differential equation (ODE)

d~x
dt = ~V (~x, t). (1.10)

However, this kind of approach usually suffers from connectivity changes and
distortions that can quickly deteriorate the accuracy of the method. This is why
the Lagrangian formulation is often coupled with numerical techniques that include
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smoothing, regularization and surgery in order to prevent the solution from becom-
ing completely inaccurate. These techniques, all together, are commonly referred to
as front tracking methods and the interested reader is referred to [116, 114] for more
details.

In order to avoid these repairing issues, in LSM one resorts to the implicit repre-
sentation via the level set function φ both to represent the interface and to evolve
it. Since by definition

φ(~x(t), t) = 0, (1.11)
for each particle trajectory ~x(t) lying on Γ(t), differentiating (1.11) with respect to
t, one gets the usually called the linear level set equation

φt + ~V · ∇φ = 0, (1.12)

where the t subscript denotes the partial derivative in the time variable t. Equation
(1.12) is a PDE which describes the motion of the interface Γ(t) corresponding to
φ(~x, t) = 0 in an Eulerian framework, rather than in a Lagrangian one. As usual,
we couple (1.12) with an initial condition, namely we assume that an initial data
φ0(~x) = φ(~x, 0), associated to the initial interface Γ0 = Γ(0), is given.

A non-linear version of the level set equation (1.12) can be obtained observing
that the motion of the interface is dictated by the normal component of the velocity
field only. Thus, splitting the velocity field ~V in (1.12) in its normal and tangential
components, such that ~V = Vn~n + Vτ~τ , one would prescribe the same evolution of
the interface, where ~τ is the direction tangential to the zero level set of φ. Since by
definition ~τ · ∇φ = 0, (1.12) can be rewritten as

φt + Vn ~n · ∇φ = 0. (1.13)

Furthermore, since

~n · ∇φ = ∇φ
|∇φ|

· ∇φ = |∇φ|2

|∇φ|
= |∇φ|, (1.14)

we can rewrite equation (1.13) as

φt + Vn |∇φ| = 0, (1.15)

which is the non-linear version of (1.12). The form (1.15) can be used to evolve the
level set function φ when one wants to prescribe Vn rather than ~V .

Given the two fundamental equations (1.12) and (1.15), essentially the LSM
consists in extending them to be valid throughout the domain and recovering the
front at all times as the zero level set of φ. This approach of capturing, instead
of tracking, interfaces by evolving the level set function, describes the topology of
Γ via φ allowing merging, breaking and other topological changes to be handled
automatically.

We point out here some issues of practical importance that will be further ad-
dressed later on. First, to extend the level set equation to the whole domain, we
need to extend the velocity ~V or Vn, which is not always a trivial task. There exist
of course some cases in which ~V : Rd × R+ → Rd and Vn : Rd × R+ → R are
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already defined on the entire domain or are known on nodal values, but in general,
an extension of these quantities is needed. Second, even if we take as initial data
the SDF, the evolution governed by (1.12), (1.15) can produce steep gradients or
flat areas that might affect the numerical accuracy of the solution. A procedure is
thus needed to keep the level set function well behaved in the sense that, except for
isolated points, the norm of the gradient of φ need to be bounded by some constants,
namely

0 < b ≤ |∇φ| ≤ B, (1.16)
for some positive constants b and B. Such a procedure is commonly called reinitial-
ization.

Also, using the function φ, which is defined globally on Rd, or at least on the
larger domain Ω′ ⊃ Ω, instead of the smaller Ω or the d − 1-dimensional Γ, might
seem a computational overload. Nevertheless, this issue, as the above ones, can be
mitigated by localizing the method and focusing our efforts just on a narrow band
containing the front, with the bandwidth varying based on the numerical method
involved. In particular, the updating of the level set function, the definition of the
extended velocities ~V , Vn, as well as the condition (1.16), can be all confined to a
small neighbourhood of Γ(t). From a computational point of view, this means that
the computational cost is not O(Nd) but O(Nd−1), for each evolution step on a
discretized spatial grid of N points per dimension.

1.3.1 Types of evolution
In the previous section we have introduced the level set equation, in the forms
(1.12) and (1.15), as the main ingredient for the evolution of φ. This evolution can
be significantly different depending on the velocity field ~V which might be not only
a function of the space variable ~x and of the time t, but also of the normal direction
~n, the local mean curvature κ or a functional of the interface itself. Other cases
include the ones in which the velocity depends on other unknowns of the problem,
such as free boundary PDE-type models in which the velocity ~V , or its projection
Vn, depends on the values of the solution on the boundary at each time.

Linear transport Let us suppose that we are given a vector field ~V (~x, t) defined
on Rd × R+, which does not depend on the interface itself. The resulting linear
version of the level set equation is the hyperbolic PDE

φt + ~V · ∇φ = 0. (1.17)

For example, in two dimensions, if ~V = (2π(y − ŷ),−2π(x − x̂)), the above
equation makes a closed curve rotate around the point (x̂, ŷ). This type of problem
occurs when modeling common and important physical situations such as transport,
rotation, shearing and stretching in an ambient flow, and is conceptually the simplest
to solve because the motion of each point on the interface obeys an ODE with known
right-hand-side.
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Mean curvature motion More complicated problems arise when the velocity
field ~V depends explicitly on the level set function φ, ~V = ~V (~x, t, ~n, κ, ...). In such
cases the interfacial geometry interacts with the motion, easily producing complex
merging shapes and making these models popular in material science.

We consider here the case of mean curvature motion (MCM) in which the interface
moves in the normal direction with a velocity proportional to its curvature

~V = −aκ~n, (1.18)

where a > 0 is a constant and κ is the curvature. When a > 0, the interface moves
in the direction on concavity, so that circles (in two dimensions) shrink to a single
point and disappear. The effect of a curvature-driven flow is a smoothing effect
due to the proportionality between mean curvature and velocity. Points with high-
curvature move faster than points with lower curvature and the velocity vanishes in
flat areas.

The velocity term (1.18) contains a component in the normal direction only, thus
from (1.15), using Vn = −aκ and substituting the expression for the curvature (1.5),
we obtain the model equation for the MCM which is a second-order evolutive HJ
equation given by

φt = a∇ ·
(

∇φ
|∇φ|

)
|∇φ|. (1.19)

The right-hand-side term in (1.19) is a parabolic term that imposes a strong
time step restriction when solving numerically the MCM equation with an explicit
scheme. In fact, if we consider a space discretization of size ∆x and a time step ∆t,
the Courant-Friedrichs-Levy (CFL) condition requires the inequality ∆t = O(∆x2)
to be satisfied as a necessary condition for the convergence of the scheme, making
the numerical computations prohibitively expensive. This time step restriction can
be eliminated enforcing the inclusion of the physical domain of dependence into
the numerical one, for example by allowing unbounded stencils, or, as we will see
later, by shifting them. As a matter of fact, one could also involve implicit time-
stepping schemes as they are the usual remedy to overcome the time step restriction.
Unfortunately, this approach is often unavailable for level set equations because the
complex and problem-dependent relation between Vn and Γ(t) frustrates most non-
linear equation solvers.

Convection-diffusion equation The convection-diffusion equation mixes both
the effects of an advective velocity field and a diffusive term. For the level set
function φ we have

φt + ~V · ∇φ = aκ|∇φ| (1.20)
or equivalently

φt + ~V · ∇φ = a∇ ·
(

∇φ
|∇φ|

)
|∇φ|. (1.21)

Some interesting theoretical remarks can be done for the case when φ is a SDF,
thus aκ|∇φ| is identical to a∆φ and (1.20) can be rewritten as

φt + ~V · ∇φ = a∆φ. (1.22)
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We point out that this equivalence between equations (1.20) and (1.22) is lost if the
level set function φ is deformed during the evolution, becoming no longer a SDF.
However, replacing (1.20) with (1.22) is still allowed if a reinitialization procedure
is performed at each time in order to restore the condition |∇φ| = 1.

Despite the apparent simplification, Osher and Sethian pointed out in [91] that
equation (1.20) is a more natural choice than (1.22) for dealing with LSM. In fact,
supposing that the O(1) size a term is replaced with an O(∆x) size ε term that
vanishes as the mesh is refined with ∆x → 0. Then equation (1.22) becomes

φt + ~V · ∇φ = ε∆φ, (1.23)

which is the same of (1.17) with the addition of an artificial viscosity term ε∆φ. This
vanishing viscosity picks out the physically correct weak solution of the hyperbolic
equation (1.17) when no classical solution exists. In [105], Sethian suggested an en-
tropy condition that required curves to flow into corners, and he provided numerical
evidence to show that this entropy condition produced the correct weak solution
for self-intersecting curves. Sethian’s entropy condition indicates that εκ|∇φ| is a
better form for the vanishing viscosity than ε∆φ for dealing with the evolution of
lower-dimensional interfaces and this is why we will resort to equation (1.21) as a
model for the convection-diffusion of level set functions.

Free boundary problems Another important category of problems that can be
treated in a level set framework is free boundary problems. In moving interface
problems for PDEs, the interfacial velocity depends on additional fields satisfying
algebraic, ordinary differential, partial differential or integral equations on or off the
interface. As an example, in volume diffusion [89, 46] the velocity reads

~V = ∂u(~x, t)
∂~n

, (1.24)

where ~n is the outward normal direction to the interface Γ(t), and u(~x, t) is the
solution of the Laplace equation ∆u = 0 outside Γ(t) with boundary conditions
given on the interface and at ∞. Since the boundary is not fixed in time, we need to
track it in order to find the solution u of the Laplace equation, but in the meanwhile
the position of the front, and thus the domain of the problem, depends on the
solution u itself.

1.4 Extension of a quantity off the interface
In LSM we need the velocity ~V or the normal velocity Vn to be defined in the
whole domain or at least in a neighbourhood of the front Γ(t). In some applications
this velocity is naturally prescribed globally, or at least in all nodal points of the
discretization, as it will be for instance in our application to surface reconstruction,
while in other applications Vn is naturally prescribed only on Γ(t) and we need a
suitable method to extend it. In these cases, the usual approach is to extend a
quantity q, known a-priori on the interface Γ(t), as a constant function along curves
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normal to Γ(t). This suggests the following hyperbolic PDE,

qτ + S(φ) ∇φ
|∇φ|

· ∇q = 0, (1.25)

whose characteristic curves are normal to the level sets of φ and pointing away from
Γ(t). In (1.25) S(φ) is the sign function of φ defined as

S(φ) =


−1 if φ < 0,
0 if φ = 0,
+1 if φ < 0,

(1.26)

τ is a pseudo-time and the subscript denotes a partial derivative with respect to this
pseudo-time variable.

Equation (1.25) is a particular case of the HJ-type equation

qt +H(∇q, ~x, t) = 0, ~x ∈ Rd, t > 0, (1.27)

for which there exist accurate and robust numerical schemes to approximate the
solution, even more so when the quantity q is not required to be extended for a
significant distance (see [75, 92]).

For the sake of clarity, a numerical solution of (1.25) can be computed resort-
ing for instance to a first-order upwind scheme coupled with a forward Euler time
integration, which in two dimensions translates into the updating formula

qν+1
i,j = qν

i,j − ∆τ
[
(si,jn

x
i,j)+ q

ν
i,j − qν

i−1,j

∆x + (si,jn
x
i,j)− q

ν
i+1,j − qν

i,j

∆x

+(si,jn
y
i,j)+ q

ν
i,j − qν

i,j−1

∆y + (si,jn
y
i,j)− q

ν
i,j+1 − qν

i,j

∆y

]
,

(1.28)

where the subscripts i, j, i ± 1, j ± 1 denote the nodal values of the quantities
involved, the index ν is used to discretize the pseudo-time τ , and (x)+ = max(x, 0),
(x)− = min(x, 0) for a scalar x. Furthermore, nx

i,j and ny
i,j denote the components

of the outward unit normal ~n given by the vector (nx, ny) = (∂xφ/ |∇φ| , ∂yφ/ |∇φ|)
and si,j denotes the nodal value of Sε(φ), where Sε(φ) is an approximation of S(φ)
given by

Sε(φ) = φ√
φ2 + ε2 (1.29)

and ε is a small smoothing parameter which can be taken equal to ∆x. Unless
otherwise specified, the derivatives are computed by central differencing. Finally, we
point out that the scheme (1.28) does not need any internal boundary condition since
the characteristics of the PDE (1.25) flow out of the interface Γ and, numerically,
the upwind approach only uses the values of φ on the nodes biased to Γ.

1.5 Reinitialization
We have already mentioned above the advantages of working with a signed distance
function φ, both from a geometrical and a numerical point of view. The delicate
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issue when dealing with LSM is thus to guarantee that the level set function stays
well-behaved during its evolution in the sense of (1.16). For general ~V or Vn, flat
and/or steep regions will typically develop at the interface, making further com-
putations and contour plotting highly inaccurate. Therefore, the common practice
is to periodically perform a reinitialization step that will eliminate such problems
without the explicit knowledge of their location, resetting the level set function φ to
be a signed distance function in the whole domain or at least in the vicinity of the
front, while keeping its zero level set, i.e. the front itself, unchanged.

A first natural idea for such a procedure can be based on first, finding the location
of the front Γ(t) with some interpolation technique and then, computing the signed
distance function to this front [86]. The main problem with this technique is that
it usually suffers from its high cost and the likelihood of introducing some spurious
irregularities into the data which might require some other smoothing procedure to
be coupled with this approach.

A more common and elegant way for reinitializing φ was introduced in [112] and
resorts again to a HJ-type equation given byφτ + S(φ̃)(|∇φ| − 1) = 0,

φ(~x, 0) = φ0(~x) = φ̃(~x, t).
(1.30)

The equation (1.30) is solved to steady state in order to find the desired signed
distance function φ from the initial data represented by the solution φ̃ of the level
set equation (1.12), (1.15) at a fixed time t, possibly perturbed by the evolution
itself. In (1.30) τ is a pseudo-time and the subscript denotes a partial derivative
with respect to this pseudo-time variable. The function S is the sign function that
is usually approximated by a function Sε which introduces some smoothing effect as
in (1.29).

This method works well when φ̃ is neither too flat nor too step near the inter-
face and, when properly implemented, converges quickly in a neighbourhood of the
interface itself. When φ̃ becomes too flat of too steep, some issues can arise. In the
first case the quantity Sε(φ̃) is small and the propagation is slowed down, while in
the second case things can be worse because φ might change sign, thus moving the
interface across grid points, which has to be avoided. In [94], the authors give a
proper analysis and propose to solve this issue by approximating the nodal values
of the function S in the computation with

si,j = φ̃i,j√
φ̃2

i,j +
∣∣∣Dφ̃i,j

∣∣∣2 ∆x2
, (1.31)

where Dφ̃ is some discrete operator for ∇φ̃ and ∆x the size of the spatial discretiza-
tion involved. This choice of approximation for S(φ̃) by (1.31) avoids changing the
sign of the nodal values of φ in the reinitialization step when the initial data is steep
and speeds up the convergence when it is flat at the interface.

In what follows we will recall some usual choices to numerically solve (1.30) which
are widely used in literature. The most canonical ones are based on an upwind
monotone discretization, while the successive one is a constrained version of the
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previous. Essentially, in this latter version, an explicit and direct step is applied
to reinitialize φ̃ in the immediate vicinity of the interface, with the aim of better
preserving the position of Γ. In Chapter 5 a different technique for adaptive grids
will be presented.

1.5.1 Canonical upwind schemes
The first scheme for solving (1.30) have been suggested in [91] and in two dimensions,
on a uniform Cartesian grid of size ∆x, is described by

φν+1
i,j = φν

i,j−
∆τ
∆xs

+
i,j

(√
(a+)2 + (b−)2 + (c+)2 + (d−)2 − 1

)
−∆τ

∆xs
−
i,j

(√
(a−)2 + (b+)2 + (c−)2 + (d+)2 − 1

) (1.32)

where si,j is the approximation to S(φ̃(xi,j, t
n) with (1.31), (x)+ = max(x, 0), (x)− =

min(x, 0) for a scalar x, and a, b, c, d are defined by

a = D−
x φ

ν
i,j, b = D+

x φ
ν
i,j,

c = D−
y φ

ν
i,j, d = D+

y φ
ν
i,j.

(1.33)

The scheme (1.32) turns out to be monotone under the condition

∆τ
∆x |si,j| ≤ 1

2 . (1.34)

The second example is Godunov’s scheme

φν+1
i,j = φν

i,j−
∆τ
∆xs

+
i,j

(√
max[(a+)2, (b−)2] + min[(c+)2, (d−)2] − 1

)
−∆τ

∆xs
−
i,j

(√
max[(a−)2, (b+)2] + min[(c−)2, (d+)2] − 1

) (1.35)

described in [92, 11], which is also monotone under the condition (1.34) and where
a, b, c, d are still defined by (1.33).

In both cases a more accurate TVD-type Runge-Kutta scheme can be used, in-
stead of the forward Euler time discretiziation, coupled with ENO or WENO tech-
niques for the computation of the one-sided differences D±

x φi,j, D±
y φi,j. More about

ENO, WENO and CWENO schemes for Hamilton-Jacobi equations will be detailed
in Chapter 2 and 3. For now we just emphasize the fact that these Essentially
non-Oscillatory techniques, first introduced in [65] in their ENO original version and
then developed in [76, 83, 43, 5] in their weighted and weighted central versions, has
been extended with proper modifications to Hamilton-Jacobi type equations [125,
128, 127] in which we seek for solutions that are, in the worst case, continuous with
kinks.

1.5.2 The constrained reinitialization scheme
Eq. (1.30) has been proved to yield, for τ → ∞, the unique viscosity solution of
the Eikonal equation

∣∣∣∇φ̃∣∣∣ = 1 that corrects the perturbed level set function φ̃ to



20 1 - Level Set Method

become a signed distance function, while also keeping the zero level set invariant
because S(φ̃) = 0. Nevertheless, it has been emphasized by several authors [113,
100] that solving the discretized version of (1.30) considerably displaces the zero
level set and thus may lead to substantial errors due to the reinitialization.

More recent techniques have been introduced in [66, 67] by Hartmann et al. with
the aim of preventing this kind of displacement, which is indeed the major difficulty
in PDE based methods for reinitialization. In fact, the different formulation is
derived by explicitly imposing the zero-displacement constraint on the zero level
set and this is why we will refer to this scheme as the constrained reinitialization
scheme.

The idea behind this method is to achieve the least deviation from the funda-
mental criteria which a reinitialization method should satisfy: the condition on the
gradient |∇φ| = 1, which is relevant for all the grid points in which we want to reini-
tialize, and the invariance of the zero level set, which is required only for the points
immediately close to the interface Γ. Furthermore, as a starting point for their new
formulations, the authors in [66, 67] resort to the already modified reinitialization
scheme proposed by Russo and Smereka [100], which makes a distinction between
the points nearby Γ and the distant ones, and reads

φν+1
i,j =

φ
ν
i,j − ∆τ

∆x

(
S(φ̃i,j)

∣∣∣φν
i,j

∣∣∣− di,j

)
for xi,j nearby Γ,

φν
i,j − ∆τS(φ̃i,j)

(∣∣∣∇φν
i,j

∣∣∣− 1
)

otherwise,
(1.36)

where S is the sign function, φ̃ = φ(~x, 0) is the initial data for the problem (1.30)
and

di,j = φ̃i,j√
[Dxφ̃i,j]2 + [Dyφ̃i,j]2

(1.37)

is the target value of the level set function for the point xi,j nearby Γ.
We briefly recall the scheme by Hartmann et al. since it is one of the scheme we

have used in our applications and also to give the reader a vertex-centred description
of it which is consistent with the rest of the thesis.

Let us consider the set X of the points close to Γ, which is defined by

X =
xi,j :

 i,j∏
i′,j

φ̃ ≤ 0
 ∨

 i,j∏
i,j′
φ̃ ≤ 0

 , (1.38)

where i′ ∈ {i − 1, i + 1}, j′ ∈ {j − 1, j + 1} and ∏i,j
i′,j φ̃ = φ̃i,jφ̃i′,j. Considering

a uniform Cartesian mesh of size ∆x, (1.38) states that X contains all the points
which are at a maximum distance of ∆x from Γ.

Now, focusing on a grid point xi,j ∈ X , in two dimensions, and using a linear
interpolator to detect the location of Γ, the errors of a reinitialization scheme can
be written as σ0

i,j =
√

[∂xφi,j]2 + [∂yφi,j]2 − 1,
σα

i,j = φi,j − rα
i,jφ

α
i,j,

(1.39)

where the superscript α denotes quantities computed using the points xα
i,j ∈ Ni,j,

Ni,j being the set of the neighbouring points of xi,j across the zero set Γ, namely



1.5 - Reinitialization 21

Ni.j = {xα
i,j : φi,jφ

α
i,j < 0} and, by linear interpolation, we have

rα
i,j = φ̃i,j

φ̃α
i,j

. (1.40)

Note that in (1.38), (1.39), (1.40) the notations φ and φ̃ are used, as usual, to denote
the reinitializing level set function and the perturbed one, that is the initial data for
the reinitialization problem (1.30).

Summing up all the squared errors weighted by some quantities θα′ , one gets the
least-squares function Θ for each point in X

Θi,j =
Mi,j∑
α′=0

θα′(σα′

i,j)2, (1.41)

where Mi,j is the number of elements in the set Ni,j. The problem is thus translated
into a minimization problem for the function Θ, which is faced by differentiating
(1.41) with respect to the Mi,j + 1 unknowns, setting all the derivatives to 0 and
solving the linear system obtained. For instance, when we differentiate with respect
to φi,j we get

∂φi,j
Θi,j = ∂φi,j

θ0(σ0
i,j)2 + 2

Mi,j∑
α′=1

θα′
σα′

i,j

 = 0. (1.42)

Since the derivative of (σ0
i,j)2 introduces some non-linearity, the key idea is to

allow the level set function to be directly reinitialized via equation (1.37) in X , so
that σ0

i,j may be assumed very small and the minimization problem for (1.41) can
be considered with weights

θα′ =
0 if α′ = 0,

1 if α′ ≥ 1.
(1.43)

The weights (1.43) introduced in Eq. (1.42) leads to solve the problem (1.42)

φi,j = 1
Mi,j

Mi,j∑
α=1

rα
i,jφ

α
i,j, (1.44)

which can be taken directly as the final reinitialized value or can be put into the
scheme (1.36) by substituting the target function di,j with the value computed in
(1.44).

In practice, the scheme designed by Hartmann et al. is a 2-step correction scheme
which in the first step computes the signed distance function in the points in Ni,j

using (1.37) and in the second step uses (1.44) to compute d̃i,j on all the remaining
points in X . Both steps are performed only once and sequentially, such that the φα

i,j

required in (1.44) are available from the first step making equation (1.44) explicit
and without requiring any iterations between the two steps.

In order to apply this scheme the sets Ni,j should contain as many points as
possible. Accordingly, X is divided into two subset R1 and R2 such thatR1 = {xi,j ∈ X : κi,jφ̃i,j < 0 ∨ (κi,j = 0 ∧ φ̃i,j < 0)},

R2 = {X \ R1},
(1.45)
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Figure 1.4: Typical evolution of a front in 1d. Starting from the green line, the update
makes the front move resulting in the blue line, sharper than the greed one. Reinitialization
(pink line) makes the computational narrow band move contextually with the front, fixing
the zero level set and resetting the level set function to be a signed distance function with
|∇φ| = 1. The dotted black line represents the last cutting step necessary to obtain the
final update.

where κi,j is the curvature computed in the node xi,j. Note that the inequalities in
(1.45) are reversed with respect to [66, 67] due to the opposite convention for the
sign of the level set function.

Finally, to reinitialize φ in the remaining points of the computational domain, or
at least in a proper restricted region, the problem (1.30) is solved to steady state
resorting to one of the canonical schemes described, such as (1.32) or (1.35).

1.6 Localization
We have already pointed out in the previous sections that, when dealing with LSM,
one has to mitigate the extra cost of dealing with φ on Rd instead of the d − 1-
dimensional surface Γ. This is achieved by suitable localization techniques. Namely,
the evolution and the subsequent adjustments of the level set function will be re-
stricted at each time step to proper tubes around the front Γ(t), as well stated in
the work by Peng et al. [94] in 1999.

To this aim, let 0 < β < γ be two constants comparable to ∆x and let us consider
the modified level set equation

φt + c(φ)~V · ∇φ = 0 (1.46)

or
φt + c(φ)Vn |∇φ| = 0 (1.47)
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where c : R → R is a cut-off function, which will be specified later, that has the role
of mitigating the evolution at the boundaries of the tubes around Γ(t), avoiding the
outbreak of spurious oscillations.

Since it is not important to update φ far away from the interface, at each discrete
time step tn we choose a narrow band

Bn = {~x : |φn(~x)| < γ} ⊂ Ω, (1.48)

and update φn+1 only therein, while outside Bn we do not update the level set
function at all. Moreover, at the end of each evolution step the level set function φ
is cut as

φ(~x) =


−γ if φ(~x) < −γ,
φ(~x) if |φ(~x)| ≤ γ,

γ if φ(~x) > γ.

(1.49)

Let us suppose now to start our evolution with an initial guess φ0(~x) given by the
signed distance function to the front Γ0. According to (1.48), around Γ0 we define
a narrow band

B0 = {x :
∣∣∣φ0(~x)

∣∣∣ < γ} (1.50)

and cut φ0 as in (1.49). The initial data φ0 is then updated by numerically solving
for one time step one of the two equations (1.46), (1.47) to get φ̃1(~x), where the tilde
over the letter φ is consistent with the notation used to describe the reinitialization
procedure and emphasizes the fact that, after the evolution step, φ̃1(~x) is not in
general a signed distance function.

The new location of the front is then given by Γ1 = {~x : φ̃1(~x) = 0}, after the
first evolution step. To perform a new temporal step we must construct a new level
set function φ1(~x) from φ̃1(~x) such that

φ1(~x) =


−γ if d1(~x) < −γ,
d1(~x) if |d1(~x)| ≤ γ,

γ if d1(~x) > γ.

(1.51)

where d1(~x) denotes the signed distance function to Γ1. This can be achieved by
applying the reinitialization procedure described in the previous subsection on a
larger narrow band B1 ⊃ B0. Since our aim is always to restrict the computations
to a neighbourhood of the front, we choose this B1 to be small enough not to increase
the computational cost too much, but also large enough to prevent distortions of
the level set function.

In other words, let us suppose that in a single time step the front Γ0 moves less
than one grid point, then, as suggested in [94], we can choose the band for the
reinitialization to be

B1 = {~x :
∣∣∣φ0(~x+ ~y)

∣∣∣ < γ, for certain |~y| < ∆x}. (1.52)

Otherwise, if our method allows the front to move more than one grid point, say we
have a displacement of k∆x, we will consider

B1 = {~x :
∣∣∣φ0(~x+ ~y)

∣∣∣ < γ, for certain |~y| < k∆x}, (1.53)
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where the value of k depends on the time step restriction of the method, namely the
CFL, used to solve the model equation (1.46),(1.47). Note that both the conditions
(1.52) and (1.53) are posed on the level set at the previous time.

Once we reinitialize in B1 and φ1(~x) is computed, we can consider the new narrow
band

B1 = {~x :
∣∣∣φ1(~x)

∣∣∣ < γ} (1.54)
and iterate this process to evolve the level set function φ while also adjusting it in
these internal correcting steps, when needed.

It only remains to specify the definition of the cut-off function c(φ) we use in the
modified equations (1.46) and (1.47). To prevent from numerical oscillations at the
boundary of Bn the correct equation is solved only in a tube of radius β, while in
the region {~x : β < |φn(~x)| ≤ γ}, the motion is modified by the cut-off function and
progressively slowed down when approaching the boundary. In our computations
we have use the same cut-off function defined in [94], which is given by

c(φ) =


1 if |φ| ≤ β,
(|φ|−γ)2(2|φ|+γ−3β)

(γ−β)3 if β < |φ| ≤ γ,

0 if |φ| > γ.

(1.55)

Finally, in order to define the thresholds β and γ, one considers

β = β̂∆x and γ = γ̂∆x, (1.56)

where β̂ and γ̂ are two positive constant independent of the grid size, instead they
can be related to the CFL or to the sizes of stencils employed in the overall nu-
merical scheme. Their values will be specified later in Chapter 4, where the specific
application to surface reconstruction is treated.

1.7 Summary of the level set update
In the previous sections we have introduced all the building blocks to numerically
compute the evolution of a level set function φ, governed by the level set equation
(1.12) or (1.15). For the sake of clarity, Figure 1.4 shows the typical evolution of a
front in 1d and, in Figure 1.5, a flowchart of the entire procedure is depicted. The
scheme is summarized having in mind for instance the case of a level set function φ
that is evolved until steady-state, hence we design a loop that stops when a proper
stopping criteria is satisfied. Alternatively, one can fix a final time for the evolution.
Also, we point out that each step of the scheme can itself require some other related
computations: as an example, the computation of the velocity field, as explained in
Section 1.3, might require an extension procedure or might be even related to a free
boundary problem that need to be solve contextually with the updating of φ.

Here, referring to Figure 1.5, once the initial signed distance function φ0 is given,
we evolve it until steady-state combining all the procedures introduced before. The
updating loop requires first of all to localize the update in the narrow band Bn as
in (1.48); in this restricted region we compute the velocity field and, if not given
in all Bn, we extend it using equation (1.25); a new level set function φ̃n+1 is then



1.7 - Summary of the level set update 25

Set initial guess φ0 and n = 0

Create updating band Bn

Evaluate and extend velocity

Compute φ̃n+1 via
level set equation

∣∣∣∇̃φn+1
∣∣∣ ≈ 1 Create reinitialization band Bn+1

Reinitialize

Obtain the updated
φn+1 and n → n + 1

Stopping criterion

Stop

Yes

No

Yes

No

Figure 1.5: Flowchart for the level set update. Once the initial guess in chosen, we
perform a loop to evolve the level set function until steady-state, localizing each procedure
and checking the condition on the gradient to keep the level set function φ well behaved,
i.e. close to be a SDF.
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obtained via (1.12) or (1.15). Since φ̃n+1 might no longer be a SDF, we check the
condition

∣∣∣∇φ̃n+1
∣∣∣ ≈ 1 to decide whether to reinitialize or not. In the first case,

localization is again needed, as in (1.53), and (1.30) is solved to reset φ̃n+1 to be a
SDF φn+1. Once the evolution in a time step is completed, we evaluate a proper
stopping criterion and, if so, we stop the evolution; otherwise the loop proceeds
again from the updating step.
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Chapter 2

Semi-Lagrangian schemes

In this chapter we will describe the basics of the SL technique for the approximation
of first-order PDEs, focusing for simplicity on the linear case in order to introduce
the reader to the next chapters. The more general framework of Hamilton-Jacobi
equations will be introduced in Section 2.4 and further developed in Chapter 3,
together with the related application.

When dealing with PDEs, the main purpose of the SL approach is to obtain
numerical schemes which are unconditionally stable with respect to the choice of
the time step, in order to perform stable time updates at large Courant numbers.
Introduced in their very first formulation by Courant, Isaacson and Rees in 1952 [41]
for first-order systems of linear equations, this type of schemes have gone through
a number of improvements and extensions. In particular, the possibility of making
them work with large time steps was recognized later, as soon as they were applied to
problems with a relevant computational complexity, for which time step restrictions
can constitute a real issue.

The core of the method lies in the method of characteristics which accounts for
the flow of information in the model PDE. At the numerical level, SL schemes mimic
the method of characteristics and follow the characteristic curve pertaining to each
node of the space-time discretization backward in time for the time step ∆t, namely
looking for what is usually referred to as the foot of the characteristic. Once the foot
is found the solution at time t + ∆t is updated evaluating the solution at previous
time t in the foot itself.

The SL approach thus combines the regular mesh of an Eulerian scheme with
the stability properties of a Lagrangian one. In Fig 2.1 this kind of approach is
better clarified: to compute the solution in the node (xi, tn+1), the characteristic
curve y(s) is traced backward from (xi, tn+1) to (x̂i, tn), then the neighbouring nodal
values information are used to recover the value of the solution in the foot (x̂i, tn),
for instance by interpolation. The approximated value at (x̂i, tn) will be the value
of the solution in (xi, tn+1).

It is clear that this general idea requires several ingredients to be put together
in order to design the complete scheme. Mainly, we need an ODEs solver to track
the characteristic curves and a reconstruction technique to recover the values of the
solution at previous time in the related feet that, in general, do not coincide with the
nodes of the spatial discretization, where the solution is known. For more general
schemes, we will see that also other ingredients will be needed.

In the next sections we will detail this approach mainly following the book by Fal-
cone and Ferretti [54] in which a comprehensive and full explanation of SL schemes
for linear hyperbolic PDEs and HJ equations is given. Along these lines, we will
report just the concepts that we need as building blocks for what follows in the thesis.
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xi

x̂i

tn+1

tn

y(s)

Figure 2.1: Sketch of a Semi-Lagrangian scheme. To compute the solution at (xi, tn+1),
the corresponding characteristic curve y(s) is tracked backward to some point (x̂i, tn).
This point is located in the yellow cell and the nearby nodal values depicted with black
dots (in case of a first-order scheme) are used to interpolate the solution in the foot at
time tn. This interpolated value is then the solution in the original node (xi, tn+1).

As an introduction, we start considering the simplest case of the one dimen-
sional advection equation, first with constant, and then with variable coefficients.
After introducing the basic first-order scheme we will move to the high-order SL
approximation. A more general case for HJ equations will be treated successively.

In what follows the unknown function will be denoted by letter the v in order to
distinguish this general framework from the level set one, introduced in the previous
chapter. The discretized values of v will be indicated with the letter u. Moreover,
since we will still consider a Cartesian uniform mesh, as in Chapter 1, but we will
lighten the notation using xi = i∆x, for a multi-index i ∈ Zd, to denote a node in
the grid. To be consistent with this notation the discretized values at time n will
be denoted by un

i , i ∈ Zd. When the subscript is dropped and the capital letter is
used, e.g. writing Un, or simply U , we mean to consider all the discretized values
un

i , i ∈ Zd, or a finite subset of them, at a fixed time.

2.1 The constant-coefficient case
Let us consider first the initial value problem (IVP) for linear advectionvt(x, t) + cvx(x, t) = 0,

v(x, t0) = v0(x),
(2.1)

where (x, t) ∈ R × (t0, T ), c is a positive constant. The solution of (2.1) is given by
the representation formula

v(x, t) = v0(x− c(t− t0)), (2.2)

for each (x, t) ∈ R× (t0, T ), which states that the solution is advected with constant
velocity c, namely along parallel straight lines having slope c.
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Considering a discretized grid and making the scheme evolve on a single time
step, from time tn to tn+1, in the node xi, (2.2) becomes

v(xi, tn+1) = v(xi − c∆t, tn), (2.3)

where no approximation has yet been introduced.
Since the point xi − c∆t is not in general a grid point, in the SL approach we

must introduce a numerical approximation in (2.3) by replacing its right-hand-side
with an interpolation operator, thus obtaining the scheme

un+1
i = I[Un](xi − c∆t). (2.4)

In (2.4), I[Un](x) denotes the interpolation at x of the data {un
i }i∈Z. In the

simplest case, when I is the piece-wise linear interpolator, later on denoted by I1,
and we assume that c∆t < ∆x, so that xi − c∆t ∈ (xi−1, xi], setting λ = c∆t/∆x,
the scheme (2.4) becomes

un+1
i = λun

i−1 + (1 − λ)un
i , (2.5)

which precisely coincides with the well-known first-order upwind discretization.
However, the true potential of the SL approach is based on the validity of the

representation formula (2.2) for any ∆t, meaning that we are allowed to use Courant
numbers beyond unity in the computations. Thus, for any λ > 1, we can rewrite
λ = λ′ + bλc and obtain the scheme

un+1
i = λ′un

i−bλc−1 + (1 − λ′)un
i−bλc, (2.6)

relying on the fact that, even when the characteristic crosses more than one cell, its
foot falls in the interval (xi−bλc−1, xi−bλc].

The scheme (2.6) is a first formulation of the CIR scheme introduced by Courant,
Isaacson and Rees [41], which is reduced to the first-order upwind scheme when
applied to the advection equation. Note also that, despite the possible large time
step, the stencil of the scheme (2.6) involves a very low number of grid points.

2.2 The variable-coefficient case
This idea can be now generalized considering the IVPvt(x, t) + f(x, t)vx(x, t) = g(x, t),

v(x, t0) = v0(x),
(2.7)

where the velocity field f and the source term g are both scalar functions defined
on (x, t) ∈ R × (t0, T ). In this case, the more general form of the representation
formula reads

v(x, t) = v0(y(x, t; t− t0), t0) +
∫ t−t0

0
g(y(x, t; s), t− s) ds, (2.8)
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where y(x, t; s) is the solution at time s ∈ [0, t − t0] of the Cauchy problem, called
system of base characteristicsẏ(x, t; s) = f(y(x, t; s), t− s),

y(x, t; 0) = x.
(2.9)

We point out that the form (2.8)-(2.9) of the representation formula emphasizes the
fact that the characteristics are integrated backward: as time goes from t0 to t > t0,
the variable s goes in the opposite direction from 0 to t− t0.

The function v defined by (2.8)-(2.9) solves (2.7) if v0 is smooth. Its value in
(x, t) is the sum of two contributions: the value of the initial data at the foot of
the characteristic curve, which might no longer be a straight line, as in the constant
coefficient case, and the integral of the source term along the characteristic itself.

Considering a single time step for the node xi, yet not introducing numerical
approximations, the representation formula (2.8) becomes

v(xi, tn+1) = v(y(xi, tn+1; ∆t), tn) +
∫ ∆t

0
g(y(xi, tn+1; s), tn+1 − s) ds, (2.10)

where y(xi, tn+1, s) solves, for s ∈ [0,∆t],ẏ(xi, tn+1; s) = f(y(xi, tn+1; s), tn+1 − s),
y(xi, tn+1; 0) = xi.

(2.11)

In (2.10), in addition to replacing v(y(xi, tn+1; ∆t), tn) with a reconstruction,
two more approximations are required. First, the point y(xi, tn+1,∆t) should be
approximated, since the exact solution of (2.11) is in general not explicitly known.
Second, the integral should be evaluated by some quadrature formula.

For instance, employing the explicit Euler approximation for the computation
of the foot and the rectangle quadrature rule, and coupling them with a piecewise
linear interpolator, one gets the CIR schemeu

n+1
i = I1[Un](xi − ∆tf(xi, tn+1)) + ∆t g(xi, tn+1),
u0

i = v0(xi),
(2.12)

where Un is a proper subset of all the nodal values {un
i }i∈Z, used for the interpolation.

In order to show the properties of the SL approach, we will take the scheme (2.12)
as an example of how the various ingredients of this technique interplay with each
other in terms of consistency, stability, convergence and numerical viscosity.

2.2.1 Consistency
The analysis of the consistency of the CIR scheme (2.12) is made comparing it with
the representation formula (2.8)-(2.9), rather than the model PDE (2.7). One starts
by taking into account the following error estimates for the building blocks of the
scheme:

|xi − ∆tf(xi, t+ ∆t) − y(xi, t+ ∆t; ∆t)| = O(∆t2), (2.13)
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∣∣∣∣∣∆t g(xi, t+ ∆t) −
∫ ∆t

0
g(y(xi, t+ ∆t; s), t+ ∆t− s)ds

∣∣∣∣∣ = O(∆t2), (2.14)

‖v − I1[V ]‖∞ = O(∆x2), (2.15)
respectively for the ODE method, the quadrature rule and the interpolation opera-
tor.

From the bounds above we can deduce the following estimate for the local trun-
cation error at node xi:∣∣∣LCIR

i (∆; t, V (t))
∣∣∣ = 1

∆t
[
O(∆t2) + O(∆t2) + LvO(∆x2)

]
, (2.16)

where Lv is the Lipschitz constant of v, which itself bounds the Lipschitz constant
of the reconstructed solution I1[V ] and ∆ in the argument denotes the dependence
of the consistency error of the scheme on the spatio-temporal discretization sizes.
Thus from (2.16) we can get the estimate

∥∥∥LCIR(∆; t, V (t))
∥∥∥ ≤ C

(
∆t+ ∆x2

∆t

)
, (2.17)

which states that consistency is satisfied under the condition ∆x2 = o(∆t). Note
also that, unlike the usual bound for upwind schemes which takes into account the
velocity of characteristics, here C is a positive constant completely independent of
the velocity field f .

To include the case of small Courant number and verify consistency under any
∆x/∆t relationship, a more accurate estimate of the interpolation error needs to be
considered. In [54], the authors use the fact that

min
m∈Z

(
x̂i − xm

∆x

)
≤ min

(
1
2 ,
x̂i − xi

∆x

)
(2.18)

where x̂i = y(xi, t + ∆t; t) = xi + O(∆t) is the point at which interpolation is
performed, to improve the local error estimate for the linear interpolator by

|v(y(xi, t+ ∆t; t)) − I1[V ](y(xi, t+ ∆t; t))| ≤ C∆x2 min
(

1, ∆t
∆x

)
. (2.19)

Thus the consistency estimate can be rewritten as
∥∥∥LCIR(∆; t, V (t))

∥∥∥ ≤ C

(
∆t+ min

(
∆x, ∆x2

∆t

))
. (2.20)

Finally, we point out for now that, from (2.17) and (2.20), the consistency rate
is maximized when ∆t ∼ ∆x.

2.2.2 Stability
The main property of the SL schemes is their unconditional stability, which allows
for large Courant numbers. In fact, the restrictions introduced by the CFL condi-
tion are overcome, without introducing too much numerical diffusion, by employing
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a small reconstruction stencil, which is shifted along characteristics towards the
neighbourhood of the foot. Thus, the additional cost of tracking the characteristic
curve is counterbalanced by first, a sort of self-adaptation of the numerical domain
of dependence, and second, a reduction in the number of grid points involved in the
numerical approximation, which in principle yields to a lower numerical viscosity.

However, the unconditional stability of SL-type schemes can be affected by the
degree of the interpolation operator chosen to replace the value of the solution at
the foot of the characteristic, since spurious oscillations might be introduced by
enlarging the stencil of the reconstruction and the monotonicity might be lost. In
fact, the stability of the SL approach is guaranteed only for interpolation techniques
which do not increase the norm too much, in a sense that will be specified later,
which is of course the case of the linear interpolation involved in (2.12), but can be
an issue when high-order polynomial interpolation techniques are involved.

Monotonicity In order to check the monotonicity of the scheme (2.12) we need to
rewrite it in a different form. Let {ϕ[1]

j }j∈Z be the basis functions of the interpolation
operator I1[V ] which are, in each cell [xj, xj+1] polynomials of first degree such that
ϕ

[1]
j (xk) = δj,k. Then, for any function v(x) the linear interpolator is defined by

I1[V ](x) = ∑
j∈Z vjϕ

[1]
j (x). Thus the scheme (2.12) can be rewritten as

un+1
i =

∑
j∈Z

vjϕ
[1]
j (xi − ∆tf(xi, tn+1)) + ∆t g(xi, tn+1), (2.21)

from which it is easy to inspect monotonicity by checking if all the entries ϕij =
ϕ

[1]
j (xi − ∆tf(xi, tn+1)) are positive. Since ϕ[1]

j (x) ≥ 0 for each j ∈ Z and x ∈ R,
monotonicity is satisfied and, moreover, since ∑j∈Z ϕ

[1]
j (x) ≡ 1, the scheme is also

invariant under the addition of constants.

Von Neumann analysis As usual, to perform a Von Neumann analysis, we refer
to the scheme in the form (2.6), considering the simplest case of the linear advection
equation. Vectors of the form wj = eijω, j ∈ Z, are eigenvectors of the scheme (2.6)
with eigenvalues ρ such that

ρeijω = λ′ei(j−bλc−1)ω + (1 − λ′)ei(j−bλc)ω, (2.22)

where we recall that the Courant number λ has been written in the form λ = λ′+bλc
in order to distinguish between its fractional and integer part. In a compact form,
equation (2.22) reads

ρ = eibλcω
[
λ′e−iω + (1 − λ′)

]
, (2.23)

which states that ρ is given by the sum of a pure phase term and a second term,
relevant for stability, depending only on the fractional part λ′. Focusing on just this
second term one obtains the equality

|ρ| = |(1 − λ′) + λ′ cosω + iλ′ sinω| , (2.24)

which, since λ′ ∈ [0, 1] locates the eigenvalues in a circle centered at 1 − λ′, with
radius λ′, thus guaranteeing that the Von Neumann condition is satisfied.
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2.2.3 Convergence
To summarize this analysis for the CIR scheme (2.12), we report here the conver-
gence result, as stated in [54], in the form of the following

Theorem 2.1. Let f, g ∈ W 1,∞(R), let v be the solution of (2.7), and let un
i be

defined by (2.10). Then, for any i ∈ Z and n = 0 . . . N ,

|un
i − v(xi, tn)| → 0 (2.25)

as ∆ → 0. Moreover, if v ∈ L∞([0, T ],W s,∞(R)) (s = 1, 2), then

‖Un − V (tn)‖∞ ≤ C

(
∆t+ min

(
∆xs−1,

∆xs

∆t

))
. (2.26)

2.2.4 Numerical viscosity
Performing a numerical viscosity analysis on the constant-coefficient advection case
discretized by (2.6), if we consider the numerical solution u(x, t) defined on R×[t0, T ],
obtained by a first-order local interpolation of the nodal values un

i , such that un
i =

u(xi, tn), we can deduce that this function u(x, t) solves the modified equation

vt + cvx = ν vxx + o(ν), (2.27)

with the viscosity coefficient ν expressed by

ν = λ′(1 − λ′)∆x2

2∆t . (2.28)

This coefficient is positive, depends on λ′, and vanishes if λ′ = 0, which is consistent
with the fact that, if the feet of characteristics coincide with grid nodes, namely
λ = bλc, then the solution is advected without errors. On the other hand, the
largest value for (2.28) is attained for λ′ = 1/2. In this case, equation (2.27) takes
the form

ut + cux = ∆x2

8∆t uxx + o

(
∆x2

∆t

)
, (2.29)

which shows that the viscous term, generated by the accumulation of interpolation
errors, can be reduced, as we expected, by involving large Courant numbers λ =
c∆t/∆x.

2.3 High-order approximation
The first-order discretization of the representation formula we have seen in the pre-
vious section is suitable for the homogeneous, constant-coefficient case, where it
provides the exact upwinding along characteristics. However, in non-homogeneous
problems, as well as in the variable-coefficient case, it could lead to an undesired
error in time discretization. In practice, in order to balance the errors, the scheme
could be forced again to work at small Courant numbers requiring an additional



34 2 - Semi-Lagrangian schemes

computational complexity and against the possibility to reduce the numerical vis-
cosity, as shown by (2.29).

Therefore, in order to get a better approximation for the solution of (2.7), we
introduce a more accurate scheme for the tracking of characteristics and for the com-
putation of the integral of the source term, without affecting the stability properties
of the scheme. Moreover, recalling that the consistency rate in (2.17) is affected by
the lowest of the rates in (2.13) and (2.14), one will need to employ both improved
schemes in order to obtain higher accuracy.

Let us introduce a more general notation to rewrite the scheme (2.12) in the
simplified form u

n+1
i = Gn

i + I1[Un](yn
i ),

u0
i = v0(xi),

(2.30)

where yn
i and Gn

i denote respectively approximations of order p of the foot of the
characteristic and of the integral of the source term along the characteristic itself. In
the scheme (2.30) the interpolation operator is still the piecewise linear one, denoted
by I1.

Since the linear interpolator is still involved, stability is not affected, and one is
just interested in the consistency analysis for which now we have

|yn
i − f(xi, tn+1; tn)| = O(∆tp+1), (2.31)∣∣∣∣Gn

i −
∫ tn+1

tn

g(y(xi, tn+1; s), s)ds
∣∣∣∣ = O(∆tp+1) (2.32)

and thus ∥∥∥LCIR(∆; t, V (T ))
∥∥∥ ≤ C

(
∆tp + ∆x2

∆t

)
. (2.33)

Consequently, with proper assumptions on the functions f and g, one can refor-
mulate Theorem 2.1 in the more general form

Theorem 2.2. Let f, g ∈ W p,∞(R), let v be the solution of (2.7), and let un
i be

defined by (2.30). Then, for any i ∈ Z and n = 0 . . . N ,

|un
i − v(xi, tn)| → 0 (2.34)

as ∆ → 0. Moreover, if v ∈ L∞([0, T ],W s,∞(R)) (s = 1, 2), then

‖Un − V (tn)‖∞ ≤ C

(
∆tp + min

(
∆xs−1,

∆xs

∆t

))
. (2.35)

Under large Courant numbers, introducing the relationship ∆t = ∆xα, the con-
sistency error is O(∆xαp +∆x2−α), thus the optimal choice for α in order to balance
the two terms is given by α = 2/(p+ 1).

The last most delicate step is the one regarding the high-order interpolator. Let’s
say we are interested in an interpolation operator of order r, which will be denoted
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below by Ir. With this further improvement, the SL scheme (2.30) for the problem
(2.7) can be rewritten as u

n+1
i = Gn

i + Ir[Un](yn
i ),

u0
i = v0(xi).

(2.36)

The consistency analysis carried out for the scheme (2.36) takes into account the
estimates (2.31), (2.32) and replaces (2.33) with

‖u− Ir[U ]‖∞ = O(∆xr+1) (2.37)

in order to get the consistency estimate for large Courant numbers

∥∥∥LSL(∆; t, U(t))
∥∥∥ ≤ C

(
∆tp + ∆xr+1

∆t

)
, (2.38)

and its improved version for all Courant numbers

∥∥∥LSL(∆; t, U(t))
∥∥∥ ≤ C

(
∆tp + min

(
∆xr,

∆xr+1

∆t

))
. (2.39)

While high-order characteristics tracking does not change the stability properties
of the CIR scheme, we know that the introduction of a space reconstruction of degree
r > 1 does. A short dissertation on the stability of schemes involving high-order
interpolation will be given in Subsection 2.2.3, where a sufficient condition for the
case of non-oscillatory reconstructions will be illustrate.

2.3.1 High-order time integration
As the first ingredient for the construction of high-order SL schemes, we will consider
high-order time integration to better track the characteristic curves that locate the
values to be propagated. This task consists in accurately solving the systemẏ(x, t; s) = f(y(x, t; s), t− s), s ∈ [0, t− t0],

y(x, t; 0) = x,
(2.40)

where t0 is the initial time and we suppose that the vector field f : R × R → R is
globally Lipschitz continuous with respect to its first argument.

Such a task can be numerically accomplished by different techniques, and, in
particular, we will resort to a ν-stage explicit Runge-Kutta (RK) scheme. Thus,
considering one time step and the usual notation for the space-time discretization,
we look for the numerical solution of the systemẏ(xi, tn+1; s) = f(y(xi, tn+1; s), tn+1 − s), s ∈ [0,∆t],

y(xi, tn+1; 0) = xi,
(2.41)

considering a set of nodes tk on the time axis and denoting with Yk the corresponding
approximations of y(xi, tn+1; tk).
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Given the coefficients bk, ck, Akj (for k, j = 1, . . . , ν and A strictly lower triangu-
lar) of the Butcher tableau, we can compute the solution of (2.41), denoted as yn

i ,
by the scheme

yn
i = xi + ∆t

ν∑
k=1

bkKk,

Kk = f (Yk, tk), k = 1, . . . , ν,

Yk = xi + ∆t
k−1∑
j=1

AkjKj, k = 1, . . . , ν,

(2.42)

where tk = tn+1 − ck∆t are the abscissae of the RK scheme.
For the purposes of this thesis, we will resort to the Forward Euler method

0
1 (2.43)

for first-order schemes, to Heun’s method

0
1 1

1/2 1/2

(2.44)

to get second-order accuracy, and to the RK method with tableau

0
1/2 1/2

1 −1 2
1/6 2/3 1/6

(2.45)

for third-order schemes.
The schemes reported above allow us to approximate with the desired accuracy

the solution of (2.41) at time tn, namely the location of the foot of the characteristic
in which we will perform the spatial interpolation.

Furthermore, high-order time integration is needed in order to track not only the
foot, but also the intermediate values of y(xi, tn+1; s), required to compute some
quadrature formula to get an approximation Gn

i of the integral of the source term.
Considering ν̃ nodes ξl and weights wl we compute∫ tn+1

tn

g(y(xi, tn+1; s), s)ds

= ∆t
ν̃∑

l=1
wl g(y(xi, tn+1, tn+1 − ξl∆t; tn+1 − ξl∆t) + O(∆tq+1)

= ∆t
ν̃∑

l=1
wl g(Ỹl, tn+1 − ξl∆t) + O(∆tq+1) + O(∆ts+1),

(2.46)

where q is the accuracy of the quadrature rule and s describes the extra error
introduced by the approximation of y(xi, tn+1; tn+1 − ξl∆t) with some proper values
Ỹl, for l = 1, . . . , ν̃ within the quadrature rule.
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Since we have already computed the intermediate stage values Yk of the RK
scheme, one is tempted to choose a quadrature rule such that ν̃ = ν and the nodes
ξl coincide with the abscissae ck of the RK scheme, in order to replace, in the last
approximation of (2.46), Ỹl with the stage values Yk of the RK scheme and the
weights wl with the coefficients bk, for l = k = 1, . . . , ν. We just need to check
that this choice doesn’t affect the accuracy of the approximation, ensuring that the
balance between q and s is coherent also with the order of accuracy p of the RK
scheme, and thus with the consistency error (2.33).

For first-order schemes, the foot is computed with first-order accuracy by (2.43)
and the coupling with the rectangle rule gives the desired accuracy with p = q =
r = 1.

For the Heun method, the numerical computation of Gn
i would be performed

with the trapezoidal rule, whose nodes are at ξl = 0, 1; for this method Ỹ1 = xi

and Ỹ2 = yn
i are computed with the correct accuracy by the RK scheme (2.44),

thus the balance between the RK scheme and the quadrature rule gives the proper
second-order accuracy.

For the third-order RK scheme (2.45), whose nodes are at c = {0, 1/2, 1}, one can
choose the Simpson’s quadrature rule and the approximations Ỹ1 = xi, Ỹ2 = Y2 and
Ỹ3 = Y3. In this case, even if both Ỹ2 −Y2 and Ỹ3 −Y3 are O(∆t2), these errors cancel
each other out when computing the linear combination of the Simpson’s quadrature
rule, resulting in a third-order accuracy for the approximation of Gn

i , as detailed for
a general case in the paragraph below.

Quadrature rule accuracy In order to demonstrate the accuracy of the quadra-
ture rule when relying on the stage values Yk, k = 1, . . . , 3 computed resorting to
an explicit third-order RK scheme, we consider the ODE equation (2.9) rewritten
in the usual form ẏ(t) = f(y(t), y),

y(tn) = yn,
(2.47)

considering the interval t ∈ [tn, tn+1] and f sufficiently smooth both in y and t.
We compute the numerical solution yn+1 of (2.47), at time tn+1, as

yn+1 = yn + ∆t
3∑

k=1
bkKk,

Kk = f (Yk, tn + ck∆t), k = 1, . . . , 3,

Yk = yn + ∆t
k−1∑
j=1

AkjKj, k = 1, . . . , 3,

(2.48)

from which we can explicitly write the expressions for the stage values Yk, for k =
1, . . . , 3, given by

Y1 = yn,

Y2 = yn + A21∆tẏn,

Y3 = yn + (A31 + A3,2)∆tẏn + (A32c2f
n
t + A32A21ẏ

nfn
y )∆t2 + O(∆t3),

(2.49)
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where ẏn = f(yn, tn), fn
y and fn

t corresponds to the partial derivatives of the function
f evaluated in the point (yn, tn).

The stage values (2.49) have been obtained by performing a Taylor expansion of
the function f around the point (yn, tn) and one can compare these Yk to the exact
values of the solution yk = y(tn + ck∆t). When expanding the yk around the point
tn, one gets the following expressions for the errors computed at each time tk:

e1 = 0,

e2 = c2
2
2 ÿ

n∆t2 + O(∆t3),

e3 =
(
c2

3
2 − A32A21

)
ÿn∆t2 + (A32A21 − A32c2) fn

t ∆t2 + O(∆t3).

(2.50)

These errors are the ones we need to take into account when applying a 3-points
quadrature formula using the stage values Yk instead of the exact values yk.

In other words, let us denote with Q the integral of a sufficiently regular scalar
function q(y(t), t) over the interval [tn, tn+1], where the function y(t) solves (2.47).
Applying a third-order quadrature rule with nodes tk and weights wk we get an
approximation for Q given by

Q = ∆t
3∑

k=1
wkq(yk, tk), (2.51)

which is itself approximated by Q if we use the Yk instead of the yk, thus getting

Q = ∆t
3∑

k=1
wkq(Yk, tk)

= Q+ ∆t
[

− w2e2q
2
y − w3e3q

3
y

]
.

(2.52)

In equation (2.52) we have computed the expansions of the function q around the
points (yk, tk) and we have denoted by qk

y the partial derivative with respect to the
variable y of q, evaluated in the point yk, namely at time tk.

Moreover, expanding these qk
y around the same point, lets say y2, one finally gets

Q = Q+ ∆t
[

− (w2e2 + w3e3)q2
y + O(∆t3)

]
, (2.53)

which states that Q is still a third-order approximation for Q, provided that the
condition

w2e2 + w3e3 = 0 (2.54)
holds.

Using the expression of the errors (2.50) and the coefficients bk instead of the wk,
one finally concludes that the condition (2.54) is equivalent to having the equalities

A21 = c2 and b2c
2
2 + b3c

2
3

2 − b3A32A21 = 0, (2.55)

which are always satisfied for an explicit third-order RK scheme, since the third-
order conditions for a RK process are

3∑
k=1

bkc
2
k = 1

3 and
3∑

k,j=1
bkAkjcj = 1

6 . (2.56)
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2.3.2 Continuous extensions of RK schemes
The RK schemes involved in this thesis, coupled with the related quadrature rules,
give the desired accuracy in order to be coherent with the consistency error analyzed
in (2.33). For more general schemes in which we may not enforce the equality
between the ξl and the ck, with ν̃ = ν, or if we wanted to compute the intermediate
stage values with the highest possible accuracy, a solution for the evalutation of the
X̃l is to resort to the Natural Continuous Extensions (NCEs) of the RK methods
[119].

We refer again to the IVP problem written in the simplified form (2.47) where
t ∈ (t0, T ) is a real variable, y0, y and f are scalar functions defined on R, with f
being smooth enough both in t and y.

If a RK method of order p ≥ 1 is applied, one gets information about the solution
y on a discrete set of points such that

max
0≤n≤NT

|yn − y(tn)| = O(∆tp), (2.57)

where the {yn} are the approximate values of the solution at time tn. Nonetheless,
one could be interested in obtaining a continuous approximate solution available,
possibly avoiding any extra evaluations of the function f .

To this purpose, the author in [119] aims to give such a solution, namely the
NCE, which, considering a single time step of size ∆t, is defined as:

Definition 2.1. The ν-stage RK process of order p has a NCE u of degree d if there
exist ν polynomials bi(θ), i = 1, . . . , ν, of degree ≤ d, independent of the function f ,
such that, by putting

u(t0 + θ∆t) := y0 + ∆t
ν∑

i=1
bi(θ)g(i), 0 ≤ θ ≤ 1, (2.58)

the following statements hold:

u(t0) = y0 and u(t0 + ∆t) = y; (2.59)

max
t0≤t≤t0+∆t

|y′(t) − u′(t)| = O(∆td); (2.60)
∫ t0+∆t

t0
G(t)[y′(t) − u′(t)]dt = O(∆tp+1) (2.61)

for every sufficiently smooth function G.

In the definition above y denotes the approximate value of y(t0 + ∆t) given by
the RK scheme and it is also easy to see that condition (2.60) implies the following
error bounds for the higher derivatives of the NCEs:

max
t0≤t≤t0+∆t

∣∣∣y(k)(t) − u(k)(t)
∣∣∣ = O(∆td−k+1), (2.62)

for k = 2, . . . , d, and u(k)(t) ≡ 0 for k ≥ d + 1. Therefore, all the derivatives of the
NCE u are uniformly bounded as ∆t → 0.
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Moreover, by integrating (2.60) and by (2.59), we have also

max
t0≤t≤t0+∆t

|y(t) − u(t)| = O(∆td+1), (2.63)

while simple integration by parts, together with (2.61) and (2.59), yelds∫ t0+∆t

t0
G(t)[y(t) − u(t)]dt = O(∆tp+1) (2.64)

for every sufficiently smooth function G.
We point out that the condition (2.63) is crucial when one has some issues in

the computation of the integral (2.46). In practice, once the degree d of the NCE is
fixed, (2.63) guarantees a certain accuracy for all the possible intermediate values
needed by the quadrature formula.

In [119] the existence of NCEs for all RK processes is proven and the NCEs for
some of the most popular explicit RK processes are given. The following ones are
sufficient for the topics of this thesis.

• 1-stage RK process of order 1 (d = 1)

b1(θ) ≡ θ.

• 2-stage RK process of order 2 (d = 1)

bi(θ) ≡ biθ, i = 1, 2.

• 2-stage RK process of order 2 (d = 2)b1(θ) ≡ (b1 − 1)θ2,

b2(θ) ≡ b2θ
2.

• 3-stage RK process of order 3 with c2, c3 6= 0 (d = 2)

bi(θ) ≡ wiθ
2 + (bi − wi)θ, i = 1, 2, 3,

where 
w1 := −[µ(c3 − c2) + c2]/2c2c3,

w2 := µ/2c2,

w1 := (1 − µ)/2c3,

and µ ∈ R. In particular Theorem 7 in [119] provides the choice

µ = 6c2(2c2 − 1)b2.

Finally, we point out that in the case of 3-stage RK processes of order 3, no NCE
of degree ν = p exists. Nonetheless, this issue doesn’t pose any problem in our
applications since, for the computation of the integral with a quadrature formula
(2.46) we just need to have the intermediate values X̃l computed with an error of
order O(∆tp) in order to give a final error of order O(∆tp+1).
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2.3.3 High-order non-oscillatory interpolator
As pointed out before, polynomial interpolations processes that are linear in the
data show Gibbs oscillations when treating solutions with singularities, and therefore
are best avoided in non-smooth contexts. This is the reason why essentially non-
oscillatory techniques as ENO, WENO and successive central versions, come into
play in order to reduce this effect.

Nonetheless, when involving a high-order interpolator one has to deal with stabil-
ity issues and it can be really troublesome to prove convergence via classical results.
For instace, bounds on the Lipschitz norm, which can be proved with reasonable
effort in the case of low-order and usually monotone schemes, are not easy to prove
in the high-order case, and also the classical result of Barles and Souganidis [12]
which, roughly speaking, states that consistency, monotonicity and L∞ stability
imply convergence, does not hold due to the lack of monotonicity. Thus, we will
resort here to some results based on uniform Lipschitz continuity for SL high-order
schemes, along the lines of [56].

In what follows we will introduce the WENO reconstruction, as it will be used
also in the next chapters. A sufficient condition for convergence, as presented in
[56], will be explored at the end of this chapter in the framework of more general
first-order HJ equations. This condition will be also investigated in Chapter 3 where
we prove the convergence of the high-order SL scheme coupled with the CWENO
reconstruction operator.

2.3.4 WENO reconstruction
We recall here the definition of the WENO operator, as it will be also used in our
applications. This operator has been firstly introduced in [76] and has then gone
through numerous extensions including the application to HJ equations [127, 125,
129, 97, 27]; in this presentation we will follow in particular the description given in
[27].

For a point ~x ∈ Rd, let Ω be the grid cell containing it and SΩ be the set of its
vertices. In order to achieve better than first-order accuracy, we need to consider
stencils S ⊃ SΩ. We associate to any set of vertices S a polynomial of degree r′,
P

(r′)
S (~x) ∈ Pr′

d , which interpolates the data in S, i.e., such that P (r′)
S (~xi) = vi ∀i ∈ S,

where the vi are the nodal values of a given function v. Following the usual notation
we will indicate with V the set of all nodal values vi, or a finite subset of them.

As already pointed out, taking larger symmetric stencils could pose a serious issue
since this choice leads to define highly accurate interpolators, which are however also
very oscillatory when the data in S represent a non-smooth function. On the other
hand, polynomials associated to smaller stencils, when biased in a specific direction,
could avoid interpolating across the discontinuities in the data and show less spurious
oscillations.

To face this drawback, ENO or WENO methods (see [65, 76]) tend to choose in-
terpolation points on the smooth side of the function. ENO schemes tries to choose
the best candidate stencil among all the possible ones. WENO instead weights the
different polynomials, exploiting information from the whole global stencil, namely
from both sides of the cell Ω. Briefly speaking, when constructing a WENO inter-
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polator, one searches for a convex combination of low-degree polynomials, designed
in such a way that a high-order reconstruction is computed in regions associated
to smooth data, while non-oscillatory properties are guaranteed in presence of a
discontinuity.

The selection or blending of such polynomials is performed in a non-linear way
relying on oscillation indicators OSC[P ], which are in general scalar quantities as-
sociated to a polynomial P , designed in such a way that OSC[P ] → 0 under grid
refinement, if P is associated to smooth data, and OSC[P ] � 1 (i.e., the indicator is
asymptotically a non-zero constant), in presence of a discontinuity within the stencil
of P .

In this thesis, we rely on the classical Jiang-Shu oscillation indicators [76], suit-
ably modified to evaluate the regularity of the solution of HJB problems under
consideration [75, 52].

Construction of the WENO operator For practical purposes, here we will
give some details of this procedure focusing on the one-dimensional reconstruction
in the cell Ωi = [xi, xi+1], considering a uniform Cartesian mesh of width ∆x. To
treat the multi-dimensional case, one only needs to iterate this procedure along each
dimension.

More in details, to construct a WENO interpolation of degree 2n − 1 on the
interval [xi, xi+1], we start considering the Lagrange polynomial Q(x) ∈ P2n−1 built
on the stencil S = {xi−n+1, . . . , xi+n}, written in the form

Q(x) =
n∑

k=1
Ck(x)Pk(x), (2.65)

where the Ck are polynomials of degree n−1 and the Pk are polynomials of degree n
interpolating on the stencil Sk = {xi−n+k, . . . , xi+k}, k = 1, . . . , n. Then, we proceed
as follows:

1. compute suitable regularity indicators

OSCk = OSC[Pk], k = 1, . . . , n; (2.66)

2. define the quantities
αk(x) = Ck(x)

(OSCk + ε)2 , (2.67)

with ε = ∆x2;

3. compute the non-linear weights {wk}n
k=1 as

wk(x) = αk(x)∑
l αl(x) ; (2.68)

4. finally, define the reconstruction at x by

I[V ](x) =
n∑

k=1
wk(x)Pk(x). (2.69)
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Differently from [27], we consider regularity indicators defined as

OSCk = OSC[Pk] =
∑
β≥2

∆x2β−3
∫ xj+1

xj

(
d(β)Pk

dxβ

)2

dx. (2.70)

We point out that the above is similar to the classical definition of the oscillation
indicators for the WENO reconstruction as given in [76], except that the first deriva-
tive is not included in the sum, thus implying a different scaling given by ∆x2β−3

to ensure the expected behaviours of the indicators. This choice is justified by the
fact that, since we will employ this interpolator in the HJ framework, the function
that we will interpolate can be at worst continuous with kinks.

In fact, let us consider a generic polynomial Pk of degree n− 1 having a discon-
tinuity in its first derivative in the stencil Sk. When we consider its β-derivative,
for β ≥ 2, we get a polynomial of degree n − β − 1 whose coefficients of degree
m = 0, . . . , n − β − 1 are given by the Newton divided differences with m + β + 1
points that scale as O(∆x1−m−β) due to the discontinuity. Now, computing the
integral in (2.70), we get a sum of terms, each one scaling at the same rate, given by
O(∆x3−2β). Is it thus clear that the exponent 2β − 3 is apt to get OSC[Pk] � 1 in
this non-regular case. In case of smoothness, instead the Newton divided differences
would be O(1) and OSC[Pk] → 0 as expected.

Third-order reconstruction Focusing on the third-order case, we need to find a
proper expression for the linear weights Ck considering n = 2 to get a formally third-
order reconstruction. The whole stencil will be given by S = {xi−1, xi, xi+1, x+2} and
the only two substencils to consider are SL = {xi−1, xi, xi+1} and SR = {xi, xi+1, xi+2}.
Since the polynomials PL and PR interpolate the function v respectively on SL and
SR, each Ck should vanishes outside Sk, namely CL(xi+2) = 0 and CR(xi−1) = 0,
and the condition ∑

k=L,R Ck(xj) = 1 must hold for every node xj ∈ S. Thus, we
have two conditions for each polynomial Ck, which, in our case leads to a unique
definition of these one degree polynomials that we can write in the form

Ck(x) = γk
x− x̂k

∆x , (2.71)

where k = L,R and x̂k ∈ S \ Sk.
To get the coefficients γL and γR we start considering the first node of the stencil

xi−1, on which we have CL(xi−1) = 1 and CR(xi−1) = 0, so that

Q(xi−1) = CL(xi−1)PL(xi−1) = CL(xi−1)vi−1, (2.72)

thus inferring that CL(xi−1) = 1 and therefore, using (2.71) with x̂k = xi+2,

γL = −1
3 . (2.73)

Analogously, we can proceed considering the node xi for which we must have CL(xi)+
CR(xi) = 1. Since the expression for CL is known, we can compute

CR(xi) = 1 − CL(xi) = 1 − 2
3 = 1

3 (2.74)
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and therefore, from 1
3 = γR[(xi − xi−1)/∆x] in (2.71), we get

γR = 1
3 . (2.75)

Summarizing, we have the following expressions:

CL(x) = xi+2 − x

3∆x , CR(x) = x− xi−1

3∆x . (2.76)

It only remains to find a proper expression of the regularity indicators OSCL and
OSCR for the two degree polynomials PL and PR. Let us consider a polynomial of
degree at most two written in the form P (x) = ∑2

j=0 zj[(x− xj)/∆x]j. Its indicator
is a quadratic form of its coefficients and is given by

OSC[P ] = 1
∆x2 4z2

2

or equivalently, denoting by U the vector of data (ui−1, ui, ui+1, ui+2)T , since the
coefficients of the polynomial linearly depends on U , we can express the regularity
indicators as a quadratic form of the data being interpolated. For our specific case
we obtain

OSC[Pk] = 1
∆x2U

TAkU (k = L,R),

with

AL =


1 −2 1 0

−2 4 −2 0
1 −2 1 0
0 0 0 0

 and AR =


0 0 0 0
0 1 −2 1
0 −2 4 −2
0 1 −2 1

 .

Finally, we illustrate briefly the two-dimensional reconstruction. Let (x, y) be the
reconstruction point, located in the cell [xi, xi+1]× [yj, yj+1]. One first performs four
one-dimensional WENO interpolations to compute auxiliary data wi−1, wi, wi+1, wi+2.
Each wk is the interpolation in the y direction of the data uk,j−1, . . . , uk,j+2 evalu-
ated at y. Finally a WENO interpolation in the x direction of wi−1, wi, wi+1, wi+2
evaluated at x will be the reconstructed value. The three-dimensional case can be
treated analogously.

Note that, due to the dimensional splitting employed in the two and three di-
mensional procedures, the WENO interpolator is globally continuous on the edges
of the cell in which the reconstruction is performed.

Now that we have defined the high-order interpolator, but still we need to in-
vestigate the possible issues related to high-order interpolation and stability. In the
next section we will recall the basic concepts of the convergence theory developed
in [56, 27], in the framework of HJ equations, in order to give a sufficient condition
for the WENO, and successively for the CWENO, case.
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2.4 First-order HJ equations
In order to generalize the construction of the SL scheme for PDEs, we consider
now a case of first-order HJ equation in a multi-dimensional framework, assum-
ing that the Hamiltonian function does not explicitly depend on space and time.
In the construction of SL schemes for HJ equations, a central role is played by the
Lax-Hopf formula and, as we will see, by the Legendre transform of the Hamiltonian.

Let us consider the following model problem:vt(~x, t) +H(∇v(~x, t)) = 0,
v(~x, t0) = v0(~x),

(2.77)

for (~x, t) ∈ Rd × (t0, T ), ~x ∈ Rd and where H : Rd → R is the Hamiltonian function
which is assumed to be convex and satisfying the coercivity condition

lim
|~p|→+∞

H(~p)
~p

= +∞. (2.78)

The assumption above allows us to give the following definition.

Definition 2.2. Let H be convex and coercive in the sense of (2.78). We define the
Legendre-Fenchel conjugate (or Legendre-Fenchel transform) of H for ~q ∈ Rd as

H∗(~q) = sup
~p∈Rd

{~p · ~q −H(~p)}. (2.79)

In the general case, an explicit computation of H∗ is not available and a numerical
procedure might be needed to approximate it. Also, it is worth noting that the
assumptions made on H, convexity and coercivity in the sense of (2.78), respectively
imply that H is continuous and that the sup in (2.79) is in fact a maximum.

In general, the Legendre-Fenchel transform may not allow for an explicit compu-
tation, thus in this case it should be approximated with some numerical procedure.
Anyway, an useful analytical example is the one related to the quadratic Hamiltonian

H2(~p) = |~p|2

2 , (2.80)

for which an easy computation gives

H∗
2 (~q) = |~q|2

2 . (2.81)

Finally, an important results about the Legendre transform is given by the fol-
lowing

Theorem 2.3. Let H be convex and coercive in the sense of (2.78). Then, the
function H∗ has the following properties:

(i) H∗ : Rd → R is convex and

lim
|~p|→∞

H∗(~p)
|~p|

= +∞;
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(ii) H(~p) = H∗∗(~p) for any ~p ∈ Rd.

We reported here the definition of the Legendre transform due to its importance
for characterizing the unique solution of (2.77), given by the so called Hopf-Lax
representation formula (see [70]), as stated by the following Theorems [54].

Theorem 2.4. The function v defined by the following Hopf-Lax formula:

v(~x, t) = sup
~y∈Rd

{
v0(~y) + tH∗

(
~x− ~y

t

)}
(2.82)

is Lipschitz continuous, is differentiable a.e. in Rd × (0,+∞), and solves in the
viscosity sense the IVP (2.77).

Proof The proof of this result can be found in [54].

Theorem 2.5. The unique viscosity solution of (2.77) is given by the Hopf-Lax
representation formula (2.82).

Proof The proof of this result can be found in [49].

Finally, we note that setting
~a := ~x− ~y

t
, (2.83)

so that ~y = ~x + ~at, we can exchange the maximization with respect to ~y with a
minimization with respect to ~a, rewriting the Hopf-Lax formula as

v(~x, t) = inf
~a∈Rd

{v0(~x− ~at) + tH∗(~a)} , (2.84)

which recalls the representation formula used for the linear advective equation in
order to get the SL discretization.

2.4.1 SL discretization
The construction of the SL scheme for HJ equation (2.77) follows the same steps as
for the advection equation and is again obtained by discretizing the representation
formula (2.84) rather than the original equation.

Considering the usual spatio-temporal discretization, in a node (xi, tn+1) of the
grid, the solution is given by

v(xi, tn+1) = min
a∈A

{v(xi − a∆t, tn) + ∆tH∗(a)}

= v(xi − a∗
i ∆t, tn) + ∆tH∗(a∗

i ),
(2.85)

where a ∈ A ⊂ Rd is a discretized version of the variable ~a ∈ Rd and a∗
i is the

optimal value found for the node xi. The set A ⊂ Rd is a compact set in which we
look for this minimizer.

Excluding the difficulties in carrying out the minimization procedure, the same
considerations made for the linear advection case hold in this framework, too. In
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this particular case, since the Hamiltonian function does not explicitly depend on
space and time, the characteristics are straight lines and high-order integration in
time is not required to improve the accuracy when locating the points xi −a∆t. On
the other hand, the evaluation of the function v at time tn in the foot might require
a high-order interpolator to be involved.

In this first case the SL scheme takes the form
un+1

i = min
a∈Rd

{Ir[Un](xi − a∆t) + ∆tH∗(a)} ,

u0
i = v0(xi).

(2.86)

which introduces a spatial reconstruction of degree r.
Despite its apparent simplicity, the Hopf-Lax formula, and the scheme (2.86),

introduce the important role of the minimization process for the computation of the
solution of (2.77). The procedures of ODE integration, quadrature and interpola-
tion, that, in the previouos case, were just performed once, now need to be repeated
for a discretized set of values a ∈ A until the optimum a∗ is found, or at least well
approximated. This clearly poses a real issue when considering the computational
effort of such an algorithm. In Figure 2.2 a sketch of the scheme is depicted: to
compute the solution in the node (xi, tn+1), different values of a ∈ A are considered,
each one leading to a different location of the foot and a different evaluation of the
Legendre transform H∗.

xi

x̂
a
i

tn+1

tn

y
a
i (s)

Figure 2.2: Sketch of a Semi-Lagrangian scheme for HJ equations. To compute the
solution at (xi, tn+1), the corresponding characteristic curve ya(s) is tracked backward to
some point (x̂a

i , tn) depending on the value of a. The update is performed minimizing the
sum of the interpolation in the foot and of the term depending on the Legendre transform
evaluated in a, according to (2.86).

In the next Chapter, a more general case for HJ equations will be investigated
and an accent will be posed on the computational cost of the scheme. In fact,
things might become worse when the Hamiltonian is a function that depends on
both space and time, since this requires to reintroduce in the scheme the high-order
time integration, with the consequent increase in the computational effort.
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2.4.2 Convergence theory
To analyze the convergence for a SL, high-order scheme we follow the lines of [56,
54], considering the model problem (2.77) is one dimension, namelyvt(x, t) +H(vx(x, t)) = 0, (x, t) ∈ R × [0, t0],

v(x, t0) = v0(x), x ∈ R,
(2.87)

and assuming that v0 is a Lipschitz continuous function and that the function H is
strictly convex, and more precisely

H ′′(p) ≥ mH > 0, (2.88)

which implies the condition on the Legendre transform

H∗′′(α) ≤ 1
mH

. (2.89)

The convergence theory we recall here overcomes the non-monotonicity of the nu-
merical scheme by using a weaker condition, that is, that (2.86) should be monotone
up to a term o(∆t), to apply the Barles-Souganidis Theorem. This condition turns
out be valid under increasing Courant numbers if the scheme is Lipschitz stable, so
this will be the core of the stability issue.

More specifically, the key assumption for the convergence result is that for any
Lipschitz continuous function v(x), once defined the sequence V = {vi}i∈Z = {v(xi)}i∈Z,
the interpolation operator Ir[V ](xk) satisfies

Ir[V ](xk) = v(xk) (2.90)

and, for some constant Cr < 1,

|Ir[V ](x) − I1[V ](x)| ≤ Cr max
xk∈B(x)

|vk+1 − 2vk + vk+1| (2.91)

where by I1[V ] we denote the piecewise liner interpolation on the sequence V , and
with B(x) = (x− h−∆x, x+ h+∆x) we denote the interval containing the stencil of
the reconstruction I[V ](x). For example, in the case of WENO, the reconstruction
in performed taking two nodes on the left and two nodes on the right of the point
x, so that h− = h+ = 2.

The key point of assumption (2.91) consists in requiring that Cr < 1, which
amounts to assuming that Ir is not “too sensitive” with respect to large second
increments which can occur on singularities of the solution.

In [56, 54] the authors give a bound on the second increment of the numerical
solution which is globally one-sided, but becomes two-sided at the foot of charac-
teristics, namely in a neighbourhood B(xi + α∗

i ∆t), with B defined as

B(x) = (x− h∆x, x+ h∆x), (2.92)

with a fixed h > max(h−, h+), so that B(x) ⊂ B(x).
Thus the first technical result is given by the following
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Lemma 2.6. Let Un be defined by the scheme (2.86). If (2.89) holds, then, for any
k ∈ Z and n ≥ 1,

un
k+1 − 2un

k + un
k−1 ≤ ∆x2

mH∆t . (2.93)

Moreover, assuming in addition that (2.91) holds, then

max
xk−1,xk,xk+1∈B(xi+α∗

i ∆t)

∣∣∣un
k+1 − 2un

k + un
k−1

∣∣∣ ≤ C
∆x2

∆t (2.94)

with B defined by (2.92) and for some positive constant C depending on Cr, h and
mH .

Proof The proof of this result can be found in [56, 54].

The result obtained with Lemma 2.6 allows us to state the result of Lipschitz
stability.

Theorem 2.7. Let Un be defined by the scheme (2.86). Assume that (2.88), (2.91)
hold, that ∆x = O(∆t2), and that v0 is Lipschitz continuous with Lipschitz constant
L0. Then Un satisfies, for any i and j, the discrete Lipschitx estimate∣∣∣un

i − un
j

∣∣∣
xi − xj

≤ L (2.95)

for a constant L independent of ∆x and ∆t, and for 0 ≤ n ≤ NT , as ∆t → 0.

Last, under such assumptions it is possible (see [56, 54]) to prove the main con-
vergence result for the scheme (2.86).

Theorem 2.8. Consider the scheme (2.86) applied to equation (2.87), and assume
that (2.88) and (2.91) hold, that ∆x = O(∆t2) and that v0 is Lipschitz continuous.
Then, the numerical solution Un = {un

i }i (with un
i defined by (2.86)) satisfies

‖Ir[Un] − v(n∆t)‖∞ → 0

where v is the solution of (2.87), for 0 ≤ n ≤ NT , as ∆t → 0.

Proof The proof of this result can be found in [56, 54]. The key point for proving
convergence consists in obtaining a scheme which is monotone up to a term O(∆x)
(therefore o(∆t)) such that a generalized monotonicity condition is satisfied and the
Barles-Souganidis Theorem can be applied.

Remark 2.9. In this theorem, the condition ∆x = O(∆t2) is required only to ensure
Lipschitz stability. The proof itself requires the weaker condition ∆x = o(∆t), which
is in turn related to consistency. Since the scheme experimentally appears to be
convergent under any ∆t/∆x relationship, we should infer that this convergence result
in not optimal.
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Convergence for the WENO case It is proved in [56] that condition (2.91) is sat-
isfied for Lagrange reconstructions up to the fifth-order, if the reconstruction stencil
includes the interval [xi, xi+1], namely the interval in which the foot of characteristic
falls and where we want to interpolate. Since WENO interpolation is performed by
taking a convex combination of polynomials which satisfy (2.91) up the degree 5 for
the partial polynomials (and therefore, up to the degree 9 for the global interpolant),
this fact is used in [27] to obtain convergence via Theorem 2.8. This essentially boils
down to proving that all the function appearing in the convex combination defining
the interpolant I satisfy (3.31), and we plan to apply the same principle in the next
chapter in order to prove the convergence for the CWENO case. In particular, for
the third-order WENO reconstruction in which we start from polynomials of degree
2, the condition (2.91) holds with C2 = 1/8.
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Chapter 3

High-order CWENO for HJ equa-
tions

In the previous chapter all the building blocks for the construction of a SL scheme
for linear first-order hyperbolic PDEs and simple cases of HJ type equations have
been presented. Now we show how to adapt this type of scheme to more complex HJ
equations, considering in particular the case of a Hamiltonian function that might
explicitly depends on both space and time. The presentation in this chapter follows
closely that of [28].

In order to lighten the notation, even if we treat multi-dimensional case, we will
simply use the notation x for a point x ∈ Rd and we will also switch the order of
the arguments x and t due to the dependence of the spatial variable on time, when
tracking the characteristics.

In our study we consider the following hyperbolic Hamilton-Jacobi-Bellman (HJB)
equation: vt(t, x) +H(t, x,∇v(t, x)) = 0, for t, x ∈ (0, T ) × Rd,

v(0, x) = v0(x), for x ∈ Rd,
(3.1)

where v : (0, T ) × Rd → R, ∇v stands for the spatial gradient, v0 : Rd → R denotes
the initial data and H : (0, T ) × Rd × Rd → R is the Hamiltonian function, which
will be assumed to be convex with respect to ∇v.

Numerous schemes have been proposed to approximate (3.1), but only a small
number of them is aimed at high-order accuracy. To recall some main results in
literature devoted to the SL framework, we find in [53] a high-order semi-discrete
SL scheme proposed to discretize stationary HBJ euqations, while in [55], the evo-
lutionary case is studied. A high-order SL scheme for HJB quations is presented in
[27] and is particularly interesting since it combines the SL technique with WENO
reconstructions.

In fact, as a next step, the aim of this work is to present a new scheme that couples
the SL technique with CWENO reconstructions exploiting the positive features of
CWENO to obtain a high-order SL scheme that is more efficient than the one in [27],
which is based on WENO.

The results obtained in this study have been collected in a paper [28] and con-
stitute part of the novelties of our research.
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3.1 Representation formula for HJB equation
We will develop our theory for the HJB equation (3.1) related to a finite horizon
optimal control problem. More precisely, given a compact set A ⊂ Rm, we will
denote by A = {α : [0, T ] → A, measurable} the set of admissible controls and,
according to the usual terms adopted in this framework, we will refer to the velocity
field and the source term of the model problem (2.7) respectively as the dynamics
fD : (0, T ) × Rd × A → Rd and the running cost fC : (0, T ) × Rd × A → R, which
are both now functions that depend also on the value α(t) ∈ A of the control.

The ODE system for the characteristics then readsẏ(s) = fD(t− s, y(s), α(s)), s ∈ (0, t],
y(0) = x,

(3.2)

and we consider Hamiltonian given by

H(t, x, p) = max
a∈A

{−fD(t, x, a) · p− fC(t, x, a)}. (3.3)

Let us assume that:

(i) fC , fD are continuous and bounded. Moreover, for every a ∈ A, the functions
fC(·, ·, a), fD(·, ·, a) are Lipschitz continous, with Lipschitz constants; indepen-
dent of a ∈ A.

(ii) the initial data v0 is Lipschitz continous and bounded.

Under Assumptions (i)-(ii), the problem (3.1) admits a unique viscosity solution v,
which is Lipschitz continuous and bounded. Moreover, the Dynamic Programming
Principle holds (see [10]), i.e., for any ∆t > 0

v(t, x) = inf
α∈A

{∫ ∆t

0
fC(t− s, yα(x, t; s), α(s))ds+ v(yα(x, t; ∆t), t− ∆t)

}
, (3.4)

where yα(x, t; s) denotes the solution to (3.2) at time s and the superscript α em-
phasizes the dependence of the characteristics on the control.

As usual when dealing with the SL approach, the numerical scheme will be derived
from the representation formula (3.4), rather than the original PDE (3.1). Thus,
similarly to (2.86), the numerical scheme will involve a minimization procedure over
the set of controls; in turn, each function evaluation requires to approximate the
cost integral and to interpolate the solution at the previous time step at the foot
yα(x, t; ∆t) of the characteristics. In this respect, the efficiency of the numerical
method plays a crucial role, especially when treating the higher dimensional case.

As already stated, aiming to design a high-order numerical scheme, one could
resort to the common choice of ENO interpolation techniques. In particular WENO
reconstructions could be involved but at the price of their efficiency. In fact, the
dependence of the WENO linear weights on the reconstruction point makes this
reconstruction technique quite expensive and thus not very efficient for the dis-
cretization of (3.4). On the other hand one of the main advantages of CWENO over
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the traditional WENO is that the central approach provides a reconstruction polyno-
mial that is defined everywhere in the reconstruction cell and that can be evaluated
later, with no essential extra cost, at many different reconstruction points. This is
guaranteed by the independence of the linear weights from the reconstruction point.
Furthermore, as shown in [103, 47, 31, 43], the CWENO approach allows to avoid
the dimensional splitting procedure and this is advantageous on Cartesian meshes
when the number of reconstruction points per cell is high and paves the way towards
the employment of non-Cartesian meshes.

3.2 Numerical scheme
To obtain an approximate solution for (3.1), we need first to discretize the control
problem in space and time. As usual we consider a space-time uniform grid of size
∆x and ∆t, respectively, an initial time t0 and a final time T , so that tn = t0 +n∆t,
n = 0 . . . NT , with NT = d T

∆t
e, and xi = i∆x = (i1∆x, . . . , id∆x), for i ∈ Zd. The

Dynamic Programming Principle is thus considered on a single time step [tn, tn+1],
by choosing in (3.4) x = xi and t = tn+1.

A discretization of the control function α is also required. In particular, when
using a ν-stages RK scheme for (3.2), we discretize an admissible control α ∈ A
via a sequence a = (a1, a2, . . . , aν) ∈ Aν representing the values α(tn + ck∆t) used
in each RK stage. Then the foot of the characteristic emanating from the node
(xi, tn+1) and corresponding to the control a is

yn
i (a) ' yα(xi, tn+1; ∆t) (3.5)

for any n = 0, . . . , NT − 1, i ∈ Zd and a ∈ Aν .
Moreover, a suitable quadrature formula based on ν quadrature nodes is intro-

duced to discretize the integral term related to the running cost,

Cn
i (a) '

∫ ∆t

0
fC(tn+1 − s, yα(xi, tn+1; s), α(s)) ds, (3.6)

for any n = 0, . . . , NT − 1, i ∈ Zd and a ∈ Aν .
We approximate the solution v(x, t) of (3.1) by a discrete function un

i ' v(xi, tn)
defined on the space-time grid, computed by the following iterative scheme, for
n = 0, . . . , NT − 1 u

n+1
i = min

a∈Aν
{I[Un](yn

i (a)) + Cn
i (a)} i ∈ Zd,

u0
i = v0(xi), i ∈ Zd,

(3.7)

where I[Un](x) denotes the spatial reconstruction at x ∈ Rd of the numerical solution
Un = {un

i }i∈Zd .
The building blocks composing the scheme (3.7) are same as the ones introduced

in Chapter 2, with the only differences given by the possible explicit dependence on
time and space, and the crucial dependence on the control function. In Figure 3.1 the
dependence on the control is emphasized by the presence of multiple characteristic
lines emanating from the same node; these curves might no longer be straight lines
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xi

x̂
a
i

tn+1

tn

ya(s)

Figure 3.1: Sketch of the Semi-Lagrangian scheme for HJB equation (3.1). To update
the solution at (xi, tn+1), a set characteristic curves ya(s) are tracked backward to some
points (x̂a

i , tn) depending on the value of a. The update is performed minimizing the sum
of the interpolation in the feet and the integral of the cost function evaluated along the
line ya(s), according to (3.7). Note that for the problem (3.1) the characteristics might
no longer be straight lines.

due to the possibile explicit dependence of the Hamiltonian function, in particular
of the dynamics, on space and time.

Going into the details of the scheme, for a given a ∈ Aν , yn
i (a) we rewrite the

ν-stage Runge-Kutta (RK) method used for the computation as follows:

yn
i (a) = xi + ∆t

ν∑
k=1

bkKk(a),

Kk(a) = fD (tn+1 − ck∆t,Xk(a), ak), k = 1, . . . , ν,

Xk(a) = xi + ∆t
k−1∑
j=1

AkjKj(a), k = 1, . . . , ν,

(3.8)

where bk,ck,Akj are the coefficients of the Butcher tableau defining the explicit RK
method used to solve (3.2).

Similarly, with the introduction of the control function, the computation of Cn
i (a)

can be rewritten as:∫ ∆t

0
fC(tn+1 − s, y(xi, tn+1; s), α(s))ds

≈∆t
∑

k

wkfC(tn+1 − ξk∆t, y(xi, tn+1; ξk∆t), α(ξk∆t))

≈∆t
∑

k

wkfC(tn+1 − ξk∆t, ỹ(xi, tn+1; ξk∆t), α(ξk∆t))

(3.9)

where ξk, wk are the nodes and the weights of the quadrature rule, respectively, and
ỹ(xi, tn+1; ξk∆t) approximates the numerical solution of y(xi, tn+1; s) for s ∈ [0,∆t].

We have already discussed in the previous chapter the balance between the orders
of accuracy of the approximations introduced in (3.9). We will see in the numerical
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examples that with the choices (2.43), (2.44), (2.45) for the RK methods we will
be allowed to choose a quadrature rule such that ξk = ck and thus replace in the
last approximation of (3.9), ỹ(xi, tn+1; ξk∆t) with the stage values of the RK scheme
Xk and α(ξk∆t) with ak, for k = 1, . . . , ν, without affecting the global accuracy of
the scheme. For different choices, one could always resort to the NCEs recalled in
Section 2.3.2.

Summarizing, denoting with F(a) = I[un](yn
i (a)) + Cn

i (a) the function to be
minimized in (3.7), to compute the solution of (3.7), one has to find the optimum
discrete control a∗ = arg min F(a) over a ∈ Aν and set un+1

i = F(a∗).
Thus, the minimization problem constitutes another important building block of

the scheme. Since in this research we are not focused on the minimization procedure,
our aim is to combine different techniques to first, find the optimum on a coarser grid,
and then refine the search imposing a very strong threshold for detecting the final
optimum. In particular, we employ tabulation on the points âj = (aj, aj, . . . , aj) ∈
Aν for aj in a coarsened grid in A, followed by a Nelder-Mead algorithm, adjusted
so that no vertex of the simplices could exit the compact set A.

The core of this work then lays in the following argument: at each step of the
minimization we need to evaluate the reconstruction at the feet of the characteristics
yn

i (a) for each node xi and for each discrete control a, thus an efficient and accurate
reconstruction operator is crucial to obtain a robust and fast numerical scheme.
The typical non-smoothness of the solutions of (3.1) discourages the use of standard
high-order interpolation, since they might give rise to oscillations in the numerical
solution, and motivates the use of an essentially non-oscillatory approach. Since
during the minimization we expect to evaluate the reconstruction in a cell in a lot
of points we will investigate the application of CWENO interpolation, in opposition
to the traditional WENO one.

The construction of the WENO interpolator has been recalled in Section 2.3.4,
in what follows the procedure for CWENO, and CWENOZ, is recalled following the
presentation of [43, 42], and modified to be applied to reconstructions from point
values.

3.3 CWENO reconstruction
As already pointed out for the WENO reconstruction we work in a finite-difference
setting, rather than a finite-volume one, starting from node values in place of cell
averages. Nonetheless, we will still be able to exploit the general theorems for the
accuracy of the CWENO and CWENOZ reconstructions on smooth solutions proven
in [43, 42].

For a point x ∈ Rd, let Ω be the grid cell containing it and SΩ be the set
of its vertices. In order to achieve better than first-order accuracy, we need to
consider stencils S ⊃ SΩ. We associate to any S a polynomial P (r′)

S (x) ∈ Pr′
d which

interpolates the data in S, i.e., such that P (r′)
S (xi) = vi ∀i ∈ S.

In order to overcome the well-know issues arising from the enlarging of the sten-
cils, a non-linear selecting and blending procedure is performed, similarly to the
WENO case, but taking also into account the high-order polynomial interpolating v
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in the whole stencil S. In opposition to WENO, the use of this high-order polyno-
mial together with the usual set of lower-order ones, allow to produce an essentially
non-oscillatory reconstruction polynomial for the cell Ω that can be evaluated at
any point in x ∈ Ω with negligible cost. About the non-linear procedure that allow
to select or blend polynomials, this relies on the same oscillation indicators OSC[P ]
introduced for WENO in Section 2.3.4.

We recall now the definition of the CWENO and CWENOZ reconstructions given
in [42].

Definition 3.1. Given a stencil Sopt, including SΩ, let Popt ∈ PG
n (optimal polyno-

mial) be the polynomial of degree G, associated to Sopt. Further, let P1, P2, ..., Pm be
a set of m ≥ 1 polynomials of degree g with g < G, associated to substencil Sk such
that SΩ ⊂ Sk ⊂ Sopt ∀k = 1, ...,m. Let also {dk}m

k=0 be a set of strictly positive real
coefficients such that ∑m

k=0 dk = 1.
The CWENO and CWENOZ operators compute a reconstruction polynomial

PCW
rec = CWENO(Popt, P1, ..., Pm) ∈ PG

n ,

PCW Z
rec = CWENOZ(Popt, P1, ..., Pm) ∈ PG

n ,
(3.10)

as follows:

1. First, introduce the polynomial P0 defined as

P0(x) = 1
d0

(
Popt(x) −

m∑
k=1

dkPk(x)
)

∈ PG
n ; (3.11)

2. compute suitable regularity indicators

OSC0 = OSC[Popt], OSCk = OSC[Pk], k ≥ 1; (3.12)

3. compute the non-linear coefficients {ωk}m
k=0 or

{
ωZ

k

}m

k=0
as

(a) CWENO operator: for k = 0, ...,m,

αk = dk

(OSCk + ε)l
, ωCW

k = αk∑m
i=0 αi

, (3.13)

(b) CWENOZ operator: for k = 0, ...,m,

αZ
k = dk

(
1 +

(
τ

OSCk + ε

)l
)
, ωCW Z

k = αZ
k∑m

i=0 α
Z
i

, (3.14)

where ε is a small positive quantity, l ≥ 1, and, in the case of CWENOZ, τ is
a global smoothness indicator;

4. finally, define the reconstruction polynomial as

PCW
rec (x) =

m∑
k=0

ωCW
k Pk(x) ∈ PG

n , (3.15)

PCW Z
rec (x) =

m∑
k=0

ωCW Z
k Pk(x) ∈ PG

n . (3.16)
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Note that the reconstruction polynomial defined in (3.15) and in (3.16) can be
evaluated at any point in the computational cell Ω at a very low computational cost
and this happens because the reconstruction procedure, in both cases, starts with the
definition of the linear coefficients {dk}m

k=0 that do not depend on the reconstruction
point. Therefore, the non-linear coefficients given by (3.13) and (3.14) are computed
once per cell and not once per reconstruction point, as in the standard WENO. We
also remark that, since every polynomial considered in the reconstruction procedure
is required to satisfy the interpolation constraint on SΩ, then also PCW

rec and PCW Z
rec

satisfy the same constraint on the vertices of Ω.
The accuracy and non-oscillatory properties of CWENO and CWENOZ schemes

are guaranteed by the dependence of their non-linear weights (3.13) and (3.14) on
the regularity indicators OSCk. On smooth data, the non-linear weights are driven
sufficiently close to the optimal ones, so that Prec ≈ Popt and the reconstruction
reaches the optimal order of accuracy G+1. On the other hand, when a discontinuity
is present in Sopt, both OSC0 � 1 and at least one OSCk̂ � 1 for some k̂ ∈ {1, ...,m}.
Then the formulas (3.13) and (3.14) for the non-linear weights will ensure that ω0 ≈ 0
and ωk̂ ≈ 0 for all k̂ such that Pk̂ would bring oscillations in the reconstruction. The
reconstruction polynomial will then be a linear combination of all polynomials of
degree g that are not affected by the discontinuity; the accuracy of the reconstruction
thus reduces to g + 1, but spurious oscillations would be tamed.

3.3.1 One spatial dimension
Let us describe the reconstruction for any point x in the cell Ω = [xi, xi+1], so that
SΩ = {i, i+ 1}. We consider Sopt = {i− 1, i, i+ 1, i+ 2} and introduce the optimal
cubic polynomial Popt(x) = Q(x) = ∑3

j=0 zj[(x−xi)/∆x]j that interpolates the data
ui−1, ui, ui+1, ui+2 at the nodes xi−1, xi, xi+1, xi+2. Next, we consider two parabo-
las PL(x) and PR(x) that interpolate only the data ui−1, ui, ui+1 and, respectively,
ui, ui+1, ui+2.

The reconstruction operators thus compute
PCW

rec = CWENO(Q,PL, PR) ∈ P3
1,

PCW Z
rec = CWENOZ(Q,PL, PR) ∈ P3

1.
(3.17)

For any polynomial, its oscillation indicator is defined as in (2.70), namely

OSC[P ] =
∑
α≥2

∆x2α−3
∫ xi+1

xi

(
d(α)P

dxα

)2

dx. (3.18)

Let P (x) = ∑3
j=0 zj[(x−xi)/∆x]j be a polynomial of degree up to 3. Its indicator

(3.18) can be written as a quadratic form of its coefficients given by

OSC[P ] = 1
∆x2 (4z2

2 + 12z2z3 + 48z2
3)

or equivalently, denoting with ~z the vector of coefficients,

OSC[P ] = 1
∆x2~z

TM~z, with M =


0 0 0 0
0 0 0 0
0 0 4 6
0 0 6 48

 . (3.19)



58 3 - High-order CWENO for HJ equations

Denoting by U the vector of data (ui−1, ui, ui+1, ui+2)T , since the coefficients of the
polynomial linearly depends on U , we can express the regularity indicators also
as a quadratic form on the data being interpolated. More precisely, the vector
of coefficients ~z can be expressed as ~z = V −1U , where V −1 is the inverse of the
Vandermonde matrix. Thus, in the one-dimensional case, one obtains that the
matrices of the quadratic forms expressed in terms of U scale again globally as
1/∆x2:

OSC[Q] = 1
∆x2U

TAQU, OSC[Pk] = 1
∆x2U

TAkU (k = L,R). (3.20)

In our case, we get

AQ =


4/3 −7/2 3 −5/6

−7/2 10 −19/2 3
3 −19/2 10 −7/2

−5/6 3 −7/2 4/3

 ,

AL =


1 −2 1 0

−2 4 −2 0
1 −2 1 0
0 0 0 0

 , AR =


0 0 0 0
0 1 −2 1
0 −2 4 −2
0 1 −2 1

 .
The CWENO reconstruction applied in the numerical tests of this paper is then

defined by choosing linear coefficients dL = dR = 1/8 and d0 = 3/4, l = 2 and ε = ∆x2

in the above construction.
For the optimal definition of the CWENOZ reconstruction, in order to exploit the

results of [42], we need to study the Taylor expansions of the indicators centered at
the point x0 = (xi + xi+1)/2, namely the center of the reconstruction cell Ω. They
are given by

OSC[PL] = B − u′′(x0)u′′′(x0)∆x3 + 1
4u

′′′(x0)2∆x4 + O(∆x5),

OSC[PR] = B + u′′(x0)u′′′(x0)∆x3 + 1
4u

′′′(x0)2∆x4 + O(∆x5),

OSC[PL] = B + 13
12u

′′′(x0)2∆x4 + O(∆x5),

(3.21)

where B = u′′(x0)2∆x2. Thus, defining

τ =
∣∣∣∣∣2OSC[Q] − OSC[PL] − OSC[PR]

∣∣∣∣∣, (3.22)

all terms up to O(∆x3) cancel. Note that this is the optimal definition of τ since
it is never possible to cancel all the O(∆x4) terms in a convex combination of the
three indicators. The hypotheses of Theorem 24 in [42] hold and we can guarantee
the optimal order of accuracy of the CWENOZ reconstruction for l = 2.
Remark 3.1. When a WENO interpolator is employed in the minimization algo-
rithm, the oscillation indicators of the polynomials associated to each cell could be
precomputed and stored, while the non-linear coefficients ωk must be computed for
each reconstruction point queried during the minimization. Using CWENO, instead,
also the ωk can be computed only once per cell, leading to saving in computational
cost when multiple reconstructions per cell are needed during the minimization.
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3.3.2 Two spatial dimensions
In two space dimensions, we will not rely on dimensional splitting. Such an ap-
proach would in fact nullify the advantages of a fast evaluation of the reconstruction
polynomial on a large number of arbitrary points in the reconstruction cell. Our
reconstruction will instead generate a polynomial of two variables, like it is done in
[103, 31] for Cartesian meshes or in general mesh settings [129, 47, 8].

Let Ω be the cell of the Cartesian grid containing the reconstruction point x. The
setup of the stencils for the reconstruction is illustrated in Figure 3.2: the cell Ω,
with corners (xi, yj) and (xi+1, yj+1), is hatched in red and the reconstruction stencil
is shaded in gray.

Figure 3.2: Stencils of the two-dimensional CWENO and CWENOZ reconstructions. The
red hatched region represents the cell Ωi,j in which we compute the reconstruction. The
vertices of Sopt are enclosed in the grey shaded region, while the stencils for the low
degree polynomials are enclosed in the coloured squares: blue, green, orange and purple,
respectively for the north-east, north-west, south-west and south-east polynomial.

The reconstruction operators compute

PCW
rec = CWENO(Q(3);Q(2)

ne , Q
(2)
se , Q

(2)
sw , Q

(2)
nw) ∈ P3

1 ⊗ P3
1,

PCW Z
rec = CWENOZ(Q(3);Q(2)

ne , Q
(2)
se , Q

(2)
sw , Q

(2)
nw) ∈ P3

1 ⊗ P3
1,

(3.23)

with the optimal polynomial set to the bicubic polynomial interpolating the 16 data
points in the square with corners (xi−1, yj−1) and (xi+2, yj+2) enclosed in the grey
shaded region of Fig 3.2. The other four polynomials are the biquadratic polynomials
that interpolate the four 3 × 3 substencils in the north-east, south-east, south-west
and north-west directions, as illustrated in Figure 3.2, named Sne, Snw, Ssw and
Sse, respectively. In particular, the blue box with vertices (xi, yj) and (xi+2, yj+2)
encloses Sne, the green box with vertices (xi−1, yj) and (xi+1, yj+2) encloses Snw, the
orange box with vertices (xi−1, yj−1) and (xi+1, yj+1) encloses Ssw and the purple
box with vertices (xi, yj−1) and (xi+2, yj+1) encloses Sse. The basis for bicubic and
biquadratic polynomials are defined by tensorization and are thus respectively given
by

B3 = {1, x̂, ŷ, x̂2, x̂ŷ, ŷ2, x̂3, x̂2ŷ, x̂ŷ2, ŷ3, x̂3ŷ, x̂2ŷ2, x̂ŷ3, x̂3ŷ2, x̂2ŷ3, x̂3ŷ3},
B2 = {1, x̂, ŷ, x̂2, x̂ŷ, ŷ2},

where x̂ = (x− xi)/∆x and ŷ = (y − yj)/∆y.
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The oscillation indicators are defined as

OSC[P ] =
∑

|~α|≥2
∆2|~α|−4

∫
Ωi,j

[
∂P

∂xα1∂yα2

]2

∆x∆y (3.24)

where ∆ is the diameter of the cell Ωi,j. These indicators are inspired to the classical
ones of [72], but the powers of ∆ appearing in (3.24) have been adjusted for the
expected regularity of the solution to Hamilton-Jacobi equations. In particular the
scaling ∆2|~α|−4 is a generalization to two space dimensions of the choice of [75]; it is
introduced so that OSC[P ] � 1 for functions with discontinuous first derivative and
OSC[P ] = O(∆2) on regular solutions. A detailed discussion of this scaling can be
found in [52].

Denoting with ~z the vector of coefficients along the basis B3 of a generic polyno-
mial in two variables of degree up to 3, and considering a uniform grid of size ∆x,
its oscillation indicator can be expressed as

OSC[P ] = 1
∆x2~z

TM~z (3.25)

for a 16 × 16 matrix M , which is reported in the Appendix. We point out that in
the case of Cartesian but uneven grids, there would still be a global factor inversely
proportional to the local grid size, but matrix M would also depend on the aspect
ratios and on the ratios of sizes of nearby cells.

Consider now the stencil of the reconstruction given by {(xi−1+k, yj−1+l)} l=0,...,3
k=0,...,3

and denote by U the corresponding vector of values {ui−1+k,j−1+l} l=0,...,3
k=0,...,3

with a
prescribed ordering, e.g., lexicographic. Thanks to the linear relation among the
coefficients ~z and the data vector U , the regularity indicators can be expressed in
the form

OSC[Q] = 1
∆x2U

TAQU, OSC[Qk] = 1
∆x2U

TAkU (k = ne, se, sw, nw). (3.26)

The matrices AQ and Ak will in general depend on the local aspect ratio of cells
and on the neighbours size ratio. Their entries are reported in the Appendix for the
case of a uniform Cartesian grid.

The CWENO reconstruction is then defined by choosing linear coefficients dk =
1/16 and d0 = 1 −∑

k dk with k ∈ {ne, se, sw, nw}, l = 2 and ε = ∆x2.
The CWENOZ reconstruction is computed choosing l = 2 and

τ =
∣∣∣4OSC[Q(3)] − OSC[Q(2)

ne ] − OSC[Q(2)
se ] − OSC[Q(2)

sw ] − OSC[Q(2)
nw]
∣∣∣ (3.27)

in order to guarantee the optimal order of accuracy of the CWENOZ reconstruction,
see [42, Theorem 24]. In fact, computing the Taylor expansions of the indicators
centered at the center of the cell Ω, one gets, for smooth enough data,

OSC[Q(2)
ne ] = B + 2uxxuxxx∆x3 + 2uyyuyyy∆x3 + O(∆x4),

OSC[Q(2)
nw] = B − 2uxxuxxx∆x3 + 2uyyuyyy∆x3 + O(∆x4),

OSC[Q(2)
sw ] = B − 2uxxuxxx∆x3 − 2uyyuyyy∆x3 + O(∆x4),

OSC[Q(2)
se ] = B + 2uxxuxxx∆x3 − 2uyyuyyy∆x3 + O(∆x4),

OSC[Q(3)] = B + O(∆x4),

(3.28)



3.4 - Convergence 61

where B = (u2
xx +u2

xy +u2
yy)∆x2. Therefore, the coefficients chosen for the definition

of τ in (3.27), cancel all terms up to O(∆x3), thus ensuring that the hypotheses of
[42, Theorem 24] hold.

Remark 3.2. Using a WENO, dimensionally split, interpolator during the mini-
mization process allows only the oscillation indicators for the x direction to be pre-
computed, while ω values for x-direction, low degree polynomials, OSC and ω values
for the y-direction must be recomputed from scratch for each new interpolation point.
Using the present CWENO scheme, instead the non-linear coefficients ω for any point
in a given cell can be precomputed and stored. Despite the larger cost of computing
the oscillation indicators in the 2d setting, this is expected to be faster than WENO
when employed inside a minimization algorithm.

Remark 3.3. The present multi dimensional CWENO reconstruction, since it does
not rely on dimensional splitting, can also be extended to non-uniform and non-
Cartesian meshes. The ideas of [47] for stencil selection in the finite volume context
may in fact be adapted to the present case. In fact, in order to precompute the
oscillation indicators and the non-linear weghts ω, one has to fix the definition of the
stencils used for interpolation. Compared to the Cartesian case, having no a-priori
knowledge of the number of neighbours, leads in general to stencils with different
cardinalities, for which a least-squared approach can be employed.

3.4 Convergence
The convergence analysis will be carried out in one space dimension, and follow the
guidelines of [56, 27], as already retraced in Section 2.2.3. Assume that equation
(3.1) is posed on R in the simplified formvt(t, x) +H(Dv(t, x)) = 0 t, x ∈ (0, T ) × R,

v(0, x) = v0(x), x ∈ R.
(3.29)

Also assume that the Hamiltonian function H is a W 2,∞ function and that

H ′′(p) ≥ mH > 0. (3.30)

The convexity assumption (3.30) implies, by the Fenchel duality formula, that H(·)
can always be written in the form

H(∇v(t, x)) = sup
a∈R

{a∇v(t, x) −H∗(a)},

where H∗ denotes the Legendre transform of H. Moreover, the supremum is a
maximum, and its computation can be limited to a suitable compact set A, so that
problem (3.29) can be recast in the case of a Hamiltonian of the form (3.3), by
setting fD(t, x, a) = −a and fC(t, x, a) = H∗(a).

In order to prove convergence we need to verify that the key assumption (2.91) is
satified by the CWENO interpolant. Recalling the requirements, we need to verify
that for any Lipschitz continuous function v(x), once defined the sequence V =
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{vj}j = {v(xi)}i, the interpolation operator Ir[V ] satisfies Ir[V ](xk) = v(xk) and,
for some constant Cr < 1:

|Ir[V ](x) − I1[V ](x)| ≤ Cr max
xk∈B(x)

|vk+1 − 2vk + vk−1|, (3.31)

where I1[V ] and B(x) are defined as in Section 2.2.3, the first one being the piecewise
linear interpolator on the sequence V , and the second one being the interval B(x) =
(x − h−∆x, x + h+∆x) containing the stencil of the reconstruction Ir[V ](x). For
example, in our case the third-order CWENO reconstruction is performed taking two
nodes on the left and two nodes on the right of the point x, so that h− = h+ = 2.

Since CWENO interpolation, similarly to WENO is performed by taking a convex
combination of polynomials which satisfy (2.91) up the degree 5 for the partial
polynomials (and therefore, up to the degree 9 for the global interpolant), we just
need to prove that the all the functions appearing in the convex combination defining
the CWENO interpolant satisfy (2.91).

In the case of CWENO, once set dL = dR = d and recast P0 as

P0(x) = 1
1 − 2d(Q(x) − dPL(x) − dPR(x)),

we estimate the left-hand side of (3.31) as

|Ir − I1| = |ω0P0 + ωLPL + ωRPR − I1|
= |ω0(P0 − I1) + ωL(PL − I1) + ωR(PR − I1)|
≤ max{|P0 − I1|, |PL − I1|, |PR − I1|},

where the identity ω0 + ωL + ωR = 1 has been used twice. As it has been proved in
[56], both PL and PR satisfy (3.31). It remains then to check that the same property
holds for P0. We have:

|P0 − I1| =
∣∣∣∣ 1
1 − 2d(Q− dPL − dPR) − I1

∣∣∣∣
=

∣∣∣∣ 1
1 − 2d(Q− dPL − dPR + (2d− 1)I1)

∣∣∣∣
=

∣∣∣∣ 1
1 − 2d

(
(Q− I1) − d(PL − I1) − d(PR − I1)

)∣∣∣∣
≤ 1

1 − 2d |Q− I1| + d

1 − 2d |PL − I1| + d

1 − 2d |PR − I1|.

Denoting now by Cr the constant appearing in (3.31) for the specific case of an
interpolation of degree r, we finally obtain an estimate in the form

|P0 − I1| ≤
(

1
1 − 2dC3 + 2d

1 − 2dC2

)
max

xk∈U(x)
|vk+1 − 2vk + vk−1|.

As proved in [56], C2 = 1/8 and C3 ≈ 0.2533; then, it turns out that (3.31) is satisfied
for d . 0.332, and therefore, with this additional condition, all the assumptions of
Theorem 2.8 are satisfied, and the scheme (3.7) converges to the viscosity solution
of (3.29).

We point out that our choice of d0 = 3/4, i.e. d = dL = dR = 1/8 in the
CWENO and CWENOZ reconstructions employed in this paper fully satisfies the
above requirement.
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3.5 Numerical tests
Here, we present some numerical tests in order to assess the performance of the
schemes proposed in the previous sections. In particular, we focus on the expected
accuracy of the schemes, considering the L1-norm of the error, and the computational
times, reported in seconds. In particular we will compare the SL schemes using
the CWENO and CWENOZ reconstructions of Section 3.3 and those employing the
dimensionally-split WENO approach of [27].

In order to account for bounded domains, we consider either periodic boundary
conditions or extrapolation technique, depending on the test case at hand. In par-
ticular, with extrapolation we mean that, for instance in 1d, we resort to a linear
interpolation using the first two internal values adjacent to the boundary to compute
the discretized value ui in a ghost point.

It is noteworthy that in all the numerical tests where extrapolation is applied,
the solution has a compact support, or the boundary of the numerical domain is
entirely of outflow type. In both cases, these conditions ensure no loss in accuracy
in the numerical treatment of the boundary. In all tests, unless otherwise stated,
we employ an extrapolation technique. For more general boundary conditions, we
refer to [20] for approximations of Neumann-type boundary conditions and to [17]
for a second-order accurate treatment of Dirichlet boundary conditions.

Although the convergence analysis requires a relation ∆x = O(∆t2) between the
time and space steps, in practice, smaller time steps are also allowed. Heuristically,
assuming exact minimization, and supposing a third-order time discretization is
used, then the consistency error is given by

T (∆t,∆x) = O
(

∆t3 + ∆xq

∆t

)
,

where q is the order of accuracy of the interpolation in space. For smooth solutions,
the choice ∆t = O

(
∆xq/4

)
optimizes this error and leads to a numerical convergence

rate of 3q/4.
In particular, choosing q = 4 (i.e., a cubic reconstruction), we obtain

T (∆t,∆x) = O
(

∆t3 + ∆x4

∆t

)
,

which results in an overall order 3 for the choice ∆t = O(∆x). In the particular case
where the Hamiltonian is independent of (t, x), the characteristics solving problem
the (3.2) are affine, and even a first-order time discretization computes them exactly,
reducing the consistency error to

T (∆t,∆x) = O
(

∆xq

∆t

)
.

In this case, the larger the time step, the smaller the consistency errors.
In what follows N indicates the number of grid points per direction, so that ∆x ∼

1/N . The algorithms have been implemented in C++, relying on the PETSc libraries
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Figure 3.3: Initial condition (left) and numerical solution at T = 1 (right) for Test 1
computed with CWENOZ reconstruction and N = 81.

Figure 3.4: Reconstructions count for Test 1 in the final time step on a grid of 81 × 81
points.

[7, 6] for grid management. The tests have been performed on the cluster Galileo
100 hosted at CINECA1, exploiting the resources assigned to ISCRA-C Projects2.

3.5.1 Passive advection
As a first benchmark problem, we consider the uniform rotation of a scalar field in
two space dimensions, expressed by the linear transport equation

vt − fD · ∇v = 0,

1 https://www.hpc.cineca.it/systems/hardware/galileo100/
2 Surface Reconstruction with Level Set Method (HP10CPQ93M)

Parallel Scalability of Surface Reconstruction with Level Set Method (HP10COSEJL)
Adaptive Mesh Refinement in Level Set Methods (HP10C7HWOL)
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WENO CWENO CWENOZ
N L1-err L1-ord L1-err L1-ord L1-err L1-ord

21 × 21 2.97e− 03 2.98e− 03 2.98e− 03
41 × 41 5.46e− 04 2.44 4.88e− 04 2.61 4.84e− 04 2.62
81 × 81 1.24e− 04 2.13 8.18e− 05 2.57 7.85e− 05 2.62

161 × 161 2.34e− 05 2.41 1.22e− 05 2.75 1.12e− 05 2.80
321 × 321 3.92e− 06 2.58 1.72e− 06 2.82 1.49e− 06 2.92
641 × 641 6.11e− 07 2.68 2.27e− 07 2.92 1.79e− 07 3.05

1281 × 1281 8.87e− 08 2.78 2.92e− 08 2.96 2.06e− 08 3.12

Table 3.1: Errors at time T = 1 for Test 1.

WENO CWENO CWENOZ
grid CPU time CPU time % gain CPU time % gain

21 × 21 1.05e+ 00 7.22e− 01 31.21 1.01e− 01 90.36
41 × 41 1.10e+ 00 1.06e+ 00 3.39 7.20e− 01 34.25
81 × 81 7.84e+ 00 5.42e+ 00 30.87 5.46e+ 00 30.39

161 × 161 6.19e+ 01 4.36e+ 01 29.51 4.37e+ 01 29.35
321 × 321 4.86e+ 02 3.38e+ 02 30.47 3.36e+ 02 30.95
641 × 641 3.87e+ 03 2.70e+ 03 30.31 2.67e+ 03 30.99

1281 × 1281 3.09e+ 04 2.12e+ 04 31.25 2.12e+ 04 31.32

Table 3.2: CPU times for Test 1.
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WENO CWENO CWENOZ
N L1-err L1-ord L1-err L1-ord L1-err L1-ord
81 3.56e− 06 2.24e− 06 1.78e− 06
161 2.83e− 07 3.65 1.80e− 07 3.64 1.44e− 07 3.63
321 2.45e− 08 3.53 1.59e− 08 3.50 1.30e− 08 3.47
641 2.61e− 09 3.23 1.96e− 09 3.02 1.75e− 09 2.90

Table 3.3: Errors at time T = 1 for Test 2.

which is included in our setting by choosing in (3.3) A = ∅ and fC = 0. The speed
of propagation is given by the vector field

fD = (−2π(x2 − 0.5), 2π(x1 − 0.5))
in the square domain [0, 1] × [0, 1]. We choose as initial condition the globally C2

function

v(0, x) = v0(r) = M

(
1 + r3

R3

(
−1 + 3 r −R

R

(
1 − 2 r −R

R

)))
with r = |x − (0.3, 0.7)| and parameters M = 0.15, R = 0.15. Numerical solutions
are computed at the final time T = 1, using a relationship of ∆t = 3∆x among
the discretization steps. Since the advection is rigid, the exact solution at final time
coincides with the initial condition. We point out that the characteristic lines are not
affine, therefore we use the third-order RK scheme and a third-order reconstruction
scheme as described in Section 2.3.1 and Section 2.3.3, respectively. Plots of the
initial data and of the numerical solution are shown in Figure 3.3.

As expected, since the transport is rigid and the initial data is globally C2, all the
schemes (WENO, CWENO and CWENOZ) yield solutions converging with the same
order, see Table 3.1. However, central reconstructions are more accurate with respect
to the traditional WENO one; in particular, CWENOZ achieves the best results: its
errors are about half the errors of WENO. The fundamental difference among the
schemes is in their computational costs, which are shown in Table 3.2. The high
number of reconstructions performed in each cell (see Figure 3.4) allows the CWENO
and CWENOZ to save about the 30% of time. This happens because Central WENO
reconstructions compute their non-linear coefficients only once per cell instead of
once per reconstruction point (see Remark 3.2). Looking at Figure 3.4, note in
particular that the high number of reconstructions performed near the boundary is
related to the boundedness of the domain: in fact, except for the case of periodic
boundary conditions, each time a foot of a characteristic falls outside the domain,
it is projected back in the first cell near the boundary in order to compute the
reconstruction.

3.5.2 One-dimensional semi-concave data
This test deals with the HJ equationvt(t, x) + 1

2 |∂xv(t, x)|2 = 0
v(0, x) = v0(x) = min(− cos(πx/2), 0),

(3.32)
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Figure 3.5: Left: the exact solution of Test 2 in red and the numerical one in blue
computed with a third-order CWENOZ reconstruction and N = 81. Right: reconstructions
count in the last time step.

WENO CWENO CWENOZ
N CPU time CPU time % gain CPU time % gain
81 6.19e− 03 4.83e− 03 21.95 4.86e− 03 21.48
161 9.79e− 03 8.88e− 03 9.31 8.64e− 03 11.76
321 2.74e− 02 2.39e− 02 13.03 2.39e− 02 12.84
641 9.42e− 02 7.65e− 02 18.81 7.68e− 02 18.41
1281 3.48e− 01 2.83e− 01 18.65 2.90e− 01 16.72
2561 1.33e+ 00 1.10e+ 00 17.15 1.10e+ 00 16.83
5121 5.28e+ 00 4.30e+ 00 18.51 4.29e+ 00 18.77
10241 2.09e+ 01 1.68e+ 01 19.42 1.68e+ 01 19.46

Table 3.4: CPU times for Test 2.
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in the domain [−2, 2], with homogeneous boundary conditions, which are treated
using the extrapolation technique. The approximate solution is computed, at T = 1,
with ∆t = 10∆x, while the exact solution v(t, x) is defined as follows:

v(t, x) = min(0, 1
2[a∗(t, x)]2 + v0(x− ta∗(t, x))), (3.33)

where, for a given (t, x), a∗(t, x) represents the optimal control, which is constant
along the characteristics, and it can be computed as the solution of

a∗(t, x) = g(t, x, a∗(t, x)) (3.34)

with the function g defined by

g(t, x, a∗(t, x)) =


− 2

πt
arcsin 2a∗(t,x)

π
+ x

t
if |a∗(t, x)| ≤ π

2 ,
π
2 if a∗(t, x) > π

2 ,

−π
2 if a∗(t, x) < −π

2 .

(3.35)

For our purposes, since the exact solution of (3.34) is not available, we compute an
approximate solution by using a fixed point algorithm with initial guess a∗

0(t, x) =
1
2x

2t.
Since the characteristics are affine, in this test we have combined the third-

order spatial reconstructions with first order RK time-stepping, which computes
these curves exactly. Plots of the numerical and exact solutions are shown in the
left panel of Figure 3.5 and L1 errors are listed in Table 3.3. In this case too,
all schemes compute approximations affected by errors of the same order but the
central reconstructions turn out to be more accurate (errors are about 2/3 than the
WENO case). In fact, the feet of the characteristics fall in regular regions of v at
each time step, and therefore all the reconstructions are close to the optimal cubic
one. Table 3.4 reports the computational costs of each scheme, showing an average
gain of 16 − 19% for both the Central WENO reconstructions. This is again the
effect of the multiple reconstructions performed in each cell (see the right panel of
Figure 3.5, in which the number of reconstructions performed in each cell during
the last time step is depicted). We point out that, as in Test 1, the high number of
reconstructions computed in the first and in the last cell is related to the boundary
conditions. The saving is less pronounced than in the 2d setting, as expected from
the comparison between remark 3.1 and remark 3.2.

3.5.3 One-dimensional eikonal equation
In this test, we consider the HJ equationvt(t, x) + 1

2 |∂xv(t, x)|2 − f(t, x) = 0
v(0, x) = v0(x),

(3.36)

with f(t, x) = − sin(x) + (9
8 + t2−3t

2 ) cos2(x) and v0(x) = 3
2 sin(x). We consider the

problem in [0, 2π] with periodic boundary conditions and compute the numerical
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Figure 3.6: Left: the exact solution of Test 3 in red and the numerical one in blue
computed with a third-order CWENOZ scheme and N = 63. Right: reconstructions count
in the last time step.

WENO CWENO CWENOZ
N L1-err L1-ord L1-err L1-ord L1-err L1-ord

126 1.28e− 05 1.38e− 05 1.43e− 05
252 1.54e− 06 3.05 1.65e− 06 3.07 1.70e− 06 3.07
503 1.93e− 07 3.00 2.03e− 07 3.02 2.10e− 07 3.02
1006 2.56e− 08 2.91 2.63e− 08 2.95 2.71e− 08 2.95

Table 3.5: Errors at time T = 1 for Test 3.

WENO CWENO CWENOZ
grid CPU time CPU time % gain CPU time % gain
126 5.92e− 02 5.42e− 02 8.43 5.64e− 02 4.81
252 2.11e− 01 1.94e− 01 8.04 1.94e− 01 8.05
503 7.97e− 01 7.37e− 01 7.53 7.48e− 01 6.05
1006 3.13e+ 00 2.83e+ 00 9.75 2.87e+ 00 8.45
2011 1.19e+ 01 1.11e+ 01 6.67 1.11e+ 01 6.79
4022 4.73e+ 01 4.27e+ 01 9.58 4.21e+ 01 11.03
8043 1.80e+ 02 1.65e+ 02 8.63 1.62e+ 02 10.02
16085 6.96e+ 02 6.41e+ 02 7.96 6.38e+ 02 8.35

Table 3.6: CPU times for Test 3.
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Figure 3.7: Test 4. Initial condition (left) and numerical solution computed with CWENO
at T = 1 (right) with N = 81.

WENO CWENO CWENOZ
N L1-err L1-ord L1-err L1-ord L1-err L1-ord

41 × 41 4.02e− 02 3.38e− 02 3.38e− 02
81 × 81 2.25e− 02 0.84 1.82e− 02 0.90 1.81e− 02 0.90

161 × 161 1.15e− 02 0.96 9.01e− 03 1.01 8.99e− 03 1.01
321 × 321 5.56e− 03 1.05 4.10e− 03 1.14 4.09e− 03 1.14
641 × 641 2.85e− 03 0.97 2.03e− 03 1.02 2.02e− 03 1.02

Table 3.7: Errors at time T = 1 for Test 4.

solution at time T = 0.5, with ∆t = ∆x. This problem has a known exact solution
given by v(t, x) = (3

2 − t) sin(x).
In this case, characteristics are not affine and both the dynamic and the cost

function explicitly depend on x and t. Therefore this is a specific test for the third-
order accuracy of our scheme, which depends on the use of the third-order RK
scheme (2.45) and on the approximation of the integral of the cost function.

Plots of the exact and of the numerical solution are shown in the left panel of
Fig.3.6, while in the right panel the reconstruction count in the last time step is
depicted. We point out that in this case, with periodic boundary conditions, there
is no artificial increase in the first and in the last cell near the boundary.

Errors and CPU times are listed in Tables 3.5 and 3.6. As in the previous tests,
due to the regularity of the exact solution, all schemes perform almost equally when
compared in terms of the error. Looking at the computational costs, the Central
WENO reconstructions allow for a saving of about 6 − 10%.

3.5.4 Two-dimensional semi-convex data
In this test, the HJ equationvt(t, x) + 1

2 |∇v(t, x)|2 = 0
v(0, x) = v0(x) = max(1 − |x|2, 0),

(3.37)
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Figure 3.8: Test 4. Comparison of overshoots and undershoots of the numerical solutions
computed on a 161 × 161 grid. In the left panels WENO and CWENO are compared, while
in the right panels similar plots are shown for WENO and CWENOZ. The exact solution
is always represented with a thick black line. First row: scatter plots of all data points
with r ∈ [0, 0.2] corresponding to the spike of the solution. Second row: scatter plots for
r ∈ [0.4, 0.6] corresponding to regular region of the solution. Third row: scatter plots for
r ∈ [0.9, 1.1] corresponding to the singular region of the initial data.

WENO CWENO CWENOZ
grid CPU time CPU time % gain CPU time % gain

41 × 41 2.88e+ 00 1.98e+ 00 31.37 1.96e+ 00 32.07
81 × 81 2.19e+ 01 1.54e+ 01 29.70 1.53e+ 01 30.07

161 × 161 1.72e+ 02 1.19e+ 02 31.10 1.18e+ 02 31.35
321 × 321 1.37e+ 03 9.38e+ 02 31.56 9.34e+ 02 31.86
641 × 641 1.09e+ 04 7.44e+ 03 31.59 7.51e+ 03 30.93

Table 3.8: CPU times for Test 4.
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WENO CWENO CWENOZ
N min max min max min max

21 × 21 −5.67e − 05 9.76e − 01 −6.08e − 03 9.80e − 01 −6.08e − 03 9.80e − 01
41 × 41 −4.62e − 05 9.89e − 01 −5.19e − 03 9.92e − 01 −5.19e − 03 9.92e − 01
81 × 81 −1.21e − 05 9.95e − 01 −3.39e − 03 9.96e − 01 −3.39e − 03 9.96e − 01

161 × 161 −3.45e − 06 9.98e − 01 −1.97e − 03 9.98e − 01 −1.97e − 03 9.98e − 01

Table 3.9: Overshoots and undershoots observed in Test 4. The exact solution has range
[0, 1].

WENO CWENO CWENOZ
grid CPU time CPU time % gain CPU time % gain

126 × 101 6.28e+ 00 5.34e+ 00 14.94 5.30e+ 00 15.66
251 × 201 4.56e+ 01 3.96e+ 01 13.04 3.96e+ 01 13.06
501 × 401 3.61e+ 02 3.11e+ 02 13.87 3.20e+ 02 11.50
1001 × 801 2.81e+ 03 2.43e+ 03 13.64 2.40e+ 03 14.59
2001 × 1601 2.20e+ 04 1.92e+ 04 13.01 1.89e+ 04 14.00

Table 3.10: CPU times for Test 5.

is considered in [−2, 2]2, using extrapolation techniques to treat the homogeneous
boundary condition. The exact solution of this problem is known and is given, for
t ≥ 1/2, by

v(t, x) =


(|x|−1)2

2t
if |x| ≤ 1,

0 if |x| > 1.
(3.38)

We set final time T = 0.5 and compute the approximate solution with ∆t = 5
4∆x.

Initial condition and final numerical solution are shown in Figure 3.7, while L1 errors
and CPU times are reported respectively in Tables 3.7 and 3.8.

Since in this case the feet of characteristics always fall in the singular region of
the solution, we observe, as expected, that all numerical schemes are degraded to
first-order accuracy. From Table 3.7 one can see that the L1-norm of the error is
about 30% lower for the central reconstructions, as in the previous cases.

From (3.38) we observe that the exact solution attaints its maximum value 1
at x = 0 and is everywhere non-negative. The maximum values of the numerical
solutions reported in Table 3.9 show a slightly lower numerical diffusion for the
central schemes as opposed to the WENO one. Furthermore, from the minimum
values reported in Table 3.9 and from Figure 3.8 we can see that near the kink
in the solution, the central reconstructions produce larger undershoots in the flat
region, while being closer to the exact solution in the non-zero region. Finally, from
Table 3.8 one can observe that central reconstructions schemes are about 30% faster.

3.5.5 Front propagation with obstacles
Last, we consider a state constrained Zermelo problem, proposed in [15], for a swim-
mer that has to reach a circular island at (1, 0), facing a non-constant current flowing
in the horizontal direction. Two obstacles are placed in the domain, near the target.
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Figure 3.9: Reachable sets (3.40) computed at each time step for Test 5 on a grid 101×81
and T = 3, using WENO (above) and CWENO (below) reconstructions. In both panel the
black line represents a reference solution computed on a grid 1001 × 801, the red circle
represents the target and the red rectangles represent the obstacles.
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More precisely, to consider the minimum time problem the running cost fC(t, x, a)
is set to zero, and the non-linear dynamics is given by fD(t, x, a) = (2−0.5x2

2+a1, a2),
with A := {a ∈ R2 | ‖a‖ = (a2

1 + a2
2)1/2 = 1}. The swimmer has unit speed and

can move in any direction a ∈ A; the current has speed 2 − 0.5x2
2 and flows in

the direction (1, 0). The target is the set X = {x | v0(x) ≤ 0}, where v0(x) =
C min

(
‖(x1 −1, x2)‖−r, r

)
with r = 0.25 and C = 20. In order to take into account

the presence of the two obstacles, we follow the level set approach, as proposed in
[15], and represent the set of constrained states as K = {x ∈ R2 | g(x) ≤ 0} where

g(x) = max
(

− γ, g1(x), g2(x)
)
,

setting
g1(x) = C

(
γ − max(|x1 − 0.3|, |x2 − 0.4|)

)
,

g2(x) = C
(
γ − max(|x1 + 1|, |x2 + 1.5|)

)
,

with C = 20, γ = 0.2.
For every t ∈ [0, T ], the set of points from which the swimmer can reach the target

before time t (Backward Reachable set) is represented by the level set R[0, t] = {x ∈
R2 | ∃ s ∈ [0, t], v(x, s) ≤ 0} where v is the solution to a constrained version of (3.1)

min(vt +H(t, x,∇v), v − g(x)) = 0 (3.39)

with initial condition v(x, 0) = max(v0(x), g(x)), (see [15, Remark 2]). The space
domain is defined as [−3, 2] × [−2, 2] and the final time to T = 3. By using scheme
(3.7), we discretize (3.39) as

min(un+1
i − min

a∈Aν
{I[un](yn

i (a))}, un+1 − g(xi)) = 0,

resulting in the following time-marching scheme:

un+1
i = max

(
min
a∈Aν

{I[un](yn
i (a))}, g(xi)

)
,

from which we define the numerical approximation of the seachable set R[0, tn] as

Rn = {xi | ∃ k ∈ {0, . . . , n}, uk
i ≤ 0}. (3.40)

The solution is computed with RK3 and ∆t = ∆x. In Figure 3.9, we show
that, even in this very complex situation, no relevant difference in the accuracy of
the computed solution can be observed between the WENO and the Central WENO
approaches. On the other hand, Central reconstruction schemes provide a reduction
of about 13 − 14% of the computational time.
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Chapter 4

Surface reconstruction from point
cloud

In this chapter we will propose the application of the LSM, introduced in the first
chapter, to the problem of reconstructing unknown surfaces from unorganized sets
of points, namely the point clouds, which are usually the only information one gets
from the scanning of real objects [99, 98]. A point cloud is a dataset that is just
constituted by a list of points approximately laying on the surface of the object and
that carries no information about the connectivity between them.

This work actually constituted the starting point of our research, but comes as
almost the last topic in this thesis since it collects most of the ingredients presented
before. In fact, our surface reconstruction method will be based on a variational
formulation that leads to solve an advection-diffusion equation that governs the
evolution towards the point cloud of an initial surface described implicitly by a level
set function. The numerical method for the approximation of the solution resorts to
a SL scheme coupled with a local interpolator, in which, as we will see, the diffusive
term originated by some curvature regularization is treated properly in order to
overcome well-known time constraints related to the CFL condition.

Besides the numerical aspects related to the main PDE, this work aims to design a
complete workflow to get a final implicit representation of the surface approximating
the point cloud, focusing also on the computational aspects of such a procedure. It
is well-known indeed that in real-world applications, where one could be interested
in processing very large and detailed datasets, surface reconstruction could be very
complex and time consuming. Hence it is crucial to propose an efficient and flexible
tool, hopefully suitable for dynamic representations and not only for static ones.

We point out that the level set functions computed by (an early version of)
the methods presented here have been employed in test cases for a more complete
workflow in the setting of forecast of stone degradation by chemical pollutants in
the field of management of cultural heritage [37].

The presentation in this chapter follows closely the one of [96]. After introduc-
ing the mathematical model, the SL scheme is presented, focusing in particular on
the treatment of the parabolic term; since, as we have seen in Chapter 1, the LSM
requires a lot of procedures to be put together, the complete strategy will be re-
sumed, and finally, a collection of numerical tests in two and three dimensions will
be presented.
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4.1 Mathematical model
Let us assume that we are given a set of points P = {Q1, . . . , QN} in a bounded
region of Rd and let us define d(~x) = minQj∈P |~x − Qj| to be the distance function
to P . Our model for surface reconstruction from point clouds is based on the
minimization of the surface energy functional

Ep(Γ) =
( ∫

Γ
dp(~x)ds

)1/p

, 1 ≤ p ≤ ∞ (4.1)

derived in [124], where Γ is an arbitrary closed surface of co-dimension one in Rd and
ds is the surface area. The energy functional (4.1) is independent of parametrization
and invariant under rigid transformation and, if we think of the distance function
as a potential function for P , our energy is the Lp norm of the potential on Γ. In
particular, when p = ∞, E∞(Γ) is the value of the distance from P of the most
remote point on Γ.

Along the lines of [124], we will try to find a local minimizer of (4.1) that behaves
like a minimal surface or an elastic membrane attached to the data set. The way to
achieve this minimum and get the final shape is based on a continuous deformation
of an initial surface Γ0 following the gradient descent of the energy functional (4.1).

Retracing the basics of the model, we can easily calculate the first variation of
the energy with respect to small perturbation of Γ

δEp(Γ)
δΓ = 1

p

[ ∫
Γ
dp(~x)ds

] 1
p

−1
[pdp−1∇d · ~n+ dpκ], (4.2)

where ~n is the outward unit normal and κ is the mean curvature of Γ. Note that in
the last square brackets of (4.2) appears the sum of the variation in the potential
and the variation in the surface area, respectively.

Looking for a minimum of (4.1), from (4.2) one derives the Euler-Lagrange equa-
tion

dp−1(~x)
[
∇d(~x) · ~n+ 1

p
d(~x)κ

]
= 0, (4.3)

which suggests that a stationary point of (4.1) is reached when we see a balance
between the potential force ∇d(~x) · ~n and the surface tension d(~x)κ. Furthermore,
in the balance of the two terms, note the desirable role of the scaling d(~x) of the
surface tension regularization: it allows more flexibility in regions where d(~x) is
small, namely when we are approaching the data and where the sampling density is
higher, while, on the other hand, further away from P or in cases of a lower sampling
density, Γ will be more rigid.

Now, choosing an initial guess that encompasses all the data in P , equation (4.3)
suggests to continuously deform this Γ until steady-state following the gradient
descent of the energy functional (4.1), considering the equation

dΓ
dt

= −
[ ∫

Γ
dp(~x)ds

] 1
p

−1
dp−1(~x)

[
∇d(~x) · ~n+ 1

p
d(~x)κ

]
~n. (4.4)

If we start the evolution further away from P , the effect of both the terms (the
potential force and the surface tension) in (4.4) is to make the surface shrink towards
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P . When getting closer to P , the two forces start to interplay trying to balance each
other. The choice of starting the evolution with an initial Γ enclosing the dataset
is just for robustness reasons: unless we are very close to the dataset, we might be
exposed to the risk of a degeneration of the surface to the empty set.

It is also worth saying a few words about the existence of the minimum surface.
In the continuous limit, when d(~x) is the distance function to a smooth surface Γ∗,
we have two global minima, i.e., Γ = Γ∗ and Γ = ∅. When considering the dis-
tance function to a scattered set of points, as the case of P , things become more
complicated and, while in two dimensions the polygon connecting the points in P
constitutes a trivial local minumum, in three or higher dimensions, the only trivial
minimum is Γ = ∅. Thus, in three or higher dimensions, things become more inter-
esting and the problem turns out to be ill-posed, i.e., there is no unique solution,
since infinite surfaces may pass through or near P locally minimizing the energy
functional (4.1). Therefore we will be only interested in finding a proper local min-
imum that solves the Euler-Lagrange equation (4.3) considering it as the desired
final reconstruction.

So far, we have derived a model for the reconstruction problem which is based
on an evolution process of an interface Γ. As stated in Chapter 1 this type of
tracking problems might be very difficult to be handled explicitly since, in general,
one doesn’t have any a-priori knowledge about the topology of the shape to be
reconstructed. Topological changes may occur during the continuous deformation
process strongly discouraging any use of parametrization techniques, which would
be almost impossible to implement. Thus again, this is where the implicit approach
via level set functions comes into play, together with the LSM.

4.1.1 Derivation of the level set equation
Changing our perspective, the evolving surface Γ(t) can be represented implicitly
using a level set function to capture the moving interface. Just to recall the notation,
considering Ω(t) the region enclosed by Γ(t), a level set function φ(~x, t), φ : Rd×R →
R, is associated to Ω(t) if it assumes negative values inside Ω(t), positive outside
and returns zero on the boundary Γ(t), according to (1.9).

In terms of the level set function φ, the energy functional (4.1) can be rewritten
as

Ep(φ) =
∫

Rd
|d(~x)|pδ(φ)|∇φ|d~x

1/p

(4.5)

where δ denotes the Dirac-delta function and δ(φ) |∇φ| d~x is the surface area element
at the zero level set of φ.

Using (4.4), we can derive the evolutionary equation for the zero level set of φ,
which reads

∂φ

∂t
= δ(φ)1

p

[ ∫
dp(~x)δ(φ) |∇φ| d~x

] 1
p

−1
∇ ·

[
dp(~x) ∇φ

|∇φ|

]
. (4.6)
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Recalling that we aim to solve a level set equation of type

φt + dΓ(t)
dt · ∇φ = 0 or φt + vn |∇φ| = 0, (4.7)

on the whole domain Rd × R+, as presented in Section 1.4, we need to extend the
geometric motion at φ = 0 defined by (4.6) to all the other level sets. This is done
by replacing δ(φ) with |∇φ| and leads to the level set formulation

φt(~x, t) =
 d(~x)

Ep(φ)

p−1∇d(~x) · ∇φ(~x, t) + d(~x)
p

∇ ·
(

∇φ(~x,t)
|∇φ(~x,t)|

)
|∇φ(~x, t)|

,
φ(~x, 0) = φ0(~x),

(4.8)

where φ0(~x) is a suitable initial data such that Γ0 = {~x ∈ Rd : φ0(~x) = 0} and ∇φ
|∇φ|

and ∇ · ∇φ
|∇φ| are the usual level set representations of the outward unit normal and

of the mean curvature, respectively.
In the above equation, the term ∇d(~x) · ∇φ(~x, t) drives the level sets, thus the

surface itself, towards the dataset P , while the second term tempers the maximal
curvature. Changing the balance between them can lead to surfaces closer to the
point cloud but with sharper edges or to more rounded surfaces that are a little
further away from P .

The parameter p controls the relative influence of the curvature term and of the
global scaling factor

[
d(~x)

Ep(φ)

]p−1
which makes the the most remote points to move

quicker than the ones closer to P . We point out that the Ep(φ) denominator slows
down the entire evolution when the functional is large; this can be an issue when
the initial surface is very far from the cloud.

In [79], a model similar to (4.8) is employed, wherein the factor d(~x) in front of the
diffusion term is replaced by a constant η ∈ [0, 1] to control the balance between the
two terms. While we prefer to keep the d(~x) factor in the evolution equation which
will slow down the evolution in the vicinity of the point cloud, we also introduce
an additional parameter η ≥ 0 multiplying d(~x) in the curvature term. Our final
formulation then reads

φt(~x, t) =
 d(~x)

Ep(φ)

p−1∇d(~x) · ∇φ(~x, t) + η d(~x)
p

∇ ·
(

∇φ(~x,t)
|∇φ(~x,t)|

)
|∇φ(~x, t)|

,
φ(~x, 0) = φ0(~x).

(4.9)

In this way our numerical algorithm can be used in both regimes. If we set η = 0, the
model becomes purely convective and leads quickly to a reconstructed surface close
to a piecewise linear approximation. In contrast, the case with η = 1 corresponds
to the original formulation and contains a weighted curvature regularization effect,
is more computationally expensive, but leads to a smoother reconstructed surface.
Higher values of µ are also useful in the case of noisy data.

Finally, we observe that for visualization purposes it is often sufficient to compute
a function φ such that its zero level set is close to the data set P . Equation (4.9) is
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apt for this purpose, but its transport term tends to produce high gradients in the
computed function φ. This behaviour can constitute an issue when one is interested
in computing the normals of the reconstructed surface or in using the level set
function as a mathematical description of a domain into which a PDE solver has to
be applied; it is indeed more robust to compute a level set function with moderate
gradients, as in [37]. To this aim, our algorithm will be designed to ensure that the
computed solution is a SDF at least in the vicinity of the point cloud.

4.2 SL schemes for mean curvature motion
To numerically solve the IVP (4.9) we have to take into account the nature of this
equation, which contains both a linear advective term and a parabolic one, repre-
sented by the curvature regularization. This last term, when resorting to an explicit
scheme, imposes a time restriction of type ∆t = O(∆x2) which might constitute a
real obstacle, especially when the spatial grid is refined. Having in mind our ap-
plication to surface reconstruction, it is absolutely natural to think of using a finer
resolution at least around the zero level set of φ, for instance via AMR, as will be
shown in the fifth chapter, thus it is crucial to design a scheme which is able to
overcome this CFL limitation. Also, as pointed out in Section 1.3.1, when dealing
with LSM, and in particular with the evolution described by MCM, the implicit
time-stepping approach is hardly discouraged due to the complexity of the problem.

Therefore, the SL approach seems to be apt to this aim in the sense that merges
the advantages on an explicit scheme with the stability properties of an implicit one,
allowing to overcome very harsh timestep restrictions. In the second chapter, we
have seen how to derive a SL discretization for different general types of hyperbolic
PDEs but still we haven’t explored the treatment of second-order HJ equations.
Since we are interested in the particular case of the second-order evolutive equation
arising in the level set formulation of MCM, we prefer to treat in this chapter this
specific case.

Thus, let us consider the simplified problemφt(~x, t) = |∇φ(~x, t)| ∇ ·
(

∇φ(~x,t)
|∇φ(~x,t)|

)
φ(~x, 0) = φ0(~x),

(4.10)

where φ0 is a level set function representing the front Γ0 at time t = 0. The scheme
we use here has been first proposed in [50] and is based on the representation formula
proved by Soner and Touzi in [108] for the solution of a large class of geometric
second-order HJ equations which includes (4.10). This scheme has then gone through
a number of improvements and applications; the interested reader can refer to [23]
for a comprehensive convergence analysis and to [21, 24] for two applications to
image processing.

The representation formula introduced in [108] has the form

φ(~x, t) = E{φ0(~y(~x, t; t))} (4.11)

where E(·) is the probabilistic expectation and ~y(~x, t; s) is the position at time s of
the solution trajectory of the Stochastic Initial Value Problem (SIVP) originating
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at time t from ~x; more precisely we have to solve the system~̇y(~x, t; s) =
√

2P (∇φ(~y(~x, t; s), t− s))dW (s),
~y(~x, t; 0) = ~x,

(4.12)

where W is a d-dimensional standard Brownian motion and P is a d× d projection
matrix defined by

P (p) = I − ppT

|p|2
. (4.13)

In practice, the diffusion process in (4.10) will be replaced by a Brownian motion,
restricted to the tangent plane of the level sets, and the probabilistic expectation
will be discretized by a weighted average.

In fact, let us observe that the projection matrix in (4.12) is a matrix of rank
d − 1 with d − 1 eigenvectors corresponding to the eigenvalue λ = 1, thus we can
rewrite

P (∇φ) = σ(∇φ)σ(∇φ)T , (4.14)
where σ is a d× (d− 1) matrix whose columns are the eigenvectors of P .

Using the decomposition (4.14) we can rewrite (4.12) as~̇y(~x, t; s) =
√

2σ(∇φ(~y(~x, t; s), t− s))dŴ (s),
~y(~x, t; 0) = ~x.

(4.15)

where dŴ = σTdW is the differential of a standard (d − 1)-dimensional Brownian
motion which is one dimension lower than W .

As usual, to derive the SL discretization we consider a node xi, with i ∈ Zd, and
a single time step [tn, tn+1] and mimic the representation formula

φ(xi, tn+1) = E{φ(~y(xi, tn+1; ∆t), tn)}, (4.16)

with ~y(xi, tn+1; ∆t) given by the stochastic ODE (4.15) written on a single time step.
Along the lines of [50, 23], to discretize (4.16), we resort to the theory of weak

convergence for numerical schemes for Stochastic Differential Equations (SDEs); see
[78] for full details.

Applying a Stochastic Euler scheme to solve (4.15) we get

yn
i = xi +

√
2σ(∇φ(xi, tn+1))∆Ŵ , (4.17)

where ∆Ŵ should represent a Gaussian variable with mean 0 and variance ∆t.
However, to obtain first-order convergence it suffices to have a variable with 2-point
discrete probability density,

P (∆Ŵ = ±
√

∆t) = 1
2 , (4.18)

for the one dimensional Brownian, and with 4-point discrete probability density

P ((∆Ŵ1,∆Ŵ2) = (±
√

∆t,±
√

∆t)) = 1
4 , (4.19)
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for the two dimensional case.
Note that in (4.17) the matrix σ is evaluated in the gradient of the level set

function in the node xi at time tn+1, but the only information available for us will
be at time tn. However, since the level set function φ evolves in the normal direction,
namely the direction of ∇φ, we can use the gradient at time tn in (4.17) and get the
final explicit scheme

φn+1
i = 1

2d−1

2d−1∑
j=1

I[φn](xi +
√

2∆tσn
i ξj) (4.20)

where d is the dimension of the problem, σn
i = σ(∇φ(xi, tn)) and ξj ranges over

{+1,−1} and {(±1,±1)} for the 2d and 3d case, respectively.
The explicit expression for the matrix σ will be given in the next section where

the discretization of the parabolic term, as stated here, will be considered along with
the discretization of the advective part. The two and three dimensional case will be
treated separately in order to have a clear design of the complete scheme.

4.3 Numerical scheme
The scheme we propose here mixes the SL approach both for the hyperbolic and the
parabolic term in (4.9) and mimics the scheme presented in [16, 26] with some dif-
ferences: the parameters p and η, and the use of the cut-off function for localization,
will lead to a slightly modified scheme, but the main difference will be related to the
interpolation operator. In particular, in [26] the authors resort to a global Radial
Basis Function (RBF) interpolator that requires to solve a large linear system at
each timestep which is something that we would like to avoid and is the reason why
we decide instead to use a local interpolator, which is more efficient, especially in
view of a parallel implementation.

We will follow the notation of the previous sections distinguishing between the
two and three dimensional case and indicating with xi a generic node of the com-
putational grid, with i ∈ Zd. Also, instead of specifying the set in which the integer
index i of the discretized space is varying, we will refer to the whole computational
grid as G such that

G = {xi : xi ∈ Ω′, i ∈ Zd}, (4.21)
where Ω′ is a large enough computational domain in which we are embedding Ω(t);
see Section 1.1.2. Specific subgrids to locate the LSM, as introduced in Section 1.6
will be detailed later.

The SL scheme will be detailed in this section for the two and three dimensional
case and the interpolation operator will be described in Section 4.3.1. The next
section will describe the other auxiliary procedures used in order to design the
complete algorithm: the computation of the distance function d(~x) from the point
cloud, the evaluation of the energy functional Ep(φ), the computation of the initial
data φ0

i , the reinitialization procedure and the localization technique to reduce the
computational effort. The reader will be also referred to previous sections were some
of these topics have been already treated. The complete algorithm is summarized
in Algorithm 1. Unless otherwise specified, all numerical gradients needed in the
algorithms are computed by centered finite differences.
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Algorithm 1 Computing the signed distance function φ from a point cloud P

1. Create a Cartesian grid G encompassing all of P

2. Compute the distance function d(xi) at all grid points, as in Section 4.4.2

3. Set initial data {φ0
i }xi∈G, as in Section 4.4.4

4. Loop:

(a) From {φn
i }xi∈G set the computational subgrid Bn ⊂ G, as in Section 1.6

(b) Compute the energy functional (4.5) with one of the methods of Sec-
tion 4.4.3

(c) Compute {φn+1
i }xi∈Bn using (4.22) or (4.24) from Section 4.3 and the in-

terpolator (4.28) or (2.69) from Section 4.3.1 and Section 2.3.4

(d) From {φn+1
i }xi∈G set the computational subgrid for reinitialiaztion Bn+1 ⊂

G, as in Section 1.6
(e) Reinitialize {φn+1

i }
xi∈Bn+1 , as in Section 1.5 and cut with (1.49)

2d Case

We compute the update of φn
i as

φn+1
i = 1

2

2∑
j=1

I[Φn]
(
x∗

i,j

)
,

x∗
i,j = xi + Cn

i ∆t∇d(xi) +
√

2Cn
i η d(xi)∆t

p
σn

i ξj,
(4.22)

where ξi ranges over {−1,+1} and Cn
i is the scale factor

[
d(xi)

Ep(φn)

]p−1
. The operator

I[Φn](~x) denotes an interpolation at point ~x of the data {φn
k : xk ∈ G}, which will

be specified later. In (4.22) σn
i denotes the unit vector tangent to the level sets of

φ: it is thus orthogonal to the gradient of the level set function and is given by

σn
i = 1

|∇φn
i |

(
∂yφ

n
i

− ∂xφ
n
i

)
. (4.23)

In equation (4.22), the interpolation points are obtained by adding two terms:
the first is the foot of the characteristic pertaining to the advection term in (4.9),
while the second is the further displacement discretizing the curvature term in (4.9).
A sketch of the 2d scheme is shown in Figure 4.1.

3d Case

Similarly to the previous case, the update of φn
i is computed as

φn+1
i = 1

4

4∑
j=1

I[Φn]
(
x∗

i,j

)
,

x∗
i,j = xi + Cn

i ∆t∇d(xi) +
√

2Cn
i η d(xi)∆t

p
σn

i ξj,
(4.24)
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φ = constxi

x̂i

x∗
i,1

x∗
i,2

Figure 4.1: A sketch of the procedure for updating the level set function φ in a grid node
in two dimensions. From a grid node xi we trace backward the corresponding characteristic
line for a time ∆t finding the point x̂i in orange. The curvature regularization thus requires
to compute the locations of the two yellow points x∗

i,1, x∗
i,2 on the plane tangent to the

level sets of φ. Once the two yellow points are located, we interpolate using the value of
the function φ at time tn and then perform an average to get the final update φn+1

i .

where again we treat the scale factor Cn
i as a constant. In the above equation, σn

i =
[ν1(∇φn

i ), ν2(∇φn
i )] is a 3 × 2 matrix whose columns span the 2d space orthogonal

to ∇φn and the column vector ξj ranges over {(±1,±1)T }, so that σn
i ξj represents

four points in the local tangent plane.
In order to avoid numerical singularities, one regularizes the two orthonormal

eigenvectors of the projection onto the plane tangent to the level sets of φ as

ν1 =
ν̃1 if

√
(∂xφ)2 + (∂zφ)2 6= 0

(1, 0, 0)T otherwise

ν2 =
ν̃2 if

√
(∂xφ)2 + (∂zφ)2 6= 0

(0, 0, 1)T otherwise

with ν̃k denoting the exact eigenvectors, which are given by

ν̃1 =



−∂zφ√
(∂xφ)2+(∂zφ)2

0

∂xφ√
(∂xφ)2+(∂zφ)2


, ν̃2 = 1

|∇φ|



−∂xφ ∂yφ√
(∂xφ)2+(∂zφ)2

√
(∂xφ)2 + (∂zφ)2

−∂yφ ∂zφ√
(∂xφ)2+(∂zφ)2


. (4.25)

Because of the factor in front of σn
i in (4.23), respectively in front of ν̃2 in (4.25),

the numerical schemes (4.22) and (4.24) would be singular in cases where |∇φn
i | is

close to zero. Thus, when |∇φn
i | < D∆tα, the schemes are replaced by

φn+1
i = 1

|Ni|
∑

xj∈Ni

I[Φn](xj) (4.26)
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where Ni is the set of the first neighbours of xi in the Cartesian grid G and |Ni|
represents its cardinality. In all computations presented in this work, we set D =
10−3 and α = 1.

4.3.1 Interpolation
An important issue for the accuracy and the efficiency of the numerical scheme is
clearly represented by the choice of the interpolation operator I[Φn]. In [26], the
authors employ a global RBF interpolation of the data on G defined as

IRBF[Φn](~x) = c0(Φn) + ~c(Φn) · ~x+
∑

xj∈G
µj(Φn)ψ(|~x− xj|).

The coefficients c0 ∈ R,~c ∈ Rd and µj ∈ R of the RBF interpolator are computed by
imposing interpolation conditions at all (or a subset of) points of the grid (I[Φ](xk) =
φk for all xk ∈ G) and the additional conditions∑

xj∈G
µj = 0,

∑
xj∈G

Pxxjµj = 0,
∑

xj∈G
Pyxjµj = 0,

∑
xj∈G

Pzxjµj = 0, (4.27)

where Pxxj, Pyxj and Pzxj denote the spatial coordinates of the node xj. The
interpolation is thus computed by solving, at each time step, a linear system with
matrix M of the form

M =
[
B P
P T 0

]
,

where B is an N ×N block (N = |G|) and P is N × 4.
However, the computation of the RBF interpolator then becomes a bottleneck of

the algorithm due to the solution of the linear system involved. Furthermore, the
global linear term c0(φn) + ~c(φn) · ~x, i.e. the blocks P and P T in the system, forms
a strong coupling of all the equations which is difficult to handle for parallel runs as
it requires a lot of inter-processor communications.

Figure 4.2: Stencils of the two-dimensional Q1 and WENO reconstructions. The red
hatched region represents the cell Ω in which we compute the reconstruction. The multi-
linear interpolator only requires the vertices of the cell Ω, enclosed by the blue square on
the left. On the right, the WENO interpolator involves the cell vertices and their first
neighbours, enclosed in the orange square.
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Here instead we resort to two different types of local interpolator with the aim of
making the algorithm faster and practical for surface reconstructions on a finer grid,
allowing also the efficient use of parallel computing. The first one is a multilinear
interpolator, while the second is a WENO interpolator.

The multilinear interpolator is simply the Q1 Finite Element interpolation on the
grid G. Let {ϕi}xi∈G be the shape functions that are, in each cell, a tensor product
of degree 1 polynomials in each space direction and such that ϕi(xk) = δi,k. Then,
for any function v(~x), we consider the interpolator

IQ1[v](~x) =
∑

xi∈G
viϕi(~x) (4.28)

where vi denotes the point value of the function v at the point xi.
We remark that, once the voxel of the grid containing ~x is located, the summation

above in the 2d case (respectively in the 3d case) involves only four (resp. eight)
terms and can be locally computed.

We expect that this kind of interpolator will be computationally very cheap, but
that it might give rise to artifacts in the reconstructed surfaces since it is piecewise
linear and cannot faithfully represent the curvature of the surface.

The WENO interpolator is exactly the one introduced in Section 2.3.4 and we
recall that in two or higher dimensions, a splitting dimension procedure is applied,
thus guaranteeing the continuity con the global reconstruction, as for the case of the
Q1 interpolant.

In this case, once the feet of the characteristics are located, the stencil for the
interpolation involves one more layer around the cell, is more accurate and of course
more expensive, but still not as expensive as the RBF one, since it is local, except
for special cases related to parallel implementation.

As an example, the stencils involved in the reconstruction procedures for the
2d case are shown in Figure 4.2. In this way, we can guarantee that the only
communications in the semi-Lagrangian scheme occur when the two (resp. four)
interpolation points needed for the update (4.22) (respectively (4.24)) belong to a
different processor than the one owning the point xi (see Section 4.4.1) and not
during the reconstruction procedure itself.

4.4 Auxiliary procedures
As showed in the first Chapter, and summarized in Section 1.7, designing a complete
algorithm for the level set equation (4.9) requires different procedures to be put
together. In this section we present all the necessary computations and auxiliary
techniques we use in our method.

In particular, since especially three-dimensional computations suggest the use of
parallel computing for reducing the execution time, a special focus will be put on
the organization of the computational grid, the parallelization of each procedure and
the main communications between workers that might occur during the execution.
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#3

#2

#1

#0

Figure 4.3: An example of communication that can occur between processes in a parallel
implementation of the SL scheme. To compute the update of φ in local node xi (red point),
rank 3 should ask to ranks 0 and 1 the interpolated values at remote points x∗

i,1 and x∗
i,2

(yellow points).

4.4.1 Domain decomposition for parallel runs
As usual for Cartesian grids, each rank m owns a rectangular portion Gm of the
computational grid G such that G = ·∪mGm and is responsible to update the solution
on it. Since the computation of the reconstruction and of the time update might
require knowledge of the solution at the previous time step in a neighbourhood of
Gm, each rank also keeps a local copy of the data in a halo region G̃m of at least
one ghost point per direction around Gm. The width of this halo region depends on
which information are needed to perform all the computations in the algorithm. The
halo data in G̃m have to be synchronized between workers during the computations
through inter-process communications.

In the case of a semi-Lagrangian scheme, the main sources of communication
arise from: first, the interpolation of φn at feet of the characteristics emanating
backwards from the nodes xi and specified in equations (4.22) and (4.24); second,
the stencil width required for the computation of the interpolant. This latter is
mitigated by our choice of local interpolation techniques with very small stencils,
like those of Section 4.3.1: in both cases we are able to run with one ghost-cell per
direction for the Q1 reconstruction and two ghosts per direction in the WENO case.

Because the SL scheme can require the reconstruction points far away from the
node to be updated, it is not practical to cover the stencil of the SL scheme with
the halo region. However, the task of interpolating at the feet of characteristics
is facilitated by the Cartesian structure of the grid and of its partitioning scheme.
Consider any of the points x∗

i,j appearing in (4.22) or (4.24) associated to a node xi

owned by the processor m. First x∗
i,j is located on the grid partition and let m∗ be the

processor owning the cell into which it falls. If m∗ = m, the interpolation I[Φn](x∗
i,j)

is computed without the need of any communication. Otherwise, a request to the
processor m∗ is sent, communicating the point x∗

i,j and receiving in response the
value of I[Φn](x∗

i,j). Of course all these communications are gathered in a single
push. In Figure 4.3 an example of situation in which we need to communicate
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between processors to perform the update of φ is depicted.
In our implementation also the point cloud P is distributed among the workers.

Some more communications are needed in the auxiliary routines described in the
next sections and will be highlighted therein.

4.4.2 Distance function
In the semi-Lagrangian schemes (4.22) and (4.24) one needs to evaluate the distance
d(~x) = minQ∈P |~x − Q| from the dataset P at every grid point. We remark that a
direct computation would have computational complexity proportional to N × |P|,
where N is the number of points in the computational grid and |P| the size of the
point cloud. It would also require an overwhelming amount of communications in
parallel runs, when both the grid and the point cloud are distributed among different
workers.

However, one acknowledges that accurate values of the distance function are
needed only close to the object surface to which P belongs. In practice we initially
set d(xi) to the exact distance from P on all nodes of G that are in a box of 4 × 4 or
4×4×4 grid points around each point Q ∈ P . Then, we apply a sequence of the fast
sweeping method of [121] and halo region interprocess communications to compute
approximate values for d(~x) at all other grid points xi ∈ G. These approximate
values are still good enough to drive the evolution of the surface Γ towards P , while
the final stages of the evolution will be guided by the exact values of the distance
set in the neighbourhood of the points in P .

4.4.3 Energy functional
Applying the schemes (4.22) and (4.24) with p > 1 also requires to approximate,
at each time step, the value of the energy functional Ep(φ) defined in (4.5). We
approximate the Dirac δ function by restricting the integration domain to the subset
G0 composed by the cells with vertexes in G where, at a specific time step, the front
is located. Further, we assume that the function φ is, at least locally around G0, a
signed distance so that |∇φ| = 1. This latter point is ensured by the reinitialization
procedure described in Section 1.5. We thus compute the energy as

Ep(φ) ≈

∑
C∈G0

∫
C

|d(~x)|pd~x
1/p

. (4.29)

To detect the cells in G0, we check the values of φ on their vertexes and consider
only the cells across which the function φ changes sign. Once the front is located in
a cell C, different strategies can be considered to compute (4.29).

• In two space dimensions, we identify two points intercepted by the front of φ
on the cell boundary, by the linear interpolation of φ on the edges. Then the
trapezoidal rule is used to approximate the integral over the segment connecting
them. This approach would be much more involved in the three-dimensional
case since one would need to identify the (two-dimensional) intersection of the
zero level set surface with the cube C and this could be placed in a general
position.
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• In three space dimensions, to avoid the aforementioned complications, we fur-
ther approximate the Dirac δ function within the volume Ω by considering a
local refinement of the grid element with ∆x′ = ∆x/R, R > 1, to detect the
smaller subcells containing the front, and consider the approximation

Ep(φ) ≈

 ∑
C′∈G′

0

|d(xi′)|p(∆x′)n−1

1/p

, (4.30)

where d(xi′) is the interpolated value of the distance function at the center of
the subcell C ′.
The subgrid G ′

0 is composed by the subcells C ′ such that the reconstruction of
φ at the center of the cell satisfies

|I[Φ](xi′)| <
√

3
2 ∆x′.

We employ this approach with R = 5.

4.4.4 Initial data
The initial data should be chosen as an approximation of the signed distance function
from the data set P . Obviously, the better the initial data, the more efficient the
method will be, but one has to take into account also the computational effort spent
in the computation of the initial datum itself. In practice, we compute φ0 from the
distance function, similarly to [124], to obtain a signed distance function whose zero
level surface encompasses the point cloud and is as close as possible to it.

In particular we start by the approximate distance function computed as in Sec-
tion 4.4.2. First, the cells on the outer boundary of G are marked as external. Then,
moving inwards from all boundaries in all Cartesian directions, we propagate the
external point marking to nearby cells until we find a point for which d(xi) < γP ,
where γP is a suitable threshold related to the resolution of the point cloud.

After external regions have been so identified, φ0 is provisionally set to d(xi)−γP
on external points and to an artificially high value otherwise. Next, the fast sweeping
method of [121] is applied to φ0, recomputing its values at internal points; finally,
the sign of φ0 is reversed on internal points.

We point out that in parallel runs the procedure for initial marking of external
points is similar to the serial run, but is iterated more times and interleaved with
communications of point marking in the halo regions. This is illustrated in Fig-
ure 4.4. The top-left processor, in the first run (middle panel), expands the marking
in the right and bottom direction from the outer border of the computational grid
and is thus unable to mark the small area under the hook. In the second sweep
(right panel), the external marking is propagated from the marking done by the
top-right processor. A number of iterations of at least half the number of processors
per direction in the decomposition ensures that the initial marking obtained is the
same that would have been computed in a serial run.

The one described above, is a good strategy to find an initial data and start the
evolution having only the information carried by the point cloud. As a matter of fact,



4.4 - Auxiliary procedures 89

Figure 4.4: Illustration of marking external points in parallel run with a 2 × 2 domain
decomposition (grey lines). Left: initial state. Center: after the first sweep. Right: after
the second sweep.

one could also choose to evolve a less accurate initial guess (for example by choosing
the initial data Γ0 to be approximately the boundary of the computational domain
Ω′) until steady-state on a coarse grid and then use this final level set function as
the initial data for a finer evolution. This initialization procedure, however, is not
very costly and saves for waiting long times while the surface Γ(t) moves form ∂Ω′

to being close to P .

4.4.5 Reinitialization
As already stated in Chapter 1 one of the nice feature of using a signed distance
function to capture interfaces is that some geometric quantities, such as normals and
curvatures, are easier to compute in terms of φ. In particular this is of paramount
importance when the level set is used in ghost-fluid algorithms for the discretization
of PDEs. The evolution determined by (4.9) will push the solution towards the data
set, but will create sharp gradients in the level set function φ around it.

To keep |∇φ| close to 1, we employ a reinitialization procedure as described in
Section 1.5; in particular the constrained version is preferred since it shows a better
accuracy in preserving the location the zero set of φ during the reinitialization
procedure.

Note that in parallel runs, each step of this algorithm also requires an update of
the φ data in the halo region.

4.4.6 Localizing the computational effort
To localize our methods and reduce the computational effort, especially for the three-
dimensional case, we involve the same narrow bands introduced in Section 1.6. In
particular, in order to define the computational narrow bands, we set β = 2∆x and
γ = 4∆x, which, according to [94], are apt for the spatial reconstructions employed
(multilinear and third-order WENO) and for the value of the CFL we will use in the
numerical tests.

Moreover, if, in order to prevent from oscillations, we introduce the cut-off func-
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tion c(φ) described by (1.55), the model equation (4.9) becomes

φt(~x, t) = c(φ)
[

d(~x)
Ep(φ)

]p−1(
∇d(~x) · ∇φ(~x, t) + η

p
d(~x)∇ ·

( ∇φ(~x, t)
|∇φ(~x, t)|

)
|∇φ(~x, t)|

)
(4.31)

which states that outside the computational band B it is not useful at all to perform
the computation, since the cut-off function would then overwrite the evolved values.

Therefore, the semi-Lagrangian schemes (4.22) and (4.24) are modified in order
to incorporate the additional factor c(φ), such that the scale factor Cn

i in (4.22),
(4.24) becomes

Cn
i = c(φn

i )
[ d(xi)
Ep(φn)

]p−1
(4.32)

and the computations are restricted to the narrow bands described in Section 1.6.
As an example, the bands involved in the different parts of the scheme are de-

picted in a 2d case in Figure 4.5. Following the notation of Section 1.6 and referring
to the left panel of Figure 4.5, the computational band for the update Bn is consti-
tuted by the points depicted in green. Moving to the right panel, one can observe
that the reinitialization band Bn+1 is composed by all the points depicted in green,
light blue and red. In particular, these red points are the ones detected as the closest
points to the interface Γn+1, constituting the set X in the reinitialization scheme
presented in Section 1.5.

Moreover, we point out that the addition of the first neighbours of active points,
namely the light blue points, in the computational band for the reinitialization, is
crucial to let the computational bands Bn+1 move contextually with the zero level
set of φ. Otherwise, the evolution will remain confined to the first computational
band. In our surface reconstruction application, this would mean that if P 6⊂ B0 we
could never hope to reach the point cloud.

Figure 4.5: On the left, the mask that detects the computational subgrid Bn, base of the
level set function φ at time n. Active nodes are depicted in green, their first neighbours are
depicted in light blue (they are inactive during the update, while they are active during the
reinitialization step) and remaining inactive nodes are depicted in blue. On the right, the
mask associated to the computational subgrid Bn+1 for the reinitialization of φ̃n+1. Colors
are used in the same way, with in addition red nodes representing the nodes immediately
close to the interface on which the signed distance function is computed explicitly with
the one step procedure.
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4.5 Numerical tests
In this section we present some representative numerical results obtained with the
algorithm described in the previous sections. In order to compare easily the different
P , we have rescaled all the point clouds in the box [−1, 1]d.

As we are looking for a minimum of the energy functional (4.1), we will consider
the same stopping criterion used in [68]: at time n, the algorithm stops if

∆n
E = |ēk

n−1 − ēk
n|

ēk
n

< 10−4, where ēk
n = 1

k

n∑
i=n−k+1

E2(φi) (4.33)

or after a maximum of 100 iterations. Note that in (4.33), the energy functional
(4.1) is computed with p = 2. This condition is in practice a way to detect stationary
points or flat areas of the energy functional. In all the tests we set k = min(n, 10)
and forced the algorithm to do at least 10 iterations.

We point out that some other stopping criteria can be considered. In [124] the
authors propose to stop the evolution either all data points are close enough to the
zero level set, i.e. |φ(Q)| < tol for any Q ∈ P or |φt| is small enough, meaning that
we are close to an equilibrium state. Alternatively, the mean of squared differences
of two subsequent time steps is tested in [62] is order to get a right choice of the
number of time steps for the model creation.

4.5.1 Quantitative evaluation
In order to get a quantitative insight into the quality of the reconstruction achieved
with our scheme and compare it with already existent methods, different quantities
are considered. In all the tests we compute, alongside (4.33), the normalized L1-
norm of the update between two successive iterates, namely

εn
1 =

∑
~xj∈G

|φn+1
j − φn

j |∑
~xj∈G

|φn
j |

, (4.34)

as in [26], and and the L1-norm of the error, when the exact signed distance function
φ∗ is given.

Furthermore, we compute the average of the error on the points of the cloud

Errn
P =

∑
Q∈P

|I[Φn] (Q) |

|P|
, (4.35)

to make some considerations on the role of the curvature regularization and to
evaluate how much the final reconstruction is attached to the data set.

4.5.2 Choice of parameters
It only remains now to detail the choices for the parameters p and η and for the
spatial and temporal discretization.
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r p η
1 1 0.05
2 2 0.05

≥ 3 2 1

Table 4.1: Standard values for p and η in each run r of Algorithm 1.

In [26], the authors consider the case with p = 1, which grants for a faster
evolution of the initial data towards the cloud and also does not require to compute
the factor [d(~x)/Ep]p−1, while in [124] the authors suggest to set p = 2, which is more
effective in reaching a steady state for the evolution. Also, setting η = 0 simplifies the
update formulas (4.22) and (4.24) since all x∗

j,i coincide. Furthermore, disregarding
the curvature effect, it prevents from loosing too much details, especially on coarse
grids. On the other hand, increasing values of η ≥ 0 will smoothen the solution and
will help handling changes of topology, at the price of having a zero level set slightly
off from the cloud P .

Our goal is to compute a levelset with p = 2 on a fine grid. In order to save
computational time, we combine different choices of the parameters in more than
one run of Algorithm 1, gradually increasing the resolution of the grid.

Let r represent the number of the run of Algorithm 1, Table 4.1 summarizes the
usual approach. We point out that η = 0.05 is chosen accordingly to the analysis
made in [62] and also with the aim of better handling possible changes in topology,
while η = 1 is chosen in order to reproduce the original model. On the other hand,
we will see that the choice η > 1 might be useful when the dataset is affected by
noise in order to further smoothen the solution.

Regarding the spatial and temporal discretization we set

∆x(r) = C∆x

2r−1hP , ∆t(r) = ∆x(r), (4.36)

where r is the number of the current run, hP is specified below, and, unless otherwise
specified, C∆x = 1. The above spatio temporal discretization clearly states the
advantages of using the SL approach since in (4.36) we set ∆t = O(∆x), not being
prohibitively constrained by the parabolic term. In the usual procedure three runs
of Algorithm 1 are performed.

In (4.36) hP represents an estimate of the resolution of the cloud P ; its value
is approximated by randomly choosing a sample made up of the 10% of the points
in P and then computing the average of the distances between each of these points
and their nearest neighbour in P .

In the first and coarsest run (r = 1), we compute the initial data as described in
subsection 4.4.4. The required threshold is set as γP = KP hP with KP set to 2.0,
unless otherwise specified. The role of KP is relevant when the points in P are not
evenly distributed on the sampled surface. It is in fact common, especially in 3d,
due to the supports used for the object during laser scanning, to find data sets that
have piggy bank-like shapes, which have fake holes that could distort the result.
In such cases, the good practice consists in choosing a larger KP , to start with a
level set that is further away from the data, but encloses the point cloud without
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Figure 4.6: Steps of the algorithm for the 2d circle case: on the left, the distance function
is represented; the central panel shows the initial data and its zero level set (black line);
the final data and its contour (black line) are represented on the right. Data represented
here has been obtained with WENO reconstruction.

entering in the fake cavities. For the later runs (r > 1), we use as initial data the
final solution computed by the previous run and interpolated on the current grid.

All the codes have been written in C++ language with the support of the MPI
and of the PETSc library [7, 6]. In particular, the communications in the SL step
4c of Algorithm 1 have been performed with the help of a DMSWARM object. The
tests have been performed on the Galileo100 cluster hosted at CINECA1, exploiting
the resources assigned to ISCRA-C Projects2.

4.5.3 2d data sets
Circle test

We first consider a data set P made up of 64 points uniformly chosen on a circle of
radius 1, thus having a cloud size approximately equal to 9.81 × 10−2.

The main steps of the reconstruction of the circle are depicted in Fig. 4.6, while
Fig. 4.7 collects significant graphs to evaluate the accuracy of the method. The
three runs of the algorithm required respectively 18, 20 and 12 iterations using the
Q1 reconstruction, while 20, 13 and 33 iterations are required in the WENO case,
with an amount of computational time equal to 9.40e− 02 and 1.31e− 01 seconds,
respectively.

Looking at Fig. 4.7 note how the zero level set approaches the cloud: as expected,
the normalized L1-norm of the update does not show a monotone profile and the
error on the cloud Errn

P is not vanishing due to the finite grid size and to the
curvature term. During the first run, the interface quickly moves towards the data,

1 https://www.hpc.cineca.it/systems/hardware/galileo100/
2 Surface Reconstruction with Level Set Method (HP10CPQ93M)

Parallel Scalability of Surface Reconstruction with Level Set Method (HP10COSEJL)
Adaptive Mesh Refinement in Level Set Methods (HP10C7HWOL)
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Figure 4.7: Significant quantities computed for the circle test using WENO interpolator.
In the top-left panel the energy functional is depicted: the drop between two successive
runs is due to the change of the grid size and the consequent new computation of the
distance function. In the top-right panel the error computed on the cloud is shown: as
expected, its profile is not monotone since during the evolution the interface can even pass
the cloud and then come back. The bottom-left panel represents the running average of
the energy functional: note that in the first 10 iterations of each run the moving average is
still forming up. The bottom-right panel represents the normalized L1-norm of the update
between two successive iterates.

Q1 WENO
r Grid L1-err Energy Error on P L1-err Energy Error on P
1 42 × 42 8.01e − 02 1.76e − 01 1.29e − 02 7.49e − 02 1.57e − 01 1.20e − 02
2 58 × 58 9.74e − 03 1.19e − 01 3.10e − 03 1.01e − 02 1.15e − 01 3.86e − 03
3 99 × 99 1.71e − 03 1.04e − 01 6.43e − 04 1.48e − 03 1.01e − 01 5.05e − 04
4 181 × 181 6.80e − 04 1.04e − 01 5.06e − 04 6.29e − 04 1.03e − 01 4.61e − 04
5 344 × 344 2.73e − 04 1.04e − 01 3.77e − 04 2.48e − 04 1.04e − 01 3.19e − 04

Table 4.2: Errors and energy computed for the circle test at the end of each run. To better
appreciate the results Algorithm 1 has been performed five times, fixing the parameters
according to Table 4.1. Note that, the better results on WENO, especially in terms of the
error computed on the cloud P, are linked to a greater ability to be faithful to the data
set and to capture details.
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η = 1
L1-err= 9.79e − 03

η = 5
L1-err= 9.68e − 03

η = 10
L1-err= 9.93e − 03

η = 15
L1-err= 1.15e − 02

η = 20
L1-err= 1.52e − 02

η = 25
L1-err= 2.16e − 02

η = 30
L1-err= 3.68e − 02

η = 35
L1-err= 1.28e − 01

Figure 4.8: Reconstructions form noisy data. A 10% of normally distributed noise is
added to P and increasing values of η in the final run are considered. The solution keeps
smoothing, until it degenerates (η = 35).

Q1 WENO
r Grid L1-err Energy Error on P L1-err Energy Error on P
1 30 × 30 1.01e + 00 3.76e − 01 9.44e − 02 9.09e − 01 3.33e − 01 8.07e − 02
2 34 × 34 1.18e − 01 2.65e − 01 3.08e − 02 7.71e − 02 2.96e − 01 1.69e − 02
3 51 × 51 1.27e − 02 2.39e − 01 4.71e − 03 9.69e − 03 2.32e − 01 3.43e − 03
4 85 × 85 4.30e − 03 2.38e − 01 7.10e − 03 3.01e − 03 2.37e − 01 4.37e − 02
5 153 × 153 1.45e − 03 2.42e − 01 5.95e − 02 1.04e − 03 2.42e − 01 4.16e − 02

Table 4.3: Errors and energy computed for the square test at the end of each run. To
better appreciate the results, Algorithm 1 has been performed five times.

it can even pass through the cloud, and then stabilizes. During the successive
runs the reconstruction becomes more accurate: the energy gets closer to the exact
value of the energy computed for a circle, represented by the dashed orange line
(≈ 7.10 × 10−2), and the error made on the cloud decreases. In this case, the exact
signed distance function from the circle is known and we can compute the L1-norm
of the error (see Table 4.2).

Finally, we perform the circle test adding a normally distributed noise to the
data (10%). Fig. 4.8 shows the WENO reconstructions corresponding to increasing
values of η in the last run: for η = 5 we have the best result in term of L1 error,
while for larger values of η we get a smoother solution, but a larger L1 error due
to the shrinking of the level sets, until, for η = 35, the zero level set completely
degenerates.

Square test

In the second test we consider a cloud made up of 24 points representing a square
rotated by 45 degrees with respect to the Cartesian axis. The reconstruction takes
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Figure 4.9: From left to right: a comparison between the curves reconstructed with Q1
(blue line) and WENO (red line) interpolators at each run.
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Figure 4.10: Energy and error on cloud computed for the square test using WENO
interpolator.
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Q1 WENO
r L1-err Energy Error on P L1-err Energy Error on P
1 5.56e − 02 2.12e − 01 4.60e − 03 4.97e − 02 1.90e − 01 4.05e − 03
2 9.02e − 03 1.74e − 01 1.81e − 03 8.73e − 03 1.71e − 01 1.93e − 03
3 3.65e − 03 1.61e − 01 1.56e − 03 3.27e − 03 1.57e − 01 1.37e − 03

Table 4.4: Errors and energy computed for the sphere at the end of each run.

respectively 23, 26, 14 iterations and 1.08e − 01 seconds in the Q1 case, and 24,
34, 29 iterations and 1.50e − 01 seconds in the WENO case. The final curves of
each run are depicted in Fig. 4.9. Graphs of the energy functional and of the error
on the cloud are reported in Fig. 4.10, exclusively for the WENO case. It is worth
highlighting the role of µ: the curvature regularization in the last run penalizes the
sharp corners, thus providing a final contour with a controlled maximum curvature,
which, although the higher resolution of the grid, is not passing exactly through the
corresponding points of the cloud.

Table 4.3 shows the errors computed with respect to the exact data. We point
out that in this test the WENO based algorithm leads to significantly lower errors,
due to the differences near the corners.

4.5.4 Synthetic 3d data sets
In this subsection we present numerical tests for the reconstruction of 3d shapes.
Here the data sets are synthetic and are made up by sampling points on simple
geometrical forms for which the exact signed distance function is known.

Sphere

The first 3d test has been performed on a point cloud made up of 2562 points chosen
on a sphere of radius 1. The reconstruction procedure is illustrated in Fig. 4.11 for
the WENO case with the original data set (first row) and a perturbed one (second
row, adding 10% of normally distributed noise). In this simple case it is worth
emphasizing that the role of the curvature regularization is to provide a smoother
final surface than the ones provided by the previous two runs. In fact, setting µ = 10
in the last run of the noisy case, we aimed at smoothing the final surface that
would have been sensibly rough with the usual setting of the parameter. Looking a
Table 4.4 one can also compare the results obtained with different interpolators and
observe the better performance of the WENO interpolator.

Cube&Spheres

The second test concerns a three-dimensional domain composed by a cube joined
with three spheres, sampled by 2346 points. The cube edge length was 0.8, the first
sphere has radius 0.25 and centre at the middle of an edge of the cube, while the
other two had radius 0.15 and were centred onto the two vertices of the opposite
edge of the cube. The geometrical object was rotated in such a way that no face nor
edge were aligned with the background Cartesian grid.
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Figure 4.11: Reconstruction steps of a sphere for the WENO case. In the first row the
point cloud and the final zero surface with and without the point cloud are depicted for
the unperturbed case. In the second row the same figures are produced adding a 10% of
noise to the dataset and setting µ = 10 in the last run in order to smoothen the solution.

Figure 4.12: The reconstructed surfaces of the “Cube&Spheres”. On the left, the result
obtained with the Q1 interpolant, while on the right, the result obtained using the WENO
interpolant.

Q1 WENO
r L1-err Energy Error on P L1-err Energy Error on P
1 9.86e − 02 1.82e − 01 1.05e − 02 9.34e − 02 1.66e − 01 8.92e − 03
2 2.90e − 02 1.55e − 01 4.64e − 03 2.85e − 02 1.53e − 01 4.18e − 03
3 1.34e − 03 1.46e − 01 4.91e − 03 1.30e − 02 1.42e − 01 3.95e − 03

Table 4.5: Errors and energy computed for the Cube&Spheres at the end of each run.
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Figure 4.13: Energy and error on cloud computed for the “Cube&Spheres” using WENO
interpolator.

Figure 4.14: Mechanical part: the dataset, and the zero level set obtained with Q1
(center) and WENO (right) interpolator.

Results are shown in Fig. 4.12 and in Table 4.5. As for the 2d case of the
square, the curvature regularization provides rounded edges and corners in the final
reconstruction, especially in the Q1 case. Here too the WENO reconstruction shows
better performances according to all three measures and especially to the error on
the point cloud. Plot of the energy functional and of the error on the cloud are
shown in Fig. 4.13 for the WENO case. Note in particular that the minimum of the
error on P is reached at the end of the second run and is about 4.64e − 03, while
at the end of the third run the error is about 4.91e − 03, which is an effect of the
curvature regularization.

Mechanical part and knot

In the following tests we consider two point clouds that has been tested also in
reference works as [71, 124].

The first one is made up of 4102 points representing a mechanical part which
presents both rounded and sharp features. The results are depicted in Fig. 4.14
where one can notice how the WENO reconstruction fits more faithfully the dataset;
in fact, the final errors computed on P are equal to 7.59e − 03 and 3.74e − 03,
respectively for the Q1 interpolator and the WENO one.

The second dataset consists of 10000 points and represents a knot. Motivated



100 4 - Surface reconstruction from point cloud

Figure 4.15: The reconstruction procedure for the knot point cloud, using WENO in-
terpolator. First row: usual initial guess obtained as a proper isocontour of the distance
function from P. Second row: ellipsoidal initial guess.

by its intriguing topological features, we explored the capability of our method to
accurately reconstruct its shape, even when we start from an initial data with a
completely different topology. If Fig. 4.15 we show the initial and final data of the
reconstruction procedure using the WENO interpolator setting C∆x = 2: in the first
row the initial data is computed as usual, choosing KP = 10, while in the second row
the initial data is chosen to be an ellipsoid encompassing the dataset (the maximum
number of iterations in this latter case has been set to 200). Of course, we observe a
difference in the number of iterations: the first case requires 61, 23 and 10 iterations,
while the second one requires 120, 24 and 14. The computational times are reported
in Tab. 4.9.

4.5.5 Data sets from laser scans
Here we test our method using data sets coming from laser-scanning of real ob-
jects. These point clouds are made available in the Digital Shape WorkBench of
the AIM@SHAPE project [2] or in the 3D Scanning Repository of the Stanford
University [109].

The “Frog” and the “Bunny”

We first consider a point cloud named “Frog” [2] and one named “Bunny” [109],
made up of 2512 and 35947 points, respectively. The results are shown in Fig. 4.16
and in Tables 4.6, 4.7 and we point out that for the “Bunny” we set C∆x = 2. In
both these two cases the data sets have holes in the bottom and that’s why we had
to increase the threshold γP for the initial data computation, thus we set KP = 10.
This obviously produced an enlarged initial contour and therefore more iterations
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Figure 4.16: The reconstructed surfaces of the “Frog" and the “Bunny", respectively on
the first and on the second row. On the left, the result obtained with the Q1 interpolant,
while on the right, the result obtained using the WENO interpolant. One can appreciate
how the WENO recostruction better recovers the details of the paws, in the “Frog" case,
and of the ear, in the “Bunny" case.

Q1 WENO
r Energy Error on P Energy Error on P
1 2.70e − 01 3.97e − 03 2.64e − 01 3.54e − 03
2 2.77e − 01 3.17e − 03 2.75e − 01 2.55e − 03
3 2.82e − 01 3.33e − 03 2.82e − 01 2.34e − 03

Table 4.6: Errors and energy computed for the “Frog” at the end of each run.

Q1 WENO
r Energy Error on P Energy Error on P
1 9.80e − 02 3.63e − 03 8.78e − 02 3.16e − 03
2 8.00e − 02 1.38e − 03 7.62e − 02 1.18e − 03
3 7.23e − 02 1.09e − 03 7.08e − 02 8.09e − 04

Table 4.7: Errors and energy computed for the “Bunny” at the end of each run.
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Figure 4.17: Final reconstructions of the “Teapot” with WENO interpolator. The left
panel collects the result obtained with C∆x = 0.5, while on the right C∆x = 0.25. The
first setting fails in recovering the spout, while the second one succeeds.

were needed during the first run, but this simple strategy secured us from getting
distorted results deriving from a bad initial data. Of course, alternatively, one could
also fill these holes in an ad-hoc preprocessing stage by adding some points to the
cloud.

Note in particular, from Fig. 4.16, that the high order interpolator provides a more
faithful reconstruction, which can be also visually appreciated from some details
of the dataset where the cross section of the point cloud it’s comparable with its
resolution.

A teapot with tiny details

In the next test we focus our attention on the ability of our algorithm to capture
tiny details of an object. A point cloud named “Teapot” [2] has been considered for
this aim since it presents a more complex topology and parts whose cross section is
more or less comparable with the size of the cloud. In Fig. 4.17, the reconstructions
obtained with the WENO interpolator, choosing respectively C∆x = 0.5 and C∆x =
0.25, are depicted. We point out that in is this test we force µ = 0 in the first two
runs in order to retain as much details as possible. In fact, higher values of µ expose
to the risk of loosing important details of the shape. The higher resolution of the
grid of course requires a great computational effort: the finer reconstruction took
approximately six times as long as the first (see Table 4.9).

Complex shapes and topology: the “Happy Buddha” and the “Dragon’

Finally we have done some tests on very complex point clouds present in the Stan-
ford 3D Scanning Repository [109]. We considered two data sets, named “Happy
Buddha” and “Dragon” respectively, because they present some nice features like
free holes, small bridges due to the carving and many details to be recovered. The
results of our reconstructions are depicted in Fig. 4.18 and has been obtained setting
KP = 10 in the computation of the initial data, and C∆x = 4 in order to limit the
huge amount of grid points.

On the “Happy Buddha” test, we point out that the reconstructed surface recov-
ered equally well both the very flat surfaces of the base and the tiny details on the
sides, on the belly and on the drapery. Also all the holes of the highly nontrivial
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Figure 4.18: Final reconstructions of the “Happy Buddha” and the “Dragon” using
WENO interpolator.

topology were correctly recovered, including the small ones on the sides: we point
out that the initial data had detected the two big holes at the top but missed the two
tiny ones at the sides which were recovered during the surface evolution, confirming
the ability of the method to deal with topological changes of the surface.

On the “Dragon” test, we point out that the scales on the skin are still well
approximated despite the curvature regularization. Also, we stress how the level
set has been pushed inside the mouth during its evolution and how the sharp teeth
shapes have been well approximated.

4.5.6 Detecting tunnels
In this Subsection, we would like to point out a drawback of the reconstruction
method presented here, suggesting a possible way to overcome this issue.

More specifically, there exist some situations in which the evolution of the level
set function φ stops and reaches a local minimum which is not even close to the
desired one. This is for example the case of tunnels, and by tunnels we mean all
the situations, like the one in Figure 4.19 in which there is a portion of the point
cloud P which is distributed along two close parallel lines in the 2d case or two
close parallel planes or even on the curved surface of a cylinder in the 3d case; see
Figure 4.20. This is topologically equivalent to the case of holes in the “Teapot” and
the “Happy Buddha” tests, but metrically different. By “tunnels” we mean “holes”
that are quite long with respect to the size of their cross section.

In such situations, at some point, the gradient of the level set function φ and the
gradient of the distance to P , which leads the evolution, become orthogonal and the
evolution stops, even if the distance function is still large. Although we known that
changing the initial data and choosing an initial zero set which starts already inside
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Figure 4.19: Configuration of a tunnel in a point cloud P, represented by the red star
points. The evolution of φ initially pushes its zero level set inside of the corridor, but then
is slowed down until it stops due to the vanishing of the transport term. Approaching the
tunnel the gradient of φ and the velocity field ∇d become orthogonal.

Figure 4.20: The pierced cylinder reconstruction procedure: given a point cloud P
sampled from a cylinder presenting a long and narrow hole in the center (first panel), we
recover its shape starting from an initial data which is topologically equivalent to a sphere
(second panel). Substituting the velocity field ∇d with ∇φ we can a final reconstruction
that faithfully represents the shape of the cylinder, including the whole (third and fourth
panel).
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the cavity can solve the situation, from a mathematical point of view one would not
like to have such a dependence on the initial guess. The point is how to distinguish
these situations from other ones like for instance the ones of the “Frog” and the
“Bunny” in which the plugging behaviour of the level set function is the desirable
one.

The trick we propose is to check the following conditions: if d(xi) < 2∆x and
|∇d(xi)| < 0.5, we replace the velocity field ∇d with ∇φ which in practice, supposing
that the level set function is coming from the "outside" of the cavity, is a way of
letting the level set function proceed in the same direction followed so far.

In fact, a condition on the scalar product ∇φ ·∇d might be too strong and might
expose to the risk of perturbing the evolution even in well resolved areas. On the
other hand, we expect that in correspondence of a tunnel, the two computational
bands built around the different sides of the tunnel merge with each other including
the points located in the middle in which the distance function presents dangerous
kinks. In a continuity framework this of course poses a serious issue, but in the
meanwhile, in the discretized setting, it offers a criterion for the detection of such
regions.

A specific investigation of this issue has been done on a synthetic object con-
stituted by a cylinder with a hole connecting the two parallel faces and the result
are showed in Figure 4.20; the tunnel in the cylinder has been detected even if the
initial data exhibits a different topology and this wouldn’t have happened applying
the original scheme.

4.6 Scalability of the algorithm
Our algorithm, thanks to the localization of the computational effort on a band
around the evolving zero level set, which is a codimension 1 variety of Rn, has a cost
that scales as O(1/∆xn−1) under grid refinement. This is confirmed by comparing
the two “Teapot” experiments (Table 4.8 and 4.9). The memory footprint of our
implementation scales instead as O(1/∆xn), due to the data attached to the full grid
G. This has suggested to consider a distributed memory parallel implementation
based on the MPI paradigm.

In this last subsection we have collected some scalability results to evaluate the
efficiency of the algorithm. The test depicted in Fig. 4.21 has been performed using
the “Dragon” point cloud (setting C∆x = 2) progressively increasing the number of
nodes, while keeping constant the number of processors per node.

Computing the parallel efficiency of a run with M cores as ε = 40·T40
M ·TM

, where TM is
the computational time, we obtain 84%, 63%, 58%, respectively for 80, 120 and 160
cores. This can be ascribed to the interplay between the Cartesian grid partitioning
for G and the localization techniques of subsection 4.4.6. In fact, when the number
of cores is increased, also the chance of having cores with no (or small) intersection
with the active computational band is also increased, with a negative impact on
load balancing.



106 4 - Surface reconstruction from point cloud

40 80 120 160

300

400

500

600

700

Total number of ranks

C
PU

tim
es

Figure 4.21: Scalability results for the “Dragon” reconstruction. The blue marks report
the CPU times in seconds required using a fixed number of ranks per node (40) and
gradually increasing the number of nodes, from 1 to 4.

Point cloud Grid
r = 1 r = 2 r = 3

Sphere 54 × 54 × 54 78 × 78 × 78 135 × 135 × 135
Cube&Spheres 55 × 62 × 55 81 × 94 × 81 141 × 166 × 141

Frog 89 × 75 × 87 116 × 89 × 113 211 × 157 × 204
Bunny 109 × 108 × 92 177 × 175 × 142 332 × 329 × 262
Knot 105 × 106 × 67 169 × 171 × 93 317 × 321 × 165

Knot (ellipse) 105 × 106 × 67 169 × 171 × 93 317 × 321 × 165
Mechanical part 77 × 77 × 148 92 × 92 × 234 163 × 163 × 446

Teapot 119 × 81 × 102 176 × 101 × 143 330 × 181 × 264
Teapot (finer) 184 × 109 × 151 330 × 181 × 264 638 × 340 × 506
Happy Buddha 152 × 331 × 152 272 × 631 × 272 522 × 1241 × 522

Dragon 263 × 193 × 132 494 × 354 × 233 966 × 687 × 444

Table 4.8: Dimensions of the Cartesian grid involved for each 3d test at each progressive
run.
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Point cloud Ranks Total CPU time
Q1 WENO

Sphere 16 0.03 0.05
Cube&Spheres 16 0.03 0.05

Frog 16 0.08 0.11
Bunny 16 0.28 0.34
Knot 16 0.27 0.42

Knot (ellipse) 16 0.32 0.68
Mechanical part 16 0.11 0.36

Teapot 32 0.43 0.58
Teapot (finer) 32 2.15 3.58
Happy Buddha 32 1.35 2.00

Dragon 32 1.48 2.15

Table 4.9: Computational times (min) of the algorithm.
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Chapter 5

Adaptive Mesh Refinement

So far, the main topics of this thesis have revolved around SL schemes, high-order
local interpolators, the LSM and, in particular, the application of these techniques to
the HJB equations and to the design of an algorithm for surface reconstruction from
point clouds. Moreover, in what precedes, we have always been concerned about the
computational efforts required by the techniques involved, emphasizing the features
of different interpolators, the unconditional stability of the SL scheme, and the
importance of localization when dealing with the LSM. As a matter of fact, focusing
specifically on the case of surface reconstruction detailed in Chapter 4, we have
also seen how the advantages carried by these techniques might be strongly limited
by the use of a uniform Cartesian mesh. Instead, the considerations made above,
tempt us to abandon this Cartesian uniform framework in favour of an adaptive
one. Thus, to conclude our dissertation, we will present in this chapter an extension
of the numerical techniques seen before, on Quadtree, in two spatial dimensions,
and on Octree, in three spatial dimensions, focusing in particular to the application
on surface reconstruction, as described in Chapter 4. We believe that this kind of
meshes allow for a smaller memory footprint and computational cost since they can
concentrate the efforts near the evolving front, but also retain the simplicity of point
location typical of Cartesian grids.

In the level set context, the choice of extending the previous techniques to AMR is
naturally prompted first of all by the advantages of working with level set functions
to detect an interface. In fact, given a level set function φ associated to an interface
Γ, constructing a tree-based grid refined around Γ is quite simple since the values of
|φ| naturally give a proper criterion for refinement which causes to have a smaller
grid size close to Γ and a larger one when we are far away from the interface.
Thus, immediately, one deduces that the additional cost introduced by the implicit
approach introduced in Chapter 1, and mitigated by localization, might be directly
reduced by the adaptivity properties of the grid, focusing most of the grid cells close
to the zero levet set of φ, namely the interface Γ.

Also, as already stated, using a SL approach, we can satisfy our need of refin-
ing the grid in the proximity of Γ, without being prohibitively limited by the CFL
restriction, which would be instead the case of Eulerian schemes, especially in this
modelling case where, due to the curvature regularzation, a parabolic term appears
in the governing PDE. On the other side, SL algorithms, compared to Eulerian ones,
might not be easy to parallelize, especially on adaptive grids, since, depending of
the CFL number, the feet of the characteristics may end up outside the halo region,
in remote ranks, and may also significantly cluster, consequently affecting the load
balancing.

In what follows we will present the formulation of the surface reconstruction
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method of Chapter 4 based on AMR. We will start by introducing the main features
of the adapted grid and its management mainly following [19, 45, 88], and then we
will retrace all the ingredients needed to design the surface reconstruction algorithm
in this octree-based setting. The main aspects related to AMR and parallelization
will be emphasized along the way and some preliminary results will be collected at
the end of the chapter. For this adaptive version, the codes have been implemented
in C++ using the P4EST library [19] for grid management and MPI parallelization.

5.1 Grid management with P4EST
In the AMR context, the terms “quadtree” and “octree” denote a recursive tree
structure where each node is either a leaf or has respectively four and eight children.
Given a cubic domain Ω′

k, we can associated to Ω′
k a quadtree or an octree, depending

on whether we are in two or three dimensions. Here, the notation Ω′
k is chosen in

order to be consistent with the embedding of the region Ω ⊂ Ω′ of Chapter 1.
The nodes of a quadtree are called quadrants and the nodes of an octree are

called octants, while the root node corresponds to a cubic domain that is recursively
subdivided according to the tree structure. In this context, a “forest” is a collection
of such logical cubes Ω′

k that are connected conformingly through faces, edges, or
corners, each cube containing an independent tree.

In P4EST, to discretze a physical domain Ω′ we consider multiple trees, the
forest, each one of them covering a subset Ω′

k of the domain, fitting its geometry.
The trees are based on reference cubes [0, 2L]d, where L is the maximum level of
refinement and d is the space dimension, such that a one-to-one transformation
Ψk : [0, 2L]d → Ω′

k is defined. In practice, with this approach one is allowed to define
also complex geometries involving a macro-mesh composed by trees, representing the
entire domain, and the inner tree micro-meshes composed by the refined quadrants
or octants. While the cells of the macro-mesh have to be conforming, this is not
required for the cells of the micro-mesh. In the parallel perspective, we point out
that each quadrant or octant representing a leaf belongs to precisely one process
and is stored only there.

For simplicity we will cover here the description of the grid just in the two di-
mensional case, thus we will refer to the elements of the adaptive grid as quadtrees
and quadrants. When needed, we will specify the differences related to the three
dimensional case. Also, we will not cover the case of a forest composed by multiple
trees, but we will limit ourselves to the case of a single cubic domain Ω′ represented
by a single tree. The interested reader is referred to [19, 45] for more details about
the management of a non-trivial forest.

5.1.1 Meshing and data storage
One of the main challenges in managing and parallelizing algorithms on adaptive
grids is handling the grid itself. Earliest libraries worked by providing a copy of
the entire grid to each process and employing serial ordering techniques [9, 77], with
consequent limits to the scalability of the algorithms. On the other side, the modern
idea behind storing data is based on the concept of space-filling curves (SFCs) which
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Figure 5.1: Representation of a refined 2d square domain. In the left panel the mesh
and the z-order curve are depicted, with different colors representing different owning
processes. In the right panel the corresponding subdivisions from the root are shown. The
black dashed line represents the z-curve filling the domain.

Figure 5.2: A Quadree refined around the zero level set of the signed distance function to
a circle. Left: grid partitioning among five processes, each one represented by a different
color. Right: detail of the portion of the domain owned by process number 2, together
with its ghost layer. Even if the yellow area is not topologically connected, its components
are contiguous in the z-order storage.
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Figure 5.3: Two quadrants of the same tree with different neighbours. The main quad-
rants are depicted in red and may have themselves different size.

has been demostrated to be efficiently exploited for parallel load balancing, too [3,
61, 22]. Indeed, many SFCs have a nice property called compactness, which states
that contiguity along the SFC index implies, to a certain extend, contiguity in
the d-dimensional space of the Cartesian mesh. As a consequence, one can expect
improved AMR performance due to a better cache memory usage resulting from a
certain degree of preserved locality between the computational mesh and the data
memory layout.

The P4EST library [19] is one recent example of a cell-based AMR implemen-
tation that uses linear storage given by a SFC. Each quadrant in the micro-mesh
is then associated with its position in the reference cube [0, 2L]2 and is therefore
uniquely tracked by its integer spatial coordinates, (s, t) ∈ [[0, 2L]]2. Linear storage
requires a one-to-one mapping from the spatial coordinates (s, t) to a linear index
i, which in P4EST is provided by the Morton space filling curve, also called z-order
curve. In Figure 5.1 one can see how the z-order curve, the black dashed line, cov-
ers a 2d mesh and how the leaves of the tree are distributed among four different
processes.

5.1.2 Working with cell centers
As usual, when discretizing a domain, one can choose to work in a node-based
framework, as in a finite differences context, or in a cell-center one, as it is done in
finite volume schemes. It is crucial to point out that, compared to what we have done
in the previous chapters, here we will involve a finite different approach based on
cell centers, instead of vertexes. Thus, the centers of the quadrants will be the grid
points of our spatial discretization, and our solution, namely the level set function
φ, will be computed in these centers. In particular, when we use the notation φn

i

we mean to denote the value of the function φ in the node i, corresponding to the
center xi of the quadrant i, at time n. This choice is mainly suggested because it
leads to a simpler implementation, as data can be directly associated to the leaves
of the tree in P4EST.

Moreover, for each quadrant i, we denote with ∆xi its edge length and, once the
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maximum level of refinement L is fixed, we define as

∆xmin = ∆Ω′

2L
(5.1)

the minimum edge length of the quadrants composing the tree, where ∆Ω′ is the
edge length of the cubic domain Ω′.

The most important consequence of working with quadrant centers is that, per-
forming one of the interpolation techniques proposed in the previous sections among
the nodal values, we cannot anymore guarantee the continuity of the reconstruction
at the vertexes of the quadrants themselves, and even more so on their edges. This
is true not only in the case of an adapted mesh, but also in the case of a uniform
Cartesian one, which is for instance the situation that will locally occur around the
zero level set of φ.

Moreover, we have to take into account the fact that, due to adaptivity, the
number of neighbours of each quadrant is not fixed, as well as their dimensions. As
a consequence, one should resort to proper strategies to compute, for instance, the
derivatives in each grid point, namely the cell centers, and also, if one would like to
perform an interpolation of φ of degree r ≥ 1, the stencil of the interpolation operator
cannot be fixed, too. Figure 5.3 shows an example of two possible situations: two
different quadrants of the same grid may have a different number of neighbours,
of different sizes, and these type of changes can be observed not only looking at
different locations of the mesh, but also during the evolution of the mesh in a fixed
location.

Putting together all these considerations, in what follows, we will resort to an
interpolation between the values of φ following a least-squares approach. The in-
terpolation will be necessary for the SL discretization, and also exploited for the
computation of the derivatives and for the adaptivity procedure.

5.1.3 Adaptivity
P4EST creates the macro-mesh only once, initially, and then adapt it by modifying
the micro-mesh. The steps below describe the typical adaptivity procedure.

• First of all, going through the linear array, the leaves are marked for refinement,
coarsening or to be left unchanged, depending on the criteria given by the user.

• The refinement and coarsening is then applied to each marked leaf, if possible,
and recursively, if required. With “possible”, we mean that the refinement and
coarsening procedures need to be consistent with the minimum and maximum
level of refinement set by the user. Moreover, a very important feature of the
adaptive algorithms is that the z-order is maintained while modifying the linear
array.

• Once the grid has been roughly adapted, in order to guarantee that the level
difference between a quadrant and each of its neighbours is at most 1, 2:1
balancing is performed. Trees with such a property are also denoted as “graded
trees”. 2:1 balancing comes of course at a price: since the grid is forced to
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degrade progressively from finer regions to coarser ones, there will be a natural
increase in the number of cells compared to non-graded trees. Nonetheless,
this procedure will ensure an easier to handle structure of the mesh, due to the
knowledge of the maximum number of neighbours per face.

• Finally, as far as parallelization is concerned, load distribution is operated
between processes by an equal division of the new array of leaves.

An example of a refined grid is shown in Fig 5.2, where we have uses the signed
distance function φ to a circle of radius r in order to refine a squared grid around
the circle until the maximum allowed level of refinement L = 8. More specifically, a
quadrant i of center xi is refined if the inequality

||xi| − r| ≤
√

2∆xi (5.2)

is satisfied, where ∆xi is the edge length of the quadrant i; otherwise, the grid is
coarsened.

In the example of Figure 5.2 the signed distance function to the circle φ is ana-
litically prescribed, thus refining and coarsening are easily performed by evaluating
φ in the new quadrant centers. In a more general situation in which one only knows
the point values of φ in the nodes xi before the adaptivity step, an interpolator
operator could be used, with proper strategies to handle the procedure. The specific
example involving the Q1 interpolator will be described in the next sections.

5.2 Application to surface reconstruction
As already stated in the introductory part, the aim of this chapter is to present the
extension of the method for surface reconstruction from point clouds to the AMR
framework. The derivation of the model is thus exactly the same as presented in
Chapter 4 and also the SL scheme derived for the numerical approximation of the
solution remains the same. Nonetheless, some other ingredients presented before
need to be revised due to the unstructured grid and its partitioning scheme.

According to the change in the spatial discretization, also the notation should be
properly updated. In what follows we will refer to the whole computational grid as
T , in order to refer to the tree structure, so that

T = {xi : xi ∈ Ω′, i ∈ [1, . . . , Q]}, (5.3)

where Ω′ is the usual large enough computational domain in which we are embedding
the evolving region Ω(t), the points xi correspond to the centers of the quadrants of
the tree, and Q is the total number of quadrants in the tree. We point out that, since
for the sake of clarity we are not employing a multiple tree structure, the domain
Ω′ is required to be squared, cubic in three dimensions, in order to be represented
by just one tree. Of course the general case of a forest can be treated by applying
the techniques described here to each tree composing it.
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5.2.1 SL scheme
For the sake of clarity, it is worth recalling the SL scheme governing the numerical
evolution of the level set function φ, at least in the two dimensional case. Given an
initial level set function, from which we get initial data {φ0

i }xi∈T , we compute the
update of φn+1

i as
φn+1

i = 1
2
∑2

j=1 I[Φn]
(
x∗

i,j

)
,

x∗
i,j = xi + Cn

i ∆t∇d(xi) +
√

2Cn
i η d(xi)∆t

p
σn

i ξj,
(5.4)

where η, ξi, σn
i are the same as in Section 4.3 and Cn

i is the scale factor that,
according to (4.31), (4.32), is given by c(φn

i )
[

d(xi)
Ep(φn)

]p−1
, with the cut-off function c

defined by (1.55).
Regarding specifically the scheme (5.4), the differences from the uniform Carte-

sian case are related to the localization of the feet x∗
i,j, the interpolation operator

I[Φn] and the computation of the derivatives that, as already specified, are obtained
from the interpolant defined for the quadrant i.

Localizing the feet While on Cartesian grids localizing the points x∗
i,j is a trivial

task, on Quadree and, moreover, involving parallel implementation, this is no longer
an easy procedure due to the irregular shapes of the partitions and of the grid
itself. At best we can only expect that the locations of the feet are bounded by a
halo region of width proportional to ∆xmin, where the constant of proportionality
depends on the value of the CFL number employed to define the time step. One
remedy to avoid communications among processes could be then to increase the size
of the ghost layer, but this approach clearly would limit our choice on the time step.
Thus, similarly to what have been done in the previous chapter, also in this case we
will handle local and remote points separately, localizing them in the partition and
then making the processes communicating with each other, when needed.

The localization of a point x∗ on Quadree can be based on the same principle used
on a Cartesian grid. Once the level of refinement l, 1 ≤ l ≤ L, is fixed, the quadrant
of level l containing x∗ can be easily detected as on a Cartesian grid of width
∆xl = ∆Ω′/2l, by simply checking the relative location of x∗ in the cube Ω′. Thus,
starting from the root level, the idea is to progressively increase the searching level
l and locate x∗ in a Cartesian-like fashion until the quadrant detected corresponds
to a leaf, namely having no children.

Actually, if one just need to find the owner process of x∗, the procedure above
can stop before reaching a leaf, simply checking whether the quadrant of level l,
containing x∗, is or is not split between multiple processors.

In our implementaton, this procedure is realized by making use of the P4EST
search functions to detect the process that owns the region in which each foot of
the characteristic falls and, locally, the specific quadrant in which to interpolate.
The functions p4est_search_partition and p4est_search_local are apt to this aim:
given an array of points, they proceed iteratively top-down respectively through the
global partition and all the local quadrants in order to locate each one of the points
in the array.
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Once the feet are locally located, we can proceed by computing the values
I[Φn](x∗

i,j), sending back the interpolated values when needed and finally updat-
ing φn+1

i .

Interpolation Let us consider a space of polynomials P with a basis B. The key
point regarding interpolation on Quadtree is that, since each quadrant i may have
a different number of neighbours |Ni|, the system to solve to get the coefficients of
the interpolant on the quadrant i may have a number of rows lower, equal or greater
than |B|, clearly taking into account also the central node xi.

In our preliminary results we involved the multilinear interpolator, whose basis
functions in multi-d are obtained by tensorization of the 1d basis functions defined
for each Cartesian direction. Thus, in 2d we use the local basis Bi = {ϕik

}k=1,...,4 =
{1, x′

1, x
′
2, x

′
1x

′
2} for the quadrant i, where x′ = (x − xi)/∆xi, and we look for the

vector of coefficients {cik
}k=1,...,4 by imposing the interpolation condition

4∑
k=1

cik
ϕik

(xj) = φn
j (5.5)

for each quadrant j in the set of neighbours Ni of the quadrant i, and for the
quadrant i itself.

With this choice one can immediately note that, considering either edge and cor-
ner neighbours (see Figure 5.3), the case |Ni|+1 < |B| never occurs, but, unless rare
situations, we will be in the case in which the number of rows of the Vandermonde
matrix is greater than its number of columns, causing the system for the cik

to be
overdetermined.

Therefore, we use a least-squares approach to compute the coefficients cik
of

the interpolant imposing a constraint on the node xi, such that the interpolation
condition always holds in the center of the quadrant i. As a consequence, we will
always have ci0 = φn

i and the least-squares approach, for the Q1 case, is just applied
to the reduced system with three unknowns.

5.2.2 Refinement and coarsening
In this subsection we detail the criteria used for adaptivity in the specific framework
of surface reconstruction application, describing also the procedure used to initialize
the new quadrants. Initializing the new incoming quadrants is of course needed in
order to continue the evolution of the level set function φ. To this end, a reconstruc-
tion of the data at time tn is computed. This will also be useful in the coarsening
criterion.

Criteria Along the lines of [94], we have described in Chapter 1 the common
procedure used to localize the LSM in a proper tube around the zero level set of
φ. In order to follow this approach we need solid criteria for adaptivity that ensure
to have a properly refined grid around Γ and a progressively decreasing resolution
moving further away, in particular where our level set function φ is flattened to a
prescribed value ±γ, according to the sign of φ.
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Thus, following the notation used in Section 1.6 and later on in Section 4.4.6, we
proceed as follows:

• a quadrant i is refined if it is close enough to the zero level set of φ, i.e. if
|φn

i | < β;

• a quadrant i is coarsened if the reconstruction is flat, i.e. if |∇φn
i | ≈ 0.

In this adaptive version, the parameters β and γ, and more in general all the pa-
rameters proportional to the resolution of the grid, should be defined considering as
∆x the minimum edge length in the grid ∆xmin, as defined by equation (5.1).

Refinement Since on each quadrant i we have defined a local polynomial pi, the
procedure for the refinement is trivial and is achieved as follows.

The quadrant i of center xi originates 4 children in 2d, 8 in 3d, by dividing by
two each of its edges. The new quadrants ik have centers in xik

positioned at the
vertexes of a square, or cube, of edge length ∆xi/2 and centered in xi. The value φn

ik

is simply obtained by interpolation using the polynomial pi associated to the parent
cell i and this polynomial is inherited by the children. The inherited polynomial will
be used when recursive refinement is allowed and in cases when 2:1 grid balancing
will cause further refinements.

Coarsening The coarsening procedure consists in gluing together quadrants of
the same level. To this aim, let us consider 4 outgoing quadrants in 2d (8 in 3d) of
centers xk, k = 1, . . . , 4 (k = 1, . . . , 8 in 3d), and one incoming quadrant of center
xi. For coarsening, either the center and the value of φ associated to the parent cell
i are obtained performing an average of the centers xk and of the values φk of the
outgoing quadrants k.

In order to have a rough reconstruction on the incoming quadrant i, available for
possible recursion, also an average between the coefficient of the polynomials defined
of the quadrants k is performed. This coarse polynomial will be used to test again
the condition for further coarsening.

Note that, due to balancing, a quadrant that has just been obtained by coarsening
might be refined, hence the utility of having the rough reconstruction available.

Preparing the new time step Once the grid at time tn is adapted and the
new values are computed, a new reconstruction at time tn, as described in Subsec-
tion 5.2.1, is computed, and this will be used to compute the values of the function
φ at time tn+1. Denoting with T n and T n+1 the computational grids at time tn and
tn+1, respectively, we will follow the steps

{φn
i }xi∈T n → {φn

i }xi∈T n+1 → {φn+1
i }xi∈T n+1 . (5.6)

We point out that, since in our implementation the adaptivity process is recursive,
in addition to the values of φ, we might also need a temporary reconstruction defined
on the incoming quadrants. As already stated, this rough reconstruction will be used
in the coarsening step and could be completely avoided by not allowing recursion in
the adaptivity process.



118 5 - Adaptive Mesh Refinement

5.2.3 Distance function
As usual, to compute our reconstruction we need to define the velocity field given
by the distance function d from the point cloud P . Similarly to what we have seen
in the previous chapter, one is not interested in computing the exact values of d on
the whole grid, but just in the vicinity of the cloud.

Thus, the first step for the distance computation retraces exactly the case of the
uniform Cartesian grid: each point in P is located in a quadrant i such that dn

i is
initialized as the minimum distance of the center xi from the cloud points located
in the quadrant i.

Now, an issue arises since the most popular algorithms for solving the Eikonal
equation, i.e. the Fast Marching Method (FMM) or the Fast Sweeping Method
(FSM), might suffers either from the adaptive discretization of the grid and the
parallelization of the scheme, due to the causality across processes. Some of the
earliest attempts in parallelizing the FMM was proposed in [69, 115], where one
could notice how the number of iterations needed to get convergence greatly depends
on the complexity of the interface and on the parallel partitioning and, in general,
fewer iterations are required if the domains are aligned with the normals to the
interface. In [120] a parallel FSM method was presented for the first time, while a
hybrid FMM-FSM was presented in [33]. Finally, a parallel Fast Iterative Method
(FIM) was proposed in [74].

In this chapter, we are still not focused on the parallel implementation of these
family of methods to approximate the distance function in the whole domain. In-
stead, after doing the first initialization step, we propagate the information to the
neighbours of each initialized quadrant, computing the exact values of the distance
from the points in P .

The details of the propagation procedure will be described below in Subsec-
tion 5.2.5. Here we just point out that, even if a quadrant has been initialized in
the first step, it will be still considered in the propagation step since its value might
be updated due to the information carried over from a neighbour.

5.2.4 Reinitialization
As pointed out in Chapter 1, during the evolution we need to keep the level set
function φ well-behaved in the sense that we would like to approximately keep the
signed distance property |∇φ| = 1. In [88] the authors resort to the popular approach
of solving the reinitialization equation

φτ + S(φ̃)(|∇φ| − 1) = 0 (5.7)

using explicit finite differences following the scheme described in [87], where a
second-order accurate LSM on non-graded adaptive Cartesian grids is described.

Here instead we refer to the work of Saye [101] in which the author proposes
an efficient method for calculating high-order approximations of closest points on
implicit surfaces that can be applied also on a general unstructured grid and in any
number of spatial dimensions.

Actually we will apply the procedure introduced in [101] just in the vicinity of
the zero level set of φ and then, once we have reinitialized φ in these quadrants, we
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propagate the information in the entire T , or at least in a proper tube around the
zero set of φ (see the next subsection).

Let us consider a fixed time n of the evolution of the level set φ for which we
have obtained the updated level set function φ̃ that need to be reinitialized.

Along the lines of [101], we start by detecting the quadrants that contain the zero
level set of φ̃, namely the set T0 ⊂ T . In practice for each quadrant i, we say that
xi ∈ T0 if there exists a quadrant j in its set of neighbours Ni such that φ̃iφ̃j ≤ 0.

Once the subset T0 is found, for each quadrant i such that xi ∈ T0, a high-order
closest point algorithm via Newton’s method is applied as follows:

• for each quadrant i we create 4 points xik
in 2d (resp. 8 points in 3d) located

at the centers of a subgrid 2 × 2 (resp 2 × 2 × 2) of the quadrant i;

• each point xik
is thus projected onto the zero level set of the polynomial pi

given by the reconstruction defined on the quadrant i;

• considering the set X of all the points {xik
}xi∈T0,k=1,...,4, for each xi ∈ T0 we

find its closest point x∗
i ∈ X;

• the point x∗
i ∈ X is then used as the initial guess to compute the minimum

distance of the node xi from the zero level set of φ̃ via a Newton’s method that
relies on the reconstructed polynomial associated to the point x∗

i ;

• finally, for each xi, the reinitialized value φi is set equal to this minimum
distance, multiplied by the sign of φ̃i, namely preserving the sign of the level
set function before the reinitialization.

In practice, the method described in [101] is based on a two steps procedure to
compute the closest point to the interface φ̃ = 0 for a point xi located in its vicinity,
relying on the reconstructions pi defined on the quadrants, thus actually considering
the zero level set of the polynomials pi. The points x∗

i ∈ X are referred to as seed
points and one should note that the closest point in X to a quadrant center xi might
not have been originally generated by the same quadrant i.

We point out that, in opposition to the propagation step for the distance function,
here, once the level set function φ has been reinitialized in a quadrant with the
method described above, we fix this value such that it cannot be updated during
the propagation step.

5.2.5 Propagation through the domain
Both for the distance computation and for the reinitialization procedure we need to
propagate some initialized value to the entire grid T , or at least part of it, having in
mind to solve an Eikonal equation for the distance function or the signed distance
one.

The problem can be stated as follows: let us consider a subset D0 ⊂ T , on whose
points a certain quantity q0

k is defined. In our specific case q0
k is the distance (resp.

signed distance) of the quadrant center xk from a point x̂, which is a member of
P (resp. a reinitialization seed). We also store this reference point as x̂k attached
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Figure 5.4: Propagation of the distance function. Left: the initialized quadrants before
the propagation step are the one containing one or some of the points in P. Center:
quadrants with updated distance after one step of propagation. Right: quadrants with
updated distance after two steps of propagation.

to the quadrant. At the start of the propagation, data of quadrants in T \ D0 are
initialized to a high enough value. Then, the iteration procedure for the propagation
process is performed as follows.

During the iteration m + 1, for each xk ∈ Dm we consider its set of neighbours
N m

k and we define the set N m := ⋃
k N m

k . Note that in general N m ∩ Dm 6= ∅, as
we may need to update the values already computed in the previous step.

Now, for a point xj ∈ N m we compute q̃m+1
j as

q̃m+1
j = min

xk∈Dm
|xj − x̂k| , (5.8)

where in each computation of the distance we are considering the point x̂k associated
to xk.

The iteration process consists in testing if q̃m+1
j < qm

j in order to verify if some
information has propagated to the point xj and the quantity qj decreased. In this
way we can define

Dm+1 = {xj ∈ N m : q̃m+1
j < qm

j }. (5.9)
To complete the iteration step we set qm+1

j = q̃m+1
j , for each xj ∈ Dm+1, while

qm+1
j = qm

j , elsewhere. The propagation process is iterated until the set D is empty,
namely when the minimum has been reached in all the quadrant centers of T .

The procedure described above works exactly as it has been described, for the
propagation of the distance function from the point cloud P . The quadrants con-
taining the cloud points are initialized and then their information is propagated,
including the already initialized quadrants in the propagation procedure. In Fig-
ure 5.4 three different phases of the propagation are shown (m = 0, 1, 2). Red
quadrants are the ones that has been initialized with the distance to a point x̂, if
m = 0, or updated lowering their value of the distance to P , for m = 1, 2; the blue
ones are the ones in which the information has not arrived yet.

Regarding the reinitialization, the procedure is done analogously, but in the def-
inition of N m, m ≥ 0, we exclude the quadrants in the set D0 since we don’t
want their value of the reinitialized φ to be changed by the propagation process.
Also, in the update of qm+1

j we should take into account the sign of q0
j , such that

qm+1
j = S(q0

j )q̃m+1
j , where S is the sign function.



5.3 - Numerical test 121

5.3 Numerical test
In this section we present some numerical results obtained with this new adaptive
version of the algorithm, as described in the previous sections. The stopping criterion
and the considerations for the choice of the parameters p and η are exactly the same
as the ones described in Section 4.5.

Also, retracing the approach used in the uniform Cartesian version of the scheme,
the adaptive algorithm can be iterated more than one time, increasing of one unit
the maximum refinement level allowed and accordingly changing the parameters
p and η as described in Table 4.1. The switch from one run to the finer next is
performed automatically when the stopping criterion (4.33) is satisfied, just letting
P4EST to refine one level more. No reloading nor interpolation of the steady-state
of the previous run is needed. The maximum number of internal iteration for each
run is again set to 100. More precisely, if we want to perform R total runs of the
algorithm, this means that we perform a first run with a maximum refinement level
L = L0 and end up with a final maximum level given by L = L0 +R − 1.

In order to take into account the resolution hP of the point cloud from which we
want to reconstruct the surface, the initial value of L is set as

L0 =
⌈
log2

(
∆P

∆x∗
min

)⌉
, (5.10)

where ∆P is the edge length of the minimal cube, aligned with the Cartesian axes,
containing the point cloud P , and ∆x∗

min is approximately equal to the minimum
grid size we would like to have in our discretization, namely ∆xmin. In the first run,
according to (4.36), we set

∆x∗
min = C∆xhP , (5.11)

with C∆x usually equal to 0.5.
Regarding the choice of the time step, we consider a CFL number equal to 1 with

respect to the minimum length of the edge quadrant in the mesh, thus setting

∆t(r) = ∆x(r)
min, (5.12)

where the superscript (r) indicates the corresponding run of the algorithm. We point
out that this choice is coherent with the refinement criterion; for larger CFL numbers
we would need more refined cells or a different strategy to guarantee the accuracy
of the scheme. Note that the diffusion term would require ∆t = O(∆x2

min), while in
(5.12), similarly to the relationship employed in Section 4.5, we set ∆t = O(∆xmin).

In this first version of the adaptive reconstruction method the initial data is
simply the signed distance function associated to a circle, or a sphere, encompassing
the whole point cloud or, at least, most of the points.

5.3.1 2d data sets
Circle

The first benchmark test we propose is the reconstruction of a circle from a point
cloud constituted by the same 64 points used in the test of Subsection 4.5.3. The
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Figure 5.5: Left: the initial data for the circle reconstruction test, with the lower refined
initial grid. Right: the final level set function on the finer grid.

initial signed distance function and the final one are depicted in Figure 5.5. The final
reconstruction is obtained after 3 runs of the algorithm, progressively increasing the
resolution of the grid, that took respectively 26, 12 and 15 internal iterations. We
point out that the stopping criterion, as it is designed so far, forces to do at least
10 iterations.

The profiles of the energy functional and of the error on the cloud are shown in
Figure 5.6 and can be compared to the ones shown in Figure 4.7 for the same test
on the uniform Cartesian grid. In this adaptive case, at the end of the third run,
the values of E2(φ) and ErrP , namely the error on the cloud (4.35), are 1.17e− 01
and 1.20e− 03, respectively. These values can be compared to the ones reported in
Table 4.2 for the uniform Cartesian case.

Finally, note from Figure 5.7 the differences in the number of quadrants com-
posing the adaptive grids with respect to the one that would have been required in
order to perform the same computations on a uniform Cartesian mesh refined at the
same maximum level L.
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Figure 5.6: Energy and error on cloud computed for the circle reconstruction test with
the adaptive scheme.
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Figure 5.7: Circle test: comparison between the number of quadrants in the adaptive
grid T n at each iteration (left panel), and the number of quadrants required to perform
the computations on a uniform Cartesian grid G refined at the maximum level L.

Figure 5.8: Left: the initial data for the square reconstruction test, with the lower refined
initial grid. Right: the final level set function on the finer grid.

Figure 5.9: From left to right: a comparison between the zero level sets obtained for the
square reconstruction test at each run.
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Figure 5.10: Left: the initial data for the heart reconstruction test, with the lower refined
initial grid. Right: the final level set function on the finer grid.
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Figure 5.11: Energy and error on cloud computed for the heart reconstruction test with
the adaptive scheme.

Square

The second two dimensional test we propose is again the reconstruction of a square
sampled by 24 points, as in Subsection 4.5.3. The initial data and the final re-
construction are shown in Figure 5.8. The reconstruction procedure required 27,
16 and 21 internal iterations for each run, at the end of which the zero level sets
are the ones depicted in Figure 5.9, which can be compared to the ones shown in
Figure 4.9. Note that the zero level set appears noticeable disconnected due to the
lack of continuity among quadrants.

Heart

We conclude the 2d tests session by considering a heart-shaped point cloud composed
by 24 points, as in Subsection 4.5.3. This test shows how the method is able to
recover either rounded, straight and sharp parts of the curve. The initial data
and the final reconstruction are shown in Figure 5.10 and one could also notice
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Figure 5.12: Left: the initial data for the heart reconstruction test, with the lower refined
initial grid. Right: the final level set function on the finer grid.

that the initial zero level set is partially located inside the cloud, but, unless the
curvature of the shape to recover is too high, this does not constitute a problem in
the reconstruction procedure since the level set function is either able to shrink and
to expand.

Graphs of the energy functional and of the error on the cloud are also shown
in this case in Figure 5.11, where one could also notice that the entire run of the
algorithm took 28, 16 and 17 internal iterations.

5.3.2 3d data sets
Cube&Spheres

We start the 3d numerical tests with the “Cube&Spheres” point cloud of Subsec-
tion 4.5.4 since it allows us to show how the level set function φ manages different
features of a shape also in the adaptive case. The reconstruction is performed in 3
runs that took respectively 45, 33 and 23 internal iterations. In Figure 5.12 one can
appreciate the final reconstruction obtained with our scheme.

In this test we also emphasize the partitioning of the three dimensional grid and
how this partitioning evolves accordingly to the zero level set of φ, hence the re-
finement of the grid. In fact, in Figure 5.13 one can appreciate how the quadrants
are distributed among difference processors, at initial and final time, each one de-
picted with a different color: adapting the grid following the evolution of the level
set induces a repartitioning of the tree among the ranks.

Finally, as already done for the circle, we compare in Figure 5.14 the number of
octants in the adaptive grid compared to the ones required in a uniform Cartesian
setting refined at the same maximum level.
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Figure 5.13: Grid partitioning for the “Cube&Spheres” reconstruction test. The initial
and the final data are depicted in the left and in the right panel, respectively, together
with the point cloud and the portions of the grid owned by different ranks are depicted
with different corresponding colors. The zero level set of φ is also traced with a with line.
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Figure 5.14: Circle test: comparison between the number of quadrants in the adaptive
grid T n at each iteration (left panel), and the number of quadrants required to perform
the computations on a uniform Cartesian grid G refined at the maximum level L. Note
that the significant decrease in the first run for the adaptive case is due to the shrinking
of the zero surface.
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Figure 5.15: Reconstruction process for the “Frog” point cloud. Top left: the initial
spherical data. Top right: the surface at the end of the first run. Bottom left: the final
surface at the end of the second run. Bottom right: the final surface without the point
cloud.

Frog

We conclude this chapter by considering as last numerical test the “Frog” recon-
struction test of Subsection 4.5.5, in order to consider a data obtained via 3d laser
scanning of a real object [2]. Only two runs are performed in this case and final
reconstructions of each run are shown in Figure 5.15.

Also in this case, even if the initial sphere is not entirely encompassing all the
points in P , the zero level set does shrink or expand where appropriate, and all the
details, including the right hind leg, are well recovered.

Finally, in Figure 5.16, an initial and a final slice of the computational grid are
shown. The refined region follows the zero level set depicted with a white line and
actives and non-active quadrants are indicated by different colors: red quadrants are
the ones immediately closed to the interface in which the reinitialization procedured
as described in Section 5.2.4 is performed; red and gray quadrants are the ones on
which the SL scheme is applied; blue quadrants correspond to the inactive ones.
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Figure 5.16: Slices of the initial and final data of the “Frog” reconstruction test. The
slices emphasize the narrow bands used in the computation, finely adapted around the
zero level set of φ. The red quadrants are the ones considering in the first step of the
reinitialization, thus are the ones containing the front, or at least posed in its vicinity.
Grey quadrants are active in the SL update. Blue quadrants remain inactive.
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Conclusions and perspectives

In this thesis we have presented SL schemes coupled with Essentially Non-Oscillatory
interpolation techniques in order to approximate the solution of first-order HJB
equations and to desing a complete workflow for the reconstruction of surfaces
starting from unorganized point cloud data. The schemes presented are aimed to
high-order accuracy and are well-suited to be adapted to local mesh refinement. In
particular, the potential of the LSM and of the SL approach employed in the surface
reconstruction method, have been exploited in an AMR framework based on octrees.

Regarding HJB equations, the non-smooth nature of the solutions, which would
lead to spurious oscillations when using unlimited high-order polynomial interpola-
tion, is addressed by the use of a CWENO technique for the spatial reconstructions in
the SL scheme. We also showed that this choice is apt to deal with the minimization
procedure arising when applying the Dynamic Programming Principle to compute
the solution.

Our study demonstrates that, in terms of errors, our new scheme maintains the
favorable behavior of WENO schemes of [27], producing about 30% more accurate re-
sults in smooth regions at the price of some small extra over/undershoots. However,
its computational cost is significantly lower, by a 10−30% depending on the specific
test. Additionally, we have established a convergence result in a simpler case, and
provided several numerical simulations to further validate the effectiveness of our
proposed scheme.

As a future perspective in this field of research, we wish to explore the inclusion of
high-order treatment for boundary conditions, while also extending the convergence
analysis to more general Hamiltonians. Investigating the scheme’s performance in
more complex scenarios would also contribute to a comprehensive understanding of
its capabilities.

On the other hand, the SL approach has been also employed in the level set
framework to approximate the solution of a transport-diffusion level set equation
that moves an initial front towards the data in the point cloud. Resorting to the
LSM, one evolves a level set function φ defined on a fixed domain, rather than the
interface itself, thus capturing the moving interface implicitly as the zero level set of
φ. The curvature regularization term in the governing PDE suggests the employment
of a scheme which allows to overcome the very restrictive time-stepping constraints
imposed by a parabolic-type CFL condition. The SL approach is apt to this aim
and we presented a complete workflow for approximating the solution of the surface
reconstruction problem.

The first application of this method to uniform Cartesian grids showed good
results, especially when a third-order WENO interpolator is employed. From a com-
putational point of view, the three-dimensionality of the problem can of course pose
an important issue, hence the parallel implementation of the algorithms, coupled
with suitable strategies to localize the computational effort around the front, have
been explored. Nonetheless, the uniform Cartesian nature of the spatial discretiza-
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tion and of the parallel partitioning showed some expected drawbacks: when the
number of cores is increased, also the chance of having large portion of the grid with
no active nodes is increased as well, with a negative impact on load balancing.

To overcome this issue, exploiting both the natural refinement criterion offered
by the level set function and the unconditional stability of the SL scheme, we in-
vestigated the application of AMR to this surface reconstruction method. The use
of quadree (resp. octree) which are locally refined around the zero level set of φ,
naturally mitigates the additional computational cost and memory consumption
introduced by the implicit approach, while also enhancing the performances of the
algorithm when run in parallel. Moreover, the very high resolution one could achieve
employing adaptive grids does not pose a real issue in the SL context, due to the
unconditional stability of the method.

Numerical results in two and three dimensions showed in fact the promising
performances of the surface reconstruction method proposed in the AMR context.
However, the method, as presented in Chapter 5 is still in a preliminary state and
need to be investigated more, first of all reintroducing the third-order WENO inter-
polator. Given the AMR setting, the CWENO variant presented in Chapter 3 seems
also very suitable for this task.

Regarding in general the surface reconstruction method, interesting directions of
research would be also the replacement of the current semi-Lagrangian scheme with
its monotone version (see [25]) to achieve a monotone decrease of the error and of
the energy functional. Moreover, this approach can be extended to other moving
interface problems, which include segmentation via LSM (see [51]) or free boundary
problems where the moving boundary can be captured implicitly.

Finally, the results of this thesis will allow to enhance the computational workflow
from point cloud data of works of art to PDE simulations of damage models in the
field of conservation of cultural heritage. In particular, they make it possible to
introduce AMR in that workflow and to extend it to more complex models that can
involve material ablation or loss of the surface, or the swelling of the material itself
[36].



131

Bibliography

[1] R. Abgrall. “On essentially non-oscillatory schemes on unstructured meshes:
analysis and implementation”. In: J. Comput. Phys. 114.6 (1994), pp. 45–48
(cit. on p. 4).

[2] AIM@SHAPE Shape Repository. Accessed March 2022. url: http : / /
visionair.ge.imati.cnr.it/ontologies/shapes/view.jsp?id=268-
frog_-_merged (cit. on pp. 100, 102, 127).

[3] S. Aluru and F. E. Sevilgen. “Parallel Domain Decomposition and Load Bal-
ancing Using Space-Filling Curves”. In: Proceedings of the Fourth Interna-
tional Conference on High-Performance Computing. HIPC ’97. IEEE Com-
puter Society, 1997, p. 230. isbn: 0818680679 (cit. on p. 112).

[4] N. Amenta, M. Bern, and M. Kamvysselis. “A new voronoi-based surface
reconstruction algorithm”. In: Proceedings of the 25th Annual Conference
on Computer Graphics and Interactive Techniques, SIGGRAPH 1998. 1998,
pp. 415–422. doi: 10.1145/280814.280947 (cit. on p. 1).

[5] A. Baeza et al. “Central WENO Schemes Through a Global Average Weight”.
In: J. Sci. Comput. 78.1 (2019), pp. 499–530. doi: 10.1007/s10915-018-
0773-z (cit. on pp. 4, 19).

[6] S. Balay et al. “Efficient Management of Parallelism in Object Oriented Nu-
merical Software Libraries”. In: Modern Software Tools in Scientific Comput-
ing. Ed. by E. Arge, A. M. Bruaset, and H. P. Langtangen. Birkhäuser Press,
1997, pp. 163–202 (cit. on pp. 6, 64, 93).

[7] S. Balay et al. PETSc/TAO Users Manual. Tech. rep. ANL-21/39 - Revision
3.19. Argonne National Laboratory, 2023 (cit. on pp. 6, 64, 93).

[8] D. S. Balsara et al. “An efficient class of WENO schemes with adaptive order
for unstructured meshes”. In: J. Comput. Phys. 404 (2020), p. 109062. doi:
10.1016/j.jcp.2019.109062 (cit. on pp. 4, 59).

[9] W. Bangerth, R. Hartmann, and G. Kanschat. “deal.IIA general-purpose
object-oriented finite element library”. In: ACM Trans. Math. Softw. 33.4
(Aug. 2007), 24–es. doi: 10.1145/1268776.1268779 (cit. on p. 110).

[10] M. Bardi and I. Capuzzo-Dolcetta. Optimal control and viscosity solutions
of Hamilton-Jacobi-Bellman equations. Systems & Control: Foundations &
Applications. With appendices by Maurizio Falcone and Pierpaolo Soravia.
Birkhäuser Boston, Inc., Boston, MA, 1997, pp. xviii+570. isbn: 0-8176-3640-
4 (cit. on p. 52).

[11] M. Bardi and S. Osher. “The Nonconvex Multidimensional Riemann Problem
for HamiltonJacobi Equations”. In: SIAM J. Math. Anal. 22.2 (1991), pp. 344–
351. doi: 10.1137/0522022 (cit. on p. 19).

http://visionair.ge.imati.cnr.it/ontologies/shapes/view.jsp?id=268-frog_-_merged
http://visionair.ge.imati.cnr.it/ontologies/shapes/view.jsp?id=268-frog_-_merged
http://visionair.ge.imati.cnr.it/ontologies/shapes/view.jsp?id=268-frog_-_merged
https://doi.org/10.1145/280814.280947
https://doi.org/10.1007/s10915-018-0773-z
https://doi.org/10.1007/s10915-018-0773-z
https://doi.org/10.1016/j.jcp.2019.109062
https://doi.org/10.1145/1268776.1268779
https://doi.org/10.1137/0522022


132

[12] S. Barles and P. E. Souganidis. “Convergence of approximation schemes for
fully nonlinear second order equations”. In: Asymptotic Analysis 4 (Jan. 1991),
pp. 271–283. doi: 10.3233/ASY-1991-4305 (cit. on p. 41).

[13] M. Berger et al. “A Survey of Surface Reconstruction from Point Clouds”. In:
Comput. Graph. Forum 36.1 (2017), pp. 301–329. doi: 10.1111/cgf.12802
(cit. on p. 2).

[14] M. Berger et al. “State of the Art in Surface Reconstruction from Point
Clouds”. In: Eurographics 2014-State of the Art Reports (Apr. 2014) (cit. on
p. 2).

[15] O. Bokanowski, N. Forcadel, and H. Zidani. “Reachability and minimal times
for state constrained nonlinear problems without any controllability assump-
tion”. In: SIAM J. Control Optim. 48.7 (2010), pp. 4292–4316. doi: 10.1137/
090762075 (cit. on pp. 72, 74).

[16] L. Bonaventura and R. Ferretti. “Semi-Lagrangian Methods for Parabolic
Problems in Divergence Form”. In: SIAM J. Sci. Comput. 36.5 (2014), A2458–
A2477. doi: 10.1137/140969713 (cit. on p. 81).

[17] L. Bonaventura et al. “Second order fully semi-Lagrangian discretizations of
advection-diffusion-reaction systems”. In: J. Sci. Comput. 88.23 (2021) (cit.
on p. 63).

[18] S. Bryson and D. Levy. “High-Order Schemes for Multi-Dimensional
Hamilton-Jacobi Equations”. In: Hyperbolic Problems: Theory, Numerics, Ap-
plications. Ed. by T. Y. Hou and E. Tadmor. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2003, pp. 387–396 (cit. on p. 4).

[19] C. Burstedde, L. C. Wilcox, and O. Ghattas. “p4est: Scalable Algorithms for
Parallel Adaptive Mesh Refinement on Forests of Octrees”. In: SIAM J. Sci.
Comput. 33.3 (2011), pp. 1103–1133. doi: 10.1137/100791634 (cit. on pp. 6,
110, 112).

[20] E. Calzola et al. “A semi-Lagrangian scheme for Hamilton-Jacobi-Bellman
equations with oblique derivatives boundary conditions”. In: Numer. Math.
153.1 (2023), pp. 49–84 (cit. on p. 63).

[21] F. Camilli and M. Falcone. “An approximation scheme for the optimal control
of di usion processes”. In: RAIRO. Modélisation Mathématique et Analyse
Numérique 29 (Jan. 1995). doi: 10 . 1051 / m2an / 1995290100971 (cit. on
p. 79).

[22] P. M. Campbell et al. Dynamic Octree Load Balancing Using Space-Filling
Curves. Tech. rep. CS-03-01. Williams College Department of Computer Sci-
ence, 2003 (cit. on p. 112).

[23] E. Carlini, M. Falcone, and R. Ferretti. “Convergence of a large time-step
scheme for mean curvature motion”. In: Interfaces and Free Boundaries 12.4
(2010), pp. 409–411. doi: 10.4171/IFB/240 (cit. on pp. 79, 80).

[24] E. Carlini and R. Ferretti. “A Semi-Lagrangian approximation for the AMSS
model of image processing”. In: Appl. Numer. Math. 73 (2013), pp. 16–32.
doi: https://doi.org/10.1016/j.apnum.2012.07.003 (cit. on p. 79).

https://doi.org/10.3233/ASY-1991-4305
https://doi.org/10.1111/cgf.12802
https://doi.org/10.1137/090762075
https://doi.org/10.1137/090762075
https://doi.org/10.1137/140969713
https://doi.org/10.1137/100791634
https://doi.org/10.1051/m2an/1995290100971
https://doi.org/10.4171/IFB/240
https://doi.org/https://doi.org/10.1016/j.apnum.2012.07.003


133

[25] E. Carlini and R. Ferretti. “A Semi-Lagrangian Approximation of MinMax
Type for the Stationary Mean Curvature Equation”. In: Numerical Mathe-
matics and Advanced Applications. Jan. 2008, pp. 679–686. isbn: 978-3-540-
69776-3. doi: 10.1007/978-3-540-69777-0_81 (cit. on p. 130).

[26] E. Carlini and R. Ferretti. “A Semi-Lagrangian Scheme with Radial Basis Ap-
proximation for Surface Reconstruction”. In: Comput. Vis. Sci. 18.2-3 (2017),
pp. 103–112. doi: 10.1007/s00791-016-0274-2 (cit. on pp. 3, 81, 84, 91,
92).

[27] E. Carlini, R. Ferretti, and G. Russo. “A weighted essentially nonoscillatory,
large time-step scheme for Hamilton-Jacobi equations”. In: SIAM J. Sci. Com-
put. 27.3 (2006), pp. 1071–1091. doi: 10.1137/040608787 (cit. on pp. 4, 5,
41, 43, 44, 50, 51, 61, 63, 129).

[28] E. Carlini et al. “A CWENO large time-step scheme for Hamilton-Jacobi
equations”. In: Comm. Appl. Math. (2024). In press. url: https://arxiv.
org/abs/2402.15367 (cit. on pp. 5, 51).

[29] J. C. Carr et al. “Reconstruction and representation of 3D objects with radial
basis functions”. In: Proceedings of the 28th Annual Conference on Computer
Graphics and Interactive Techniques. SIGGRAPH ’01. 2001, pp. 67–76. doi:
10.1145/383259.383266 (cit. on p. 2).

[30] J. C. Carr et al. “Smooth surface reconstruction from noisy range data”. In:
Proceedings of the 1st International Conference on Computer Graphics and
Interactive Techniques in Australasia and South East Asia, GRAPHITE ’03.
2003, pp. 119–126+297. doi: 10.1145/604471.604495 (cit. on p. 2).

[31] M. J. Castro and M. Semplice. “Third- and fourth-order well-balanced
schemes for the shallow water equations based on the CWENO reconstruc-
tion”. In: Int. J. Numer. Meth. Fluid 89.8 (2019), pp. 304–325. doi: 10.1002/
fld.4700 (cit. on pp. 4, 53, 59).

[32] F. Cazals and J. Giesen. “Delaunay Triangulation Based Surface Recon-
struction”. In: Effective Computational Geometry for Curves and Surfaces.
Springer Berlin Heidelberg, 2006, pp. 231–276. doi: 10.1007/978-3-540-
33259-6_6 (cit. on p. 1).

[33] A. Chacon and A. Vladimirsky. “A Parallel Two-Scale Method for Eikonal
Equations”. In: SIAM J. Sci. Comput. 37.1 (2015), A156–A180. doi: 10.
1137/12088197X (cit. on p. 118).

[34] Z. Q. Cheng et al. “A survey of methods for moving least squares surfaces”. In:
Proceedings of the Fifth Eurographics / IEEE VGTC Conference on Point-
Based Graphics. SPBG’08. Los Angeles, CA: Eurographics Association, 2008,
pp. 9–23. isbn: 9783905674125 (cit. on p. 2).

[35] F. Clarelli, B. De Filippo, and R. Natalini. “Mathematical model of copper
corrosion”. In: Appl. Math. Model. 38.19-20 (2014), pp. 4804–4816. doi: 10.
1016/j.apm.2014.03.040 (cit. on p. 1).

https://doi.org/10.1007/978-3-540-69777-0_81
https://doi.org/10.1007/s00791-016-0274-2
https://doi.org/10.1137/040608787
https://arxiv.org/abs/2402.15367
https://arxiv.org/abs/2402.15367
https://doi.org/10.1145/383259.383266
https://doi.org/10.1145/604471.604495
https://doi.org/10.1002/fld.4700
https://doi.org/10.1002/fld.4700
https://doi.org/10.1007/978-3-540-33259-6_6
https://doi.org/10.1007/978-3-540-33259-6_6
https://doi.org/10.1137/12088197X
https://doi.org/10.1137/12088197X
https://doi.org/10.1016/j.apm.2014.03.040
https://doi.org/10.1016/j.apm.2014.03.040


134

[36] F. Clarelli, A. Fasano, and R. Natalini. “Mathematics and monument conser-
vation: Free boundary models of marble sulfation”. In: SIAM J. Appl. Math.
69.1 (2008), pp. 149–168. doi: 10.1137/070695125 (cit. on pp. 1, 130).

[37] A. Coco, S. Preda, and M. Semplice. “From Point Clouds to 3D Simulations of
Marble Sulfation”. In: Mathematical Modeling in Cultural Heritage. Springer
Nature Singapore, 2023, pp. 153–174. isbn: 978-981-99-3679-3 (cit. on pp. 1,
5, 75, 79).

[38] A. Coco and G. Russo. “Second order finite-difference ghost-point multigrid
methods for elliptic problems with discontinuous coefficients on an arbitrary
interface”. In: J. Comput. Phys. 361 (2018), pp. 299–330. doi: https://doi.
org/10.1016/j.jcp.2018.01.016 (cit. on pp. 3, 11, 12).

[39] A. Coco, M. Semplice, and S. Serra Capizzano. “A level-set multigrid tech-
nique for nonlinear diffusion in the numerical simulation of marble degra-
dation under chemical pollutants”. In: Appl. Math. & Comput. 386 (2020),
p. 125503. doi: 10.1016/j.amc.2020.125503 (cit. on pp. 1, 11).

[40] A. Coco et al. “Numerical Simulations of Marble Sulfation”. In: Mathematical
Modeling in Cultural Heritage. Ed. by E. Bonetti et al. Cham: Springer Inter-
national Publishing, 2021, pp. 107–122. doi: 10.1007/978-3-030-58077-3_7
(cit. on p. 11).

[41] R. Courant, E. Isaacson, and Mina Rees. “On the solution of nonlinear hyper-
bolic differential equations by finite differences”. In: Commun. on Pure and
Appl. Math. 5.3 (1952), pp. 243–255. doi: 10.1002/cpa.3160050303 (cit. on
pp. 3, 27, 29).

[42] I. Cravero, M. Semplice, and G. Visconti. “Optimal definition of the nonlinear
weights in multidimensional Central WENOZ reconstructions”. In: SIAM J.
Numer. Anal. 57.5 (2019), pp. 2328–2358. doi: 10.1007/s10915-015-0123-3
(cit. on pp. 4, 55, 56, 58, 60, 61).

[43] I. Cravero et al. “CWENO: uniformly accurate reconstructions for balance
laws”. In: Math. Comp. 87.312 (2018), pp. 1689–1719. doi: http://dx.doi.
org/10.1090/mcom/3273 (cit. on pp. 4, 19, 53, 55).

[44] P. Daniel et al. “Reconstruction of Surfaces from Point Clouds Using a La-
grangian Surface Evolution Model”. In: Scale Space and Variational Methods
in Computer Vision. Springer International Publishing, 2015, pp. 589–600.
isbn: 978-3-319-18461-6 (cit. on p. 1).

[45] F. Drui et al. “Experimenting with the p4est library for AMR simulations
of two-phase flows”. In: ESAIM: Proceedings and Surveys 53 (Mar. 2016),
pp. 232–247. doi: 10.1051/proc/201653014 (cit. on p. 110).

[46] J. Duchon and R. Robert. “Évolution dune interface par capillarité et diffu-
sion de volume I. Existence locale en temps”. In: Annales de l’Institut Henri
Poincaré C, Analyse non linéaire 1.5 (1984), pp. 361–378. doi: https://
doi.org/10.1016/S0294-1449(16)30418-8 (cit. on p. 16).

https://doi.org/10.1137/070695125
https://doi.org/https://doi.org/10.1016/j.jcp.2018.01.016
https://doi.org/https://doi.org/10.1016/j.jcp.2018.01.016
https://doi.org/10.1016/j.amc.2020.125503
https://doi.org/10.1007/978-3-030-58077-3_7
https://doi.org/10.1002/cpa.3160050303
https://doi.org/10.1007/s10915-015-0123-3
https://doi.org/http://dx.doi.org/10.1090/mcom/3273
https://doi.org/http://dx.doi.org/10.1090/mcom/3273
https://doi.org/10.1051/proc/201653014
https://doi.org/https://doi.org/10.1016/S0294-1449(16)30418-8
https://doi.org/https://doi.org/10.1016/S0294-1449(16)30418-8


135

[47] M. Dumbser et al. “Central Weighted ENO Schemes for Hyperbolic Conser-
vation Laws on fixed and moving unstructured meshes”. In: SIAM J. Sci.
Comput. 39.6 (2017), A2564–A2591 (cit. on pp. 4, 53, 59, 61).

[48] H. Edelsbrunner. “Shape reconstruction with Delaunay complex”. In:
LATIN’98: Theoretical Informatics. Springer Berlin Heidelberg, 1998,
pp. 119–132. isbn: 978-3-540-69715-2 (cit. on p. 1).

[49] L. C. Evans. Partial Differential Equations. Graduate Series in Mathematics,
vol. 19.R. Providence, R.I. : American Mathematical Society, 2010. isbn: 978-
0-8218-4974-3 (cit. on p. 46).

[50] M. Falcone and R. Ferretti. “Consistency of a large time-step scheme for mean
curvature motion”. In: Numerical Mathematics and Advanced Applications.
Ed. by F. Brezzi et al. Springer Milan, 2003, pp. 495–502. doi: 10.1007/978-
88-470-2089-4_46 (cit. on pp. 3, 79, 80).

[51] M. Falcone, G. Paolucci, and S. Tozza. “A High-Order Scheme for Image
Segmentation via a Modified Level-Set Method”. In: SIAM J. Imaging Sci.
13.1 (2020), pp. 497–534. doi: 10.1137/18M1231432 (cit. on p. 130).

[52] M. Falcone, G. Paolucci, and S. Tozza. “Convergence of adaptive filtered
schemes for first order evolutionary Hamilton-Jacobi equations”. In: Numer.
Math. 145.2 (2020), pp. 271–311 (cit. on pp. 42, 60).

[53] M. Falcone. and R. Ferretti. “Discrete time high-order schemes for viscos-
ity solutions of Hamilton-Jacobi-Bellman equations”. In: Numer. Math. 67.3
(1994), pp. 315–344 (cit. on pp. 4, 51).

[54] M. Falcone. and R. Ferretti. Semi-Lagrangian approximation schemes for lin-
ear and Hamilton-Jacobi equations. Society for Industrial and Applied Math-
ematics (SIAM), Philadelphia, PA, 2014, pp. xii+319 (cit. on pp. 3, 27, 31,
33, 46, 48, 49).

[55] M. Falcone. and R. Ferretti. “Semi-Lagrangian schemes for Hamilton-Jacobi
equations, discrete representation formulae and Godunov methods”. In: J.
Comput. Phys. 175.2 (2002), pp. 559–575 (cit. on p. 51).

[56] R. Ferretti. “Convergence of semi-Lagrangian approximations to convex
Hamilton-Jacobi equations under (very) large Courant numbers”. In: SIAM J.
Numer. Anal. 40.6 (2002), pp. 2240–2253. doi: 10.1137/S0036142901388378
(cit. on pp. 3–5, 41, 44, 48–50, 61, 62).

[57] F. Gibou, F. Fedkiw, and S. Osher. “A review of level-set methods and some
recent applications”. In: J. Comput. Phys. 353 (2018), pp. 82–109. doi: https:
//doi.org/10.1016/j.jcp.2017.10.006 (cit. on p. 2).

[58] F. Gibou et al. “A Second-Order-Accurate Symmetric Discretization of the
Poisson Equation on Irregular Domains”. In: J. Comput. Phys. 176.1 (2002),
pp. 205–227. doi: https://doi.org/10.1006/jcph.2001.6977 (cit. on
p. 3).

https://doi.org/10.1007/978-88-470-2089-4_46
https://doi.org/10.1007/978-88-470-2089-4_46
https://doi.org/10.1137/18M1231432
https://doi.org/10.1137/S0036142901388378
https://doi.org/https://doi.org/10.1016/j.jcp.2017.10.006
https://doi.org/https://doi.org/10.1016/j.jcp.2017.10.006
https://doi.org/https://doi.org/10.1006/jcph.2001.6977


136

[59] F. Gibou et al. “A Second-Order-Accurate Symmetric Discretization of the
Poisson Equation on Irregular Domains”. In: J. Comput. Phys. 176.1 (2002),
pp. 205–227. doi: https://doi.org/10.1006/jcph.2001.6977 (cit. on
pp. 11, 12).

[60] B. F. Gregorski, B. Hamann, and K. I. Joy. “Reconstruction of B-spline sur-
faces from scattered data points”. In: Proceedings Computer Graphics Inter-
national 2000. 2000, pp. 163–170. doi: 10.1109/CGI.2000.852331 (cit. on
p. 1).

[61] M. Griebel and G. Zumbusch. “Parallel multigrid in an adaptive PDE solver
based on hashing and space-filling curves”. In: Parallel Computing 25.7 (1999),
pp. 827–843. issn: 0167-8191. doi: https://doi.org/10.1016/S0167-
8191(99)00020-4 (cit. on p. 112).

[62] J. Haliková and K. Mikula. “Level Set Method for Surface Reconstruction and
Its Application in Surveying”. In: J. Surv. Eng. 142.3 (Feb. 2016), p. 04016007.
doi: 10.1061/(ASCE)SU.1943-5428.0000159 (cit. on pp. 91, 92).

[63] E. Harabetian and S. Osher. “Regularization of ill-posed problems via the
level set approach”. In: SIAM J. Appl. Math. 58.6 (Oct. 1998), pp. 1689–
1706. doi: 10.1137/S0036139995290794 (cit. on p. 2).

[64] E. Harabetian, S. Osher, and C. W. Shu. “An Eulerian Approach for Vortex
Motion Using a Level Set Regularization Procedure”. In: J. Comput. Phys.
127.1 (1996), pp. 15–26. doi: https://doi.org/10.1006/jcph.1996.0155
(cit. on p. 2).

[65] A. Harten et al. “Uniformly high-order accurate essentially nonoscillatory
schemes III.” In: J. Comput. Phys. 71.2 (1987), pp. 231–303. doi: 10.1016/
0021-9991(87)90031-3 (cit. on pp. 4, 19, 41).

[66] D. Hartmann, M. Meinke, and W. Schröder. “Differential equation based
constrained reinitialization for level set methods”. In: J. Comput. Phys. 227.14
(2008), pp. 6821–6845. issn: 0021-9991. doi: https://doi.org/10.1016/j.
jcp.2008.03.040 (cit. on pp. 3, 20, 22).

[67] D. Hartmann, M. Meinke, and W. Schröder. “The constrained reinitialization
equation for level set methods”. In: J. Comput. Phys. 229.5 (2010), pp. 1514–
1535. issn: 0021-9991. doi: https://doi.org/10.1016/j.jcp.2009.10.042
(cit. on pp. 3, 20, 22).

[68] Y. He et al. “Fast Algorithms for Surface Reconstruction from Point Cloud”.
In: Springer Proceedings in Mathematics and Statistics. Vol. 360. 2021, pp. 61–
80. doi: 10.1007/978-981-16-2701-9_4 (cit. on p. 91).

[69] M. Herrmann. A Domain Decomposition Parallelization of the Fast Marching
Method. Tech. rep. DTIC Document, 2003 (cit. on p. 118).

[70] E. Hopf. “Generalized Solutions of non-linear Equations of First Order”. In:
J. Math. Mech. 14.6 (1965), pp. 951–973 (cit. on p. 46).

[71] H. Hoppe et al. “Surface reconstruction from unorganized point clouds”. In:
SIGGRAPH Comput. Graph. 26.2 (July 1992), pp. 71–78. doi: https://
doi.org/10.1145/142920.134011 (cit. on pp. 2, 99).

https://doi.org/https://doi.org/10.1006/jcph.2001.6977
https://doi.org/10.1109/CGI.2000.852331
https://doi.org/https://doi.org/10.1016/S0167-8191(99)00020-4
https://doi.org/https://doi.org/10.1016/S0167-8191(99)00020-4
https://doi.org/10.1061/(ASCE)SU.1943-5428.0000159
https://doi.org/10.1137/S0036139995290794
https://doi.org/https://doi.org/10.1006/jcph.1996.0155
https://doi.org/10.1016/0021-9991(87)90031-3
https://doi.org/10.1016/0021-9991(87)90031-3
https://doi.org/https://doi.org/10.1016/j.jcp.2008.03.040
https://doi.org/https://doi.org/10.1016/j.jcp.2008.03.040
https://doi.org/https://doi.org/10.1016/j.jcp.2009.10.042
https://doi.org/10.1007/978-981-16-2701-9_4
https://doi.org/https://doi.org/10.1145/142920.134011
https://doi.org/https://doi.org/10.1145/142920.134011


137

[72] C. Hu and C. W. Shu. “Weighted Essentially Non-oscillatory Schemes on Tri-
angular Meshes”. In: J. Comput. Phys. 150.1 (1999), pp. 97–127. doi: https:
//doi.org/10.1006/jcph.1998.6165 (cit. on p. 60).

[73] Z. J. Huang et al. “Surface Reconstruction from Point Clouds: A Survey
and a Benchmark”. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence (2024), pp. 1–20. doi: 10.1109/TPAMI.2024.3429209 (cit. on
p. 2).

[74] W. K. Jeong and R. T. Whitaker. “A Fast Iterative Method for Eikonal
Equations”. In: SIAM J. Sci. Comput. 30.5 (2008), pp. 2512–2534. doi: 10.
1137/060670298 (cit. on p. 118).

[75] G. S. Jiang and D. Peng. “Weighted ENO Schemes for Hamilton–Jacobi Equa-
tions”. In: SIAM J. Sci. Comput. 21.6 (2000), pp. 2126–2143. doi: 10.1137/
S106482759732455X (cit. on pp. 4, 17, 42, 60).

[76] G. S. Jiang and C. W. Shu. “Efficient Implementation of Weighted ENO
Schemes”. In: J. Comput. Phys. 126 (1996), pp. 202–228 (cit. on pp. 4, 19,
41–43).

[77] G. Karypis and V. Kumar. METIS – Unstructured Graph Partitioning and
Sparse Matrix Ordering System, Version 2.0. Tech. rep. University of Min-
nesota, Department of Computer Science, Jan. 1995 (cit. on p. 110).

[78] P. E. Kloeden and E. Platen. Numerical Solution of Stochastic Differential
Equations. Stochastic Modelling and Applied Probability. Springer Berlin,
Heidelberg, 1992, pp. XXXVI, 636. isbn: 978-3-642-08107-1 (cit. on p. 80).

[79] B. Kósa, J. Haliková-Brehovská, and K. Mikula. “New efficient numerical
method for 3D point cloud surface reconstruction by using level set methods”.
In: Proceedings of Equadiff 2017 Conference (2017), pp. 387–396. url: http:
//www.iam.fmph.uniba.sk/amuc/ojs/index.php/equadiff/article/
view/798 (cit. on p. 78).

[80] D. Levy, G. Puppo, and G. Russo. “Compact central WENO schemes for
multidimensional conservation laws”. In: SIAM J. Sci. Comput. 22.2 (2000),
pp. 656–672. doi: 10.1137/S1064827599359461 (cit. on p. 4).

[81] C. T. Lin and E. Tadmor. “High-resolution nonoscillatory central schemes for
Hamilton-Jacobi equations”. In: SIAM J. Sci. Comput. 21.6 (2000), pp. 2163–
2186 (cit. on p. 4).

[82] X. Liu. “Research on 3D Object Reconstruction Method based on Deep Learn-
ing”. In: Highl. Sci. Eng. Technol. 39 (Apr. 2023), pp. 1221–1227. doi: 10.
54097/hset.v39i.6732 (cit. on p. 2).

[83] X. D. Liu, S. Osher, and T. Chan. “Weighted essentially non-oscillatory
schemes”. In: J. Comput. Phys. 115.1 (1994), pp. 200–212 (cit. on pp. 4,
19).

[84] F. Losasso, F. Gibou, and R. Fedkiw. “Simulating water and smoke with an
octree data structure”. In: ACM SIGGRAPH 2004 Papers. SIGGRAPH ’04.
New York, NY, USA: Association for Computing Machinery, 2004, pp. 457–
462. isbn: 9781450378239. doi: 10.1145/1186562.1015745 (cit. on p. 5).

https://doi.org/https://doi.org/10.1006/jcph.1998.6165
https://doi.org/https://doi.org/10.1006/jcph.1998.6165
https://doi.org/10.1109/TPAMI.2024.3429209
https://doi.org/10.1137/060670298
https://doi.org/10.1137/060670298
https://doi.org/10.1137/S106482759732455X
https://doi.org/10.1137/S106482759732455X
http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/equadiff/article/view/798
http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/equadiff/article/view/798
http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/equadiff/article/view/798
https://doi.org/10.1137/S1064827599359461
https://doi.org/10.54097/hset.v39i.6732
https://doi.org/10.54097/hset.v39i.6732
https://doi.org/10.1145/1186562.1015745


138

[85] M. Marcon et al. “Fast point-cloud wrapping through level-set evolution”. In:
1st European Conference on Visual Media Production (CVMP) 2004. 2004,
pp. 119–125 (cit. on p. 2).

[86] B. Merriman, J. K. Bence, and S. J. Osher. “Motion of Multiple Junctions: A
Level Set Approach”. In: J. Comput. Phys. 112.2 (1994), pp. 334–363. issn:
0021-9991. doi: https://doi.org/10.1006/jcph.1994.1105 (cit. on p. 18).

[87] C. Min and F. Gibou. “A second order accurate level set method on non-
graded adaptive cartesian grids”. In: J. Comput. Phys. 225.1 (2007), pp. 300–
321. doi: https://doi.org/10.1016/j.jcp.2006.11.034 (cit. on pp. 5,
118).

[88] M. Mirzadeh et al. “Parallel level-set methods on adaptive tree-based grids”.
In: J. Comput. Phys. 322 (2016), pp. 345–364. doi: https://doi.org/10.
1016/j.jcp.2016.06.017 (cit. on pp. 110, 118).

[89] W. W. Mullins and R. F. Sekerka. “Morphological Stability of a Particle
Growing by Diffusion or Heat Flow”. In: J. Appl. Phys. 34.2 (Feb. 1963),
pp. 323–329. doi: 10.1063/1.1702607 (cit. on p. 16).

[90] S. Osher and R. Fedkiw. “Level Set Methods and Dynamic Implicit Surfaces”.
In: vol. 153. Appl. Math. Sci. Springer New York, NY, 2003, pp. XIII, 273.
doi: 10.1007/978-0-387-22746-7 (cit. on pp. 2, 6, 7, 11, 12).

[91] S. Osher and J. A. Sethian. “Fronts propagating with curvature-dependent
speed: Algorithms based on Hamilton-Jacobi formulations”. In: J. Comput.
Phys. 79.1 (1988), pp. 12–49. doi: 10.1016/0021-9991(88)90002-2 (cit. on
pp. 2, 6, 7, 12, 16, 19).

[92] S. Osher and C. W. Shu. “High-Order Essentially Nonoscillatory Schemes for
HamiltonJacobi Equations”. In: SIAM J. Numer. Anal. 28.4 (1991), pp. 907–
922. doi: 10.1137/0728049 (cit. on pp. 4, 17, 19).

[93] I. K. Park, I. D. Yun, and S. U. Lee. “Constructing NURBS surface model
from scattered and unorganized range data”. In: Second International Confer-
ence on 3-D Digital Imaging and Modeling (Cat. No.PR00062). 1999, pp. 312–
320. doi: 10.1109/IM.1999.805361 (cit. on p. 1).

[94] D. Peng et al. “A PDE-Based Fast Local Level Set Method”. In: J. Comput.
Phys. 155.2 (1999), pp. 410–438. issn: 0021-9991. doi: https://doi.org/
10.1006/jcph.1999.6345 (cit. on pp. 3, 7, 18, 22–24, 89, 116).

[95] S. Popinet. “Gerris: a tree-based adaptive solver for the incompressible Euler
equations in complex geometries”. In: J. Comput. Phys. 190.2 (2003), pp. 572–
600. issn: 0021-9991. doi: https://doi.org/10.1016/S0021-9991(03)
00298-5 (cit. on p. 5).

[96] S. Preda and M. Semplice. Surface reconstruction from point cloud using a
semi-Lagrangian scheme with local interpolator. submitted. 2024. url: https:
//arxiv.org/abs/2410.22205 (cit. on pp. 5, 75).

[97] J. Qiu and C. W. Shu. “Hermite WENO schemes for HamiltonJacobi equa-
tions”. In: J. Comput. Phys. 204.1 (2005), pp. 82–99. issn: 0021-9991. doi:
https://doi.org/10.1016/j.jcp.2004.10.003 (cit. on p. 41).

https://doi.org/https://doi.org/10.1006/jcph.1994.1105
https://doi.org/https://doi.org/10.1016/j.jcp.2006.11.034
https://doi.org/https://doi.org/10.1016/j.jcp.2016.06.017
https://doi.org/https://doi.org/10.1016/j.jcp.2016.06.017
https://doi.org/10.1063/1.1702607
https://doi.org/10.1007/978-0-387-22746-7
https://doi.org/10.1016/0021-9991(88)90002-2
https://doi.org/10.1137/0728049
https://doi.org/10.1109/IM.1999.805361
https://doi.org/https://doi.org/10.1006/jcph.1999.6345
https://doi.org/https://doi.org/10.1006/jcph.1999.6345
https://doi.org/https://doi.org/10.1016/S0021-9991(03)00298-5
https://doi.org/https://doi.org/10.1016/S0021-9991(03)00298-5
https://arxiv.org/abs/2410.22205
https://arxiv.org/abs/2410.22205
https://doi.org/https://doi.org/10.1016/j.jcp.2004.10.003


139

[98] F. Remondino. “Heritage Recording and 3D Modeling with Photogrammetry
and 3D Scanning”. In: Remote Sensing 3 (Dec. 2011), pp. 1104–1138. doi:
10.3390/rs3061104 (cit. on pp. 1, 75).

[99] F. Remondino and S. El-Hakim. “Imagebased 3D Modelling: A Review”. In:
The Photogrammetric Record 21 (Sept. 2006), pp. 269–291. doi: 10.1111/j.
1477-9730.2006.00383.x (cit. on pp. 1, 75).

[100] G. Russo and P. Smereka. “A Remark on Computing Distance Functions”.
In: J. Comput. Phys. 163.1 (2000), pp. 51–67. issn: 0021-9991. doi: https:
//doi.org/10.1006/jcph.2000.6553 (cit. on p. 20).

[101] R. Saye. “High-order methods for computing distances to implicitly defined
surfaces”. In: Commun. Appl. Math. Comput. Sci. 9 (May 2014), pp. 107–141.
doi: 10.2140/camcos.2014.9.107 (cit. on pp. 118, 119).

[102] R. I. Saye and J. A. Sethian. “A review of level set methods to model in-
terfaces moving under complex physics: Recent challenges and advances”. In:
Geometric Partial Differential Equations - Part I. Vol. 21. Handbook of Nu-
merical Analysis. Elsevier, 2020, pp. 509–554. doi: https://doi.org/10.
1016/bs.hna.2019.07.003 (cit. on p. 2).

[103] M. Semplice, A. Coco, and G. Russo. “Adaptive Mesh Refinement for Hyper-
bolic Systems based on Third-Order Compact WENO Reconstruction”. In:
J. Sci. Comput. 66 (2016), pp. 692–724. doi: 10.1007/s10915-015-0038-z
(cit. on pp. 4, 53, 59).

[104] M. Semplice and G. Visconti. “Efficient Implementation of Adaptive Order
Reconstructions”. In: J. Sci. Comput. 83.1 (2020). doi: 10.1007/s10915-
020-01156-6 (cit. on p. 4).

[105] J. Sethian. “An Analysis of Flame Propagation”. PhD thesis. University of
California at Berkeley, 1982 (cit. on p. 16).

[106] J. Sethian. Level Set Methods and Fast Marching Methods: Evolving Inter-
faces in Computational Geometry, Fluid Mechanics, Computer Vision, and
Materials Science. Cambridge Monographs on Applied and Computational
Mathematics. Cambridge University Press, 1999. isbn: 9780521645577 (cit.
on p. 2).

[107] R. Sharma et al. “Point Cloud Upsampling and Normal Estimation using
Deep Learning for Robust Surface Reconstruction”. In: Proceedings of the 16th
International Joint Conference on Computer Vision, Imaging and Computer
Graphics Theory and Applications. Jan. 2021, pp. 70–79. doi: 10 . 5220 /
0010211600700079 (cit. on p. 2).

[108] M. H. Soner and N. Touzi. “A stochastic representation for mean curvature
type geometric flows”. In: The Annals of Probability 31.3 (2003), pp. 1145–
1165. doi: 10.1214/aop/1055425773 (cit. on p. 79).

[109] The Stanford 3D Scanning Repository. Accessed March 2022. url: http:
//graphics.stanford.edu/data/3Dscanrep/ (cit. on pp. 100, 102).

https://doi.org/10.3390/rs3061104
https://doi.org/10.1111/j.1477-9730.2006.00383.x
https://doi.org/10.1111/j.1477-9730.2006.00383.x
https://doi.org/https://doi.org/10.1006/jcph.2000.6553
https://doi.org/https://doi.org/10.1006/jcph.2000.6553
https://doi.org/10.2140/camcos.2014.9.107
https://doi.org/https://doi.org/10.1016/bs.hna.2019.07.003
https://doi.org/https://doi.org/10.1016/bs.hna.2019.07.003
https://doi.org/10.1007/s10915-015-0038-z
https://doi.org/10.1007/s10915-020-01156-6
https://doi.org/10.1007/s10915-020-01156-6
https://doi.org/10.5220/0010211600700079
https://doi.org/10.5220/0010211600700079
https://doi.org/10.1214/aop/1055425773
http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/


140

[110] J. Strain. “Semi-Lagrangian Methods for Level Set Equations”. In: J. Comput.
Phys. 151.2 (1999), pp. 498–533. doi: https://doi.org/10.1006/jcph.
1999.6194 (cit. on pp. 3, 7).

[111] J. Strain. “Tree Methods for Moving Interfaces”. In: J. Comput. Phys. 151.2
(1999), pp. 616–648. doi: https://doi.org/10.1006/jcph.1999.6205
(cit. on p. 5).

[112] M. Sussman, P. Smereka, and S. Osher. “A Level Set Approach for Computing
Solutions to Incompressible Two-Phase Flow”. In: J. Comput. Phys. 114.1
(1994), pp. 146–159. doi: 10.1006/jcph.1994.1155 (cit. on pp. 2, 18).

[113] M. Sussman et al. “An Adaptive Level Set Approach for Incompressible Two-
Phase Flows”. In: J. Comput. Phys. 148.1 (1999), pp. 81–124. issn: 0021-9991.
doi: https://doi.org/10.1006/jcph.1998.6106 (cit. on p. 20).

[114] G. Tryggvason et al. “A Front-Tracking Method for the Computations of
Multiphase Flow”. In: J. Comput. Phys. 169.2 (2001), pp. 708–759. issn:
0021-9991. doi: https://doi.org/10.1006/jcph.2001.6726 (cit. on
p. 13).

[115] M. C. Tugurlan. “Fast Marching Methods - Parallel Implementation and
Analysis”. PhD thesis. 2008. isbn: 9798802787359 (cit. on p. 118).

[116] S. O. Unverdi and G. Tryggvason. “A front-tracking method for viscous, in-
compressible, multi-fluid flows”. In: J. Comput. Phys. 100.1 (1992), pp. 25–37.
issn: 0021-9991. doi: https://doi.org/10.1016/0021-9991(92)90307-K
(cit. on p. 13).

[117] Q. Wang, Y. Tan, and Z. Mei. “Computational Methods of Acquisition
and Processing of 3D Point Cloud Data for Construction Applications”. In:
Archives of Computational Methods in Engineering 27 (Apr. 2020), pp. 479–
499. doi: 10.1007/s11831-019-09320-4 (cit. on p. 1).

[118] Y. Zeng and Y. Zhu. “Implicit surface reconstruction based on a new interpo-
lation / approximation radial basis function”. In: Comput. Aided Geom. Des.
92 (Dec. 2021), p. 102062. doi: 10.1016/j.cagd.2021.102062 (cit. on p. 2).

[119] M. Zennaro. “Natural continuous extensions of Runge-Kutta methods”. In:
Math. Comp. 46.173 (1986), pp. 119–133. doi: 10.1090/S0025-5718-1986-
0815835-1 (cit. on pp. 39, 40).

[120] H. Zhao. “Parallel implementations of the fast sweeping method”. In: Journal
of Computational Mathematics 25.4 (2007), pp. 421–429 (cit. on p. 118).

[121] H. K. Zhao. “A fast sweeping method for Eikonal equations”. In: Math. Com-
put. 74 (2005), pp. 603–627. doi: 10.1090/S0025-5718-04-01678-3 (cit. on
pp. 87, 88).

[122] H. K. Zhao et al. “A Variational Level Set Approach to Multiphase Motion”.
In: J. Comput. Phys. 127.1 (1996), pp. 179–195. doi: https://doi.org/10.
1006/jcph.1996.0167 (cit. on p. 2).

[123] H. K. Zhao et al. “Capturing the Behavior of Bubbles and Drops Using the
Variational Level Set Approach”. In: J. Comput. Phys. 143.2 (1998), pp. 495–
518. doi: https://doi.org/10.1006/jcph.1997.5810 (cit. on p. 2).

https://doi.org/https://doi.org/10.1006/jcph.1999.6194
https://doi.org/https://doi.org/10.1006/jcph.1999.6194
https://doi.org/https://doi.org/10.1006/jcph.1999.6205
https://doi.org/10.1006/jcph.1994.1155
https://doi.org/https://doi.org/10.1006/jcph.1998.6106
https://doi.org/https://doi.org/10.1006/jcph.2001.6726
https://doi.org/https://doi.org/10.1016/0021-9991(92)90307-K
https://doi.org/10.1007/s11831-019-09320-4
https://doi.org/10.1016/j.cagd.2021.102062
https://doi.org/10.1090/S0025-5718-1986-0815835-1
https://doi.org/10.1090/S0025-5718-1986-0815835-1
https://doi.org/10.1090/S0025-5718-04-01678-3
https://doi.org/https://doi.org/10.1006/jcph.1996.0167
https://doi.org/https://doi.org/10.1006/jcph.1996.0167
https://doi.org/https://doi.org/10.1006/jcph.1997.5810


141

[124] H. K. Zhao et al. “Implicit and Nonparametric Shape Reconstruction from
Unorganized Data Using a Variational Level Set Method”. In: Comput. Vis.
Image Underst. 80.3 (2000), pp. 295–314. doi: 10.1006/cviu.2000.0875
(cit. on pp. 2, 6, 76, 88, 91, 92, 99).

[125] F. Zheng, C. W. Shu, and J. Qiu. “High order finite difference Hermite
WENO schemes for the HamiltonJacobi equations on unstructured meshes”.
In: Comp. & Fluids 183 (2019), pp. 53–65. doi: 10.1016/j.compfluid.
2019.02.010 (cit. on pp. 4, 19, 41).

[126] J. Zhou, L. Cai, and F.-Q. Zhou. “New high-resolution scheme for three-
dimensional nonlinear hyperbolic conservation laws”. In: Appl. Math. Comp.
198.2 (2008), pp. 770–786. doi: 10.1016/j.amc.2007.09.017 (cit. on p. 4).

[127] J. Zhu and J. Qiu. “A new fifth order finite difference WENO scheme
for Hamilton-Jacobi equations”. In: Numer. Meth. for PDEs 33.4 (2017),
pp. 1095–1113. doi: 10.1002/num.22133 (cit. on pp. 4, 19, 41).

[128] J. Zhu and J. Qiu. “A new fifth order finite difference WENO scheme for solv-
ing hyperbolic conservation laws”. In: J. Comput. Phys. 318 (2016), pp. 110–
121. doi: 10.1016/j.jcp.2016.05.010 (cit. on pp. 4, 19).

[129] J. Zhu and J. Qiu. “A New Type of High-Order WENO Schemes for Hamilton-
Jacobi Equations on Triangular Meshes”. In: Comm. Computat. Phys. 27.3
(2020), pp. 897–920. doi: 10.4208/cicp.OA-2018-0156 (cit. on pp. 4, 41,
59).

https://doi.org/10.1006/cviu.2000.0875
https://doi.org/10.1016/j.compfluid.2019.02.010
https://doi.org/10.1016/j.compfluid.2019.02.010
https://doi.org/10.1016/j.amc.2007.09.017
https://doi.org/10.1002/num.22133
https://doi.org/10.1016/j.jcp.2016.05.010
https://doi.org/10.4208/cicp.OA-2018-0156




143

Appendix

We report here the matrix involved in the definition (3.25).
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Also, we report the matrices involved in the definitions (3.26). We assume that
the vector U of data in the 4 × 4 stencil is ordered lexicographically, i.e. x direction
faster and y direction slower.
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The matrix Aopt appearing in (3.26) is splitted into two matrices A(1)
opt and A

(2)
opt

reporting the first eight columns and the second eight columns of Aopt.
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