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C O M M E N T

Trade- offs between reducing complex terminology and 
producing accurate interpretations from environmental DNA: 
Comment on “Environmental DNA: What's behind the term?” 
by Pawlowski et al., (2020)

Abstract
In a recent paper, “Environmental DNA: What's behind the 
term? Clarifying the terminology and recommendations 
for its future use in biomonitoring,” Pawlowski et al. argue 
that the term eDNA should be used to refer to the pool 
of DNA isolated from environmental samples, as opposed 
to only extra- organismal DNA from macro- organisms. 
We agree with this view. However, we are concerned that 
their proposed two- level terminology specifying sam-
pling environment and targeted taxa is overly simplistic 
and might hinder rather than improve clear communica-
tion about environmental DNA and its use in biomonitor-
ing. This terminology is based on categories that are often 
difficult to assign and uninformative, and it overlooks a 
fundamental distinction within eDNA: the type of DNA 
(organismal or extra- organismal) from which ecological 
interpretations are derived.

1  |  EDNA SHOULD BE USED TO REFER TO 
THE TOTAL POOL OF DNA ISOL ATED FROM 
THE ENVIRONMENT

Clear and unambiguous scientific terminology is important to com-
municate science, particularly when misunderstanding or miscom-
munications can lead to costly ramifications (Gouran et al., 1986; 
Jerde, 2019; Mahon et al., 2013). Hence, we applaud Pawlowski 
et al. (2020) for highlighting inconsistencies in the use of the term 
“environmental DNA” (eDNA) and their implications for biomonitor-
ing. As described by the authors, these inconsistencies stem from 
some researchers using the term to refer to any DNA collected from 
an environmental sample without first isolating targeted organisms 
(e.g., Stat et al. (2017)), while others use it to refer only to extra- 
organismal DNA released by macro- organisms into the environ-
ment (e.g., Fraija- Fernández et al. (2020)). Although some of us have 

previously advocated for eDNA to be defined as extra- organismal 
DNA, the value of which is effectively refuted by Pawlowski et al. 
(2020), we agree with Pawlowski et al. (2020) that environmental 
DNA should be defined in the broadest sense.

However, the recommendation to employ a standard two- level 
terminology in eDNA studies, first indicating the environmental or-
igin of the DNA collected (e.g., water, sediment, biofilm, soil) and 
second indicating the taxa (e.g., fish, diatom, bacteria) targeted by 
polymerase chain reaction (PCR), does not align with the overall pur-
pose of improving clarity in eDNA biomonitoring. The reason is that 
it does not account for the distinction between the different types 
of eDNA (organismal and extra- organismal), which is the level of 
classification that can have a strong impact on eDNA data interpre-
tation. While Pawlowski et al. (2020) discount this, we argue there 
is a need to be clear about the type of eDNA that is being evaluated 
in any given study and this is the reason for why the term has been 
described in the broad and narrow sense.

2  |  EDNA IS COMPOSED OF 
ORGANISMAL AND E X TR A-  ORGANISMAL 
DNA

Environmental DNA can be classified into two types (Figure 1a): or-
ganismal DNA and extra- organismal DNA, the latter also including 
extracellular DNA (Barnes & Turner, 2016; Bohmann et al., 2014; 
Taberlet et al., 2012; Torti et al., 2015). Organismal DNA is sourced 
from whole individuals most probably alive at the time of sampling; 
as such, this type of eDNA is typically of high quality and significant 
quantity. In contrast, extra- organismal DNA originates from a vari-
ety of sources and thus is of highly variable quality and quantity. For 
example, extra- organismal DNA can come: (i) from biological mate-
rial shed from an organism as part of tissue replacement or meta-
bolic waste (Allan et al., 2020); (ii) as biologically active propagules 
such as gametes, pollen, seeds or spores (Stewart, 2019); or (iii) as a 
result of cell lysis or cell extrusion (Pietramellara et al., 2009). The 
latter processes results in extracellular DNA, which can persist in 
the environment on its own or be adsorbed onto surface- reactive 
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particles such as humic substances, clay, silt or sand (Levy- Booth 
et al., 2007; Pietramellara et al., 2009). Environmental DNA samples 
are therefore composed of a complex mixture of both types of DNA 
(i.e., organismal and extra- organismal) from various sources and in 
varying proportions (Taberlet et al., 2012).

3  |  EDNA C AN BE ENRICHED FOR 
DIFFERENT SOURCES AND T YPES

Generally, not all DNA present in a studied environment is required 
to address a given research question or is used for an application, 
and successive steps of enrichment for specific types or sources of 
eDNA are usually applied. For example, eDNA from a large variety 
of taxonomic groups can be found as organismal or extra- organismal 
DNA (types) in the environment (Figure 1a) and can be obtained in 
many ways from aquatic, aerial and terrestrial environments (Deiner 
et al., 2017). The first step is performed at the sampling level, where 
typically the collected material is passed through filters, meshes or 
nets to retain organisms, organismal debris or particles of a desired 
size (Figure 1b). Notably, this step does not imply a separation of 
DNA types or taxonomic groups because different sources and 
types of DNA overlap in size (Figure 1a) and because of the “sticky” 
nature of eDNA to bind other particles (Barnes et al., 2020). A subse-
quent enrichment can be performed during laboratory work through 
PCR or sequence capture using taxon- specific primers or probes 

(Jensen et al., 2020). However, this step is not perfect; a fraction of 
nontarget taxa DNA can also be amplified, and target taxa DNA can 
be missed. Finally, DNA sequences from particular taxa can be se-
lected at the analysis/interpretation step by considering only those 
sequences belonging to a given taxonomic group.

The particular methods applied at each of these enrichment 
steps will determine the final data set used for ecological inferences, 
but these methods evolve and are not in themselves completely 
deterministic. For example, “water eDNA amplified for metazoans” 
could refer either to organismal DNA collected through a plankton 
net containing fish larvae and zooplankton, or to extra- organismal 
DNA collected through a 0.45- μm pore size filter containing tissue, 
scales or cellular debris from fish and zooplankton.

4  |  ECOLOGIC AL INTERPRETATIONS 
SHOULD CONSIDER DNA T YPE

While it is currently impractical to separate and independently ana-
lyse organismal and extra- organismal DNA, the distinction between 
the two types is nonetheless crucial for ecological hypothesis- 
testing and data interpretation. Organismal DNA is often targeted 
when a living community of organisms is studied, asking questions 
about specific habitat, the functional role of communities or commu-
nity assembly processes driven by abiotic factors and biotic interac-
tions. Here, the chances of misleading data (i.e., the species was not 

F I G U R E  1  (a) Types of environmental DNA (organismal and extra- organismal, including extracellular) with possible sources and 
approximate size ranges. (b) Illustrative examples of sampling methods with intended captured particle size ranges
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in that environment at that time and place) are likely to be minimal. 
Instead, work focusing on extra- organismal DNA is more prone to 
misinterpretations about organismal distribution due to potential 
long- distance transport from source populations (Lacoursière- 
Roussel & Deiner, 2021). The processes regulating the presence of 
extra- organismal DNA in the environment and its detection in the 
laboratory are more stochastic. As a result, studies targeting this 
type of eDNA require a sampling design with in- depth replication 
and extra attention to potential sources of contamination, and need 
to be cognizant that the results are less likely to be definitive about 
species presence or absence at the time of sampling.

In eDNA studies, extra- organismal DNA is increasingly targeted 
for the indirect detection of (often macro- ) organisms without de-
stroying their natural habitats or harming individuals: for example, 
detecting fish taxa from eDNA extracted from water (Antognazza 
et al., 2019; Fraija- Fernández et al., 2020). Here, any link between 
the presence of a species' DNA and the presence of a living individ-
ual or population in the local area is implied. While a recent meta- 
analysis found that fish diversity estimated using eDNA agrees 
closely with estimates using conventional methods of capturing or 
observing the fish (McElroy et al., 2020), absolute conclusions about 
space and time inferences made from extra- organismal DNA are not 
yet possible. To make such a link accurate, an understanding of the 
“ecology” of extra- organismal DNA (Barnes & Turner, 2016) is cru-
cial, which requires knowledge of the often site- specific processes 
governing its production, transportation and degradation rate in the 
environment.

While separating the different eDNA types in practice remains 
a challenge, researchers using eDNA need to be clear about their 
intent. Specifically, we need to clearly report the methodological 
choices made to target one type of eDNA or another (whether by 
sampling, laboratory treatment or bioinformatics), make informed 
speculations about the likelihood of succeeding with that target, and 
acknowledge the limitations of the data we generate. If we target 
extra- organismal DNA, we also need to consider what process(es) 
we hypothesize govern the transport between the temporal and 
spatial bounds of detected DNA and what inferences we can there-
fore make from its detection.

5  |  CONCLUSIONS

In summary, we agree with Pawlowski et al. (2020) that eDNA should 
be defined in the broadest sense, but do not agree that the formal 
adoption of their additional proposed nomenclature will improve 
clarity in communication or reduce confusion around the use of the 
term eDNA. We suggest instead that scientists carefully and clearly 
identify the type of DNA being targeted for analysis (Figure 1) based 
on the existing terminology of organismal and extra- organismal 
DNA. This explicit stated intention would then clearly inform study 
design, sampling strategies, analytical choices and data interpreta-
tion to avoid potential biases and promote valid inferences. Because 
none of these choices and strategies are perfect in their detection of 

a particular type of DNA and in the place of a field- specific nomen-
clature, we suggest that in the methods sections of studies, authors 
should clearly describe the sampling strategy including the targeted 
size classes and taxa and whether taxa were targeted in any way 
during sampling, laboratory analysis (PCR, capture), data analysis 
(sequence selection) or some combination thereof. We feel that im-
provement of the field is a shared responsibility among research-
ers, reviewers, editors and managers and support the development 
and application of best practices in the acquisition and reporting of 
eDNA data (Goldberg et al., 2016) as the best way to improve clarity.
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