
University of Insubria
Department of Theoretical and Applied Sciences (DiSTA)

Ph.D. in Computer Science and Computational Mathematics

Formal Models

for Biological Systems

Supervisor: Prof. Simone Tini

Co-supervisor: Prof. Ruggero Lanotte

Co-supervisor: Prof. Nicoletta Sabadini

Doctoral Dissertation of
Desiree Manicardi

ID: 721203
XXXVI cycle

Abstract

In the last thirty years, formal models have been thoroughly employed in the realm
of biological systems for many reasons: (i) preventing those ambiguities that may arise
when informal notations are used for system description, (ii) supporting the development
of simulators, (iii) supporting the development of tools, such as model checkers, allowing
for verifying whether a system satisfies a given behavioural property, (iv) offering several
instruments allowing for comparing the behaviour of different systems.

The work in this thesis can be divided into two contributions concerning formal
models for biological systems.

The first contribution is related to the study of the robustness of biochemical net-
works. In particular, we take inspiration from the notion of α-robustness [1], which,
intuitively, verifies how by varying the initial concentration of some species, called con-
ventionally the input species, the concentration of other species of interest, called the
output species, varies at steady state. Robustness in our sense captures random effects
and temporary effects that are typical of the stochastic model.

We will employ: (i) the process calculi [2] approach for specifying systems of in-
terest, (ii) the semantic model of evolution sequences [3, 4], which, intuitively, models
the behaviour of a system as the sequence of probability measures over the attainable
configurations, (iii) a formal notion of robustness, defined on the semantic model, and
(iv) an algorithm allowing us to estimate the robustness of a system starting from its
specification.

We validate our approach on three case studies, already considered in [1]: Env-
Z/OmpR Osmoregulatory Signaling System in Escherichia Coli, which is an example
of the regulatory network, the mechanism of Bacterial Chemotaxis of Escherichia Coli,
and an abstract chemical reaction network, called Enzyme Activity at Saturation.

We have provided a Python implementation available at https://github.com/

dmanicardi/spebnr, and described in Appendix A.
Our second contribution is showing how the features of CospanSpan(Graph) [5, 6]

can be exploited in modelling biological systems. CospanSpan(Graph) offers an algebraic
approach for the compositional description of variable topology networks that has been
only partially exploited so far for the formalisation of that kind of systems.

In particular, we provide a simplified model of a human heart [7] and a model of
a dual-chamber pacemaker [7] that can interact with the model of the heart. Then, we
model a gene regulatory network, namely the Lac Operon of Escherichia Coli [8, 9, 10].

To my family members with the greatest thirst for knowledge
(my grandmom Lina, my dad Nelson and my cousin Alessandro),

and to all people who were, are and will be unable to study for economic reasons.

Acknowledgments

This thesis marks the end of my PhD in “Computer Science and Computational Math-
ematics”.

First of all, I want to dedicate my heartfelt recognition to my supervisor and my two
co-supervisors for their help. I would like to further extend my gratitude to my supervisor,
Prof. Simone Tini; the spirit guide who has assisted and guided me throughout those
years, not only in academics but also in psychological matters. I would also like to
thank Prof. Ruggero Lanotte; for his precious and appreciated collaboration. I would
like to thank the omnipresent Prof. Nicoletta Sabadini as well; who has helped me think
differently and break the mould.

I would like to offer my special thanks to the reviewers Dr. Valentina Castiglioni
and Prof. Paolo Milazzo; for their insightful comments and suggestions which have been
precious for the review of this thesis.

I wish to extend my special thanks to every Professor, researcher and PhD student
with whom I have had the opportunity to interact, not only academically but also spir-
itually. Their support helped me to not feel out of this academic world. I particularly
thank the coordinator Prof. Barbara Carminati, Dr. Alessandra Rizzardi, Prof. Luigi
Lavazza and Prof. Davide Tosi.

My gratitude goes also to all those who have believed in me outside the university
walls and who have encouraged me to achieve more ambitious results.

I am deeply grateful to my parents, Emanuela and Nelson, valid collaborators through-
out my career as a student and beyond. They have always accompanied me with love,
sacrifices and a lot of patience. Words are not enough to thank them.

Last but not least, I would like to express my sincere gratitude to my British cousin,
Davide, who always supports me and pushes me every day to be a better person. Par-
ticularly, in previous years, he was fundamental at helping me improve my English.

Thank you, Grazie, Teşekkür ederim, Dziękuję

Contents

List of Figures iii

List of Tables v

1 Introduction 1

1.1 Motivation . 1

1.2 Our contribution . 3

1.3 Structure of the Thesis . 4

1.4 Published material . 6

2 Classical Formal Models for Biological Systems 7

3 Robustness in Biochemical Networks: a Process Algebra Approach 11

3.1 Related Work on Robustness in Biology 13

3.2 The Model . 13

3.2.1 Behavioural Model . 15

3.2.2 Remarks on the Semantic Model 17

3.3 Behavioural Distances over Systems . 17

3.3.1 Robustness . 20

3.4 Estimating the Evolution Distance . 21

3.4.1 Estimating the Evolution Sequence 21

3.4.2 Estimating the Evolution Distance between Evolution Sequences . 23

4 Applying Robustness Analysis 25

4.1 The EnvZ/OmpR Osmoregulatory Signalling System 25

4.2 The Bacterial Chemotaxis System . 29

4.2.1 Robustness at varying of L . 31

4.2.2 Robustness at varying of CheR . 35

4.3 The Enzyme Activity at Saturation System 39

5 Modelling Reconfigurable Networks using CospanSpan(Graph) 45

5.1 CospanSpan(Graph): a Formalism for Automata Networks 46

5.1.1 The Algebra of Spans . 46

5.1.2 The Algebra of Cospans . 51

5.1.3 Cospans and Spans of Graphs . 53

i

5.2 Compositionality . 54
5.3 Timing in CospanSpan(Graph) . 66

6 Modelling Biological Systems and Robustness with CospanSpan(Graph) 69
6.1 The Heart System . 69
6.2 The Pacemaker Dual Chamber DDD System 76
6.3 The Lac Operon System . 82
6.4 Robustness in CospanSpan(Graph) . 83

7 Conclusion and future work 87
7.1 Biochemical Network Robustness . 87
7.2 Robustness and Hierarchy in CospanSpan(Graph) 88

A SPEBNR – a Simple Python Environment for statistical estimation of
Biochemical Network Robustness 89

Bibliography 91

List of Figures

3.1 The Continuous Petri Net model for EnvZ/OmpR [1] 14

3.2 Functions for simulating a computation 22

3.3 Function allowing for deriving an empirical evolution sequence 23

3.4 Functions used to estimate the evolution distance on systems. 24

4.1 Simulation of system S and its perturbed versions S1 and S2 27

4.2 Evolution of ddi and ddo between S and its perturbed versions S1 and S2 28

4.3 EnvZ/OmR Osmoregulatory Signaling System: evolution of ddi and ddo
at varying of η1 . 29

4.4 The Petri Nets model for the Bacterial Chemotaxis [1] 30

4.5 Simulation of system S and its perturbed version S1 33

4.6 Evolution of ddi and ddo between S and perturbed version S1 34

4.7 Bacterial Chemotaxis: evolution of ddi and ddo at varying of η1, for input L 35

4.8 Simulation of system S and its perturbed version S2 36

4.9 Evolution of ddi and ddo between S and its perturbed version S2 37

4.10 Bacterial Chemotaxis: evolution of ddi and ddo at varying of η1, for input
CheR . 38

4.11 The Petri Nets model for the Enzyme Activity at Saturation System [1] . 39

4.12 Simulation of system S and its perturbed versions S1 and S2 41

4.13 Evolution of ddi and ddo between S and its perturbed versions S1 and S2 42

4.14 Enzyme Activity at Saturation System: evolution of ddi and ddo at vary-
ing of η1 . 43

5.1 Objects of Span(C) . 47

5.2 The composition of spans . 47

5.3 Three components with ports . 47

5.4 The composition of two spans . 48

5.5 The tensor of two spans . 48

5.6 The identity span 1X . 48

5.7 The diagonal and the reverse diagonal of X 48

5.8 The projection and the reverse projection of X 49

5.9 The spans ηX and εX . 49

5.10 The system diagram of the expression in Example 2 49

5.11 The span denoted by the algebraic expression (1A⊗ηB) ·(X⊗1B) ·(1C⊗εB) 50

5.12 Objects of Cospan(C) . 52

iii

5.13 The composition of cospans . 52
5.14 The operations of the algebra . 52
5.15 The graphical representation of the network for the recursive equation

S = A+D · (A× S) ·M . 54
5.17 The span composition of three DD’s . 55
5.16 The span of a Decimal Counter . 55
5.18 The span composition of three DD’s (more detail) 56
5.19 The span composition of the Producer/Consumer problem, with one pro-

ducer, one consumer and one buffer . 57
5.20 The span composition of the Producer/Consumer problem, with two buffers 58
5.21 The span composition of the Producer/Consumer problem, with two buffers

and two consumers . 59
5.22 The span composition of the Producer/Consumer problem, with a unique

buffer, two producers and two consumers 60
5.23 The span composition of the Philosopher element of the Dining Philoso-

phers problem . 61
5.24 The span composition of the Fork element of the Dining Philosophers

problem . 62
5.25 The span composition of three elements of the Dining Philosophers problem 62
5.26 The basic components of Sofia’s Birthday Party 63
5.27 The span composition of Sofia’s Birthday Party 64
5.28 The whole span composition of Sofia’s Birthday Party 65

6.1 Heart . 70
6.2 Heart Architecture . 71
6.3 Veins, aorta or pulmonary artery . 71
6.4 Right atrium . 72
6.5 Tricuspid valve (Tri-Valve) . 73
6.6 SA node (60 bpm) . 74
6.7 SA node (60/80 bpm) . 74
6.8 AV node . 74
6.9 HIS bundle . 75
6.10 Heart automaton . 75
6.11 Pacemaker Architecture . 77
6.12 LRI (Lower Rate Interval) . 79
6.13 URI (Upper Rate Interval) . 79
6.14 AVI (Atrio-Ventricular Interval) . 80
6.15 VRP (Ventricular Refractory Period) . 80
6.16 PVARP (Post Ventricular Atrial Refractory Period) 81
6.17 Lac Operon model . 82
6.20 Decimal Counter with a perturbation . 84
6.18 Lac Operon: component O . 85
6.19 Lac Operon: protein R . 85

List of Tables

3.1 Potential behaviour of systems . 16
3.2 Probabilistic behaviour of systems . 16

4.1 The initial concentrations, the reaction constants and the chemical reac-
tions of the EnvZ/OmpR Osmoregulatory Signalling system. The concen-
tration of input species is marked by ♦ and varies to estimate robustness. 26

4.2 Input and output distance between S and its perturbed versions S1 and S2 28
4.3 EnvZ/OmpR Osmoregulatory Signaling System: robustness at varying of

η1 . 29
4.4 The initial concentrations, the reaction constants and the chemical reac-

tions of the chemotaxis phenomenon. The concentration of input species
is marked by ♦ and varies to estimate robustness 32

4.5 Input and output distance between S and perturbed version S1 33
4.6 Bacterial Chemotaxis: robustness at varying of η1 for input L 35
4.7 Input and output distance between S and the perturbed system S2 36
4.8 Bacterial Chemotaxis: robustness at varying of η1 38
4.9 The initial concentrations, the reaction constants and the chemical re-

actions of Enzyme Activity at Saturation system. The concentration of
input species is marked by ♦ and varies to estimate robustness 40

4.10 Input and output distance between S and its perturbed versions S1 and S2 41
4.11 Enzyme Activity at Saturation System: robustness at varying of η1 42

v

1
Introduction

1.1 Motivation

In the last thirty years, formal models have been thoroughly employed in the realm
of biological systems. The first reason is that formal models prevent those ambiguities
that may arise when informal notations are used for system description. Then, formal
modelling supports the development of simulators, that allow for understanding in silico
how a system behaves, both in normal conditions and under the effect of perturbations
that may alter its nominal functioning. Another important aspect is that formal models
support the development of tools, such as model checkers, allowing for verifying whether
a system satisfies a given behavioural property. Finally, formal models offer several in-
struments allowing for comparing the behaviour of different systems, which supports the
ability to check whether two different versions of a system behave in the same way when
some aspects of system behaviour are abstracted away.

Notably, those formal models that support compositional reasoning, have found ap-
plications in systems biology [11], where it is required that the functionality and the
behaviour of a complex system are obtained from the interactions between its com-
ponents. A typical example of a complex system, whose morphological and functional
organization have been thoroughly investigated in the context of system biology, are liv-
ing cells: the complex behaviour of cells arises from the interactions of their huge amount
of components, that interact with each other, through chemical reaction networks. The
importance of these interactions is witnessed also by the fact that their malfunctioning,
or corruption may originate in severe diseases, such as cancer or diabetes.

The research in formal models applied to biological systems presents at least two
directions. One is to focus on some relevant aspects or interesting properties of a class of
systems and to study them by employing formalisms that are already used in the realm

1

2 Introduction

of biological systems. The other is to focus on models that have been used, so far, only in
different contexts, and discover that they offer some notions, concepts, and mechanisms
that help to model biological systems. Below, we discuss the property of robustness
and the model CospanSpan(Graph) as examples of, respectively, an interesting property
deserving investigation, and a formalism offering relevant features not fully exploited, so
far, in the modelling of biological systems.

Robustness as a relevant property of biological systems

In the case of living cells, one of the reasons for which it is relevant to study how
the components of the cells interact with each other as a system is the necessity of
being able to predict how perturbations can affect these interactions thus modifying
cell behaviour. In particular, in some cases, it is interesting to predict in which case
the nominal behaviour of the cell system can be maintained in the presence of those
perturbations, which leads to the notion of robustness.

The notion of robustness has been widely used in several contexts, from control the-
ory [12] to biology [13]. On one side, we observe no formal agreement on any “official”
definition of robustness. For instance, according to the paper [14] published in 2013,
there were more than 600 papers listed in the ACM Digital Library that propose an
“original approach” to software robustness. On the other side, the intuitive meaning
of this concept is shared in several areas: robustness is commonly meant as the abil-
ity of a system to maintain its functionalities against uncertainty and perturbations.
Having adopted this intuitive meaning, the paper [15] argued that, in nature, several
mechanisms support robustness against environmental and genetic perturbations, thus
allowing complex systems to be evolvable:

(i) system control, which consists of negative and positive feedback to attain a robust
dynamic response observed in a wide range of regulatory networks;

(ii) redundancy and diversity, which consists of having multiple means to achieve a
specific function, because failure of one of them can be overcome by others;

(iii) modularity, which is an effective mechanism for containing perturbations and dam-
age within subsystems in order to minimise the effects on the whole system;

(iv) decoupling, which consists of isolating low-level variation from high-level function-
alities.

Clearly, robustness is more a quantitative than a qualitative property: saying that a
system is robust, or not, is often uninformative, the point is that of quantifying both,
the extent of the perturbations, and the impact that they have on system behaviour,
then the value of robustness is a function of those two quantities.

The CospanSpan(Graph) model

The compositional model CospanSpan(Graph) [5, 6] has been shown to model a variety
of phenomena, from asynchronous circuits to hierarchy, mobility and coordination. The

1.2 Our contribution 3

elements of the model are cospans and spans of graphs which here we shall call “Automata
with interfaces”. These automata are an extension of the classical finite state automata,
that were introduced in the seminal work of McCulloch and Pitts [16] as a discrete
model for threshold neurons and neural networks. Automata, since then, have become
the standard model for the specification and verification of sequential discrete dynamical
systems. Later, we have been assisting a paradigmatic shift from sequential systems,
exemplified by Turing Machines, to networks of parallel, interacting components.

Hence, various models of automata with a product of states have been proposed to
represent interactions (Zielonka [17], Petri [18]). These models are rather natural, but
unfortunately are not compositional, that is they lack a proper algebra. On the con-
trary, compositionality is an essential feature of CospanSpan(Graph). This model offers
explicit operations that combine automata with interfaces and their connectors. Hence,
given a syntactic expression, its global semantics can be deduced only by the semantics
of its constituents, and this is precisely what the algebraic approach guarantees. In order
to fully achieve compositionality, also with respect to parallelism, CospanSpan(Graph)
abandons both the classical (inherently sequential and closed) model of finite state au-
tomata and the well-established idea of input/output communication for a new paradigm,
considering as fundamental the notion of open systems with communication interfaces.
The operations in the algebra CospanSpan(Graph) can be interpreted in a very natural
way as operations on automata with states and transitions, as well as interfaces and
conditions. An expression (or even a recursive equation) in this algebra represents a
hierarchical, reconfigurable network of interacting components.

From the beginning, it has been very natural to consider automata theory and biology
as very close disciplines, with a long and very fruitful tradition of reciprocal influences,
from robotics to biology-inspired models of computation. Unfortunately, whereas we
could be reasonably satisfied with Turing Machines (and finite state automata) when
dealing with discrete, isolated and sequential computation devices, in the literature there
is a lack of a general model for compositional biology-inspired automata networks that
could play an analogous role. This is crucial for performing verification tasks as well.

An interesting point is to focus on the importance of an algebraic approach for
the compositional description of variable topology networks that leads to a natural for-
malisation of biological systems. In other words, investigating the expressivity of the
CospanSpan model in the modelling of biological systems.

1.2 Our contribution

The work in this thesis can be divided into two contributions concerning formal models
for biological systems, motivated by the discussion in the previous section.

The first contribution is related to the study of the robustness of biochemical net-
works. In particular, we take inspiration from the notion of α-robustness [1], which,
intuitively, verifies how by varying the initial concentration of some species, called con-
ventionally the input species, the concentration of other species of interest, called the
output species, varies at steady state. Our contribution has two main differences with

4 Introduction

respect to [1]:

(i) we work within the stochastic model [19], whereas α-robustness has been proposed
for the deterministic model [20];

(ii) coherently with the choice of the model, instead of evaluating the concentration
level of output species at steady state, we evaluate it step-by-step, up to a finite
horizon.

Since the deterministic and the stochastic approach are complementary [20], we can
argue that also our results and those in [1] are. Clearly, robustness in our sense captures
random effects and temporary effects that are typical of the stochastic model.

We will employ:

(i) the process calculi approach [2] for specifying systems of interest,

(ii) the semantic model of evolution sequences [3, 4], which, intuitively, model the
behaviour of a system as the sequence of probability measures over the attainable
states,

(iii) a formal notion of robustness, defined on the semantic model, and

(iv) an algorithm allowing us to estimate the robustness of a system starting from its
specification.

We validate our approach on three case studies, already considered in [1]: EnvZ/OmpR
Osmoregulatory Signaling System in Escherichia Coli, which is an example of regulatory
network, the mechanism of Bacterial Chemotaxis of Escherichia Coli, and an abstract
chemical reaction network, called Enzyme Activity at Saturation in [1].

We have provided a Python implementation available at https://github.com/

dmanicardi/spebnr. This is the tool spebnr, a Simple Python Environment for statis-
tical estimation of Biochemical Network Robustness. Details on how to use spebnr are
presented in Appendix A.

Our second contribution consists in showing how the features of CospanSpan(Graph)
can be exploited in modelling biological systems. The aim is to fill the gap mentioned
in the previous section: the lack of a general model for compositional (biology-inspired)
automata networks that could play a role analogous to finite state automata in the
context of discrete, isolated and sequential computation devices.

In particular, we provide a simplified model of a human heart [7] and a model of
a dual-chamber pacemaker [7] that can interact with the model of the heart. Then, we
model a gene regulatory network, namely the Lac Operon of Escherichia Coli [8, 9, 10].

1.3 Structure of the Thesis

The thesis is organised into five chapters, plus one introduction and a conclusion. The
thesis consists of two main contributions concerning formal models for biological systems.

1.3 Structure of the Thesis 5

The former is related to the study of the robustness of biochemical networks, which is ex-
posed in Chapters 3 and 4. The latter concerns the investigation of CospanSpan(Graph),
exposed in Chapters 5 and 6. In detail:

• Chapter 2 offers an overview of classical formalisms for modelling biological sys-
tems;

• Chapter 3 shows how the process algebra approach for modelling biological sys-
tems well supports the study of a notion of robustness for biochemical networks,
whose dynamics are formalised by adopting Gillespie’s stochastic model [19]. As re-
gards specification, we rely on process algebras, adopting in particular the species
as processes [2] approach. In order to model the behaviour of a biological sys-
tem, we follow Gillespie’s approach [19], where computation steps represent single
chemical reactions. Here, at each step there is a competition between all available
reactions, giving rise to a probabilistic behaviour. In this context, we believe that
it is convenient to adopt the semantic model of evolution sequences proposed in
[3, 4]. Essentially, an evolution sequence is a sequence of probability measures over
the attainable states of the system. In our case, by the state of the system, we
mean the concentration level of all species. We define the input distance and the
output distance between the original system and the system subject to variation
in input species. Then we formalise a notion of robustness whose intuition is that
small variations in input distance should give rise to smooth and limited variations
in output distance;

• Chapter 4 applies the theory presented in Chapter 3 to study some robustness
properties of three different systems that were already analysed in [1], within the
deterministic model. Experiments are conducted in spebnr. In Section 4.1 we con-
sider an example of a regulatory network, namely the EnvZ/OmpR Osmoregulatory
Signaling System in Escherichia Coli. Then, in Section 4.2 we study the mechanism
of Bacterial Chemotaxis of Escherichia Coli. Finally, in Section 4.3 we deal with
an abstract chemical reaction network, called Enzyme Activity at Saturation in [1];

• Chapter 5 presents the algebra Span(C) and its dual counterpart Cospan(C),
as introduced by Benabou in [21]. CospanSpan(Graph) is a categorical model pro-
posed by Katis-Sabadini-Walters [22, 23] for the compositional description of re-
configurable hierarchical networks. In particular, we focus on compositionality, and
on the possibility of describing the interactions among physical/biological systems.
We also describe the timed version of this algebra;

• Chapter 6 applies the theory presented in Chapter 5 to describe compositionally
three biological systems. In Section 6.1 we consider an example of the Heart System.
Then, in Section 6.2 we study the Pacemaker Dual Chamber DDD System. Finally,
in Section 6.3 we deal with the Lac Operon System. Moreover, we discuss the
robustness of CospanSpan(Graph);

• Chapter 7 presents the conclusion of the thesis and describes possible future works.

6 Introduction

At the end of the thesis, the Appendix A describes the procedure needed for installing
and using the tool spebnr, a Simple Python Environment for statistical estimation of
Biochemical Network Robustness, introduced in Chapter 3.

1.4 Published material

Part of the material presented in this thesis has appeared in some papers. In particular:

• The notion of robustness and the case study EnvZ/OmpR Osmoregulatory Sig-
nalling System, presented in Chapter 3 and in Section 4.1, appeared in [24].

• The work and the results presented in Chapter 4 – Section 4.2 and Section 4.3
– will be submitted in extend form with the title: “A framework for analysis of
robustness in biochemical networks.” (2024).

• The investigation of CospanSpan(Graph), presented in Chapter 5 and Chapter 6,
has appeared in [25, 26, 27].

• The work presented in Chapter 5 – Section 6.4 – will be submitted in form with
the title: “Robustness in CospanSpan(Graph)” (2024).

Part of the material is also been presented at conferences. In particular:

• R. Lanotte, D. Manicardi and S. Tini, “Step-by-step Robustness for Biochemical
Networks”, Italian Conference on Theoretical Computer Science 2023 (Palermo,
Italy, September 13-15, 2023) [Conference Presentation], presented in Chapter 3
and in Section 4.1.

• D. Manicardi and N. Sabadini, “Cospan/Span(Graph): an algebra for open, recon-
figurable automata networks.”, Workshop in honour of R. F. C. Walters (Tallinn,
Estonia, July 17-18, 2023) [Conference Presentation], presented in Chapter 5 and
Chapter 6.

• D. Manicardi, N. Sabadini and S. Tini, “Automata and intelligent agents”, Neu-
roSpine, V International Meeting, (online, November 16, 2020) [Conference Pre-
sentation], presented in Chapter 5 and Chapter 6.

• A. Gianola, S. Kasangian, D. Manicardi and N. Sabadini, “A Compositional Model
of the Heart-Pacemaker System in CospanSpan(Graph)”, Workshop iHeart, 2019
RISM Congress: Modelling the Cardiac Function, (Varese, Italy, July 22-24, 2019)
[Poster], presented in Chapter 5 and Chapter 6.

2
Classical Formal Models for Biological Systems

Classical mathematical approaches have been successfully employed for years for
modelling biological systems. Without claiming to be exhaustive, and only in order to
provide some examples, we mention that ordinary differential equations and stochastic
processes allow for describing systems at the level of biochemical reactions [28], partial
differential equations have been used for representing higher level behaviours where also
diffusion of molecules has to be taken into account [29], cellular automata [30] have been
employed for modelling higher-level structures such as tissues [31].

In order to model and explain biological phenomena, some models have been proposed
ad hoc, others were directly inspired by biology. One of the most prominent examples
is that of Lindenmayer Systems [32]. Essentially, a Lindenmayer System is a formal
grammar in which production rules are applied in parallel and that is equipped with
mechanisms allowing to mapping of the generated strings into “geometric” structures.
Originally, Lindenmayer Systems were employed to model the growth process of plants.
Membrane Systems [33, 34, 35] was originally introduced as a universal computational
paradigm inspired by living cells. The main idea is to have different “computation loca-
tions” where some subtasks of a more complex task can be performed. These locations
are organised into a hierarchical structure, and each location is a sort of compartment
surrounded by a membrane. As in a living cell, the tasks are different membranes run
in parallel and independently, but some pieces of computation can conditionally cross
the membranes, some membranes may dissolve, others can be joined, and others can
be split. Even if Membrane Systems are essentially a computation paradigm, they have
been also employed for the modelling of biological systems, for instance for modelling
signalling pathways [36]. Also, Reaction Systems [37] were introduced as a computa-
tional paradigm, which capture two fundamental interactions typically present between
biochemical entities, namely activation and inhibition: computation consists in trans-

7

8 Classical Formal Models for Biological Systems

forming reactant objects into product objects provided that activators are present and
inhibitors are absent. This formalism has been then applied for modelling biological
phenomena [38] and properties of biological systems [39].

When the aim has been that of maintaining and sharing models, descriptive languages
such as SBML and graphical formalisms such as Kitano Map [40] have played a major
role.

Formal models from computer science have been employed in the realm of biological
systems for several reasons, already discussed in the Introduction: (i) as the formalisms
described above, they prevent those ambiguities that may arise when informal nota-
tions are used for system description, (ii) they support the development of simulators,
(iii) they support the development of tools, such as model checkers, (iv) they offer several
instruments allowing for comparing the behaviour of different systems.

The analogies that exist between concurrent agent interactions and biochemical re-
actions motivated the application to formalisation of biological systems of process al-
gebras [41], which are a family of calculi originally developed to represent and analyse
formally the behaviour of concurrent systems. In this context, one of the first propos-
als [42, 43] was to use the π-calculus for describing biomolecular processes underlying
protein networks. The main motivation was to exploit existing tools for simulation, anal-
ysis and verification of systems. Later, this approach was extended in order to capture
also quantitative aspects of behaviour [44]. In κ-calculus [45], protein interactions are
idealised as a particular kind of graph rewriting, and two different types of rewriting
rules model two types of biological reactions, that is complexation and decomplexation.
Bio Ambients [46] is a calculus that allows for representing various aspects of molecu-
lar localisation and compartmentalisation, such as the movement of molecules between
compartments, the dynamic rearrangement of cellular compartments, and the interac-
tion between molecules in a compartmentalised setting. Brane Calculi [47] are a family
of formalisms where the main idea is to have a structure of membranes which are main
actors of interactions such as phagocytosis and exocytosis, then computation happens on
membranes. Beta-binders [48] is a formalism where processes are encapsulated in boxes
with some sites (beta-binders) expressing some interaction capabilities, such as the join-
ing between two processes, the split of one process into two, the change of the process
interface by hiding, unhiding and exposing a site. The calculus of looping sequences [49]
allows for describing micro-biological systems and their evolution. In particular, this cal-
culus interprets membranes as sequences of elements able to interact, which has been
demonstrated to be useful for describing real biological phenomena. Bio-PEPA [50] was
proposed for the formalisation of biochemical networks and focuses on the possibility
of representing explicitly some quantitative features of biochemical models, such as sto-
ichiometry and levels of concentration. In Bio-PEPA there are two different styles of
modelling, namely reagent-centric view and pathway-centric view. In the first approach
processes are species at a given level of concentration, in the second approach processes
represent subpathways. Process algebra with hooks [51] is a formalism where processes
represent biological entities that belong to different structural levels, such as molecules,
cells and tissues. The calculus allows for modelling behaviours that happen on several

9

levels and for formalising how events in each level can affect the behaviour at other
levels.

The ability to combine discrete and continuous behaviours offered by hybrid for-
malisms, such as hybrid automata, allows for modelling, at the same time, continu-
ous evolutions such as those of biological systems and discrete interactions such as the
scheduling of a medical treatment [52]. Hybrid Functional Petri Nets [53] extend Petri
Nets with discrete and continuous places, transitions and arcs and allows for the def-
inition and management of biological issues, particularly dynamic network structure
changes considering discrete and continuous amounts. Moreover, this version of Petri
Nets uses hierarchisation, which is beneficial in describing complex network structures.

3
Robustness in Biochemical Networks: a Process

Algebra Approach

In this chapter, we show how the process algebra approach for modelling biological
systems well supports the study of a notion of robustness for biochemical networks,
whose dynamics are formalised by adopting Gillespie’s stochastic model [19].

We propose a notion of robustness inspired by the notion of α-robustness introduced
in [1] for the deterministic model [20] of the dynamic of biochemical networks. Intu-
itively, our notion of robustness quantifies how much the concentration of some species
of interest, called the output species, varies step-by-step in consequence of the varying
concentration of other species, called conventionally the input species. Essentially, our
approach differs from that in [1] for two reasons:

(i) we work within the stochastic model, whereas α-robustness has been proposed in
the deterministic case;

(ii) coherently with the choice of the model, instead of evaluating the concentration
level of output species at steady state as in [1], we evaluate it step-by-step, up to
a finite horizon.

Since the deterministic and the stochastic approach are complementary [20], we can
argue that this holds also for our results and those in [1]. Clearly, robustness in our
sense captures random effects and temporary effects that are typical of the stochastic
model.

In order to study the robustness of the system’s behaviour in the stochastic model,
we need:

(i) a language allowing us to specify systems of interest;

11

12 Robustness in Biochemical Networks: a Process Algebra Approach

(ii) a semantic model, which must capture the probabilistic behaviour that charac-
terises the stochastic approach;

(iii) a formal notion of robustness, defined on the semantic model;

(iv) an algorithm allowing us to estimate the robustness of a system starting from its
specification.

As regards specification, we rely on process algebras, adopting in particular the species
as processes [2] approach. Essentially, a solution with n species is modelled by the parallel
composition of n processes, where each process represents one species and its concentra-
tion level. We express the concentration level in terms of the number of molecules, but
this can be generalized.

In order to model the behaviour of a biological system, we follow Gillespie’s ap-
proach [19], where computation steps represent single chemical reactions. Here, at each
step there is a competition between all available reactions, giving rise to a probabilistic
behaviour. In this context, we believe that it is convenient to adopt the semantic model
of evolution sequences proposed in [3, 4]: essentially, an evolution sequence is a sequence
of probability measures over the attainable states of the system. In our case, by the state
of the system, we mean the concentration level of all species.

By adopting evolution sequences, one can exploit the whole theory developed in [3, 4]
to measure the differences between system behaviours, which supports the study of ro-
bustness properties. In [3, 4] the focus is on cyber-physical systems and the starting idea
is to provide a notion of distance between computation states that quantifies to which
extent they perform differently with respect to some targets that are fixed initially. In
other words, to each computation state, one assigns a penalty quantifying how bad the
system is working with respect to the targets, and the distance between two computation
states is given by the difference of the penalties that are assigned to them. Then, the
notion of distance between computation states is lifted first to probability measures over
computation states and, then, to evolution sequences. In the present thesis, we customize
this approach to support the study of a robustness property for biochemical networks
inspired by the α-robustness of [1]. Essentially, since we are interested in studying the
difference between the behaviour of two systems by focusing on the quantity of a given
set of species, we can assign to each system state a rank that depends on the available
quantity of these species. Then, the distance between two states coincides with the dif-
ference between their ranks, and this can be lifted to probability measures and evolution
sequences. Since α-robustness based on how much the output species vary depending on
the variation of the initial concentration of input species, we can consider two different
ranks, which capture the input and the output species, respectively, and that allow us
to define the input distance and the output distance between the original system and the
system subject to variation on input species. Then we formalise a notion of robustness
whose intuition is that small variations in input distance should give rise to smooth and
limited variations in output distance.

Then, following [3, 4], we provide a randomized algorithm that permits estimating
the evolution sequences of systems and thus for the evaluation of the distances between

3.1 Related Work on Robustness in Biology 13

them. This allows us to estimate the robustness of a nominal system, by sampling per-
turbed systems at a fixed maximal input distance from it and by estimating their output
distance, whereby perturbed system we mean a system affected by a variation of the
quantity of input species.

In order to validate our proposal, we have provided a Python implementation avail-
able at https://github.com/dmanicardi/spebnr. This is the tool spebnr, a Simple
Python Environment for statistical estimation of Biochemical Network Robustness, which
can be viewed as a customisation of the tool spear (https://github.com/quasylab/

spear) implementing the algorithms in [4]. Details on how to use spebnr are in Ap-
pendix A.

In Chapter 4, we will apply our theory to three case studies that were already analysed
in [1] within the deterministic model. A comparison between our results and those in
that paper will be provided.

3.1 Related Work on Robustness in Biology

Robustness in biology has been extensively studied in recent years. A very general ap-
proach has been proposed in [54, 55], where the nominal behaviour of a system subject
to perturbations is expressed in terms of a formula specified with a linear temporal logic
equipped with a quantitative semantics, then the robustness of the system is quantified
as the average satisfaction degree of that property over all admissible perturbations,
possibly weighted by their probabilities. Several notions of robustness proposed in the
literature are less general and focus on steady-state behaviour. As an example, the no-
tion of adaptability in [56] captures the idea that the behaviour at the steady state of a
system is insensitive with respect to the initial concentration of some species. Absolute
concentration robustness [57, 58] with respect to a given species requires that the system
admits at least one positive steady state and that the concentration of that species is
the same in all of the positive steady states that the system might admit. The notion of
α-robustness has been proposed in [1] on the Continuous Petri Nets model. Intuitively,
this notion captures the idea that by varying the initial concentration of input species
under suitable constraints, namely by remaining within a so-called interval marking of
the net, then at steady state one observes a bounded variation of the concentration of
output species, namely that concentration is in a ball of radius α.

3.2 The Model

In this section, we propose our model for biochemical networks adopting the species as
processes [2] approach.

We assume a set N of names for species and a set R of (bio)chemical reactions.
Then, we use a set of actions A describing how a species can take part in a reaction.
More precisely, if a is a reaction in R, then the following actions are in A:

• a?r, denoting that the species participates in reaction a as a reactant, consuming

14 Robustness in Biochemical Networks: a Process Algebra Approach

r molecules,

• a!p, denoting that the species participates in reaction a as a product, producing p
molecules,

• a?r!p, denoting that the species participates in reaction a as both a reactant and
a product, like in the case of enzymatic reactions. Here, r molecules are consumed
and p molecules are produced.

Elements in A will be denoted with α, α′, α1, For an action α ∈ A, the associated
reaction r(α) is defined by r(a?r) = r(a!p) = r(a?r!p) = a. For a set of actions A ⊆ A, we
let r(A) denote r(A) = {r(α) | α ∈ A}.

Definition 1 (System) The set S of systems over N , R and A is defined by

S ::= n[A]L | S ‖ S

where: (i) n ∈ N , (ii) A ⊆ A, and (iii) L is a natural.

Intuitively, the system n[A]L represents that L molecules of species n are in the
mixture and have a potential behaviour described by A, and ‖ is the (commutative and
associative) parallel composition operator, which allows us to model that several species
coexist in the same mixture.

Given systems ni[Ai]Li , for i = 1, . . . , k, we will say that the system n1[A1]L1 ‖ · · · ‖
nk[Ak]Lk is well-formed if for all 1 þ i < j þ k it holds that ni Ó= nj . We will always
assume to work with well-formed systems. Intuitively, well-formedness ensures that each
species is represented by precisely one sequential component in the parallel composition.

X

Y

XD XDYP

XT XP YP

XPY

a1 a2

a3

a4

a5

a6

a7
a8

a9 a10

a11

Figure 3.1: The Continuous Petri Net model for EnvZ/OmpR [1]

3.2 The Model 15

Example 1 (EnvZ/OmpR Osmoregulatory Signaling System) Escherichia Coli
is a bacterium whose cell contains a few million proteins of different types [11]. The
EnvZ/OmpR Osmoregulatory Signaling System regulates two of those proteins. In order
to support our exposition, in Figure 3.1 we report the graphical representation of this
regulatory network as given in [1] by exploiting the formalism of Continuous Petri Nets.
The main components of this network are EnvZ (histine kinase) and OmpR (response
regulator), denoted, respectively, as X and Y in the figure. EnvZ phosphorylates OmpR
(denoted YP in the figure) and itself (denoted XP), by binding and breaking down ATP.
In the picture, we can see that this network is characterized by eight species, represented
by places in the net, and eleven reactions, represented by transitions. More in detail,
the reactants and the products of a reaction are those that are represented by the places
that are the sources and the targets, respectively, of the transition represented by that
reaction. For instance, the species XT is a reactant for the reactions a4 and a5, while is
a product for a3. In the Continuous Petri Nets representation, stoichiometric coefficients
are represented by labels decoring transitions. Labels are omitted when the stoichiometric
coefficient is 1. Indeed, in this example, each reaction uses precisely one molecule for
each of its reactants and produces precisely one molecule for each of its products. Below
we give the system S that represents the regulatory network with species X, Y, XD and
YP having several molecules corresponding to 25, 150, 50 and 10, respectively, and the
other species having no molecule.

S = X[{a2?
1, a3?

1, a1!
1, a4!

1, a8!
1}]25 ‖ Y[{a6?

1, a7!
1, a11!

1}]150

‖ XT[{a3!
1}]0 ‖ XP[{a5!

1, a7!
1}]0 ‖ XPY[{a6!

1}]0

‖ XD[{a1?
1, a9?

1, a2!
1, a10!

1, a11!
1}]50 ‖ XDYP[{a9!

1}]0

‖ YP[{a9?
1, a8!

1, a10!
1}]10

(3.1)

3.2.1 Behavioural Model

We describe systems’ dynamics by means of two types of transitions. Those of the first

type represent the potential behaviour of systems. They are of the form S
(a,w)
−−−−→ S′,

which models that the reaction a can take S to S′. Here, w is the weight of the transition
and is a real number that will allow us to calculate the rate of the reaction a, which is
needed in order to calculate the probability of all enabled reactions. The transitions of
the second type describe how all enabled reactions for a system S compete and take it
to a probability distribution over systems. They are of the form S =⇒ π, where π is a
discrete distribution over systems, namely a mapping π : S −→ [0, 1] with

∑

S∈S π(S) = 1.
From the transitions of the form S =⇒ π we will derive transitions of the form π =⇒ π′

that model the evolution of distributions of systems.
The transitions of the first type are derived by means of the inference rules in Ta-

ble 3.1. The first rule represents that r molecules of species n are consumed since n takes
part in reaction a as a reactant. The weight

(L
r

)

coincides with the number of ways r
molecules of n can be taken out from the available L, namely, it is the number of sets

16 Robustness in Biochemical Networks: a Process Algebra Approach

a?r ∈ A L ÿ r

n[A]L
(a,(Lr))−−−−−→ n[A]L−r

a!p ∈ A

n[A]L
(a,1)
−−−→ n[A]L+p

a?r!p ∈ A L ÿ r

n[A]L
(a,(Lr))−−−−−→ n[A]L−r+p

a Ó∈ r(A)

n[A]L
(a,#)
−−−−→ n[A]L

S1
(a,w1)
−−−−→ S′1 S2

(a,w2)
−−−−→ S′2

S1 ‖ S2
(a,w1·w2)
−−−−−−→ S′1 ‖ S

′
2

Table 3.1: Potential behaviour of systems

trgt(S) = {(ai, wi, Si) | i ∈ I}

S =⇒
∑

i∈I

(cai · wi)
∑

j∈I(caj · wj)
δ(Si)

Si =⇒ πi
∑

i∈I

piδ(Si) =⇒
∑

i∈I

piπi

Table 3.2: Probabilistic behaviour of systems

of molecules of n that can take part to the reaction a. The second rule represents that
p molecules of n are produced since n takes part in reaction a as a product. The weight
1 reflects that the number of molecules of the species does not impact the rate of the
reaction. The third rule represents that r molecules of n are consumed and p molecules
of n are produced by taking part in reaction a both as a reactant and as a product.
The fourth rule is applied when n is not involved in reaction a. The inferred transition
allows for composing the behaviour of n[A]L with that of the species that participate in
reaction a as reactant and/or product. The last rule allows for combining the behaviour
of systems running in parallel. Clearly, they have to agree upon the reaction to be taken
and the resulting weight is the product of the weights of the composed transitions. Here,
we extend classic product by # · w = w ·# = w for all reals w, and # ·# = #.

For a system S we denote by trgt(S) the set of the triples {(ai, wi, Si) | S
(ai,wi)
−−−−−→

Si and wi Ó= #}. Notice that for S = n1[A1]L1 ‖ · · · ‖ nk[Ak]Lk , we have (ai, wi, Si) ∈
trgt(S) with wi Ó= # if and only if wi ÿ 1 and S contains wi different sets of reagents
that can take part to reaction ai.

In order to define the transitions of the form S =⇒ π, we need some notation for
distributions over systems. By δ(S) we denote the point distribution giving probability
1 to S and probability 0 to all S′ different from S. Then, for a countable set of indexes I
and distributions πi with i ∈ I, the distribution

∑

i∈I piπi with all pi ÿ 0 and
∑

i∈I pi = 1
is the convex distribution defined by (

∑

i∈I piπi)(S) =
∑

i∈I pi · πi(S).

The first rule in Table 3.2 represents the competition between all enabled reactions of
S. For each reaction a, we consider the constant reaction ca associated with the reaction,
where, intuitively, ca dt is the probability that a particular combination of reactants gives
rise to reaction a in an infinitesimal time interval dt. The probability that S behaves
as described by (ai, wi, Si) is the ratio between the rate cai · wi of the reaction ai and
the sum of the rates of all reactions

∑

j∈I(caj · wj). To explain this point, we recall

3.3 Behavioural Distances over Systems 17

that cai ·wi is the parameter of the exponential distribution modelling the time elapsing
between two consecutive occurrences of reaction ai and

∑

j∈I(caj · wj) is the parameter
of the exponential distribution modelling the time elapsing between two consecutive
occurrences of arbitrary reactions. Summarizing, S reaches the convex distribution of

systems
∑

i∈I piπi with pi =
(cai ·wi)

∑

j∈I
(caj ·wj)

and πi = δ(Si).

The second rule in Table 3.2 lifts the behaviour of systems to that of distributions
over systems. We note that if there is a sequence of transitions π1 =⇒ π2 =⇒ . . . πi . . . ,
for π1 the point distribution δ(n1[A1]L1 ‖ · · · ‖ nm[Am]Lm), then all systems S in the
support of any πi are of the form S = n1[A1]L′

1
‖ · · · ‖ nm[Am]L′m , for suitable L′1, . . . , L

′
m.

Following [3, 4], the sequence π1 =⇒ π2 =⇒ . . . πi . . . is called an evolution sequence.
In particular, it is the evolution sequence of S if π1 = δ(S).

In a transition S =⇒ π the probability weight assigned to each element in the support
of π depends on the rate of all reactions that are possible in S. This is no longer true in
a transition π =⇒ π′ since the rates of the chemical reactions from two different systems
in the support of π are unrelated.

3.2.2 Remarks on the Semantic Model

We have described the behaviour of a system by means of an evolution sequence, namely
a sequence of distributions of systems. Clearly, computing exactly these distributions is
undoable. However, by adapting to our context the work in [3, 4, 59], we can easily obtain
a randomized algorithm allowing us to estimate the evolution sequence of a system S.
This randomized algorithm, detailed in Section 3.4, works as follows:

(i) we apply N times a procedure allowing us to compute a h-steps trajectory. Essen-
tially, this coincides with applying N times the classical Gillespie algorithm [19].
For i = 1, . . . , N , we obtain the trajectory Si0, S

i
1, . . . , S

i
h, where all Si0 coincide

with S. Clearly, for all j = 1, . . . , h it holds that the samples S1j , . . . , S
N
j obtained

at step j are independent and identically distributed;

(ii) for each j = 1, . . . , h, we use S1j , . . . , S
N
j to derive the empirical distribution π̂j

defined simply by π̂j(S
′) =

|{i|Si
j
=S′ and 1þiþN}|

N ;

(iii) by applying the weak law of large numbers to i.i.d. samples we infer that when N
goes to infinite then π̂j converges weakly to πj , where πj are the distributions such
that δ(S) =⇒ π1 =⇒ π2

3.3 Behavioural Distances over Systems

In [3, 4, 59] a notion of behavioural distance over cyber-physical systems was proposed,
aiming to express how well the cyber components fulfil their tasks. In this section, we
customize that theory for our model, clearly with a different target. In particular, given
two systems that differ by the number of molecules of species, say S1 = n1[A1]L1

1

‖ · · · ‖

18 Robustness in Biochemical Networks: a Process Algebra Approach

nk[Ak]L1
k

and S2 = n1[A1]L2
1

‖ · · · ‖ nk[Ak]L2
k
, we aim to quantify the differences over

their evolution sequences S1 =⇒ π11 =⇒ π12 . . . and S2 =⇒ π21 =⇒ π22 To this
purpose, we proceed as follows:

(i) first, we introduce the concept of distance between systems, which relies on the
difference between the number of molecules of the species;

(ii) then we lift this notion to a notion of distance between distributions over systems,
so that we can quantify the distance between the distributions π1i and π2i that are
reached by S1 and S2, respectively, at step i, and, finally,

(iii) we lift this distance to a distance between the two evolution sequences.

We start with a notion of distance between systems that focuses on a single species.
We assume to know the minimum and maximum level min(n) and max(n) that a given
species n may reach during the computation. Notice that these values can be estimated
by applying our randomized algorithm quickly described above in Section 3.2.2 and
detailed below in Section 3.4.

Definition 2 (ni-distance over systems) Assume two systems S1 = n1[A1]L1
1

‖ · · · ‖

nk[Ak]L1
k

and S2 = n1[A1]L2
1

‖ · · · ‖ nk[Ak]L2
k
. Then the distance between S1 and S2 with

respect to species ni, or ni-distance between S1 and S2 for short, is

dni(S1, S2) =
| L1i − L

2
i |

max(ni)−min(ni)
.

Clearly, dni(S1, S2) is a value in the interval [0, 1]. Moreover, dni is a 1-bounded
pseudometric, namely a function dni : S × S → [0, 1] such that for all systems S1, S2, S3
the following properties hold:

• dni(S1, S1) = 0,

• dni(S1, S2) = dni(S2, S1), and

• dni(S1, S3) þ dni(S1, S2) + dni(S2, S3).

Notice that pseudometric dni is not a metric, since, in general, it does not hold that
dni(S1, S2) = 0 implies S1 = S2.

The second step to obtain the evolution distance consists of lifting distances on
systems to distances on distributions over systems. Among the several notions of lifting
for pseudometric proposed in the literature (see [60] for a survey), following [4] we opt
for that known as Wasserstein distance or Kantorovich-Rubinstein pseudometric since
it preserves the properties of the ground pseudometric and is computationally tractable
via statistical inference.

In order to recall formally that notion, we need to introduce the notion of matching,
also known as measure coupling [61], for pairs distributions.

3.3 Behavioural Distances over Systems 19

Definition 3 (Matching, [61]) Assume a set X. A matching for a pair of distribu-
tions (π, π′) over X is a distribution ω over the product state space X × X with left
marginal π, i.e.

∑

x′∈X ω(x, x
′) = π(x) for all x ∈ X, and right marginal π′, i.e.

∑

x∈X ω(x, x
′) = π′(x′) for all x′ ∈ X. We let Ω(π, π′) denote the set of all matchings

for (π, π′).

According to [61], a matching in Ω(π, π′) may be understood as a transportation
schedule for the shipment of probability mass from π to π′. Then, by exploiting that
notion, we can introduce the Kantorovich lifting.

Definition 4 (Kantorovich metric, [62]) The Kantorovich lifting of a pseudomet-
ric d over a set X is the pseudometric K(d) over distributions over X defined for all
distributions π, π′ by

K(d)(π, π′) = min
ω∈Ω(π,π′)

∑

x,x′∈X

ω(x, x′) · d(t, t′).

The reader familiar with probability theory might have recognized the Kantorovich lifting
K(d)(π, π′) as the minimum expected value of the ground distance d, over the supports
of π and π′, with respect to the distribution ω. According to [61], K(d)(π, π′) gives the
optimal cost for shipping probability mass from π to π′ when d(x, x′) is the unit cost for
shipping mass from x to x′.

We notice that pseudometric K(dni) preserves the 1-boundedness property of dni .
From the distances with respect to all species K(dn1), . . . ,K(dnk), we can derive a

unique notion of distance by exploiting weights that quantify the relevance that we want
to assign to each species.

Definition 5 (Distance between distributions over systems) Assume the weights
w1, . . . ,
wk ÿ 0 such that

∑k
j=1wj = 1. The distance dd between distributions over systems

induced by distances dn1 , . . . ,dnk and weights w1, . . . , wk is defined by

dd(π, π′) =
k
∑

i=1

wi ·K(dni)(π, π
′) .

Clearly, being a convex combination of 1-bounded pseudometrics, the function dd
is a 1-bounded pseudometric. We argue that dd can be computed efficiently, by fol-
lowing [63]. In detail, computing dd(π, π′) requires computing the Kantorovich liftings
K(dn1)(π, π

′), . . . ,K(dnk)(π, π
′). Both π and π′ are discrete distributions, let us assume

that their cardinality is N . If π and π′ are estimated by our randomized algorithm, then
N will be a parameter of the algorithm. In computing each liftingK(dni)(π, π

′), each sys-
tem in the support of π and π′ can be viewed as a real, obtained as the cardinality of the
molecules of ni divided bymax(ni)−min(ni). Therefore, π and π′ can be viewed as multi-
sets of reals of cardinality N . This property is exploited in [63] as follows. In O(N logN)
these two multisets can be ordered. Let u1 þ · · · þ uN and v1 þ · · · þ vN be the ordered

20 Robustness in Biochemical Networks: a Process Algebra Approach

sequences. Notice that the ground distance dni between two reals in the support of π
and π′ is a real (the absolute value of their difference, namely dni(ui, vj) = |ui − vj |).
Following [63], we have that K(dni)(π, π

′) = 1
N

∑N
j=1 dni(uj , vj). Therefore, computing

dd can be done in O(k ·N logN).

We now need to lift dd to a distance on evolution sequences. To this end, we ob-
serve that the evolution sequence of a system includes the distributions over systems
induced after each computation step. Following [4] we define the evolution distance as
a sort of weighted infinity norm of the tuple of the Kantorovich distances between the
distributions in the evolution sequences.

Definition 6 (Evolution distance) For a pseudometric dd over distributions over S
and an interval [τ1, τ2], the evolution distance over [τ1, τ2] is the mapping E(dd)[τ1,τ2]
such that, given systems S1 and S2 and their evolution sequences S1 =⇒ π

1
1 =⇒ π

1
2 =⇒

. . . π1i . . . and S2 =⇒ π
2
1 =⇒ π

2
2 =⇒ . . . π2i . . . we have

E(dd)[τ1,τ2](S1, S2) = maxτ1þiþτ2
dd(π1i , π

2
i)

Since dd is a 1-bounded pseudometric, we can easily derive the same property for
E(dd)[τ1,τ2].

We remark that, as argued in [59], the choice of defining the evolution metric as the
pointwise maximal distance in time between the evolution sequences of systems is nat-
ural and reasonable when one aims to evaluate the highest distance on the behaviour of
systems. However, in different contexts, it would be more appropriate to use a different
aggregation function over the tuple of Kantorovich distances instead of max. The defi-
nition of E(dd)[τ1,τ2] in Definition 6 could be replaced by a definition parametric with
respect to aggregation functions. In order to avoid a too-heavy notation, we decided to
opt for the present formulation.

3.3.1 Robustness

Technically, in order to formalise the notion of robustness we need two distances, one
taking into account input species and the other taking into account the output species.
These will be the input distance ddi and the output distance ddo over distributions
and will be defined as in Definition 5 by giving positive weights to only input and only
output species, respectively. The definition of robustness is parametric with respect to
these two distances, two thresholds η1 and η2 and two intervals I1 and I2: a system S is
robust with respect to these parameters if whenever we consider a system S′ whose input
distance from S in the interval I1 remains below η1, then the output distance observed
in the interval I2 remains below η2.

Definition 7 (Robustness) A system S is (ddi,ddo, I1, I2, η1, η2)-robust if for all sys-
tems S′:

E(ddi)I1(S, S
′) þ η1 implies E(ddo)I2(S, S

′) þ η2

3.4 Estimating the Evolution Distance 21

Clearly, we will use I1 = [0, 0] if the input distance is relevant only in the initial state
of systems and we use I2 = [τ1, h] if we want to observe the behaviour of systems up to
a time horizon h.

3.4 Estimating the Evolution Distance

In this section, we follow [3, 4, 59] and propose a procedure to estimate the evolution
distance via statistical techniques. First, in Subsection 3.4.1, we show how we can esti-
mate the evolution sequence of a given system S. The idea was quickly anticipated in
Section 3.2.2. Then, in Subsection 3.4.2 we evaluate the distance between two systems
S1 and S2 on their estimated evolution sequences.

All the procedures presented in this section have been implemented in Python in
the tool spebnr, and are available at https://github.com/dmanicardi/spebnr. This
implementation can be viewed as a customisation of the tool Spear (https://github.

com/quasylab/spear) implementing the algorithms in [59]. Details on spebnr are in
Appendix A.

3.4.1 Estimating the Evolution Sequence

Given a system S0 and an integer h we can use the function Simulate(S0, h), defined
in [59] and adapted to our purpose in Figure 3.2, to sample a sequence of systems
of the form seq = (S0, S1, . . . , Sh) that represents h-steps of a computation starting
from S0. Each step of the sequence is computed by using the function SimStep, also
defined in Figure 3.2. Here, we assume that R = {a1, . . . , a|R|} and we let rand be
a function that allows us to get a random number uniformly distributed in in (0, 1].
Essentially, SimStep computes one step of Gillespie’s algorithm. Our version of SimStep

is significantly different with respect to that provided in [59], which was proposed for
cyber-physical systems and had to deal with the interactions between the cyber and the
physical components of the systems. Our version of SimStep returns also the minimum
and maximum level of each species n in all generated systems. In computing the arrays
m and M with the minimal and maximal levels of species we exploit the function proji
mapping a system to the level of species ni, namely proji(n1[A1]L1 ‖ · · · ‖ nk[Ak]Lk) = Li.

To compute the empirical evolution sequence of a system S, we used the function
Estimate in Figure 3.3, which is a customisation of the Estimate procedure proposed
in [59]. The function Estimate(S, h,N) invokes N times the function Simulate(S, h) in
Figure 3.2 in order to sample N sequences of systems (Si0, . . . , S

i
h), for i = 1, . . . , N , each

modelling h steps of a computation from S = S0. Thus, a sequence of tuples of samples
{E0, . . . , Eh} is computed, where each Ej is the tuple (S1j , . . . , S

N
j) of systems observed

at time j in each of the N sampled computations. Notice that, for each j ∈ {0, . . . , h},
the samples S1j , . . . , S

N
j are independent and identically distributed. Each Ej can be

used to estimate the distribution πS,j , namely the jth element of the evolution sequence
δ(S) = πS,0 =⇒ πS,1 =⇒ . . . =⇒ πS,k. For any j, with 0 þ j þ h, we let π̂NS,j be the

22 Robustness in Biochemical Networks: a Process Algebra Approach

1: function Simulate(n1[A1]L1 ‖ · · · ‖ nk[Ak]Lk , h)
2: step← 1
3: m← [0, . . . , 0]
4: M ← [0, . . . , 0]
5: S ← n1[A1]L1 ‖ · · · ‖ nk[Ak]Lk
6: seq ← (S)
7: while step þ h do
8: S ← SimStep(S)
9: seq.append(S)

10: for i = 1, . . . , k do
11: m(i) = min(m(i), proji(S))
12: M(i) = max(M(i), proji(S))
13: end for
14: step← step+ 1
15: end while
16: return (seq,m,M)
17: end function

1: function SimStep(n1[A1]L1 ‖ · · · ‖ nk[Ak]Lk)
2: for j = 1, . . . , |R| do
3: for i = 1 . . . k do

4: wj,i ←











(

Li
r

)

if aj?
r ∈ Ai or aj?

r!p ∈ Ai

1 if aj !
p ∈ Ai

otherwise
5: end for
6: wj = caj ·

∏k

i=1 wj,i
7: end for
8: for j = 1, . . . , |R| do

9: pj =







wj
∑|R|

j=1
wj

if wj Ó= #

0 otherwise

10: end for
11: u← rand()

12: let j s.t.
∑j−1
l=1 pl < u þ

∑j

l=1 pl
13: for i = 1, . . . , k do

14: L′i ← Li +



















−r if aj?
r ∈ Ai

−r + p if aj?
r!p ∈ Ai

+p if aj !
p ∈ Ai

0 otherwise
15: end for
16: return n1[A1]L′

1
‖ · · · ‖ nk[Ak]L′

k

17: end function

Figure 3.2: Functions for simulating a computation

3.4 Estimating the Evolution Distance 23

1: function Estimate(S, h,N)
2: m = [0, . . . , 0]
3: M = [0, . . . , 0]
4: ∀j : (0 þ j þ h) : Ej ← ∅
5: counter ← 0
6: while counter < N do
7: ((S0, . . . , Sh),m,M)← Simulate(S, h)
8: ∀j : (0 þ j þ h) : Ej ← Ej ∪ {Sj}
9: ∀l : (0 þ l þ k) : m(l) = min(m(l),m(l))

10: ∀l : (0 þ l þ k) : M(l) = max(M(l),M(l))
11: counter ← counter + 1
12: end while
13: return ({E0, . . . , Eh},m,M)
14: end function

Figure 3.3: Function allowing for deriving an empirical evolution sequence

distribution such that for any system S′ we have

π̂NS,j(S
′) =
|Ej ∩ {S

′}|

N
.

Finally, we call π̂NS = π̂
N
S,0 . . . π̂

N
S,h as the empirical evolution sequence of S. Notice that

by applying the weak law of large numbers to the i.i.d samples, we get that when N goes
to infinite π̂NS,j converges weakly to πS,j .

The algorithms in Figures 3.2 and 3.3 have been implemented in Python in the tool
spebnr, and are available at https://github.com/dmanicardi/spebnr.

3.4.2 Estimating the Evolution Distance between Evolution Sequences

We have seen that function Estimate allows us to collect independent samples at each
time step from 0 to a deadline h. We proceed to show how these samples can be used to
estimate the distance between two systems S1 and S2.

Following [63], to estimate the Kantorovich lifting K(d) of a distance d between
two (unknown) distributions over reals π1 and π2, one can use N independent samples
{e11, . . . , e

N
1 } taken from π1 and ℓ ·N independent samples {e12, . . . , e

ℓ·N
2 } taken from π2,

with ℓ a natural suitably chosen. After that, one orders {e11, . . . , e
N
1 } and {e12, . . . , e

ℓ·N
2 },

thus obtaining the two sequences of values u1 þ · · · þ uN and v1 þ · · · þ vℓ·N , respec-
tively. The value K(d)(π1, π2) can be approximated as 1

ℓN

∑ℓN
z=1max{vz − u⌈ zℓ ⌉, 0}.

In our case, since we need to estimate the Kantorovich lifting K(dni) for species
ni between the distributions over systems πS1,j and πS2,j that are reached in j steps
from S1 and S2, respectively, we have to proceed as follows. We obtain the set of reals
{e11, . . . , e

N
1 } by extracting N samples from πS1,j , and, then, by taking from each sample

the level of species ni and by dividing it by max(ni)−min(ni). Analogously, we obtain
the reals {e12, . . . , e

ℓ·N
2 } by extracting ℓ ·N samples from πS2,j , and, then, by taking from

each sample the level of species ni and by dividing it by max(ni)−min(ni).

24 Robustness in Biochemical Networks: a Process Algebra Approach

Clearly, having the estimation of K(dni)(πS1,j , πS2,j) for all species, we can derive
an estimation for dd(πS1,j , πS2,j) and, then, for E(dd)[a,b](S1, S2). The whole procedure
is realized by functions Distance and ComputeH in Figure 3.4, available at https://

github.com/dmanicardi/spebnr in spebnr. The former takes as input the two systems
S1 and S2 to compare, the weights assigned to species W = (w1, . . . , wk), the parameter
h giving the number of computation steps that are observed, the parameters N and
ℓ used to obtain the samplings of computation, and the bounds of the interval a and
b. Function Distance collects the samples E1,0, . . . , E1,h and E2,0, . . . , E2,h of possible
computations of length h from S1 and S2. Then, for each step ∈ [a, b], the ni distance at
time step is computed via the function ComputeH(E1,step, E2,step, proji/(M(i)−m(i))),
where m(i) and M(i) are the minimum and maximum level of species ni in all systems
that are generated.

Due to the sorting of {νh | h ∈ [1, . . . , ℓN]} the complexity of function ComputeH

is O(ℓN log(ℓN)) (cf. [63]). We refer the interested reader to [64, Corollary 3.5, Equa-
tion (3.10)] for an estimation of the approximation error given by the evaluation of the
Kantorovich distance over N samples.

1: function Distance(S1, S2,W, h,N, ℓ, a, b)
2: ({E1,0, . . . , E1,h},m1,M1)← Estimate(S1, h,N)
3: ({E2,0, . . . , E2,h},m2,M2))← Estimate(S2, h, ℓN)
4: ∀l : (l = 1, . . . , k) : m(l) = min(m1(l),m2(l))
5: ∀l : (l = 1, . . . , k) : M(l) = max(M1(l),M2(l))
6: dist← 0
7: for all step ∈ [a, b] do
8: for all wi Ó= 0 in W do
9: ρ = proji/(M(i)−m(i))

10: diststep,i ← ComputeH(E1,step, E2,step, ρ)
11: end for
12: diststep =

∑

i|wi Ó=0
wi · diststep,i

13: dist← max{dist, diststep}
14: end for
15: return dist
16: end function

1: function ComputeH(E1, E2, ρ)
2: (S11 , . . . , S

N
1)← E1

3: (S12 , . . . , S
ℓN
2)← E2

4: ∀j : (1 þ j þ N) : uj ← ρ(S
j
1)

5: ∀z : (1 þ z þ ℓN) : vz ← ρ(S
z
2)

6: re index {uj} s.t. uj þ uj+1
7: re index {vz} s.t. vz þ vz+1
8: return 1

ℓN

∑ℓN

z=1max{vz − u⌈ zℓ ⌉, 0}
9: end function

Figure 3.4: Functions used to estimate the evolution distance on systems.

4
Applying Robustness Analysis

In this chapter, we apply the theory presented in Chapter 3 to study some robust-
ness properties of three different systems that were already analysed in [1], within the
deterministic model. Experiments are conducted in spebnr.

In Section 4.1 we consider an example of a regulatory network, namely the En-
vZ/OmpR Osmoregulatory Signaling System in Escherichia Coli. Then, in Section 4.2
we study the mechanism of Bacterial Chemotaxis of Escherichia Coli. Finally, in Sec-
tion 4.3 we deal with an abstract chemical reaction network, called Enzyme Activity at
Saturation in [1].

The steady-state analysis conducted in [1] concluded that all these systems are ro-
bust. Our analysis will show that these systems are also step-by-step robust.

4.1 The EnvZ/OmpR Osmoregulatory Signalling System

In this section, we apply the approach of Chapter 3 to study the robustness property
of a regulatory network. In particular, we consider the EnvZ/OmpR Osmoregulatory
Signaling System in Escherichia Coli, earlier introduced in Example 1. This system was
already analysed in [1], within the deterministic model. As reported in [1], an interesting
question is whether the initial concentrations of input species EnvZ and OmpR, which are
represented in Figure 3.1 by X and Y, respectively, impact on the long-run concentration
of output species phosphorylated OmpR, represented by YP. We can answer to that
question by studying the robustness of the system with respect to an input distance ddi
and an output distance ddo defined so that they capture the differences over both X and
Y, and over YP, respectively.

The analysis in [1] concluded that the concentration of output species at steady state
does not depend on the initial value of input species. In other words, at steady state, an

25

26 Applying Robustness Analysis

original system and its perturbed versions obtained by varying the initial concentration
of input species X and Y do not exhibit any difference in the concentration of output
species YP. Our analysis will allow us to study the step-by-step distances between the
original system and the perturbed one, which is abstracted away in the steady-state
analysis.

Initial concentration Reaction constants Chemical reactions

X = 25♦ ca1 , ca2 , ca3 , ca4 ,= 0.5 XD
a1−⇀↽−
a2
X

Y = 150♦ ca5 , ca11 = 0.1 XT
a3−⇀↽−
a4
X

XT = 0 ca6 , ca9 = 0.02 XT
a5−→ XP

XP = 0 ca7 , ca8 , ca10 = 0.5 XP + Y
a6−⇀↽−
a7
XPY

XPY = 0 XPY
a8−→ X+ YP

XD = 50 XD+ YP
a9−→ XDYP

XDYP = 0 XDYP
a10−−→ XD+ YP

YP = 10 XDYP
a11−−→ XD+ Y

Table 4.1: The initial concentrations, the reaction constants and the chemical reactions of
the EnvZ/OmpR Osmoregulatory Signalling system. The concentration of input species
is marked by ♦ and varies to estimate robustness.

Let us focus on system S in Equation 3.1, whose initial species concentration are the
same as in [1] and are reported in Table 4.1, together with the set R of reactions and
the reaction constants. We start our analysis by studying the distances between S and
two systems that were obtained in [1] by perturbing its initial state: system S1 starts
with X = 10 and Y = 50, system S2 starts with X = 250 and Y = 1000. In [1] evidence
is given that, at steady state, S, S1 and S2 have the same level of YP.

Before analysing robustness, we focus on the simulation of S, S1 and S2. By applying
function Estimate in Figure 3.3, we can simulate the evolution of these systems. For each
system, we have applied function Estimate with parameters h = 15000 and N = 100. In
Figures 4.1a, 4.1c, 4.1e we report the step-by-step average value obtained for all relevant
species, namely X, Y and YP, whereas in Figures 4.1b, 4.1d, 4.1f we have highlighted the
step-by-step average value obtained for YP.

By applying function Distance in Figure 3.4 we can estimate the evolution distance
between the original system S and the two perturbed ones. We define the input distance
ddi so that only the weights associated with X and Y are positive, in particular, we
decided that both weights are 0.5 to reflect that the two species have the same relevance.
Then, we define the output distance ddo so that only the weight associated with YP is
positive. In Table 4.2 we report the results obtained by applying Distance with the

4.1 The EnvZ/OmpR Osmoregulatory Signalling System 27

(a) Evolution of X,Y,YP in S

(b) Evolution of YP in S

(c) Evolution of X,Y,YP in S1

(d) Evolution of YP in S1

(e) Evolution of X,Y,YP in S2

(f) Evolution of YP in S2

Figure 4.1: Simulation of system S and its perturbed versions S1 and S2

following parameters: N = 50 runs for the original system, ℓ · N = 100 runs for the
perturbed systems, h = 15000 steps for each run. In detail, for each perturbed system,
in Table 4.2 we report:

(i) the input distance between the perturbed system and S, which is simply computed
by focusing on the initial level of input species in S and the perturbed systems,
and the minimal and maximal levels that are stored in m and M by Distance;

(ii) the maximal output distance ddo computed by Distance in interval [7500, 15000];

(iii) a pointer to a figure describing the step-by-step evolution of input and output
distance between S and the perturbed system.

We noted that ddi(S, S2) is one order of magnitude higher than ddi(S, S1), whereas
E(ddo)[7500,15000](S, S1) and E(ddo)[7500,15000](S, S2) are close each other and are quite
low numbers. This suggests that even if one changes the initial level of X and Y in a
light or a heavy way, the step-by-step variation of YP is light in all cases.

However, in our setting, a more systematic analysis, for studying how the initial
concentrations of X and Y in a system S influence the concentration of YP in a temporal
interval I, can be conducted as follows. We fix the maximal input distance η1 between
system S and its perturbed versions and, then, we estimate for which η2 the system S
is (ddi,ddo, I1 = [0, 0], I, η1, η2)-robust. More precisely, in order to estimate η2, for a
suitable n we sample n systems S1, . . . , Sn satisfying E(ddi)[0,0](S, Si) þ η1 and we fix
η2 = maxi=1,...,nE(ddo)I(S, Si).

28 Applying Robustness Analysis

System Initial X Initial Y ddi from S E(ddo)[7500,15000] Figure showing

from S ddi and ddo
step-by-step

S1 10 50 0.072407 0.051207 Figure 4.2a

S2 250 1000 0.79145 0.056034 Figure 4.2b

Table 4.2: Input and output distance between S and its perturbed versions S1 and S2

(a) ddi(S, S1) and ddo(S, S1), step-by-step (b) ddi(S, S2) and ddo(S, S2), step-by-step

Figure 4.2: Evolution of ddi and ddo between S and its perturbed versions S1 and S2

We have considered five different values for η1: 0.3, 0.4, 0.5, 0.6, 0.7. For each choice
for η1 we have sampled n = 20 systems at input distance ddi from S bounded by η1.
More precisely, we decided to sample these 20 systems so that they are at a ddi distance
from S in the interval (η1 − 0.1, η1]. Then, we have estimated the η2 for which S is
(ddi,ddo, [0, 0], I, η1, η2)-robust, for I = [7500, 15000]. In each experiment, we simulated
runs consisting of h = 15000 reactions, and we considered N = 50 runs for the original
system S and ℓ · N = 100 runs for the n = 20 perturbed systems. For each of the
five choices for η1, in Table 4.3 we report the value η2 for which we have estimated
the (ddi,ddo, [0, 0], [7500, 15000], η1, η2)-robustness, a pointer to the picture showing the
step-by-step evolution of ddi and ddo between S and the perturbed system realizing η2
and, finally, the initial concentration levels of X and Y of that system. Summarizing, at
varying of η1 in [0.3, 0.7] we get values for η2 that are close to each other and are one
order of magnitude lower than η1. This suggests that S, which was classified as robust
in the steady state analysis in [1], has a good level of robustness also in the step-by-step
approach. The analysis in [1] allows one to conclude that at steady state the level of YP
does not depend on the initial level of X and Y, our analysis allows to conclude that if
one varies the initial level of X and Y then, step-by-step, the changes in YP are limited
and smooth.

The spebnr code used for the analysis can be found at https://github.com/

4.2 The Bacterial Chemotaxis System 29

dmanicardi/spebnr/tree/master/caseStudies/envZOmpR. For each value for η1, the
analysis took 150 minutes on a 1.70 GHz i7-1255U, with 16.00 GB RAM.

η1 η2 ddi and ddo between Initial concentration Initial concentration
S and the system of X in system of Y in system

realizing η2 realizing η2 realizing η2

0.3 0.065862 Figure 4.3a 165 101

0.4 0.053621 Figure 4.3b 222 134

0.5 0.059483 Figure 4.3c 57 1033

0.6 0.078448 Figure 4.3d 269 500

0.7 0.059138 Figure 4.3e 263 669

Table 4.3: EnvZ/OmpR Osmoregulatory Signaling System: robustness at varying of η1

(a) ddi and ddo, η1 = 0.3 (b) ddi and ddo, η1 = 0.4 (c) ddi and ddo, η1 = 0.5

(d) ddi and ddo, η1 = 0.6 (e) ddi and ddo, η1 = 0.7

Figure 4.3: EnvZ/OmR Osmoregulatory Signaling System: evolution of ddi and ddo at
varying of η1

4.2 The Bacterial Chemotaxis System

In this section, we consider the mechanism of Bacterial Chemotaxis in Escherichia Coli,
which was originally studied in [11, 56] and whose robustness was already analysed in

30 Applying Robustness Analysis

[1] within the deterministic model.

X

X∗

L

CheY

CheZ

CheYpXL

X∗m

CheR

XY

CheB CheBpXm

a1

a2

a3 a4

a5a6

a7

a8

a9
a10

a11

a12

a13

a14

Figure 4.4: The Petri Nets model for the Bacterial Chemotaxis [1]

In order to support our exposition, in Figure 4.4 we report the graphical representa-
tion of this process as given in [1] by exploiting the formalism of Continuous Petri Nets.
The components of this mechanism on which we put our attention are an attractant
L, an enzyme CheR, and a regulatory protein CheYp. The main idea here is that E.
Coli senses the concentration level of attractant L, in order to decide whether to keep
moving in the current direction or to make a tumble, thus changing direction randomly.
Tumbling frequency is reduced if the detected concentration of the attractant has in-
creased with respect to the past. The concentration of L is sensed through receptors on
the external membrane. Each receptor is bound to a protein kinase, forming a group
denoted X, which passes from inactive state X to active state X∗ adding a phosphate
group to a regulatory protein, denoted CheY, which becomes CheYp. Since CheYp is the
main responsible for tumbling, the higher the concentration of CheYp is, the higher the
tumbling frequency is. However, the binding of X reduces the probability of activating
X. As a consequence, the probability of adding the phosphate to CheY diminishes, and

4.2 The Bacterial Chemotaxis System 31

the tumbling frequency is lowered. Another relevant component of this chemical network
is an enzyme, denoted as CheR. This enzyme works oppositely than the attractant L:
it increases the activity of X. Indeed, CheR adds at a constant rate a methyl group to
the XL complex, which becomes Xm and restarts behaving as X. The methyl group is
removed by the enzyme CheB, which is influenced by X that, by adding a phosphoryl
group to CheB makes it more active, constituting a negative feedback loop: the higher
is the activity of X, the higher is that of CheB, which, in turn, reduces the activity of
X. Below we give the system S that represents the network with the initial number of
molecules as in Table 4.4.

S = L[{a6?
1!1}]1000 ‖ CheR[{a9?

1!1}]1000 ‖ X[{a1?
1, a2!

1, a3!
1}]10

‖ X∗[{a2?
1, a3?

1, a6?
1, a1!

1, a11!
1}]10 ‖ CheZ[{a4?

1!1}]1

‖ Xm[{a12!
1, a14!

1}]0 ‖ XL[{a8!
1}]0

‖ X∗m[{a10?
1, a11?

1, a12?
1, a14?

1, a9!
1, a13!

1}]1

‖ CheY[{a3?
1, a14?

1, a4!
1, a5!

1}]10 ‖ XY[{a6!
1}]0

‖ CheB[{a10?
1, a7!

1}]2 ‖ CheBP[{a10!
1}]0

‖ CheYP[{a4?
1, a5?

1, a3!
1, a14!

1}]1

(4.1)

As reported in [1], two interesting questions are whether the initial concentration
of L, or, independently, CheR, impacts on the long-run concentration of CheYp. We can
answer to each of those questions by studying the robustness of systems with respect
to an input distance ddi and an output distance ddo defined so that they capture the
differences over L, or CheR, and over CheYp, respectively.

4.2.1 Robustness at varying of L

The analysis in [1] concluded that the concentration of output species CheYp at steady
state does not depend on the initial value of the input species L. In other words, at
steady state, an original system and its perturbed versions obtained by varying the
initial concentration of input species L do not exhibit any difference in the concentration
of output species CheYp. Our analysis will allow us to study the step-by-step distances
between the original system and the perturbed one, which is abstracted away in the
steady-state analysis.

Let us focus on system S in Equation 4.1, whose initial species concentration is the
same as in [1] and is reported in Table 4.4, together with the set R of reactions and the
reaction constants.

We start our analysis by studying the distances between S and a system S1 that was
obtained in [1] by perturbing its initial state: system S1 starts with L = 100000. In [1]
evidence is given that, at steady state, S and S1 have the same level of CheYp.

32 Applying Robustness Analysis

Initial concentration Reaction constants Chemical reactions

L = 1000♦ ca1 , ca13 = 1.15 X
a1−⇀↽−
a2
X∗

CheR = 1000♦ ca2 , ca12 = 0.25 X∗ + CheY
a3−→ CheYp+ X

X = 10 ca3 = 0.1 CheYp+ CheZ
a4−→ CheY + CheZ

X∗ = 10 ca4 = 10 CheYp
a5−→ CheY

CheZ = 1 ca5 = 0.002 L+ X∗
a6−→ L+ XY

Xm = 0 ca6 , ca7 , ca11 = 1 CheBp
a7−→ CheB

XL = 0 ca8 = 80 XY
a8−→ XL

X∗m = 1 ca9 = 0.01 CheR+ XL
a9−→ X∗m+ CheR

CheY = 10 ca10 = 0.2 X∗m+ CheB
a10−−→ CheBp+ X∗m

XY = 0 ca14 = 0.18 X∗m+ CheBp
a11−−→ X∗ + CheBp

CheB = 2 X∗m
a12−−⇀↽−−
a13
Xm

CheBp = 0 X∗m+ CheY
a14−−→ CheYp+ Xm

CheYp = 1

Table 4.4: The initial concentrations, the reaction constants and the chemical reactions
of the chemotaxis phenomenon. The concentration of input species is marked by ♦ and
varies to estimate robustness

Before analysing robustness, we focus on the simulation of S and S1. By applying
function Estimate in Figure 3.3, we can simulate the evolution of these systems. We
have applied the function Estimate with parameters h = 15000 and N = 50 on the
original system S, and h = 15000 and ℓ · N = 100 on the perturbed system S1. In
Figures 4.5a and 4.5c we report the step-by-step average value obtained for all relevant
species, namely L and CheYp, for S and S1, respectively, and in Figures 4.5b and 4.5d
we highlight the average value obtained for CheYp.

Then, by applying function Distance in Figure 3.4 we can estimate the evolution
distance between S and S1. We define the input distance ddi so that the weight as-
sociated with L is 1.0 and the output distance ddo so that the weight associated with
CheYp is 1.0. In Table 4.5 we report the results obtained by applying Distance with
the following parameters: N = 50 runs for the original system, ℓ ·N = 100 runs for the
perturbed systems, h = 15000 steps for each run. In detail, in Table 4.5 we report:

(i) the input distance between S and S1, which is simply computed by focusing on
the initial level of input species in those systems, and the minimal and maximal
level that are stored in m and M by Distance;

4.2 The Bacterial Chemotaxis System 33

(a) Evolution of L and CheYP in S

(b) Evolution of CheYP in S

(c) Evolution of L and CheYP in S1

(d) Evolution of CheYP in S1

Figure 4.5: Simulation of system S and its perturbed version S1

(ii) the maximal output distance ddo computed by Distance in interval [7500, 15000];

(iii) a pointer to a figure describing the step-by-step evolution of input and output
distance between S and S1.

Notice that ddo(S, S1) is significantly smaller than the input one.

System Initial L ddi from S E(ddo)[7500,15000] Figure showing ddi and ddo
from S step-by-step

S1 100000 0.9 0.079091 Figure 4.6

Table 4.5: Input and output distance between S and perturbed version S1

As in Section 4.1, we can conduct a more systematic analysis for studying how the
initial concentration of L in a system S influences the concentration of CheYp in a

34 Applying Robustness Analysis

Figure 4.6: Evolution of ddi and ddo between S and perturbed version S1

temporal interval I. We fix the maximal input distance η1 between system S and its
perturbed versions and, then, we estimate for which η2 the system S is (ddi,ddo, I1 =
[0, 0], I, η1, η2)-robust. More precisely, in order to estimate η2, for a suitable n we sample
n systems S1, . . . , Sn satisfying E(ddi)[0,0](S, Si) þ η1 and we fix

η2 = maxi=1,...,nE(ddo)I(S, Si).

We have considered five different values for η1: 0.3, 0.4, 0.5, 0.6, 0.7. For each choice
for η1 we have sampled n = 20 systems at input distance ddi from S bounded by η1.
More precisely, we decided to sample these 20 systems so that they are at a ddi distance
from S in the interval (η1 − 0.1, η1]. Then, we have estimated the η2 for which S is
(ddi,ddo, [0, 0], I, η1, η2)-robust, for I = [7500, 15000]. In each experiment, we simulated
runs consisting of h = 15000 reactions, and we considered N = 50 runs for the original
system S and ℓ · N = 100 runs for the n = 20 perturbed systems. For each of the
five choices for η1, in Table 4.6 we report the value η2 for which we have estimated
the (ddi,ddo, [0, 0], [7500, 15000], η1, η2)-robustness, a pointer to the picture showing the
step-by-step evolution of ddi and ddo between S and the perturbed system realizing η2
and, finally, the initial concentration level of L of that system. Summarizing, at varying
of η1 in [0.3, 0.7] we get values for η2 that are close to each other and are one order
of magnitude lower than η1. This suggests that S, which was classified as robust in
the steady state analysis in [1], has a good level of robustness also in the step-by-step
approach. The analysis in [1] allows one to conclude that at steady state the level of
CheYp does not depend on the initial level of L, our analysis allows to conclude that if
one varies the initial level of L then, step-by-step, the changes in CheYp are limited and
smooth.

The spebnr code used for the analysis can be found at https://github.com/

dmanicardi/spebnr/tree/master/caseStudies/bactChem. For each estimation – there-
fore, for each value for η1 –, the analysis took 125 minutes on a 1.70 GHz i7-1255U, with
16.00 GB RAM.

4.2 The Bacterial Chemotaxis System 35

η1 η2 ddi and ddo distance between Initial concentration of L
S and the system realising η2 of system realising η2

0.3 0.08 Figure 4.7a 28328

0.4 0.077273 Figure 4.7b 39882

0.5 0.079091 Figure 4.7c 45510

0.6 0.080909 Figure 4.7d 63774

0.7 0.077273 Figure 4.7e 70277

Table 4.6: Bacterial Chemotaxis: robustness at varying of η1 for input L

(a) ddi and ddo, η1 = 0.3 (b) ddi and ddo, η1 = 0.4 (c) ddi and ddo, η1 = 0.5

(d) ddi and ddo, η1 = 0.6 (e) ddi and ddo, η1 = 0.7

Figure 4.7: Bacterial Chemotaxis: evolution of ddi and ddo at varying of η1, for input L

4.2.2 Robustness at varying of CheR

Let us focus again on system S in Equation 4.1. We start our analysis by studying the
distances between S and a system S2 that was obtained in [1] by perturbing its initial
state: system S2 starts with CheR = 100. In [1] evidence is given that, at steady state, S
and S2 exhibit a difference on the level of CheYp that leads to conclude that the system
S cannot be α-robust for any α > 0.3. This is a consequence of the fact that the absolute
value of the difference of concentration of CheYp between S and S2 is around α2 = 0.15.

By applying function Simulate in Figure 3.2, we can simulate the evolution of these
systems. We have applied the function Simulate with parameter h = 15000 on the
original system for N = 50 times and for the perturbed one ℓ · N = 100 times. In

36 Applying Robustness Analysis

Figure 4.8 we report the step-by-step average value obtained for all relevant species,
namely CheR and CheYp, and we highlight the values obtained for CheYp.

(a) Evolution of CheR,CheYP in S

(b) Evolution of CheYP in S

(c) Evolution of CheR,CheYP in S2

(d) Evolution of CheYP in S2

Figure 4.8: Simulation of system S and its perturbed version S2

System Initial CheR ddi from S E(ddo)[7500,15000] Figure showing

from S ddi and ddo step-by-step

S2 100 0.818182 0.084545 Figure 4.9

Table 4.7: Input and output distance between S and the perturbed system S2

By applying function Distance in Figure 3.4 we can estimate the evolution distance
between S and S2 We define the input distance ddi so that the weight associated with
CheR is 1.0 and the output distance ddo so that the weight associated with CheYp is 1.0.
In Table 4.7 we report the results obtained by applying Distance with the following

4.2 The Bacterial Chemotaxis System 37

Figure 4.9: Evolution of ddi and ddo between S and its perturbed version S2

parameters: N = 50 runs for the original system, ℓ · N = 100 runs for the perturbed
systems, h = 15000 steps for each run. In particular, in Table 4.7 we report:

(i) the input distance between the perturbed system and S, which is simply computed
by focusing on the initial level of input species in S and S2 and the minimal and
maximal level that are stored in m and M by Distance;

(ii) the maximal output distance ddo computed by Distance in interval [7500, 15000];

(iii) a pointer to a figure describing the step-by-step evolution of input and output
distance between S and the perturbed system.

Notice that ddo(S, S2) is significantly smaller than the input one. We remark that having
an output distance of 0.084545 in our analysis is in line with having 0.3-robustness in
[1]. Indeed, 0.3-robustness in [1] means that at steady state the level of CheYp in the two
systems differs by at most 0.32 = 0.15. In our case, an output distance of 0.084545 means
that the level of CheYp in the two systems differs, step by step, by at most 0.084545
multiplied by the difference between the max and the min level of CheYp that are stored
in m and M by Distance, which is slightly above 2.0.

Then, we conducted a more systematic analysis as follows: we fix the maximal input
distance η1 between system S and its perturbed versions and, then, we estimate for which
η2 the system S is (ddi,ddo, I1 = [0, 0], I, η1, η2)-robust. More precisely, in order to esti-
mate η2, for a suitable n we sample n systems S1, . . . , Sn satisfying E(ddi)[0,0](S, Si) þ η1
and we fix η2 = maxi=1,...,nE(ddo)I(S, Si).

We have considered five different values for η1: 0.3, 0.4, 0.5, 0.6, 0.7. For each choice
for η1 we have sampled n = 20 systems at input distance ddi from S bounded by η1.
More precisely, we decided to sample these 20 systems so that they are at a ddi distance
from S in the interval (η1 − 0.1, η1]. Then, we have estimated the η2 for which S is
(ddi,ddo, [0, 0], I, η1, η2)-robust, for I = [7500, 15000]. In each experiment, we simulated
runs consisting of h = 15000 reactions, and we considered N = 50 runs for the original

38 Applying Robustness Analysis

system S and ℓ · N = 100 runs for the n = 20 perturbed systems. For each of the
five choices for η1, in Table 4.8 we report the value η2 for which we have estimated
the (ddi,ddo, [0, 0], [7500, 15000], η1, η2)-robustness, a pointer to the picture showing the
step-by-step evolution of ddi and ddo between S and the perturbed system realizing η2
and, finally, the initial concentration level of CheR of that system. Summarizing, at
varying of η1 in [0.3, 0.7] we get values for η2 that are close to each other and are one
order of magnitude lower than η1. This suggests that S has a good level of robustness in
the step-by-step approach. As already discussed above, our results are in line with those
obtained in the steady state analysis conducted in [1].

η1 η2 ddi and ddo distance between Initial concentration of CheR
S and the system realising η2 of system realising η2

0.3 0.073636 Figure 4.10a 680

0.4 0.074545 Figure 4.10b 579

0.5 0.08 Figure 4.10c 543

0.6 0.084545 Figure 4.10d 345

0.7 0.084545 Figure 4.10e 232

Table 4.8: Bacterial Chemotaxis: robustness at varying of η1

(a) ddi and ddo, η1 = 0.3 (b) ddi and ddo, η1 = 0.4 (c) ddi and ddo, η1 = 0.5

(d) ddi and ddo, η1 = 0.6 (e) ddi and ddo, η1 = 0.7

Figure 4.10: Bacterial Chemotaxis: evolution of ddi and ddo at varying of η1, for input
CheR

4.3 The Enzyme Activity at Saturation System 39

4.3 The Enzyme Activity at Saturation System

In this section, we consider another case study analysed in [1] within the deterministic
model, the Enzyme Activity at Saturation System. In Figure 4.11 we report the graph-
ical representation from [1]. This is an abstract chemical reaction network inspired by
Lotka-Volterra reactions [65, 66] and by logistic equation [67]. Differently with respect
to Example 3.1 and Example 4.4, in this network some stoichiometric coefficients are
not 1 and that label the corresponding transitions. In this system, an enzyme R pro-
duces a molecule X. To ensure mass conservation, the species Z is added to this idealised
example to preserve the concentration of R, which is therefore never consumed nor pro-
duced, but transformed into Z and back. The production of X is autocatalytic, meaning
that the more X are present, the higher the production rate is, but the concentration
of enzymes R is limited. Hence, the enzyme activity can easily reach saturation. This
system is expected to reach a dynamic equilibrium in which the concentration of X does
not depend on its initial concentration, but only on the concentration of R. However, a
molecular species P acting as a “predator” for X is added, where X can be consumed and
transformed into P, by another autocatalytic reaction. In [1] it is argued that it can be
interesting to investigate how the initial concentration of P influences the steady-state
concentration of X. The analysis in [1] concluded that the concentration of X at steady
state loosely depends on the initial value of P.

C W

P X

R Z

a5 a4 a2

a1

a3

2

2

Figure 4.11: The Petri Nets model for the Enzyme Activity at Saturation System [1]

In our approach, we study the robustness of this system with respect to an input
distance ddi and an output distance ddo defined so that they capture the differences
over P, and over X, respectively.

Below we give the system S that represents the network with the initial number of
molecules as in Table 4.9.

40 Applying Robustness Analysis

S = P[{a5?
1, a4?

1!2}]1 ‖ R[{a1?
1, a3!

1}]1000 ‖ Z[{a1!
1}]0

‖ C[{a5!
1}]0 ‖ W[{a2!

1}]10 ‖ X[{a2?
1, a4?

1, a1?
1!2}]30

(4.2)

Initial concentration Reaction constants Chemical Reactions

P = 1♦ ca1 = 100 R+ X
a1−→ X+ X+ Z

R = 1000 ca2 = 10 X
a2−→W

Z = 0 ca3 = 0.5 Z
a3−→ R

C = 0 ca4 = 0.01 X+ P
a4−→ P+ P

W = 10 ca5 = 0.5 P
a5−→ C

X = 30

Table 4.9: The initial concentrations, the reaction constants and the chemical reactions
of Enzyme Activity at Saturation system. The concentration of input species is marked
by ♦ and varies to estimate robustness

We start our analysis by studying the distances between S and two systems that
were obtained in [1] by perturbing its initial state: system S1 starts with P = 1000,
while system S2 starts with P = 20000. In [1] evidence is given that, at steady state,
both S1 and S2 have a level of X that loosely differs from that of S: while the initial
level of P in S, S1 and S2 is 1, 1000 and 20000, respectively, at steady state the level of
X in these three systems is always in the interval [47, 50].

Before dealing with the behavioural distance, by applying the function Estimate in
Figure 3.3, we can simulate the evolution of these systems. For each system, we have
applied the function Estimate with parameters h = 30000 and N = 30 for S, and
h = 30000 and ℓ · N = 60 for S1 and S2. In Figures 4.12a, 4.12c, 4.12e we report the
step-by-step average value obtained for P and X for S, S1 and S2, respectively, then
in Figures 4.12b, 4.12d, 4.12f we highlight the values obtained for X. Intuitively, these
pictures suggest that the level of X in the three considered systems loosely differ not
only at steady state but also step-by-step.

Then, by applying function Distance in Figure 3.4 we can estimate the evolution
distance between the original system S and the two perturbed ones, thus confirming such
an intuition. We define the input distance ddi so that the weight associated with P is 1.0
and the output distance ddo so that the weight associated with X is 1.0. In Table 4.10 we
report the results obtained by applying Distance with the following parameters:N = 30
runs for the original system, ℓ ·N = 60 runs for the perturbed systems, h = 30000 steps
for each run. In detail, for each perturbed system, in Table 4.10 we report:

(i) the input distance between the perturbed system and S, which is simply computed
by focusing on the initial level of input species in S and the perturbed systems,

4.3 The Enzyme Activity at Saturation System 41

and the minimal and maximal levels that are stored in m and M by Distance;

(ii) the maximal output distance ddo computed by Distance in interval [15000, 30000];

(iii) a pointer to a figure describing the step-by-step evolution of input and output
distance between S and the perturbed system.

Notice that ddo(S, S1) and ddo(S, S2) are significantly smaller than ddi(S, S1) and
ddi(S, S2), respectively.

(a) Evolution of P,X in S

(b) Evolution of X in S

(c) Evolution of P,X in S1

(d) Evolution of X in S1

(e) Evolution of P,X in S2

(f) Evolution of X in S2

Figure 4.12: Simulation of system S and its perturbed versions S1 and S2

System Initial P ddi from S E(ddo)[15000,30000] Figure showing ddi and ddo
from S step-by-step

S1 1000 0.064714 0.014302 Figure 4.13a

S2 20000 0.872062 0.048517 Figure 4.13b

Table 4.10: Input and output distance between S and its perturbed versions S1 and S2

In order to make a systematic analysis, we proceed as follows: we fix the maximal
input distance η1 between system S and its perturbed versions and, then, we estimate for
which η2 the system S is (ddi,ddo, [0, 0], I, η1, η2)-robust. More precisely, in order to esti-
mate η2, for a suitable n we sample n systems S1, . . . , Sn satisfying E(ddi)[0,0](S, Si) þ η1
and we fix η2 = maxi=1,...,nE(ddo)I(S, Si).

42 Applying Robustness Analysis

(a) ddi(S, S1) and ddo(S, S1), step-by-step (b) ddi(S, S2) and ddo(S, S2), step-by-step

Figure 4.13: Evolution of ddi and ddo between S and its perturbed versions S1 and S2

We have considered five different values for η1: 0.3, 0.4, 0.5, 0.6, 0.7. For each choice
for η1 we have sampled n = 20 systems at input distance ddi from S bounded by
η1. More precisely, we decided to sample these 20 systems so that they are at a ddi
distance from S in the interval (η1 − 0.1, η1]. Then, we have estimated the η2 for which
S is (ddi,ddo, [0, 0], I, η1, η2)-robust, for I = [15000, 30000]. In each experiment, we
simulated runs consisting of h = 30000 reactions, and we considered N = 20 runs for the
original system S and ℓ ·N = 40 runs for the n = 10 perturbed systems. For each of the
five choices for η1, in Table 4.11 we report the value η2 for which we have estimated the
(ddi,ddo, [0, 0], [15000, 30000], η1, η2)-robustness, a pointer to the picture showing the
step-by-step evolution of ddi and ddo between S and the perturbed system realizing η2
and, finally, the initial concentration level of P of that system. Summarising, at varying
of η1 in [0.3, 0.7] we get values for η2 that are close to each other and are one order
of magnitude lower than η1. This suggests that S, which was classified as robust in
the steady state analysis in [1], has a good level of robustness also in the step-by-step
approach.

η1 η2 ddi and ddo distance between Initial concentration of P
S and the system realising η2 of system realising η2

0.3 0.041828 Figure 4.14a 6319

0.4 0.049515 Figure 4.14b 8852

0.5 0.048458 Figure 4.14c 9947

0.6 0.04859 Figure 4.14d 11575

0.7 0.049339 Figure 4.14e 14766

Table 4.11: Enzyme Activity at Saturation System: robustness at varying of η1

The spebnr code used for the analysis can be found at https://github.com/

dmanicardi/spebnr/tree/master/caseStudies/enzyme. Execution time (for each value
for η1): the analysis took 1,010 minutes on a 1.70 GHz i7-1255U, with 16.00 GB RAM.

4.3 The Enzyme Activity at Saturation System 43

(a) ddi and ddo, η1 = 0.3 (b) ddi and ddo, η1 = 0.4 (c) ddi and ddo, η1 = 0.5

(d) ddi and ddo, η1 = 0.6 (e) ddi and ddo, η1 = 0.7

Figure 4.14: Enzyme Activity at Saturation System: evolution of ddi and ddo at varying
of η1

5
Modelling Reconfigurable Networks using

CospanSpan(Graph)

Historically, automata had a fundamental role both in technical-scientific and philo-
sophic-literary areas. From ancient times, we have examples of mechanical devices sim-
ulating some of the aspects of living beings, from movement to speech. Let us recall, for
example, the wonderful automata of Vaucanson and Jacquet Droz (the duck, the flute
player, the writer, . . .) or Von Kempelen’s speaking machine, less famous than his fake
chess player “the Turk”.

At the beginning of the 20th century, the fundamental results of mathematicians like
A. Turing, J. Von Neumann, and A. Church, provided a solid mathematical foundation
for Automata Theory, giving rise to a paradigmatic shift from automata/machines as
purely mechanical-electronic devices towards automata as mathematical entities. This
fundamental step, opening the way to Cybernetics and Artificial Intelligence, reconciles
their technical, cognitive and symbolic aspects. Indeed, Turing Machines became the
standard model to formalise, for the first time in history, the concepts of the sequential
machine and of “mechanically” solvable and non-solvable problems. In the same period,
starting from McCulloch and Pitts’ seminal work on finite state automata [16] as a dis-
crete formalisation of neural networks and from Von Neumann’s cellular automata [30],
the idea of automata became fundamental.

Nowadays, this idea is pervasive and dominant in Computer Science as well as in
our society, and automata have evolved from simple mechanisms to complex structures
consisting of networks of interacting and interconnected entities, with variable topology,
that can even exhibit “cognitive” capabilities, as calculus, speech and visual recognition,
learning and self-organization. Indeed, the distinction between artificial and living enti-
ties is more and more “fuzzy”. So, it is very natural to consider Automata Theory and
Biology as very close disciplines, with a long and very fruitful tradition of reciprocal

45

46 Modelling Reconfigurable Networks using CospanSpan(Graph)

influences, from robotics to biology-inspired models of computation [68, 69, 70].

Unfortunately, while we could be reasonably satisfied with Turing Machines (and
finite state automata) when dealing with discrete, isolated and sequential computation
devices, we do not have a general model that could play an analogous role for networks.
A variety of models, and different mathematical approaches, have been proposed in liter-
ature to formalise “complex” systems or networks as described in previous chapters. The
CospanSpan(Graph) model, introduced in [22, 23], has been shown to model, in a very
clean way, a variety of phenomena from asynchronous circuits to hierarchy, mobility and
coordination [71]. Intuitively, the elements of the model are Automata with interfaces
described in a specific categorical algebra, that we will introduce in this chapter, as a dis-
crete model for neural networks. Various models of automata with the product (of states)
have been proposed to represent interactions (Zielonka’s Asynchronous Automata [17],
Arnold’s model, Petri Nets [18]). These models are rather natural, but unfortunately, they
are not compositional, that is they lack a proper algebra. On the contrary, composition-
ality is an essential feature of CospanSpan(Graph). In this approach, explicit operations
are provided that combine automata with interfaces and their connectors. Hence, given
a syntactic expression, its global semantics can be deduced only by the semantics of
its constituents, and this is precisely what compositionality requires. In order to fully
achieve compositionality, also with respect to parallelism, in CospanSpan(Graph) both
the classical (inherently sequential and closed) model of finite state automata and the
well-established idea of input/output communication are abandoned for a new paradigm,
considering as fundamental the notion of open systems with communication interfaces.
The operations in the algebra CospanSpan(Graph) can be interpreted in a very natural
way as operations on automata with states and transitions, as well as interfaces and
conditions. An expression (or even a recursive equation) in this algebra represents a
hierarchical, reconfigurable network of interacting components.

5.1 CospanSpan(Graph): a Formalism for Automata Networks

In this section, we present the algebra Span(C) and its dual counterpart Cospan(C),
as introduced by Benabou in [21].

We refer to [72] for basic notions and definitions of category theory.

We will see that CospanSpan(C) becomes a natural syntax for automata networks
when C := Graph. In fact, the operations of the algebra correspond in a natural way
to operations on automata with interfaces (and their connectors), hence providing an
algebra that extends Kleene’s algebra on “classical” Finite State Automata.

5.1.1 The Algebra of Spans

Span(C): an abstract view

Definition 8 Given a category C with finite limits, we define a new category Span(C)
by describing its objects and arrows. Objects of Span(C) are the same objects of C;

5.1 CospanSpan(Graph): a Formalism for Automata Networks 47

arrows of Span(C) from A to B (with A, B objects) are spans, that is pairs of arrows
(f : X → A, g : X → B) of C with common domain, often written as in Figure 5.1.

X

A B

gf

Figure 5.1: Objects of Span(C)

The composition of spans (f : X → A, g : X → B) and (h : Y → B, k : Y → C) is
by pullback (restricted product) as in Figure 5.2.

X ×B Y

X Y

A B C
h

kf

g

Figure 5.2: The composition of spans

A span (f : X → A, g : X → B) will also be written X : A→ B, and the composition
of span will be indicated with the notation X · Y : A −→ C. The identity span of the
object A is (1A, 1A). The category Span(C) is actually symmetric monoidal with the
tensor product of two spans (f : X → A, g : X → B) and (h : Y → C, k : Y → D) being
(f × h : X × Y → A × C, g × k : X × Y → B ×D), denoted by X × Y or X ⊗ Y . The
identity span of the object A is (1A, 1A).

In [22] an informal geometric description (in the style of monoidal category string
diagrams) was introduced for the operations in Span(C). For example, spans (X →
A × B,X → C × D), (Y → C × D,Y → E) and (Z → F,X → G) are represented,
respectively, by the following three pictures of components with ports as in Figure 5.3.
Then the composition of the first two spans is pictured as in Figure 5.4. while the tensor

X

A

B

C

D Y

C

D
E

Z
F G

Figure 5.3: Three components with ports

of the first and third span is pictured as in Figure 5.5.

48 Modelling Reconfigurable Networks using CospanSpan(Graph)

X

A

B

C

D Y
E

Figure 5.4: The composition of two spans

Z
F G

X

A

B

C

D

Figure 5.5: The tensor of two spans

In addition, there are constants of the algebra which are pictured as operation on
wires which enable the depiction of fanning out of wires and feedback, and hence of
general circuit diagrams. We recall some examples of constants in Span(C) (from [22,
71]):

• The identity span 1X : X −→ X has head X and two legs 1X , 1X . It is denoted by
a plain wire as in Figure 5.6.

X X

Figure 5.6: The identity span 1X

• The span with head X and legs 1X : X −→ X, ∆X : X −→ X ×X is called the
diagonal of X and is denoted also ∆ : X −→ X ×X, as in Figure 5.7a.
The span with head X and legs ∆X : X −→ X × X,1X : X −→ X is called the
reverse diagonal, and is denoted ∇ : X ×X −→ X, as in Figure 5.7b.

X

X

X

(a) Diagonal

X

X

X

(b) Reverse diagonal

Figure 5.7: The diagonal and the reverse diagonal of X

• The span with head X × Y and legs 1X×Y : X × Y −→ X × Y , pX : X × Y −→ X
is denoted pX , is called a projection and is pictured by the termination of the wire

5.1 CospanSpan(Graph): a Formalism for Automata Networks 49

Y as in Figure 5.8a. There is also a similarly defined reverse projection denoted
p∗X as in Figure 5.8b.

(a) Projection (b) Reverse projection

Figure 5.8: The projection and the reverse projection of X

• Consider the terminal object, denoted I. The span with head X and two legs
! : X −→ I, ∆X : X −→ X ×X is called ηX . The span with head X and two legs
∆X : X −→ X × X, ! : X −→ I is called εX . The two spans are pictured in the
Figure 5.9.

X

X

(a) ηX

X

X

(b) εX

Figure 5.9: The spans ηX and εX

The correspondence between constants and operations on the one hand, and their ge-
ometric representations, on the other hand, results in the fact that expressions in the
algebra have corresponding circuit or system diagrams. This is clarified in the following
example.

Example 2 Given spans S : X −→ X ×X and C : X −→ I, the expression

ηX · (S ⊗ 1X) · (C ⊗ 1X ⊗ 1X) · (S ⊗ 1X) · (C ⊗ 1X ⊗ 1X) · (S ⊗ 1X) · (C ⊗ 1X ⊗ 1X) · εX

has a system diagram (which graphically forms feedback) as in Figure 5.10.

S

C

S

C

S

C

ηX S ⊗ 1X C ⊗ 1X ⊗ 1X S ⊗ 1X C ⊗ 1X ⊗ 1X S ⊗ 1X C ⊗ 1X ⊗ 1X εX

Figure 5.10: The system diagram of the expression in Example 2

50 Modelling Reconfigurable Networks using CospanSpan(Graph)

As shown in the previous example, η and ε permit a natural feedback operation. More
formally, in Span(C) it is possible to abstractly define the notion of parallel feedback [71]:

Definition 9 Given a span X : A×B −→ C×B, we call (abstract) parallel feedback of
X with respect to B, denoted by AbPfbB(X), the span denoted by the following algebraic
expression is described by Figure 5.11.

(1A ⊗ ηB) · (X ⊗ 1B) · (1C ⊗ εB)

1B
B
εB

B

C C
1C

X

B
ηB

B

AA
1A

Figure 5.11: The span denoted by the algebraic expression (1A⊗ηB) ·(X⊗1B) ·(1C⊗εB)

Note that the diagrammatic representation of AbPfbB(X) involves joining the right
interface B to the left interface B.

Span(Graph), a parallel algebra of automata

Curiously, Span(C), when C is the category of (finite) directed graphs (Span(Graph)),
provides a very natural mathematical framework for describing the composition of au-
tomata with interfaces (or communication ports, as in circuit theory).

Consider a span of graphs (δ0 : X → A, δ1 : X → B). The graphX may be considered
as the graph of states and transitions of an automaton (with interfaces), and it is called
the head of the span. The graph A is the graph of states and transitions of the combined
left ports and B is the graph of states and transitions of the combined right ports. The
graph morphism δ0 associates to a state and to a transition of the automaton X the
corresponding state and transition of the left ports A; the morphism δ1 does the same
for the right ports.

For all the examples of this thesis, the left and right ports have only one state so
we tend to ignore that; then δ0 and δ1 are double labelling of the transitions of the
automaton X by transitions on the left ports and transitions on the right ports. More
intuitively, each transition of the component has an effect on all its interfaces, maybe
the null effect ε.

5.1 CospanSpan(Graph): a Formalism for Automata Networks 51

In the case that the left and right ports have one state, the operations of composition
and tensor of spans have a simple description in terms of operations on automata. The
tensor of two automata has states being pairs of states, one of each automaton, and
has as transitions pairs of transitions between the corresponding pairs of states. The
composition of automata has similar states being pairs of states, and transitions being
pairs of transitions but only those pairs of transitions whose labels on the connected ports
are the same. In the following, we will call the span composition parallel composition
with communication and the tensor parallel composition without communication.

Initial and final states

If one wants a parallel algebra of automata which also includes the initial and final states
of the automata, a slight variation of the above is possible: instead of the category of
graphs take the category (I+J)\Graph whose objects are graph morphisms (I+J)→ X,
that consists of two graph morphisms I → X and J → X, to be thought of as the initial
states and final states of X. Then the parallel algebra is Span((I + J)\Graph).

Quantitative aspects

The description of systems often requires modelling of quantitative aspects, such as time
and probability.
In [73] timed actions with different durations have been considered. Composition is
obtained by considering a linear (w.r.t. transitions) number of extra “internal” states.
The intended meaning is that a component that interacts with a “faster” one could be
still doing an action (hence being in an internal state) when the other one has completed
the transition. We give a simple example.

Example 3 (Two actions which synchronise with an arbitrary duration) Con-
sider two automata G1, G2 and two “non-atomic” actions, one of G1, one of G2. The
action of G1 is {a/b : 0 → 1, ε/ε : 1 → 1, d/e : 1 → 2}; the action of G2 is {b/c : 0 →
1, ε/ε : 1→ 1, e/f : 1→ 2}. In the restricted product G1 ·G2 these actions synchronise but
with arbitrary duration. A typical behaviour is (0, 0)−a/c→ (1, 1)−ε/ε→ (1, 1)−ε/ε→
· · · − ε/ε→ (1, 1)− d/f → (2, 2).

Further details about timing in this algebra are presented in Section 5.3 while a proba-
bilistic version is described in [74, 75].

5.1.2 The Algebra of Cospans

Cospan(C): an abstract view

Assume categories C and Span(C) (described in Definition 8). There is a dual construc-
tion Cospan(C) for categories C with finite colimits.

Definition 10 Given a category C with finite colimits, we define a new category, the
Cospan(C), by describing its objects and arrows. Objects of Cospan(C) are the same

52 Modelling Reconfigurable Networks using CospanSpan(Graph)

as objects of C; arrows of Cospan(C) from A to B are cospans, that is, pairs of arrows
(f : A→ X, g : B → X) of C with common codomain, also written as in Figure 5.12.

A B

X

gf

Figure 5.12: Objects of Cospan(C)

The composition (which is also called restricted sum) of (f : A → X, g : B → X)
and (h : B → Y, k : C → Y) is by pushout (glued sum) as in Figure 5.13.

A B C

X Y

X +B Y

h

kf

g

Figure 5.13: The composition of cospans

A cospan (f : A → X, g : B → X) will also be written X : A → B, and the
composition of cospan will be indicated with the notation X +Y : A −→ C. The identity
cospan of the object A is (1A, 1A).

Again there are constants of the algebra which are pictured as operation on wires
which enable the depiction of the joining of wires and sequential feedback. Graphically,
we can present these operations in the Figure 5.14.

(a) ∇ (b) ∇0 (c) i (d) i0 (e) 1 (f) twist

Figure 5.14: The operations of the algebra

Cospan(Graph), a sequential algebra of automata

When C is the category of (finite) directed graphs, Cospan(Graph) provides a sequen-
tial calculus for automata that generalises Kleene’s one. Consider a cospan of graphs

5.1 CospanSpan(Graph): a Formalism for Automata Networks 53

(γ0 : E → X, γ1 : F → X), the graph X may be considered as the graph of states and
transitions of an (unlabelled) automaton. The graph E is the subgraph of initial states
and transitions and F is the subgraph of final states and transitions. In all the examples
considered E and F have only states and not transitions. The graph morphisms γ0 and
γ1 are often inclusion morphisms of the initial and final states in X.

Labelled transitions

If one wants a sequential algebra of automata which have labelled transitions, a slight
variation of the above is possible: instead of the category of graphs take the category
Graph/(A × B) whose objects are graph morphisms X → A × B, that consists of two
graph morphisms X → A and X → B, to be thought of as the left and right labellings
of X. Then the sequential algebra is Cospan(Graph/(A×B)).

5.1.3 Cospans and Spans of Graphs

The two algebras recalled above may be combined in a natural way following [76, 71].
Consider four graph morphisms (δ0 : X → A, δ1 : X → B, γ0 : E → X, γ1 : F → X).
From these we may obtain an arrow in the parallel algebra Span((E + F)\Graph),
and also in the sequential algebra Cospan(Graph/(A×B)), and hence we may apply
both sequential and parallel operations to such automata, obtaining hierarchical nets
of automata with evolving geometry. There is a distributive law of parallel composition
over sequential, that will be used in the following example. For some details of this see
[23].

Example 4 (Distributed Sort Algorithm) In [23] has been described in full detail
an example of a reconfigurable network, that is a Distributed Sort Algorithm: an atomic
sort A receives a stream of items to be sorted; if the atomic sort gets full, a new net-
work gets activated in which a divert component D, two atomic sorts A and the merge
component M act in parallel. The whole system is the solution of a recursive equation:

S = A+D · (A× S) ·M

which is expanded using the distributive laws (between products and the restricted sums)
in the following way:

S = A+D · (A× S) ·M

= A+D · (A× (A+D · (A× S) ·M)) ·M

= A+D · (A×A) ·M +D · (A× (D · (A× S) ·M)) ·M

= . . .

= A+D · (A×A) ·M +D · (A× (D · (A×A) ·M)) ·M + . . .

In this equation, the variables are Cospan/Span automata. It gives rise to a network that
can be graphically represented as in Figure 5.15.

54 Modelling Reconfigurable Networks using CospanSpan(Graph)

A

A

MD

A

MD

A

A

MD

A

Figure 5.15: The graphical representation of the network for the recursive equation S =
A+D · (A× S) ·M

A different example of automaton in CospanSpan(Graph) with parallel and sequential
feedback is given by Sofia’s Birthday Party, presented in [23, 71] (see in particular [71]
for a global representation of the whole automaton) and in Example 7.

5.2 Compositionality

A distinctive feature of CospanSpan(Graph) is compositionality. Intuitively, compo-
sitionality means that, given a syntactic expression, its global semantics can be deduced
(using the algebra) only by the semantics of its constituents, and this is precisely what
the algebraic approach recalled in this chapter provides.

We remark that Kleene’s algebra, with corresponding automata operations, gives
another example of compositional description, working for classical sequential automata.
Petri Nets [18] and various models based on a notion of product of automata, for example,
Zielonka’s Asynchronous Automata [17], have been considered in the literature in order
to consider the possibility of “parallel communication” among components, but these
models are not compositional. That is, given, for example, two Petri Nets, P1 and P2,

5.2 Compositionality 55

DD DD DD

Figure 5.17: The span composition of three DD’s

there is no standard way to compose them sequentially or in parallel. In fact, it is common
to introduce new places and/or new transitions in an arbitrary way to connect them.
The only way to compose them in a standard way is to use a tensor product, putting
them aside as they are.

In order to fully achieve compositionality, also with respect to parallelism, the idea be-
hind CospanSpan(Graph) is to abandon, both the classical (inherently sequential and
closed) model of finite state automata and the well-established idea of input/output com-
munication for a new paradigm, considering as fundamental the notion of open systems
with communication interfaces. The operations in the algebra CospanSpan(Graph)
can be interpreted in a very natural way as operations on automata with interfaces.
Hence, it is quite easy to build complex systems starting from simpler components.

We start with an example of a decimal counter.

Example 5 (Decimal Counter) In the following example, in Figure 5.16, the left and
right ports are both graphs with one state and two transitions ε and s which are displayed
on the ports. The automaton has ten states and ten transitions (in a circle through the
states). The morphisms δ0 and δ1 are indicated by doubly-labelling the transitions of the
automaton (so, for example, δ0(0→ 1) = ε and δ1(0→ 1) = s).

0 1 2 3

4

5

6789

ǫ/s ǫ/s ǫ/s

ǫ/s

ǫ/s

ǫ/s

ǫ/sǫ/sǫ/s

s/s
ǫ, sǫ, s

Figure 5.16: The span of a Decimal Counter

We are interested in a variation of this example which we shall call DecimalDigit or
more shortly DD which has the same ports but in addition to the ten transitions above
also ten loops, one on each state, each labelled (ε/ε).

Using composition in Span(Graph) we can form a new automaton DecimalCounter
as the span composition of (for simplicity only) three DD’s as in Figure 5.17. or in more

56 Modelling Reconfigurable Networks using CospanSpan(Graph)

0 1 2 3

4

5

6789

ǫ/s ǫ/s ǫ/s

ǫ/s

ǫ/s

ǫ/s

ǫ/sǫ/sǫ/s

s/s
ǫ, sǫ, s

0 1 2 3

4

5

6789

ǫ/s ǫ/s ǫ/s

ǫ/s

ǫ/s

ǫ/s

ǫ/sǫ/sǫ/s

s/s
ǫ, s

0 1 2 3

4

5

6789

ǫ/s ǫ/s ǫ/s

ǫ/s

ǫ/s

ǫ/s

ǫ/sǫ/sǫ/s

s/s
ǫ, s

Figure 5.18: The span composition of three DD’s (more detail)

detail (though omitting the loops) as in Figure 5.18.
We notice that a state of DecimalCounter is a triple of states, one of each DD, and

a transition of DecimalCounter is a triple of simultaneous transitions with the property
that the labels on the connected ports agree.

For example, starting in state (0, 1, 8) the following is a sequence of transitions of
DecimalCounter:

(0, 1, 8)
(ε/s)
−→ (0, 1, 9)

(ε/ε)
−→ (0, 1, 9)

(ε/s)
−→ (0, 2, 0)

(remember the ε/ε loops on each state of DD) so a transition s on the right-most port
increments the counter. In fact, starting from state (0, 0, 0), after 123 transitions labelled
s on the right, the state of the network is (1, 2, 3).

Notice that the transition

(9, 9, 9)
(s/s)
−→ (0, 0, 0)

occurs in one step.

We can notice that the previous example explicitly shows the compositionality of
Span(Graph) algebraic model, and it does not seem that the Decimal Counter could
be described in such a natural way as in Span(Graph) by using other formalisms known
in the literature.

Example 6 (Producer/Consumer) In the following example, this well-known prob-
lem is described by a producer P, a consumer C and a buffer B of size 3. The producer
P cannot produce anything when the buffer B is full. The consumer C cannot consume
anything when the buffer B is empty. When a producer or a consumer cannot do an
action, they need to wait; therefore, they do the null action, ǫ.
Span(Graph) allows us to describe the Producer/Consumer problem with three dis-

tinct spans, as in Figure 5.19. It is very easy to modify the system: for instance, we
can add another buffer, as in Figure 5.20 or add a second producer, as in Figure 5.21.
Another example could be a unique buffer with two producers and two consumers, as in
Figure 5.22 where the transitions are:

(1) ǫ, ǫ/ǫ, ǫ : qn → qn (n = 0, . . . , 3),

5.2 Compositionality 57

q

/p

/ǫ

ǫ, p

Producer

q0

q1

q2

q3

ǫ/ǫ

ǫ/ǫp/c

ǫ/ǫp/c

ǫ/ǫ

p/ǫǫ/c

p/ǫǫ/c

p/ǫǫ/c

Buffer

q

c/

ǫ/

ǫ, c

Consumer

Figure 5.19: The span composition of the Producer/Consumer problem, with one pro-
ducer, one consumer and one buffer

(2) p, ǫ/ǫ, ǫ : qn → qn+1 or ǫ, p/ǫ, ǫ : qn → qn+1 (n = 0, . . . , 2),

(3) ǫ, ǫ/c, ǫ : qn → qn-1 or ǫ, ǫ/ǫ, c : qn → qn-1 (n = 1, . . . , 3),

(4) p, p/c, c : qn → qn (n = 1, 2),

(5) p, ǫ/c, ǫ : qn → qn or p, ǫ/ǫ, c : qn → qn or ǫ, p/c, ǫ : qn → qn or
ǫ, p/ǫ, c : qn → qn (n = 1, 2),

(6) p, p/ǫ, ǫ : qn → qn+2 (n = 0, 1),

(7) ǫ, ǫ/c, c : qn → qn-2 (n = 2, 3).

Example 7 (Dining Philosophers) In the following example, this well-known prob-
lem is described by n philosophers P and n forks F, as described respectively by Fig-
ure 5.23 and Figure 5.24. A philosopher can only think or eat. When a philosopher
eats, needs to use the nearest two forks. For each fork, the philosopher can do nothing

58 Modelling Reconfigurable Networks using CospanSpan(Graph)

q

/p

/ǫ

ǫ, p

Producer

q0

q1

q2

q3

ǫ/ǫ

ǫ/ǫp/c

ǫ/ǫp/c

ǫ/ǫ

p/ǫǫ/c

p/ǫǫ/c

p/ǫǫ/c

Buffer 1

q

c/ǫ

ǫ/c

ǫ/ǫ

ǫ, c ǫ, c

Consumer

q0

q1

q2

q3

ǫ/ǫ

ǫ/ǫp/c

ǫ/ǫp/c

ǫ/ǫ

p/ǫǫ/c

p/ǫǫ/c

p/ǫǫ/c

Buffer 2

ǫ, c

Figure 5.20: The span composition of the Producer/Consumer problem, with two buffers

5.2 Compositionality 59

q

/p

/ǫ

ǫ, p

Producer

q0

q1

q2

q3

ǫ/ǫ

ǫ/ǫp/c

ǫ/ǫp/c

ǫ/ǫ

p/ǫǫ/c

p/ǫǫ/c

p/ǫǫ/c

Buffer 1

q

c/ǫ

ǫ/c

ǫ/ǫ

ǫ, c ǫ, c

Consumer 1

q0

q1

q2

q3

ǫ/ǫ

ǫ/ǫp/c

ǫ/ǫp/c

ǫ/ǫ

p/ǫǫ/c

p/ǫǫ/c

p/ǫǫ/c

Buffer 2

ǫ, c
q

c/

ǫ/

Consumer 2

Figure 5.21: The span composition of the Producer/Consumer problem, with two buffers
and two consumers

60 Modelling Reconfigurable Networks using CospanSpan(Graph)

q

/p

/ǫ

ǫ, p

Producer 1

q

/p

/ǫ

ǫ, p

Producer 2

q0

q1

q2

q3

(1)

(1,4,5)

(1,4,5)

(1)

(2)(3)

(2)(3)

(2)(3)

(6)

(6)

(7)

(7)

Buffer

q

c/

ǫ/

ǫ, c

Consumer 1

q

c/

ǫ/

ǫ, c

Consumer 2

Figure 5.22: The span composition of the Producer/Consumer problem, with a unique
buffer, two producers and two consumers

5.2 Compositionality 61

ǫ/ǫ

ǫ/ǫ

ǫ/ǫ

ǫ/ǫ

leaveR/ǫ ǫ/grabL

grabR/ǫǫ/leaveL

leaveL, grabL, ǫleaveR, grabR, ǫ

Philosopher

Figure 5.23: The span composition of the Philosopher element of the Dining Philosophers
problem

– action: ǫ which is thinking or eating –, grab the fork or leave it. Therefore, the states
of P are four: fork on left, both forks, fork on right and no forks. When the philosopher
grabs a fork, does not leave until both are grabbed; therefore, there are no intermediate
states of communication to the left fork and no forks. The fork has three states: it could
be grabbed by the right philosopher, by the left philosopher or by none.

For instance, the span composition of only three elements of the Dining Philosophers
problem is described in Figure 5.25. Notice that all components have all three actions on
ǫ.

An interesting variation is Sofia’s Birthday Party, presented in [23, 71] (see in partic-
ular [71] for a global representation of the whole automaton). There are not philosophers,
but n children that can move around a table with k seats, k þ n. The protocol of each
child is the same as a philosopher. In addition, if a child is not holding a fork and has
an empty seat on the right, he can change seats.

Figure 5.26 represents the Sofia’s Birthday Party problem. The basic components of
the problem are represented in Figure 5.27. Therefore, Figure 5.28 represents the whole
system, where S can either be a child (on a seat) or an empty seat.

62 Modelling Reconfigurable Networks using CospanSpan(Graph)

ǫ/ǫ

leaveL/ǫgrabL/ǫ

ǫ/ǫ

ǫ/leaveR ǫ/grabR

ǫ/ǫ

leaveR, grabR, ǫleaveL, grabL, ǫ

Fork

Figure 5.24: The span composition of the Fork element of the Dining Philosophers prob-
lem

ǫ/ǫ

le
a
v
eL
/ǫ

g
ra
bL
/ǫ

ǫ/ǫ

ǫ/
le
a
v
eR

ǫ/
g
ra
bR

ǫ/ǫ

leaveL,
grabL, ǫ

Fork

ǫ/ǫ

ǫ/ǫ

ǫ/ǫ

ǫ/ǫ

leaveR/ǫ ǫ/grabL

grabR/ǫǫ/leaveL

leaveR,
grabR, ǫ

leaveL,
grabL, ǫ

Philosopher

ǫ/ǫ
le
a
v
eL
/ǫ

g
ra
bL
/ǫ

ǫ/ǫ

ǫ/
le
a
v
eR

ǫ/
g
ra
bR

ǫ/ǫ

leaveR,
grabR, ǫ

Fork

Figure 5.25: The span composition of three elements of the Dining Philosophers problem

5.2 Compositionality 63

q p

, / ,

, / ,

x, / , X × YX × Y

Q = {q}

P = {p}

(a) L

q p

, / ,

, / ,

, /x, X × YX × Y

Q = {q}

P = {p}

(b) R

Figure 5.26: The basic components of Sofia’s Birthday Party

64 Modelling Reconfigurable Networks using CospanSpan(Graph)

P = {p}

R
X × YX × Y

E
X × YX × Y

Q = {q}

C
X × YX × Y

Q = {q}

L
X × YX × Y

P = {p}

P = {p}

P = {p}

Figure 5.27: The span composition of Sofia’s Birthday Party

5
.2

C
o

m
p

o
sitio

n
a
lity

6
5

X

Y

S

X

Y

∗

∅

/

x/x

1

∅

0

2

/

/

/

u/

/u

l/

/l

X

Y

S

X

Y

∗

∅

/

x/x

1

∅

0

2

/

/

/

u/

/u

l/

/l

X

Y

...

X

Y

S

X

Y

∗

∅

/

x/x

1

∅

0

2

/

/

/

u/

/u

l/

/l

X

Y

X × Y

F
igu

re
5.28

:
T

h
e

w
h
o
le

sp
an

com
p

osition
of

S
ofi

a’s
B

irth
d
ay

P
arty

66 Modelling Reconfigurable Networks using CospanSpan(Graph)

5.3 Timing in CospanSpan(Graph)

In [73], CospanSpan(Graph) algebra is extended in order to model discrete timed systems.
As described in Section 5.1, CospanSpan(Graph) algebra can model a variety of

distributed systems through spans and cospans of graphs and operations to compose
them, respectively interpreted as automata with states and transitions, interfaces and
conditions, and parallel with communication. Through the parallel with communication
operation, two automata/span share common interfaces and can synchronise and evolve
simultaneously by performing actions having the same effects on the common interfaces.
Therefore, the movement for all spans of the model is mandatory at each step. Asyn-
chrony is achieved by allowing the ǫ move – null, empty action – in all the states. For
instance, in Figure 5.18 of the Example 5, a counter can move while the next one remains
in the same state by performing the ǫ action.

CospanSpan(Graph) considers that all components have the same duration in time:
they are atomic actions. Therefore, each transition has a fixed unit duration, and all
behaviours have a duration which is a multiple of this fixed unit of time. Therefore, all
behaviours have a duration which is a multiple of this fixed unit of time. However, in
practical examples, the atomic time interval may need to be taken as very brief, and
transitions of this duration may not have conceptual significance, being instead only
parts of a higher-level action. A top-down description clearly needs to consider actions
that have an extended, even variable, duration. The general notion of action therefore
is modelled not by a single transition but by a summand in an expression, what we
call a non-atomic action, which has a set of initial states and of final states as well as
internal states, so the completion of an action does not necessarily require only a unit
time interval. In addition, we may consider examples in which two automata synchronise
on a non-atomic action - a protocol - rather than on single transitions.

Definition 11 (Discrete-time system and behaviour) A discrete-time system
is an expression of automata given using the parallel and sequential operations, and the
constant’s identity diagonal as described in Section 5.1. While a behaviour is a path in
the automata resulting from evaluating the expression of the discrete-time system. The
length of the path is the duration of the behaviour.

Definition 12 (Non-atomic action) Suppose G is given as an expression of automata
involving only sequential operations, and H is one of the operands in the expression, then,
we call H a non-atomic action of G. A behaviour of a non-atomic action consists of a
path from an in condition to an out condition. The duration of a non-atomic action is
hence variable.

Example 8 (Two actions which synchronise with an arbitrary duration) Con-
sider two automata G1, G2 and two “non-atomic” actions, one of G1, one of G2. The
action of G1 is {a/b : 0 → 1, ε/ε : 1 → 1, d/e : 1 → 2}; the action of G2 is {b/c : 0 →
1, ε/ε : 1→ 1, e/f : 1→ 2}. In the restricted product G1 ·G2 these actions synchronise but
with arbitrary duration. A typical behaviour is (0, 0)−a/c→ (1, 1)−ε/ε→ (1, 1)−ε/ε→
· · · − ε/ε→ (1, 1)− d/f → (2, 2).

5.3 Timing in CospanSpan(Graph) 67

There is construction of the desynchronisation of a system is based on this idea. Con-
sider an expression in the parallel operations of automata representing a system. Suppos-
ing that, in each component automaton of the system, every transition is replaced by an
action consisting of three transitions analogous to the actions in this example. Therefore,
the components of the system do not synchronise with duration 1, but they synchro-
nise with arbitrary duration. For instance, consider the Dining Philosopher problem in
Example 7. In the desynchronised version, each of the philosopher and fork actions are
divided into begin-action and end-action having the property that the duration of taking
a fork may be arbitrarily long. Therefore, while one philosopher is taking a fork another
may eat several meals.

Example 9 (A non-atomic action of duration between 1 and 3, which synchro-
nises with one of duration between 2 and 4) Consider two automata G1, G2 and two
“non-atomic” actions, one of G1, one of G2. The action of G1 has initial state 0 and final
state 1 and transitions are {a1,1/b1,1 : 0→ 1, a2,1/b2,1 : 0→ 2, a2,2/b2,2 : 2→ 1, a3,1/b3,1 :
0 → 3, a3,2/b3,2 : 3 → 4, a3,3/b3,3 : 4 → 1}; the action of G2 has initial state 0 and final
state 1 and transitions are {b2,1/c2,1 : 0→ 2, b2,2/c2,2 : 2→ 1, b3,1/c3,1 : 0→ 3, b3,2/c3,2 :
3→ 4, b3,3/c3,3 : 4→ 1, b4,1/c4,1 : 0→ 5, b4,2/c4,2 : 5→ 6, b4,3/c4,3 : 6→ 7, b4,4/c4,4 : 7→
1}. In the restricted product G1 · G2 these actions synchronise with duration 2 or 3. The
two possible terminating behaviours are (0, 0) − a2,1/c2,1 → (2, 2) − a2,2/c2,2 → (1, 1),
and (0, 0)− a3,1/c3,1 → (3, 3)− a3,2/c3,2 → (4, 4)− a3,3/c3,3 → (1, 1).

Although Examples 8 and 9 are simple, they are suggestive examples of processes
synchronising on a protocol.

Example 10 (Counter) Considering the counter described previously, it provides ex-
actly an action with a settable duration, and the input can set the duration of the whole
action of the counter. Having finite state automata and counters, control decisions may
be made based on timing.

In the past decade, various automata-based models for describing and reasoning
about timing-based systems have been proposed and timed automata introduced by Alur
and Dill [77] have received enormous attention because they provide a natural way of
expressing timing delays of real-time systems. A timed automaton is a finite automaton
with a finite set of real-valued clocks. All clocks increase at a uniform rate counting time
with respect to a fixed global time frame. The clocks can be reset to 0 (independently
of each other) with the transitions of the automata, keeping track of the time elapsed
since the last reset. The transitions of the automaton contain constraints on the clock
values and a transition may be taken only if the current values of the clocks satisfy
the associated constraints. The allowed constraints in the seminal paper of Alur and
Dill were Boolean combinations of simpler constraints comparing clock values with time
constants.

Comparing timed automata with Timed CospanSpan the first difference to be un-
derlined is the time domain. Here CospanSpang(Graph) uses a discrete time domain

68 Modelling Reconfigurable Networks using CospanSpan(Graph)

while clocks in timed automata assume real values (or more precisely dense time). Fur-
thermore, it is assumed that each transition has a fixed a priori duration while in timed
automata transitions are instantaneous, and time can elapse in a state. This choice lim-
its the expressiveness of our model (for instance we cannot recognise the language of
Example 3.16 in [77]). However, we believe that the assumption of discrete time domain
is not a strong restriction with respect to a dense time in real systems because almost
all physical devices are digital, or approximal by discrete time.

One of the most important advantages of CospanSpan(Graph) is also compositional-
ity: which is not considered in Timed Automata. Considering, for instance, Example 5,
modelling a one-digit or a three-digit designation is almost similar and easy, thanks to
compositionality.

Moreover, the graphical representation in CospanSpan(Graph) is easier to understand
than in Timed Automata. Timed Automata only use labels to represent the communi-
cations between components. On the other end, CospanSpan(Graph) model the counter
– the clock – which became a subcomponent of the system.

6
Modelling Biological Systems and Robustness

with CospanSpan(Graph)

In this chapter, CospanSpan(Graph) will be used for modelling three examples of
biological systems. In Section 6.1 we consider an example of the Heart System. Then, in
Section 6.2 we study the Pacemaker Dual Chamber DDD System. Finally, Section 6.3
deals with the Lac Operon System. Moreover, in Section 6.4, we discuss the robustness
in CospanSpan(Graph).

6.1 The Heart System

In this section we provide a simplified model of a human heart [7]. The heart is a mus-
cular organ and it is the engine of the blood flow. Being a physical system, it could be
modelled “globally” using continuous time and differential equations, but, we believe,
with difficulty. In our approach, we model it compositionally as a discrete dynamical sys-
tem. We observe that we focus on the regular behaviour of the heart. Atypical behaviour,
such as, for instance, cardiac arrhythmia, could be described similarly. Considering that
the heart system is quite complex, we concentrate first on formalising its basic com-
ponents: atria, ventricula, tricuspid/mitral valve, sinoatrial node, atrioventricular node,
HIS bundle and the heart’s interfaces, such as veins, aorta and pulmonary arteries.

The heart comprehends arterial blood vessels, namely the aorta on the left and
pulmonary artery on the right, and two veins. On the right side of the heart, blood
continuously enters through the veins and comes out through the pulmonary artery,
whereas on the left side, blood enters in the pulmonary vein and comes out from the
aorta. Therefore, the heart’s interfaces are:

(i) pulmonary vein on the left side of the heart;

69

70 Modelling Biological Systems and Robustness with CospanSpan(Graph)

(ii) aorta on the left side of the heart;

(iii) superior vena cava and inferior vena cava on the right side of the heart;

(iv) pulmonary artery on the right side of the heart.

Blood is continuously going through the heart system; therefore, it would be incorrect
to describe its flux in terms of input/output events.

The heart system furthermore consists of four cavities, paired up in two similar sub-
systems, left and right. Each subsystem includes an atrium, on the top, and a ventricle,
on the bottom. Atria related to ventricles through tricuspid – for the right side – and
mitral – for the left side – valve. Atria are like a tank of blood coming from veins. After
a beat, the blood continues to enter, increasing the internal pressure until a threshold
is reached, that causes the tricuspid/mitral valve to open. The blood begins to drain
through the tricuspid/mitral valve and at the same time, the internal pressure in the
atria decreases. There is a further pressure peak in the atria due to the electric signal
from the sinoatrial node which causes the atrium’s contraction and the blood’s flow
through the tricuspid/mitral valve.

The sinoatrial node generates the normal rhythmic impulse and distributes this im-
pulse to both the atria, in a simultaneous way. The normal range is 60, to 80 beats per
minute. The atrioventricular node is primarily responsible for the delay in passing the
signal from the atria to the ventricles, whereas the HIS bundle propagates the impulse
to the ventricular heart mass.

It should be noted that the operation of the heart, shown below, is a first approxima-
tion that can be extended by considering for example other components, like semilunar
valves – they are located in the tricuspid/mitral valve and prevent reflux –, time and
probability. First, we give a high-level view of the heart in Figure 6.1. Next, we give
more detail concerning the heart in Figure 6.2.

Heart

Pulmonary vein

Aorta
Inferior vena cava

Superior vena cava

Pulmonary artery

Figure 6.1: Heart

Figure 6.3 shows the functioning of the heart’s interfaces – in our simplified example
– which are very simple automata with alphabet {b}. Veins, aorta and pulmonary artery
have one state and one transition, labelled with b. The idea is that a heart’s interface –
veins, aorta or pulmonary artery – is continuously broadcasting blood b in a way which
does not impede blood’s flow to and from the heart.

6.1 The Heart System 71

AV node

SA node

HIS bundle

Tricuspid valve Mitral valve

Right atrium Left atrium

Right ventricle Left ventricle

VCs P-Vein

P-Artery Aorta

i, ǫ

i, ǫ

i, ǫ i, ǫ

ap1, ap2, ap3 b, ǫ

pv1, pv2 b, ǫ

c, ǫ

b, ǫ ap1, ap2, ap3

b, ǫ pv1, pv2

c, ǫ bb

bb

Figure 6.2: Heart Architecture

q

b/b

bb

Figure 6.3: Veins, aorta or pulmonary artery

In the following, we adopt the convention to denote interfaces – by abuse of nota-
tion – with Component={labels}, where labels are the proper labels of the interfaces
and Component corresponds to the automaton to be connected. Now, we describe (an
abstraction of) the two atria. For the sake of simplicity, we present only the right part
in Figure 6.4: the other side and also the ventricles’ modelling is very similar. It has one
interface named and labelled by the cartesian product SVC × IVC = {b} (“b” stands
for “blood”) – Superior vena cava × Inferior vena cava –, another interface named and
labelled by the Sinoatrial (SA) node = {i, ǫ} (“i” stands for “impulse”), and two inter-
faces (linked to the tricuspid valve) {ap1, ap2, ap3} (atrial pressure) and {b, ǫ} (blood).
The right atrial has states AP1, AP2, AP3 which represent the atrial pressure: AP1 rep-
resents the lowest pressure (when the tricuspid valve is closed), AP2 relates to the blood
flow inside the tricuspid valve and AP3 is the highest state what you get when the SA
node sends an impulse to the right atrium. The transitions are:

b, ǫ/ap1, ǫ : AP 1 → AP 1,

72 Modelling Biological Systems and Robustness with CospanSpan(Graph)

b, ǫ/ap2, b : AP 2 → AP 2,

b, ǫ/ap2, b : AP 3 → AP 2,

b, ǫ/ap2, ǫ : AP 1 → AP 2,

b, i/ap3, b : AP 2 → AP 3,

b, ǫ/ap1, ǫ : AP 2 → AP 1.

AP 2AP 1 AP 3

b, ǫ/ap1, ǫ

b, ǫ/ap2, ǫ

b, ǫ/ap2, b

b, ǫ/ap1, ǫ

b, i/ap3, b

b, ǫ/ap2, b

SVC×IVC
b

SA node
i, ǫ

T
ri

cu
sp

id
va

lv
e

b, ǫ

ap1, ap2, ap3

Figure 6.4: Right atrium

Next, we describe the tricuspid/mitral valve, in Figure 6.5. The interfaces are named
and labeled by:

Atrium1={ap1, ap2, ap3} (atrial pressure),

Atrium2={b, ǫ} (blood),

Ventricle1={vp1, vp2} (ventricular pressure),

Ventricle2={b, ǫ} (blood).

The states are Open,Close, Peak, and the transitions are:

ap1, ǫ/pv1, ǫ : Close→ Close,

ap2, b/pv1, b : Open→ Open,

ap3, b/pv1, b : Peak → Peak,

ap2, ǫ/pv1, ǫ : Close→ Open,

ap3, b/pv1, b : Open→ Peak,

ap1, ǫ/pv2, ǫ : Peak → Close.

6.1 The Heart System 73

OpenClose Peak

ap1, ǫ/pv1, ǫ

ap2, ǫ/pv1, ǫ

ap2, b/pv1, b

ap3, b/pv1, b

ap3, b/pv1, b

ap1, ǫ/pv2, ǫ

A
tr

iu
m

ap1, ap2, ap3

b, ǫ V
en

tr
ic

le

pv1, pv2

b, ǫ

Figure 6.5: Tricuspid valve (Tri-Valve)

The sinoatrial node (SA node) regulates the heart rate through a signal that sends
an impulse to the right atrium, the left atrium and the AV node. The normal rate is 60
or 80 beats per minute. We start with 60 bpm (see Figure 6.6), which is one beat per
second. We want to temporize the discrete model used in our formalism, so we assume
that the impulse i occurs with an atomic action that lasts for one second. Alternatively,
we model it with a non-atomic action consisting of [start(impulse), waiting, end(action)],
always of one second. It may be that the SA node transmits that impulse, the impulse of
contractions, at a higher or lower frequency. By way of example, in Figure 6.7, we have
a SA node at a frequency of 60 bpm (so the SA node transmits i at a frequency of 1 bps)
or 80 bpm (which is 0.75 bps). The SA node has only three interfaces: the right atrium,
the left atrium and the AV node. In Figure 6.6 there are {i, ǫ} (impulse) and there
are 60 states and transitions: one transition is /i, i, i : 0 → 1 and other transitions are
/ǫ, ǫ, ǫ : s→ s′. On the other hand, in Figure 6.7, there are 139 (60+80-1) states which
refer to the two different heart rates (60 or 80 bpm), the interfaces are {i1, i2, ǫ} and its
function is the same as Figure 6.7. It can be easily seen that the SA node component
could be modelled in a more elegant way using CospanSpan(Graph), as in the example
of Sofia’s Birthday Party [71, 74, 75]. Intuitively, when a certain state is reached, the SA
node component can activate a similar component working in a different modality, i.e.
with a different beat rating.

Figure 6.8 shows the atrioventricular node. AV node sees the impulse generated by
the SA node and retransmits it, after a delay, to HIS bundle. AV node sends the pulses
at different frequencies, which we can indicate with i1, i2, . . . It has one interface named
and labelled by SA node = {i, ǫ} and one interface named and labelled by HIS bundle
= {i, ǫ}. The transitions are:

ǫ/ǫ : 0→ 0, i/ǫ : 0→ 1,
ǫ/ǫ : 1→ 2, ǫ/ǫ : 2→ 3,
.

ǫ/ǫ : (n− 1)→ n, ǫ/i : n→ 0.

Finally, Figure 6.9 shows the HIS bundle. It has one interface named and labelled
by AV node = {i, ǫ}, and two other interfaces named and labelled by the right ventricle

74 Modelling Biological Systems and Robustness with CospanSpan(Graph)

59

0

1

2

/ǫ, ǫ, ǫ

/i, i, i/ǫ, ǫ, ǫ

/ǫ, ǫ, ǫ

Left atrium
i, ǫ

Right atrium
i, ǫ

AV node
i, ǫ

Figure 6.6: SA node (60 bpm)

2

59

0

1

79

1

2

/ǫ, ǫ, ǫ/i, i, i

/ǫ, ǫ, ǫ /ǫ, ǫ, ǫ

/ǫ, ǫ, ǫ /i, i, i

/ǫ, ǫ, ǫ/ǫ, ǫ, ǫ

Left atrium
i1, i2, ǫ

Right atrium
i1, i2, ǫ

AV node
i1, i2, ǫ

Figure 6.7: SA node (60/80 bpm)

ǫ/ǫ

i/ǫ

ǫ/ǫǫ/ǫ

ǫ/i

HIS bundle
i, ǫ

SA node
i, ǫ

Figure 6.8: AV node

6.1 The Heart System 75

= {c, ǫ} and the left ventricle = {c, ǫ}. It has one state and two different transitions:
i/c, c : s→ s and ǫ/ǫ, ǫ : s→ s.

We give the algebraic representation of the whole automaton of the heart:

(SVC⊗ IVC⊗ SA⊗ P-Vein) · (R-Atrium⊗AV⊗ L-Atrium)·

·(Tri-Valve⊗HIS⊗Mitr-Valve) · (R-Ventr⊗ L-Ventr) · (P-Artery⊗Aorta)

i/c, c

ǫ/ǫ, ǫ

Right ventricle
c, ǫ

Left ventricle
c, ǫAV node

i, ǫ

Figure 6.9: HIS bundle

This algebraic expression corresponds to the following geometric representation of
the whole automaton in Figure 6.10 (as explained in Section 5.1.1).

SVG

IVC

SA

P-Vein

L-Atrium

AV

R-Atrium

Mitr-Valve

HIS

Tri-Valve

L-Ventr

R-Ventr

Aorta

P-Artery

Figure 6.10: Heart automaton

76 Modelling Biological Systems and Robustness with CospanSpan(Graph)

Notice that the previous picture is basically the transpose of the one in Figure 6.2
since we assumed to always represent restricted products horizontally and tensor prod-
ucts vertically.

6.2 The Pacemaker Dual Chamber DDD System

In this section, through the use of a timed version of CospanSpan(Graph) [73], we
provide the model of a pacemaker that communicates with the heart system described
in the previous Section 6.1. A pacemaker is a system that promptly supplies electrical
impulses to the heart in order to maintain an appropriate heart rate and also ventricular-
atrial synchrony. Different cardiac problems can occur, hence modern pacemakers are
used in different ways. In particular, we model a Dual Chamber Pacemaker DDD −
formalised in [7] using UPPAAL − that stimulates both the atrium and the ventricle.

In [7], the Dual Chamber Pacemaker DDD is made up of five components:

(i) LRI Lower Rate Interval,

(ii) AVI Atrio-Ventricular Interval,

(iii) URI Upper Rate Interval,

(iv) PVARP Post Ventricular Atrial Refractory Period and PVAB Post Ventricular
Atrial Blanking,

(v) VRP Ventricular Refractory Period.

Notice that the functioning of the modelled pacemaker is a first approximation that
can be extended, e.g. also considering a different type of pacemaker or using the proba-
bilistic version of CospanSpan(Graph) formalism from [74].

Figure 6.11 shows the pacemaker architecture and the communications with our heart
system. Unlike [7], we add two components for broadcasting transmission: S1 and S2 -
respectively for AP and VS - which transmits the signal to different other components
simultaneously.

The pacemaker shown here was modelled considering the heart in bradycardia or
with a regular beat − with 80 beats per minute. The time used in the timed version
of Span(Graph) is discrete with ∆ = 10 milliseconds. The constants TAVI, TLRI,
TPVARP, TVRP, TURI and TPVAB − described in [7] − which control the duration
of the operations, have the following values: (i) TAVI: 150 ms; (ii) TLRI: 1000 ms;
(iii) TPVARP: 100 ms; (iv) TVRP: 150 ms; (v) TURI: 400 ms; (vi) TPVAB: 50 ms.

In the following, we adopt the convention to denote interfaces – by abuse of notation
– with Component={labels}, where labels are the proper labels of the interfaces and
Component corresponds to the automaton to be connected. We describe the LRI, AVI,
URI, VRP and PVARP components.

Let us focus on the LRI component – described by Figure 6.12 – which has the
task of maintaining the heart rate: it models the cycle that defines the longest interval

6.2 The Pacemaker Dual Chamber DDD System 77

URI

AVI

VRP

S2 PVARP

S1 LRI

ǫ 1
,ǫ

2
,ǫ

as, vp, ǫ

vs, ǫ as, vp, ǫ

vs, ǫvp, ǫ

as, ǫ

ap, vp, ǫ

Heart

ap, ǫ

vs, ǫ

as, ǫ

ar, ǫ

Figure 6.11: Pacemaker Architecture

between two ventricular events by resetting the clock when a ventricular event (VS, VP)
is received. Furthermore, if it does not detect any atrial event AS, the component delivers
the atrial pacing AP after TLRI-TAVI (850 milliseconds). As shown in Figure 6.12, the
time starts with S0; in addition, LRI tracks the time through the passage from one state
to the next. LRI has four interfaces: AVI = {vp, ǫ}, VRP = {vs, ǫ}, PVARP = {as, ǫ}
and Atrium = {ap, ǫ}. The transitions are:

vp,ǫ/ǫ,ǫ : 0 → 1 ǫ,vs/ǫ,ǫ : 0 → 1
ǫ,ǫ/ǫ,ǫ : 1 → 2 ǫ,ǫ/ǫ,ǫ : 2 → 3

.
ǫ,ǫ/ǫ,ǫ : 848 → 849 ǫ,ǫ/ǫ,ǫ : 849 → 850
ǫ,ǫ/as,ǫ : 850 → 851r ǫ,ǫ/ǫ,ǫ : 851r → 852
ǫ,ǫ/ǫ,ǫ : 850 → 851l ǫ,ǫ/ǫ,ap : 851l → 852
ǫ,ǫ/ǫ,ǫ : 852 → 853 ǫ,ǫ/ǫ,ǫ : 853 → 0

Next, Figure 6.14 describes the AVI which maintains the appropriate interval be-
tween atrial and ventricular activation so it defines the longest interval between an atrial
event and a ventricular event. If AVI does not detect any ventricular event (VS) after an
atrial event (AS, AP), within TAVI, then AVI delivers a ventricular stimulation (VP).
AVI has five interfaces: LRI = {ap, ǫ}, PVARP = {as, ǫ}, S2 = {vs, ǫ}, URI = {ǫ, ǫ1, ǫ2}
and S1 = {vp, ǫ}. The transitions are:

78 Modelling Biological Systems and Robustness with CospanSpan(Graph)

ap, ǫ, ǫ/ǫ, ǫ : -1 → 0 ǫ, as, ǫ/ǫ, ǫ : -1 → 0
ǫ, ǫ, ǫ/ǫ1, ǫ : 0 → 1 ǫ, ǫ, ǫ/ǫ2, ǫ : 0 → 1
ǫ, ǫ, ǫ/ǫ2, ǫ : 1 → 2 ǫ, ǫ, ǫ/ǫ1, ǫ : 1 → 2

.
ǫ, ǫ, ǫ/ǫ2, ǫ : 149→ 150 ǫ, ǫ, ǫ/ǫ1, ǫ : 149 → 150
ǫ, ǫ, vs/ǫ, ǫ : 150→ -1 ǫ, ǫ, ǫ/ǫ1, ǫ : 150 → 151
ǫ, ǫ, vs/ǫ, ǫ : 151 → -1 ǫ, ǫ, ǫ/ǫ2, ǫ : 151 → -1
ǫ, ǫ, ǫ/ǫ1, ǫ : 151 → 151 ǫ, ǫ, ǫ/ǫ, ǫ : -1 → -1

The URI – described by Figure 6.13 – prevents the pacemaker from simulating the
ventricle too quickly thanks to a global clock used to track the time after a ventricular
event (VS,VP). URI allows AVI to supply VP only when the global clock is TURI. URI
has three interfaces: AVI = {ǫ, ǫ1, ǫ2}, S1 = {vp, ǫ} and S2 = {vs, ǫ} The transitions are:

ǫ1/ǫ,vs : 0 → 1 ǫ/vp,ǫ : 1 → 0
ǫ1/ǫ,ǫ : 1 → 2 ǫ1/ǫ,ǫ : 2 → 3

.
ǫ1/ǫ,ǫ : 398 → 399 ǫ2/ǫ,ǫ : 399 → 0

Figure 6.16 shows the PVARP. After an atrial event AS, a ventricular event VS or
VP must occur; therefore, when VS or VP is detected, in a small latency time (TPVAB)
atrial events are ignored. After TPVAB, there is a second latency time (TPVARP), in
which a signal is transmitted − AR! − outside the pacemaker. Finally, after TPVARP,
the atrial event can be detected and sent to the LRI component. PVARP has five inter-
faces: Heart = {ar!, ǫ}, LRI = {as, ǫ}, AVI = {as, vp, ǫ}, S2 = {as, vp, ǫ} and Atrium =
{as!, ǫ}. The transitions are:

ǫ, ǫ, ǫ/ǫ, ǫ : 0 → 0 ǫ, ǫ, vp/ǫ, ǫ : 0 → 1
ǫ, ǫ, ǫ/vs, ǫ: 0 → 1 ǫ, ǫ, ǫ/as, ǫ : 1 → 2

.
ar!, ǫ, ǫ/ǫ, as! : 50 → 51 ǫ, ǫ, ǫ/ǫ, ǫ : 50 → 51

.
ǫ, ǫ, ǫ/ǫ1, ǫ : 51 → n ǫ, as, as/ǫ, as! : n→ 0

Finally, Figure 6.15 shows VRP which monitors all ventricular events (VP, VS) and
filters early events in the ventricular canal that could cause an inappropriate pacemaker
behaviour. VRP has three interfaces: one named and labelled by our heart system =
{vs!, ǫ}, and two other interfaces named and labelled S1 = {vp, ǫ} and S2 = {vs, ǫ}. The
transitions are:

ǫ/vp, ǫ : IDLE → 0 ǫ/ǫ, ǫ : 0 → 1
.

ǫ/ǫ, ǫ : 149 → IDLE ǫ/vp, ǫ : IDLE→ s
ǫ/ǫ, vs : IDLE→ s vs!/ǫ, ǫ : s → 0

Summarizing, CospanSpan(Graph) can model, clearly and simply, a complex sys-
tem like the heart-pacemaker system.

6.2 The Pacemaker Dual Chamber DDD System 79

0

1

2

850

851r851l

852

853

vp, ǫ/ǫ, ǫ

ǫ, ǫ/ǫ, ǫ

ǫ, ǫ/ǫ, ǫ

ǫ, ǫ/as, ǫ

ǫ, ǫ/ǫ, ǫ

ǫ, ǫ/ǫ, ǫ

ǫ, ǫ/ǫ, ap

ǫ, ǫ/ǫ, ǫ

ǫ, ǫ/ǫ, ǫ

ǫ, vs/ǫ, ǫ

AVI
vp, ǫ 1

VRP
vs, ǫ 2

PVARP
3 as, ǫ

Atrium
4 ap, ǫ

Figure 6.12: LRI (Lower Rate Interval)

399

0

1

2

ǫ1/ǫ, vs

ǫ/vp, ǫ

ǫ1/ǫ, ǫǫ1/ǫ, ǫ

ǫ2/ǫ, ǫ

S2
3 vs, ǫ

S1
2 vp, ǫ

AVI
ǫ, ǫ1, ǫ2 1

Figure 6.13: URI (Upper Rate Interval)

80 Modelling Biological Systems and Robustness with CospanSpan(Graph)

-1

0

1

150

151

ǫ, ǫ, ǫ/ǫ, ǫ

ap, ǫ, ǫ/ǫ, ǫ or ǫ, as, ǫ/ǫ, ǫ

ǫ, ǫ, ǫ/ǫ1, ǫ or ǫ, ǫ, ǫ/ǫ2, ǫ

ǫ, ǫ, ǫ/ǫ2, ǫ or ǫ, ǫ, ǫ/ǫ1, ǫ

ǫ, ǫ, vs/ǫ, ǫ

ǫ, ǫ, ǫ/ǫ1, ǫ

ǫ, ǫ, ǫ/ǫ1, ǫ

ǫ, ǫ, vs/ǫ, ǫ or
ǫ, ǫ, ǫ/ǫ2, ǫ

PVARP
as, ǫ 2

S2
vs, ǫ 3

LRI
ap, ǫ 1

URI
4 ǫ, ǫ1, ǫ2

S1
5 vp, ǫ

Figure 6.14: AVI (Atrio-Ventricular Interval)

149

IDLE

0

1

s

ǫ/vp, ǫ

ǫ/ǫ, ǫǫ/ǫ, ǫ

ǫ/ǫ, ǫ

ǫ/vp, ǫ or ǫ/ǫ, vs

vs!/ǫ, ǫ

S2
3 vs, ǫ

S1
2 vp, ǫ

Heart
vs!, ǫ 1

Figure 6.15: VRP (Ventricular Refractory Period)

6.2 The Pacemaker Dual Chamber DDD System 81

0

1

2

50

51

n

ǫ, ǫ, ǫ/ǫ, ǫ

ǫ, ǫ, ǫ/ǫ1, ǫ

ǫ, as, as/ǫ, as!

ǫ, ǫ, vp/ǫ, ǫǫ, ǫ, ǫ/vs, ǫ

ǫ, ǫ, ǫ/as, ǫ

ar!, ǫ, ǫ/ǫ, as!

ǫ,
ǫ,
ǫ/
ǫ,
ǫ

LRI
as, ǫ 2

AVI
as, vp, ǫ 3

Heart
ar!, ǫ 1

S2
4 as, vp, ǫ

Atrium
5 as!, ǫ

Figure 6.16: PVARP (Post Ventricular Atrial Refractory Period)

82 Modelling Biological Systems and Robustness with CospanSpan(Graph)

6.3 The Lac Operon System

In this section we provide a final biological application of the CospanSpan(Graph) alge-
bra: we formalise the Lactose Operon in the Escherichia Coli bacterium, using for the
first time a natively compositional framework.

The lactose operon in Escherichia Coli is composed of a sequence of genes that are
responsible for producing three enzymes for lactose degradation, namely the lactose
permease, which is incorporated in the membrane of the bacterium and actively trans-
ports the sugar into the cell, the β-galactosidase, which splits lactose into glucose and
galactose, and the transacetylase, whose role is marginal. The Lac Operon functionality
depends on the integration of two different control mechanisms, one mediated by lac-
tose and the other by glucose. Since gene expression is an energy-consuming process,
Escherichia Coli synthesises the proteins involved in the metabolism of lactose when this
nutrient is present in the environment and the environment does not provide glucose,
which is a more readily available source of energy.

All R

m RNA

1

RNA-polym

1

PI Lac I TI P1

CAPcAMP

P2 O LacZ LacY LacA T

Lac Operon

RNA-polym

2

m RNA

2

BG1 BG2 BG3

Figure 6.17: Lac Operon model

The model, from [8, 9, 10], that we consider is depicted in graphical form in Fig-
ure 6.17. The DNA sequence of the Lac Operon – depicted in Figure 6.17 – regulates the
production of the enzymes, through the genes LacZ, LacY, LacA. The regulation process
is as follows: gene LacI encodes the lac repressor R, which, in the absence of lactose, binds

6.4 Robustness in CospanSpan(Graph) 83

to gene O (the operator). Transcription of structural genes into mRNA is performed by
the RNA polymerase enzyme, which usually binds to gene P2 (the promoter) and scans
the operon from left to right by transcribing the three structural genes LacZ, LacY and
LacA into a single mRNA fragment. When the lac repressor R is bound to gene O (that
is, the complex R-O is present) it becomes an obstacle for the RNA polymerase, and
transcription of the structural genes is not performed. On the other hand, when lactose
is present inside the bacterium, it binds to the repressor thus inhibiting the binding of
R to O. This inhibition allows the transcription of genes LacZ, LacY, and LacA by the
RNA polymerase.

A second mechanism is relevant: when glucose is not present, the complex cAMP-
CAP, which is present and acting on P1, can increase significantly the expression of lac
genes. Of course, also in the presence of the cAMP-CAP complex, the expression of the
lac genes is inhibited by R-O.

Here, we just give two simple examples of the component O and of the protein R, in
Figure 6.18 and Figure 6.19 respectively.

6.4 Robustness in CospanSpan(Graph)

As discussed previously, CospanSpan(Graph) is a compositional model for networks of
automata with interfaces which provides new operations compared to the classical oper-
ations on automata given by Kleene’s Theorem. One of the most significant operations
is the parallel with communication which synchronises at least two components by al-
lowing them to evolve simultaneously only when performing actions have the same effect
of common interfaces.

In this section, we discuss robustness in CospanSpan(Graph). First of all, we con-
sider the system under perturbation. CospanSpan(Graph) considers networks of finite
automata. All components are finite: all states and transitions are finite sets. Consider-
ing timed and probabilistic CospanSpan(Graph), only discrete probabilities and discrete
intervals of time are considered.

On the other end, biological systems are continuous dynamical systems, at least at a
macroscopical level. So, we should argue if it is correct to provide discrete (even finite)
models for them. From the perspective of control theory and automata theory, discrete
and finite models are necessary; in fact, to control – or interact with – a dynamical system
we have to consider a finite set of threshold states considered relevant. So, a discrete
model such as CospanSpan(Graph) is still suitable in order to study the robustness of
real systems.

Moreover, CospanSpan(Graph) is a very rich algebra, providing operations of the se-
quential and parallel composition of open (timed and probabilistic) components and their
connectors. Complex systems of interacting components could be obtained by connecting
simpler components, hierarchically. The algebra provides an expression for the resulting
system, with an immediate geometric interpretation. Hence, in this approach, we could
describe as a single network both the system under perturbation and the perturbing
system.

84 Modelling Biological Systems and Robustness with CospanSpan(Graph)

In fact, CospanSpan(Graph) consider the perturbation agent as a part of the system.
Therefore, it is described as a component or as a sub-component of the whole system.
A perturbation agent communicates with other components via interfaces. Therefore, a
perturbation is the result of a change of behaviour over interfaces. A perturbation is the
result of:

• An internal change of a component. A change of state could result in a different
behaviour on some interfaces. For instance, if a trap state is reached, the whole
system could be blocked. In probabilistic CospanSpan(Graph), actions’ probabili-
ties in a component could change after an interaction.
For example, in the Decimal Counter described in Example 5, a simple modifica-
tion of the interface, by adding a new symbol t, leads to a block of the system’s
component, as in Figure 6.20.

0 1 2 3

4

5

6789

ǫ/s ǫ/s ǫ/s

ǫ/t

ǫ/s

ǫ/s

ǫ/sǫ/sǫ/s

s/s
ǫ,s,tǫ, s

0 1 2 3

4

5

6789

ǫ/s ǫ/s ǫ/s

ǫ/t

ǫ/s

ǫ/s

ǫ/sǫ/sǫ/s

s/s
ǫ, sǫ, s

Figure 6.20: Decimal Counter with a perturbation

• A substitution of a component (or a subnet). CospanSpan(Graph) describes net-
works of components with varying topology, as described in Sofia’s Birthday Party
example. Intuitively, when a component reaches a designed state (or set of states),
it could be substituted with a different one having the same parallel interfaces, but
a completely different internal structure. For instance, consider the Producer/Con-
sumer problem where a consumer communicates with two buffers. If the second
buffer is always empty, the system behaviour does not change. On the contrary, if
the second buffer is not empty, the behaviour changes drastically.

Another interesting possibility open by the formalism CospanSpan(Graph) is the
static analysis of a system. Since the system is described (algebraically and geomet-
rically) as a network of components, we could consider a topological distance between
any two components. So, we could analyse if a perturbation in component A will reach a
component B (or not) and when. We could estimate the minimum time needed to reach a
component, change its behaviour, or the impossibility of propagation for a perturbation.

6.4 Robustness in CospanSpan(Graph) 85

BL

ǫ, ǫ, ǫ

ǫ, ǫ, b

ǫ, ǫ, b

ǫ, ǫ, b̃
O

P2
ǫ, ǫ 1

LacZ
2 ǫ, ǫ

R

3 b, b̃

Figure 6.18: Lac Operon: component O

ǫ, ǫ ǫ, b b′, ǫ
ǫ, b b′, b̃

R

All
ǫ, b′ 1

O
2 ǫ, b′, b̃

Figure 6.19: Lac Operon: protein R

7
Conclusion and future work

7.1 Biochemical Network Robustness

We have proposed a notion of robustness for biochemical networks that, essentially, eval-
uates the ability of a network to exhibit step-by-step limited variations on the quantity
of a so-called output species at varying the initial concentration of some so-called input
species.

Recently, Robustness Temporal Logic [78] (RobTL) has been proposed for the speci-
fication and analysis of distances between the behaviours of cyber-physical systems over
a finite time horizon. Atomic propositions are defined using two simple languages: one to
specify the effect of perturbations over an evolution sequence, and one to specify distance
expressions between an evolution sequence and its perturbed version. In detail, atomic
expressions are of the form ∆(exp, pert) ⊲⊳ η, with ⊲⊳∈ {<,þ,=, Ó=, >,ÿ}, and allow
for comparing a threshold η with the distance, specified by an expression exp, between
an evolution sequence and its perturbed version, obtained by applying a perturbation
specified by pert, starting from a given time step. Boolean and temporal operators allow
for extending these evaluations to the entire evolution sequence. Then, the tool Stark

[79] offers: (i) languages for specifying systems, perturbations, distance expressions, and
RobTL formulae; (ii) a module for the simulation of systems behaviours and their per-
turbed versions; (iii) a module for the evaluation of distances between behaviours; (iv) a
statistical model checker for RobTL formulae. An interesting future work consists of ex-
tending RobTL in order to allow for specifying and analysing properties of biochemical
networks. Then, enrich the Stark tool accordingly in order to use it for the robustness
analysis of biochemical networks.

Although the simulations presented in Chapter 4 do not suffer from any problem,
Gillespie’s simulation approach suffers from scalability and computational cost problems

87

88 Conclusion and future work

when applied to complex models. Therefore, we could consider approximate stochastic
simulation algorithms, e.g. τ -leap [80].

7.2 Robustness and Hierarchy in CospanSpan(Graph)

We could analyse the relation between robustness and the hierarchical nature of a com-
plex system. For a system, hierarchy is a crucial feature, but the notion of hierarchy itself
is controversial. Models such as Harel’s State Charts, Cardelli’s Brane Calculi [47] and
Paun’s Membrane Systems [33, 34, 35] consider a hierarchical description of a system,
where components could be encapsulated, or, on the contrary, refined.

In CospanSpan(Graph) a hierarchical description of a network is obtained gratis, in
a very elegant way, thanks to the compositional nature of the approach.

However, hierarchy in a system has a different, deeper meaning: inside the system or-
ganisation components have a different role, and if an “important” component is changed,
global behaviour could change dramatically. How could we measure the hierarchical
weight or the importance of a component? A possibility is given by relating this con-
cept to the system’s robustness. The intuition is that a component is less hierarchically
relevant iff its damage does not result in a lack of robustness.

A
SPEBNR – a Simple Python Environment for
statistical estimation of Biochemical Network

Robustness

In this Appendix, we describe the procedure needed for installing and using the
tool spebnr, a Simple Python Environment for statistical estimation of Biochemical
Network Robustness, introduced in Chapter 3. Then, we discuss what is needed in order
to reproduce the analysis of the case studies considered in Chapter 4.

The tool is available at https://github.com/dmanicardi/spebnr and is imple-
mented in Python. Essentially, the Python code consists of two components:

• spebnr.py, available at https://github.com/dmanicardi/spebnr/blob/master/

spebnr.py, which implements the following procedures:

– procedure Simulate (Figure 3.2), implemented as run(. . .)

– procedure SimStep (Figure 3.2), implemented as pstep(. . .)

– procedure Estimate (Figure 3.3), implemented as sample element from list(. . .)

– procedure Distance (Figure 3.4), implemented as calculate distance(. . .)

– procedure ComputeH (Figure 3.4), implemented as wasserstein(. . .).

• createSystem.py, available at https://github.com/dmanicardi/spebnr/blob/

master/createSystem.py. Although it does not implement any procedures pre-
sented in Chapter 3, it creates the map, which contains all possible species with
their actions, generates the initial concentration of perturbed systems, and gener-
ates the plots.

In order to download spebnr, one can to clone the GitHub project as in Listing A.1:

89

90
SPEBNR – a Simple Python Environment for statistical estimation of

Biochemical Network Robustness

1 git clone https :// github .com/ dmanicardi / spebnr .git

Listing A.1: cloning spebnr

This command has to be run in the directory where one desires to download the tool.
In order to run experiments, Python3 (ÿ 3.11) is needed. Moreover, the following

Python packages are required:

• numpy https://numpy.org ÿ 1.23.4

• scipy https://scipy.org/ ÿ 1.10.1

• matplotlib https://matplotlib.org ÿ 3.6.2

• statistics https://github.com/digitalemagine/py-statistics ÿ 1.0.3.5

In order to install all the required packages, one needs the command in Listing A.2:

1 pip install -r requirements .txt

Listing A.2: installing Python packages

Finally, in order to reproduce the experiments considered in Chapter 4, one has sim-
ply to run the Python codes available at https://github.com/dmanicardi/spebnr/

tree/master/caseStudies. For instance, in order to reproduce the experiments in Sec-
tion 4.1 on EnvZ/OmpR Osmoregulatory Signaling System in Escherichia Coli, the com-
mand in Listing A.3 below is enough:

1 python EnvZOmpR .py

Listing A.3: executing EnvZ/OmpR Osmoregulatory Signalling System in spebnr

Bibliography

[1] L. Nasti, R. Gori, and P. Milazzo, “Formalizing a notion of concentration robustness
for biochemical networks,” in Software Technologies: Applications and Foundations
- STAF 2018 Collocated Workshops, Toulouse, France, June 25-29, 2018, Revised
Selected Papers (M. Mazzara, I. Ober, and G. Salaün, eds.), vol. 11176 of Lecture
Notes in Computer Science, pp. 81–97, Springer, 2018.

[2] M. Calder, S. Gilmore, and J. Hillston, “Modelling the influence of RKIP on the
ERK signalling pathway using the stochastic process algebra PEPA,” Trans. Comp.
Sys. Biology, vol. 7, pp. 1–23, 2006.

[3] V. Castiglioni, M. Loreti, and S. Tini, “Measuring adaptability and reliability of
large scale systems,” in Leveraging Applications of Formal Methods, Verification and
Validation: Engineering Principles - 9th International Symposium on Leveraging
Applications of Formal Methods, ISoLA 2020, Rhodes, Greece, October 20-30, 2020,
Proceedings, Part II (T. Margaria and B. Steffen, eds.), vol. 12477 of Lecture Notes
in Computer Science, pp. 380–396, Springer, 2020.

[4] V. Castiglioni, M. Loreti, and S. Tini, “A framework to measure the robustness of
programs in the unpredictable environment,” CoRR, vol. abs/2111.15319, 2021.

[5] P. Katis, N. Sabadini, and R. F. C. Walters, “A formalization of the IWIM model,”
in Coordination Languages and Models, 4th International Conference, COORDINA-
TION 2000, Limassol, Cyprus, September 11-13, 2000, Proceedings, pp. 267–283,
2000.

[6] P. Katis, N. Sabadini, and R. Walters, “On the algebra of feedback and systems
with boundary,” Rendiconti del Circolo Matematico di Palermo Serie II, pp. 123–
156, 2000.

[7] Z. Jiang, M. Pajic, S. Moarref, R. Alur, and R. Mangharam, “Modeling and ver-
ification of a dual chamber implantable pacemaker,” in Tools and Algorithms for
the Construction and Analysis of Systems - 18th International Conference, TACAS
2012, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2012, Tallinn, Estonia, March 24 - April 1, 2012. Proceedings
(C. Flanagan and B. König, eds.), vol. 7214 of Lecture Notes in Computer Science,
pp. 188–203, Springer, 2012.

91

92 BIBLIOGRAPHY

[8] L. Corolli, C. Maj, F. Marini, D. Besozzi, and G. Mauri, “An excursion in reaction
systems: From computer science to biology,” Theor. Comput. Sci., vol. 454, pp. 95–
108, 2012.

[9] G. Pardini, R. Barbuti, A. Maggiolo-Schettini, P. Milazzo, and S. Tini, “Composi-
tional semantics and behavioural equivalences for reaction systems with restriction,”
Theor. Comput. Sci., vol. 551, pp. 1–21, 2014.

[10] F. J. Romero-Campero and M. J. Pérez-Jiménez, “Modelling gene expression control
using P systems: The lac operon, a case study,” Biosyst., vol. 91, no. 3, pp. 438–457,
2008.

[11] A. Uri, An introduction to systems biology: design principles of biological circuits.
Chapman and Hall/CRC, 2006.

[12] K. Zhou and J. C. Doyle, Essentials of Robust Control. Prentice-Hall, 1998.

[13] H. Kitano, “Towards a theory of biological robustness,” Molecular Systems Biology,
vol. 3, no. 1, p. 137, 2007.

[14] A. Shahrokni and R. Feldt, “A systematic review of software robustness,” Inf. Softw.
Technol., vol. 55, no. 1, pp. 1–17, 2013.

[15] H. Kitano, “Biological robustness,” Nat. Rev. Genet., vol. 5, pp. 826–837, 2004.

[16] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous
activity,” The bulletin of mathematical biophysics, vol. 5, pp. 115–133, 1943.

[17] W. Zielonka, “Notes on finite asynchronous automata,” RAIRO Theor. Informatics
Appl., vol. 21, no. 2, pp. 99–135, 1987.

[18] C. A. Petri and W. Reisig, “Petri net,” Scholarpedia, vol. 3, no. 4, p. 6477, 2008.

[19] D. T. Gillespie, “Exact stochastic simulation of coupled chemical reactions,” The
journal of physical chemistry, vol. 81, no. 25, pp. 2340–2361, 1977.

[20] D. J. Barnes and D. F. Chu, “Introduction to modeling for biosciences,” 2010.

[21] J. Bènabou, “Introduction to Bicategories,” Reports of the Midwest Category Sem-
inar, vol. 47, pp. 1–77, 1967.

[22] P. Katis, N. Sabadini, and R. F. C. Walters, “Span(graph): A categorial algebra of
transition systems,” in Algebraic Methodology and Software Technology, 6th Interna-
tional Conference, AMAST ’97, Sydney, Australia, December 13-17, 1997, Proceed-
ings (M. Johnson, ed.), vol. 1349 of Lecture Notes in Computer Science, pp. 307–321,
Springer, 1997.

BIBLIOGRAPHY 93

[23] P. Katis, N. Sabadini, and R. F. C. Walters, “A formalization of the IWIM model,”
in Coordination Languages and Models, 4th International Conference, COORDI-
NATION 2000, Limassol, Cyprus, September 11-13, 2000, Proceedings (A. Porto
and G. Roman, eds.), vol. 1906 of Lecture Notes in Computer Science, pp. 267–283,
Springer, 2000.

[24] R. Lanotte, D. Manicardi, and S. Tini, “Step-by-step robustness for biochemical
networks,” in Proceedings of the 24th Italian Conference on Theoretical Computer
Science, Palermo, Italy, September 13-15, 2023 (G. Castiglione and M. Sciortino,
eds.), vol. 3587 of CEUR Workshop Proceedings, pp. 299–313, CEUR-WS.org, 2023.

[25] A. Gianola, S. Kasangian, D. Manicardi, N. Sabadini, F. Schiavio, and S. Tini,
“Cospanspan(graph): a compositional description of the heart system,” Fundam.
Informaticae, vol. 171, no. 1-4, pp. 221–237, 2020.

[26] A. Gianola, S. Kasangian, D. Manicardi, N. Sabadini, and S. Tini, “Compositional
modeling of biological systems in cospanspan(graph),” in Proceedings of the 21st
Italian Conference on Theoretical Computer Science, Ischia, Italy, September 14-
16, 2020 (G. Cordasco, L. Gargano, and A. A. Rescigno, eds.), vol. 2756 of CEUR
Workshop Proceedings, pp. 61–66, CEUR-WS.org, 2020.

[27] A. Gianola, S. Kasangian, D. Manicardi, N. Sabadini, and S. Tini, “Compositional
modeling of biological systems in cospanspan (graph)(extended version),” tech. rep.,
Technical report, https://gianola. people. unibz. it, 2020.

[28] E. Klipp, R. Herwig, A. Kowald, C. Wierling, and H. Lehrach, “Systems biology
in practice concepts, implementation and application,” Wiley-VCH, Weinheim, 05
2005.

[29] l. H. Meinhardt, “Models of biological pattern formation: from elementary steps
to the organization of embryonic axes,” Current Topics in Developmental Biology,
vol. 81, pp. 1–63, 2008.

[30] J. Von Neumann, Theory of self-reproducing automata. University of Illinois Press,
1966.

[31] G. Ermentrout and L. Edelstein-Keshet, “Cellular automata approaches to biolog-
ical modeling,” Journal of Theoretical Biology, vol. 160, no. 1, pp. 97–133, 1993.

[32] P. Prusinkiewicz and A. Lindenmayer, The algorithmic beauty of plants. The virtual
laboratory, Springer, 1990.

[33] G. Paun, “Computing with membranes,” J. Comput. Syst. Sci., vol. 61, no. 1,
pp. 108–143, 2000.

[34] G. Paun, Membrane Computing: An Introduction. Natural computing series,
Springer, 2002.

94 BIBLIOGRAPHY

[35] G. Paun and G. Rozenberg, “A guide to membrane computing,” Theor. Comput.
Sci., vol. 287, no. 1, pp. 73–100, 2002.

[36] M. J. Pérez-Jiménez and F. J. Romero-Campero, “A study of the robustness of the
EGFR signalling cascade using continuous membrane systems,” in Mechanisms,
Symbols, and Models Underlying Cognition: First International Work-Conference
on the Interplay Between Natural and Artificial Computation, IWINAC (J. Mira
and J. R. Álvarez, eds.), vol. 3561 of Lecture Notes in Computer Science, pp. 268–
278, Springer, 2005.

[37] A. Ehrenfeucht and G. Rozenberg, “Reaction systems,” Fundam. Informaticae,
vol. 75, no. 1-4, pp. 263–280, 2007.

[38] S. Azimi, B. Iancu, and I. Petre, “Reaction system models for the heat shock re-
sponse,” Fundam. Informaticae, vol. 131, no. 3-4, pp. 299–312, 2014.

[39] S. Azimi, C. Panchal, A. Mizera, and I. Petre, “Multi-stability, limit cycles, and
period-doubling bifurcation with reaction systems,” Int. J. Found. Comput. Sci.,
vol. 28, no. 8, pp. 1007–1020, 2017.

[40] H. Kitano, “A graphical notation for biochemical networks,” BIOSILICO, vol. 1,
pp. 169–176, 11 2003.

[41] J. A. Bergstra, A. Ponse, and S. A. Smolka, eds., Handbook of Process Algebra.
North-Holland / Elsevier, 2001.

[42] A. Regev and E. Shapiro, “Cellular abstractions: Cells as computation,” Nature,
vol. 419, no. 6905, pp. 343–343, 2002.

[43] A. Regev, W. Silverman, and E. Shapiro, “Representation and simulation of bio-
chemical processes using the pi-calculus process algebra,” in Proceedings of the 6th
Pacific Symposium on Biocomputing, PSB 2001, Hawaii, USA, January 3-7, 2001
(R. B. Altman, A. K. Dunker, L. Hunter, and T. E. Klein, eds.), pp. 459–470, 2001.

[44] C. Priami, A. Regev, E. Shapiro, and W. Silverman, “Application of a stochastic
name-passing calculus to representation and simulation of molecular processes,” Inf.
Process. Lett., vol. 80, no. 1, pp. 25–31, 2001.

[45] V. Danos and C. Laneve, “Formal molecular biology,” Theor. Comput. Sci., vol. 325,
no. 1, pp. 69–110, 2004.

[46] A. Regev, E. M. Panina, W. Silverman, L. Cardelli, and E. Shapiro, “Bioambients:
an abstraction for biological compartments,” Theor. Comput. Sci., vol. 325, no. 1,
pp. 141–167, 2004.

[47] L. Cardelli, “Brane calculi,” in Computational Methods in Systems Biology, Inter-
national Conference, CMSB 2004, Paris, France, May 26-28, 2004, Revised Selected
Papers (V. Danos and V. Schächter, eds.), vol. 3082 of Lecture Notes in Computer
Science, pp. 257–278, Springer, 2004.

BIBLIOGRAPHY 95

[48] C. Priami and P. Quaglia, “Beta binders for biological interactions,” in Com-
putational Methods in Systems Biology, International Conference, CMSB 2004
(V. Danos and V. Schächter, eds.), vol. 3082 of Lecture Notes in Computer Sci-
ence, pp. 20–33, Springer, 2004.

[49] R. Barbuti, A. Maggiolo-Schettini, P. Milazzo, and A. Troina, “A calculus of looping
sequences for modelling microbiological systems,” Fundam. Informaticae, vol. 72,
no. 1-3, pp. 21–35, 2006.

[50] F. Ciocchetta and J. Hillston, “Bio-pepa: A framework for the modelling and anal-
ysis of biological systems,” Theor. Comput. Sci., vol. 410, no. 33-34, pp. 3065–3084,
2009.

[51] A. Degasperi and M. Calder, “A process algebra framework for multi-scale modelling
of biological systems,” Theor. Comput. Sci., vol. 488, pp. 15–45, 2013.

[52] B. Liu, S. Kong, S. Gao, P. Zuliani, and E. M. Clarke, “Towards personalized
prostate cancer therapy using delta-reachability analysis,” in Proceedings of the 18th
International Conference on Hybrid Systems: Computation and Control, HSCC’15,
Seattle, WA, USA, April 14-16, 2015 (A. Girard and S. Sankaranarayanan, eds.),
pp. 227–232, ACM, 2015.

[53] H. Matsuno, Y. Tanaka, H. Aoshima, A. Doi, M. Matsui, and S. Miyano, “Biopath-
ways representation and simulation on hybrid functional petri net,” Silico Biol.,
vol. 3, no. 3, pp. 389–404, 2003.

[54] A. Rizk, G. Batt, F. Fages, and S. Soliman, “A general computational method
for robustness analysis with applications to synthetic gene networks,” Bioinform.,
vol. 25, no. 12, 2009.

[55] A. Rizk, G. Batt, F. Fages, and S. Soliman, “Continuous valuations of tempo-
ral logic specifications with applications to parameter optimization and robustness
measures,” Theor. Comput. Sci., vol. 412, no. 26, pp. 2827–2839, 2011.

[56] N. Barkai and S. Leibler, “Robustness in simple biochemical networks,” Nature,
vol. 387, pp. 913–917, 1997.

[57] G. Shinar and M. Feinberg, “Structural sources of robustness in biochemical reaction
networks,” Science, vol. 327, no. 5971, pp. 1389–1391, 2010.

[58] G. Shinar and M. Feinberg, “Design principles for robust biochemical reaction net-
works: what works, what cannot work, and what might almost work,” Mathe. Biosci,
vol. 231, p. 39–48, 2011.

[59] V. Castiglioni, M. Loreti, and S. Tini, “How adaptive and reliable is your program?,”
in Formal Techniques for Distributed Objects, Components, and Systems - 41st IFIP
WG 6.1 International Conference, FORTE 2021, Held as Part of the 16th Interna-
tional Federated Conference on Distributed Computing Techniques, DisCoTec 2021,

96 BIBLIOGRAPHY

Valletta, Malta, June 14-18, 2021, Proceedings (K. Peters and T. A. C. Willemse,
eds.), vol. 12719 of Lecture Notes in Computer Science, pp. 60–79, Springer, 2021.

[60] S. T. Rachev, L. B. Klebanov, S. Stoyanov, and F. J. Fabozzi, “The methods of
distances in the theory of probability and statistics,” 2013.

[61] C. Villani, “Optimal transport: Old and new,” 2008.

[62] L. V. Kantorovich, “On the translocation of masses,” in Dokl. Akad. Nauk. USSR
(NS), vol. 37, pp. 199–201, 1942.

[63] D. Thorsley and E. Klavins, “Approximating stochastic biochemical processes with
Wasserstein pseudometrics,” IET Syst. Biol., vol. 4, no. 3, pp. 193–211, 2010.

[64] B. K. Sriperumbudur, K. Fukumizu, A. Gretton, B. Schölkopf, and G. R. G. Lanck-
riet, “On the empirical estimation of integral probability metrics,” Electronic Jour-
nal of Statistics, vol. 6, pp. 1550–1599, 2021.

[65] P. Linz, Analytical and numerical methods for Volterra equations, vol. 7 of SIAM
studies in applied and numerical mathematics. SIAM, 1985.

[66] A. J. Lotka, “Contribution to the theory of periodic reactions,” The Journal of
Physical Chemistry, vol. 14, no. 3, pp. 271–274, 2002.

[67] E. W. Weisstein, “Logistic equation,” https://mathworld. wolfram. com/, 2003.

[68] D. Besozzi, G. Mauri, G. Păun, and C. Zandron, “Gemmating P systems: collapsing
hierarchies,” Theor. Comput. Sci., vol. 296, no. 2, pp. 253–267, 2003.

[69] C. Mart́ın-Vide, G.Mauri, G. Paun, G. Rozenberg, and A. Salomaa, eds., Membrane
Computing, International Workshop, WMC 2003, Tarragona, Spain, July 17-22,
2003, Revised Papers, vol. 2933 of Lecture Notes in Computer Science, Springer,
2004.

[70] C. Ferretti, G. Mauri, and C. Zandron, eds., DNA Computing, 10th International
Workshop on DNA Computing, DNA 10, Milan, Italy, June 7-10, 2004, Revised
Selected Papers, vol. 3384, Springer, 2005.

[71] A. Gianola, S. Kasangian, and N. Sabadini, “Cospan/span(graph): an algebra for
open, reconfigurable automata networks,” in 7th Conference on Algebra and Coal-
gebra in Computer Science, CALCO 2017, June 12-16, 2017, Ljubljana, Slovenia
(F. Bonchi and B. König, eds.), vol. 72 of LIPIcs, pp. 2:1–2:17, Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2017.

[72] R. F. C. Walters, Categories and computer science, vol. 28 of Cambridge computer
science texts. Cambridge University Press, 1991.

[73] A. Cherubini, N. Sabadini, and R. F. C. Walters, “Timing in the cospan-span
model,” vol. 104, pp. 81–97, 2003.

BIBLIOGRAPHY 97

[74] L. de Francesco Albasini, N. Sabadini, and R. F. C. Walters, “The compositional
construction of markov processes,” Appl. Categorical Struct., vol. 19, no. 1, pp. 425–
437, 2011.

[75] L. de Francesco Albasini, N. Sabadini, and R. F. C. Walters, “The compositional
construction of markov processes II,” RAIRO Theor. Informatics Appl., vol. 45,
no. 1, pp. 117–142, 2011.

[76] N. Sabadini, F. Schiavio, and R. Walters, “On the geometry and algebra of networks
with state.,” Theor. Comput. Sci., vol. 64, pp. 144–163, 2017.

[77] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical computer science,
vol. 126, no. 2, pp. 183–235, 1994.

[78] V. Castiglioni, M. Loreti, and S. Tini, “Robtl: A temporal logic for the robustness
of cyber-physical systems,” CoRR, vol. abs/2212.11158, 2022.

[79] V. Castiglioni, M. Loreti, and S. Tini, “Stark: A software tool for the analysis of
robustness in the unknown environment,” in Coordination Models and Languages
- 25th IFIP WG 6.1 International Conference, COORDINATION 2023, Held as
Part of the 18th International Federated Conference on Distributed Computing Tech-
niques, DisCoTec 2023, Lisbon, Portugal, June 19-23, 2023, Proceedings (S. Jong-
mans and A. Lopes, eds.), vol. 13908 of Lecture Notes in Computer Science, pp. 115–
132, Springer, 2023.

[80] D. T. Gillespie, “Approximate accelerated stochastic simulation of chemically re-
acting systems,” The Journal of chemical physics, vol. 115, no. 4, pp. 1716–1733,
2001.

