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Abstract

Molnupiravir, an oral direct‐acting antiviral effective in vitro against SARS‐CoV‐2,

has been largely employed during the COVID‐19 pandemic, since December 2021.

After marketing and widespread usage, a progressive increase in SARS‐CoV‐2

lineages characterized by a higher transition/transversion ratio, a characteristic

signature of molnupiravir action, appeared in the Global Initiative on Sharing All

Influenza Data (GISAID) and International Nucleotide Sequence Database Collabo-

ration (INSDC) databases. Here, we assessed the drug effects by SARS‐CoV‐2

whole‐genome sequencing on 38 molnupiravir‐treated persistently positive

COVID‐19 outpatients tested before and after treatment. Seventeen tixagevimab/

cilgavimab‐treated outpatients served as controls. Mutational analyses confirmed

that SARS‐CoV‐2 exhibits an increased transition/transversion ratio seven days after

initiation of molnupiravir. Moreover we observed an increased G‐>A ratio compared

to controls, which was not related to apolipoprotein B mRNAediting enzyme,

catalytic polypeptide‐like (APOBEC) activity. In addition, we demonstrated for the

first time an increased diversity and complexity of the viral quasispecies.
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1 | INTRODUCTION

Molnupiravir (MK‐4482/EIDD‐2801) is an oral antiviral prodrug with

broad activity against RNA viruses that was authorized at the end of 2021

for the treatment of SARS‐COV‐2 outpatients at high risk of progression

to severe COVID‐19 disease.1–3 Molnupiravir targets the RNA‐

dependent RNA polymerase (RdRp) enzyme, which is responsible for

replicating the SARS‐CoV‐2 genome.4 Molnupiravir acts as a ribo-

nucleoside analog (β‐D‐N4‐hydroxycytidine (NHC)−5′‐isopropyl ester)

that, in its active form (MTP) is used as an alternative substrate by the

RdRp, interfering with replication and introducing mutations into viral

RNA. When viral RNA nucleotides G or A are present, MTP is frequently

incorporated instead of C or U. Therefore, in later replication, MTP

present in the template strand is replaced with A or U in the copy RNA,

introducing transition errors (C to U; U to C; G to A; A to G).5 Despite

company‐sponsored trials showed safety and efficacy,6–8 a subsequent

larger randomized controlled trial in mostly vaccinated people found no

reduction in hospitalizations, leading the European Medicines Agency to

deauthorize it.9 At the same time, an analysis of the Global Initiative on

Sharing All Influenza Data (GISAID) and the International Nucleotide

Sequence Database Collaboration (INSDC) databases suggested that

molnupiravir‐generated variants could be transmissible and fit.10 Although

such mutagenesis is recognized as an antiviral strategy,11 these findings

suggest further investigations.

Normally, the transitions‐to‐transversions ratio is about 2:1 for

SARS‐CoV‐2,12,13 while molnupiravir typically induces a 14:1

ratio.4,14 To discriminate whether the increased number of transitions

is due to molnupiravir activity or rather to apolipoprotein B

mRNAediting enzyme, catalytic polypeptide‐like (APOBEC) antiviral

activity15 an analysis of specific surrounding motifs is required.16

The detection of viral quasispecies has been widely used to

assess pathogen evolution during antiviral treatment,17 and investi-

gations on intrahost variability and its effects on clinical manifesta-

tions have been extensively carried out in immunocompromised

patients treated with drugs other than molnupiravir.18,19 The

dynamics of short‐term intrahost mutations of SARS‐CoV‐2 during

molnupiravir treatment have been previously described in small

cohorts of high‐risk but generally immunocompetent outpati-

ents,20,21 but it remains unknown whether molnupiravir‐generated

SARS‐CoV‐2 variants can persist in immunocompromised patients.22

In particular, viral quasispecies diversity (defined as the genetic

distance among the strains present at a given time in the

quasispecies) and viral quasispecies complexity (defined as the

number of strains present at a given time in the quasispecies)23

have not been reported yet in molnupiravir‐treated patients.

Here, we analyzed a cohort of 38 molnupiravir‐treated but

persistently positive COVID‐19 immunocompetent and immuno-

compromised outpatients infected with BA.5* VOC and at high risk

of COVID‐19 progression that, after 7 days of therapy, had not

cleared the virus. The number and location (positioning and

surrounding motif) of single‐nucleotide polymorphisms (SNP) that

occurred on Day 7 were assessed, as well as the prevalence of G‐>A

transitions, and the transition/transversion ratio. Finally, we analyzed

the intrahost diversity and complexity of the spike gene in the viral

quasispecies to reveal how the drug impacted the intrahost genetic

variability of the virus, compared to a control group treated with a

different drug (monoclonal antibody) targeting the spike gene only.

2 | MATERIALS AND METHODS

2.1 | Patients and specimens

A total of 631 SARS‐CoV‐2 positive patients with a high risk of

COVID‐19 progression attending the outpatients service for early

treatment of COVID‐19 of the National Institute for Infectious

Diseases (INMI) “Lazzaro Spallanzani” in Rome between July 2022

and September 2022 were treated with molnupiravir monotherapy

(800mg orally twice a day for 5 days). All patients, before initiation of

the study, did not receive any previous antiviral treatment. Moreover,

198 of these outpatients resulted positive for SARS‐CoV‐2 at Day 7

after treatment initiation; 38 of them (15 females and 23 males;

median age of 76, 95% confidence interval [CI]: 62–83, and range of

35–92 years) were retrospectively recruited on the basis of viral load

at Days 0 and 7 after treatment initiation and the availability of

residual samples, once all the required diagnostic tests had been

carried out.

In more detail, enrolled patients were treated on average 2.2

(standard deviation: 0.92) days after symptoms onset, and 97% of

them had no history of prior SARS‐CoV‐2 infection. Immuno-

competent individuals represented 58% of patients, and 42% of

them were immunocompromised due to primary or secondary

immunodeficiency.

Almost all patients recovered within 30 days from symptom onset,

except for one patient who required hospitalization after treatment.

As a control group, a historical cohort of 17 patients (13 females

and four males; median age of 72, 95% CI: 61–79, and range of

54–85 years) treated with 300/300mg of tixagevimab/cilgavimab

(Evulsheld®) monotherapy was randomly selected among the 22

subjects previously included in another study.18 This cocktail of two

antispike (S) monoclonal antibodies are known not to be mutagenic

but able to select S‐mutants only.24 The baseline characteristics of

the two cohorts of patients are summarized in Table 1.

Nasopharyngeal swabs (NPS) were collected from all patients

before treatment (T0) and 7 days after treatment initiation (T7).

SARS‐CoV‐2 RNA detection was performed by a commercial real‐

time polymerase chain reaction (PCR) assay (Alinity m® SARS‐CoV‐2

Assay; Abbott). SARS‐CoV‐2 loads were estimated using the cycle

threshold (Ct) value obtained by amplification.

2.2 | Sequencing and genetic analysis of SARS‐
CoV‐2 genome

Whole genome sequencing (WGS) was performed on available residual

NPS samples. After nucleic acid extraction by the QiaSymphony®
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automatic extractor (QIAGEN), libraries for Next Generation Sequencing

(NGS) were prepared using the Ion AmpliSeq® SARS‐CoV‐2 Insight

Research Assay, following the manufacturer's instructions (ThermoFisher).

Finally, sequencing was carried out on the Ion Torrent Gene Studio S5

Prime sequencer to obtain 5 ×105 reads per sample. Sequenced reads

with a mean quality Phred score >20 were selected and trimmed with

Trimmomatic v.0.36.25 Reference‐based assembly was performed using

the ESCA pipeline26; whole genome sequences and high‐quality mapping

SARS‐CoV‐2 reads were manually controlled using Geneious 2019.2.3;

genome regions with coverage of fewer than five reads were replaced

with “N” stretches. The intrasample single‐nucleotide variants (iSNVs)

were detected using VarScan 2.3.9,27 and only mutations with a minimum

coverage of 20 reads were considered.

After aligning all samples to the Wuhan‐Hu‐1 sequence

(NC_045512.2) as a reference, T0–T7 pairs were compared with

each other, analyzing all genome sites with sufficient coverage in

both samples (50×). Only variants identified in at least 5% of the

reads in the T7 sample, and not present in the T0 sample, were

considered.

The nucleotide context of each C‐>T and G‐>A transition was

also investigated in the molnupiravir‐treated samples to evaluate the

effect of APOBEC activation in producing transitions. This analysis

was performed by using a custom script; the nucleotide context

surrounding each C‐>T and G‐>A transition in samples treated with

molnupiravir and tixagevimab/cilgavimab were systematically examined

by evaluating the trinucleotide sequence centered on the mutation

position (−1 and +1bp). Instances of C‐>T transitions (accompanied by

complementary G‐>A changes) within a [AU]C|G[AU] context were

considered potential APOBEC enzyme activity, as reported in previous

studies.15

Finally, the number of synonymous (silent) nucleotide substitu-

tions per synonymous site and the number of nonsynonymous (amino

acid replacement) nucleotide substitutions per nonsynonymous site

were calculated using ESCA software26 and a home‐made python

script. Mutations were detected by comparing sequence data

between T0 and T7 and including all iSNVs with a threshold of 5%

minimum frequency.

2.3 | Analysis of SARS‐CoV‐2 quasispecies
diversity and complexity

The genetic diversity of each sample was estimated for the S gene

only using the Shannon index (H) based on the allele frequency of

each SNV, assuming they are independent of each other:

∑H P i P i= − ( )log ( ),
i

n

2

where P(i) is the allele frequency at variable site i. For this analysis, we

considered only the SNV with a minimum allele frequency of 5%,

supported by at least five reads in position with sufficient coverage

(50×). Sites with more than one alternative allele were filtered out.

To assess the number of quasispecies present in molnupiravir‐

and tixagevimab/cilgavimab‐treated patients, the evaluation focused

on the amplicons sequenced with the NGS protocol in the S gene

only. The quasispecies analysis was conducted individually for each

TABLE 1 Demographic and virologic characteristics of the study populations, grouped by type of treatment.

Parameter
Molnupiravir‐treated
patients (n = 38)

Tixagevimab/cilgavimab ‐
treated patients (n = 17) p Value

Age, median (IQR) 76 (62–83) 72 (61–79) 0.40

Gender (%) 0.02

Male 60.5 23.5

Female 39.5 76.5

SARS CoV‐2 Ct values, median (IQR)

At Day 0 12.9 (12.1–14.8) 16.2 (12.8–17.6) 0.20

At Day 7 21.4 (18.3–24) 22 (19.0–25.5) 0.98

Anti‐S IgG levels at Day 0 (BAU/
mL), median (IQR)

307.9 (45.7–1084.4) 477 (151–885.1) 0.23

Immunocompromised patients (%) 42.1 35.3 0.77

Patients with oncohematological
disorders (%)

10.4 29.4 0.18

Vaccinated patients (%) 84.6 94.1 0.78

Number of vaccine doses,
median (IQR)

3 (3–4) 3 (3–3.3) 0.77

Abbreviations: Ct, cycle threshold; IgG, immunoglobulin G; IQR, interquartile range.
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amplicon's region of the S gene (30 regions in total, with a mean

length of 200 bp). For each sample, the highest estimate obtained

among all 30 values was considered the minimum number of

quasispecies present in the sample. For this purpose, only complete

reads spanning the entire amplicon's length were extracted with the

Samtools program. CD‐HIT software was then used for clustering

these reads with an identity threshold of 100% and considering only

SNV. Each cluster, supported by a number of reads representing at

least 5% of the amplicon's total coverage in both the forward and

reverse strands, was finally counted as a quasispecies.

2.4 | Statistical analysis

The results are expressed as median and interquartile range (IQR).

The statistical significance of comparisons between molnupiravir and

tixagevimab/cilgavimab‐treated patients was performed using the

Wilcoxon rank‐sum test. An independent t test was performed to

compare the percentage increases between molnupiravir‐ and

tixagevimab/cilgavimab‐treated samples. A p value less than 0.05

was considered statistically significant in all tests.

3 | RESULTS

3.1 | Temporal kinetics of SARS‐CoV‐2 NPS loads

SARS‐CoV‐2 NPS levels were measured in previously untreated COVID‐

19 outpatients infected with SARS‐CoV‐2 BA.5* at baseline and Day 7

(T7) since initiation of treatment with either molnupiravir (n=38) or

tixagevimab/cilgavimab (n=17). Overall data are shown in Table 1 and

Figure 1. Among molnupiravir‐treated patients, at T0, SARS‐CoV‐2 Ct

values ranged between 10 and 22 (mean of 13.5), confirming that the

levels of the virus extensively differ in individual patients. A substantial

decline in mean SARS‐CoV‐2 loads was evident on Day 7 of treatment

when the mean Ct value was 20.9, and the mean Ct drop was 7.

Interestingly, although the maximum proportion of molnupiravir‐treated

patients exhibited a significant decline in SARS‐CoV‐2 loads (p value:

0.0025), few patients had either stable values or slightly decreased Ct

values relative to T0, and one patient showed SARS‐CoV‐2 RNA at higher

levels at T7 (Ct 9.0) than at T0 (Ct 17.0).

Among tixagevimab‐cilgavimab‐treated patients, at T0, SARS‐CoV‐2

Ct values ranged between 11 and 23 (mean of 15.9); all tixagevimab‐

cilgavimab‐treated patients experienced a significative decline in SARS‐

CoV‐2 loads at Day 7 (mean Ct value: 21.5; range: 16.4–26.5).

3.2 | SNV detection

SARS‐CoV‐2 detected in NPS samples at T0 and T7 was genetically

characterized by whole‐genome NGS. All the 55 viral sequences were

identified as SARS‐CoV‐2 BA.5* variant.

When the number of SNV was calculated in samples from

molnupiravir‐treated patients, a mean of 33.1 (standard deviation:

33.7) was found.

Among these SNV, the median number of transitions per sample

was 29.5 (range: 0–160) as shown in Figure 2A. No significant

difference between immunocompetent and immunocompromised

molnupiravir outpatients was found.

Importantly, the median of SNV transition was significantly lower

in tixagevimab/cilgavimab treated patients: two (range: 1–13)

(Figure 2B), while median transversion frequencies were similar in

molnupiravir and tixagevimab/cilgavimab control patients: 0.5 (range:

0.0–3.0) and 0.5 (range: 0.0–5.0), respectively.

The mean transitions:mutations ratio was higher in molnupiravir‐

treated patients with respect to the control group: 1.0 (range: 0.0–1.0)

F IGURE 1 SARS‐CoV‐2 loads at Day 0 (T0) and Day 7 (T7) after molnupiravir treatment initiation (A) and tixagevimab/cilgavimab treatment
(B). SARS‐COV‐2 loads are expressed as Ct values. Each line connects Ct values obtained from a single patient. Ct, cycle threshold.
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and 0.9 (range: 0.5–1.0), respectively. In particular, in molnupiravir

patients with transitions:mutations ratios near to 1.0, a higher G‐to‐A

mutation ratio was observed (Figure 3).

The contribution of host APOBEC activation in producing the

increased number of transitions in the molnupiravir‐treated samples

was also evaluated, investigating the nucleotide context of each C‐>T

and G‐>A transition identified. No transitions were found to be

associated with APOBEC motifs (data not shown).

Additionally, the SNV distribution was analyzed to assess whether

the mutations were restricted to specific regions of the SARS‐CoV‐2

genome. The analysis revealed that SNV in molnupiravir patients fell

uniformly along the viral genomewith a median SNVs frequency per gene

of 0.002 (range: 0–0.023) (Figure 4A). Similar results were also observed

for synonymous and nonsynonymous mutations, having identical medians

of 0.001 with ranges respectively of 0–0.008 and 0–0.023 (Figure 5A).

Notably, the median normalized frequency of SNV per gene in

tixagevimab/cilgavimab‐treated patients was 0.001 (range: 0–0.004), as

shown in Figure 4B. Finally, medians of synonymous and nonsynonymous

mutations in tixagevimab/cilgavimab outpatients was 0.001 with ranges,

respectively, of 0–0.004 and 0–0.002 (Figure 5B).

3.3 | Genetic characterization of SARS CoV‐2
quasispecies

Firstly, the genetic diversity of SARS‐CoV‐2 quasispecies was

estimated using the Shannon index for the S gene. At T0, a mean

Shannon diversity of 3.9 ± 1.7 was found in molnupiravir‐treated

patients. A significant increase was observed at T7 with a calculated

value of 16.7 ± 13.4 (p < 0.0001; Wilcoxon rank‐sum test). Impor-

tantly, the quasispecies diversity remained essentially stable in

tixagevimab/cilgavimab‐treated patients, ranging from 3.1 ± 1.1 at

T0 to 4.1 ± 2.6 at T7 (Figure 6).

Finally, the complexity of SARS‐CoV‐2 quasispecies was ana-

lyzed in each sample. The minimum number of strains was calculated

for each of the 30 amplicons of the S gene of the viral genome at T0

and T7. The analysis showed that the number of strains was similar at

T0 in patients treated with molnupiravir and tixagevimab/cilgavimab

(1.1 ± 0.2 vs. 1.0 ± 0.0, respectively) but differed at T7, increasing in

molnupiravir‐treated patients but not in tixagevimab/cilgavimab

patients (2.2 ± 1.0 vs. 1.3 ± 0.5, respectively) (Figure 7).

4 | DISCUSSION

The finding in the GISAID and ISNDC databases that an increasing

number of SARS‐CoV‐2 sequences characterized by a high transi-

tion/transversion ratio21 was uploaded from many countries after the

approval of molnupiravir inspired this study regarding SARS‐CoV‐2

sequencing from NPS samples collected from 38 patients treated

with this prodrug. Since then, web tools have been published to list

putative molnupiravir‐signed GISAID sequences28 and to analyze the

probability that SARS‐CoV‐2 mutational spectra stem from molnu-

piravir action.29 A recent study on 175 immunocompetent patients

F IGURE 2 Distribution of intrahost single‐nucleotide variations (SNV) occurring at minimum frequency of 5% in at least one SARS‐CoV‐2
sequence at Day 7 compared with sequences at Day 0 after molnupiravir (A) and tixagevimab/cilgavimab (B) treatments.
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F IGURE 3 Transition ratio versus G‐>A transition ratio at Day 7 after molnupiravir and tixagevimab/cilgavimab treatments.

F IGURE 4 Frequency of transitions within each gene of the SARS‐CoV‐2 genome after molnupiravir (A) and tixagevimab/cilgavimab (B) treatments.
The value is normalized according to the base‐pair length of each gene 5–95 percentile range is reported with black bars. The envelope (E) and Orf10
genes are represented without bars because, for each of these genes, a single‐nucleotide variation was found in a single patient.

followed up for 5 days did not find an infectious virus within 48 h in

NPS using culture‐PCR,30 but results might be different in immuno-

compromised patients, harboring higher basal viral loads. The present

study offers important information on the effects of molnupiravir on

genetic variability both in immunocompromised and immuno-

competent patients. We assess the short‐term dynamics of SARS‐

CoV‐2 RNA during the use of molnupiravir and demonstrate that load

changes are variable among single individuals. In line with this finding,
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F IGURE 5 Synonymous versus nonsynonymous mutations within each gene of the SARS‐CoV‐2 genome after molnupiravir (A) and
tixagevimab/cilgavimab (B) treatments. The value is normalized according to the base‐pair length of each gene 5–95 percentile range is
reported with black bars. Several genes are represented without bars because, for each of these genes, a single mutation was found in a
single patient.

F IGURE 6 Shannon diversity after molnupiravir and tixagevimab/cilgavimab treatments.

GRUBER ET AL. | 7 of 10
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we observed that molnupiravir treatment was able to induce an early

complete virological response in many patients at Day 7, and among

those who are still SARS‐CoV‐2 RNA positive after 7 days of

treatment, most exhibited a significant drop in Ct values compared to

the baseline. Notably, no difference between immunocompromised

and immunocompetent patients has been observed.

To our knowledge, this is the largest study that attempts to

correlate SARS‐CoV‐2 genetic variability with early treatment with

molnupiravir. We found that molnupiravir administration rapidly

increases the transition‐to‐transversion ratio, although this increase

(9:1) appears to be lower than that reported in other studies

(14:1).4,14 In this regard, it should be noted that our study uses a

different experimental approach. For SNV calculation, we considered

all mutations (drug‐related and drug‐unrelated) also present in

minoritarian SARS‐CoV‐2 sequences: this approach can be methodo-

logically more appropriate, giving a picture of the total number of

mutations in the viral population that is more complete than that

obtained from the analysis of the consensus sequence alone.

Furthermore, we ruled out any effect of APOBEC in inducing the

appearance of transitions and demonstrated that the SNV distribu-

tion along the genome was uniform and did not preferentially affect

proteins that represent the targets of the drug. This is in contrast

with a recent study which identified select regions that were

completely unaffected, leaving the authors to hypothesize that

mutations in those regions likely abrogates infectivity.30

Importantly, in the control group of tixagevimab/cilgavimab

patients, we observed values of the transition‐to‐transversion ratio

very similar to those reported in the literature (3.6:1 vs.

2.66:1).13,31,32 Moreover, in the present study, we observed a higher

increase in the G‐>A mutation in molnupiravir‐treated patients

compared to the control group, as well as a higher total number of

transitions (Figure 3). Such observation agrees with previously

published works, where C‐>T and G‐>A mutations were defined as

dominant in patients after molnupiravir treatment.20,22

In our study, we went further to ascertain the possible effect of

molnupiravir treatment on the appearance of synonymous versus

nonsynonymous mutations. When codon degeneracy was considered,

G‐>A mutations led to nonsynonymous mutations in eight out of 12

cases, while C‐>T mutations led to nonsynonymous mutations in six out

of 12 cases. Thus, considering that G‐>A and C‐>T represent our cohort's

most detected types of mutations, we end up with 14 nonsynonymous

mutations for every 24 mutations. The lack of any effect on the

prevalence of synonymous versus nonsynonymous mutations was

expected based on the molnupiravir mechanism of action.

Most importantly, we studied the effects of molnupiravir treatment

on SARS‐CoV‐2 quasispecies to get a better understanding of intrahost

evolution posttreatment. We limited the study of quasispecies composi-

tion to the spike gene of the SARS‐CoV‐2 genome, as this protein is the

most important in the interaction between host and pathogen, and

because viral evolution in the control group (treated with antispike

antibodies) was expected to be limited to the spike gene only. Our

findings document a pattern of changes to the quasispecies of the spike

gene in a BA.5 omicron population, revealing key viral traits (increase in

genomic complexity and diversity) induced by molnupiravir. The lack of

therapy‐driven changes in SARS‐CoV‐2 quasispecies after tixagevimab/

cilgavimab treatment further supports the concept that molnupiravir can

hardly impact SARS‐CoV‐2 diversity and complexity in treated patients.

Our study has some limitations. The first limitation concerns the lack of a

control group treated with other antiviral agents. However, other antiviral

drugs act through mechanisms other than mutagenesis. Moreover, we

cannot investigate the clinical significance at population level of such

genetic variability, as for the transmissibility of this molnupiravir‐mutated

virus. However, the low Ct values observed at T7 in all sequenced

samples is suggestive of an active replication in action, thus could result in

F IGURE 7 Quasispecies complexity after molnupiravir and tixagevimab/cilgavimab treatments.
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effective transmission of newly drug‐induced possibly emerging variants.

In conclusions, our data confirm the suspect that molnupiravir‐generated

variants can be generated also in immunocompetent outpatients33 and

highlight the importance of genomic surveillance in the characterization

of new, potentially transmissible drug‐derived variants.
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