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Abstract. We show, from a topological viewpoint, that most numbers are not normal in
a strong sense. More precisely, the set of numbers x ∈ (0, 1] with the following property is
comeager: for all integers b ≥ 2 and k ≥ 1, the sequence of vectors made by the frequencies
of all possibile strings of length k in the b-adic representation of x has a maximal subset
of accumulation points, and each of them is the limit of a subsequence with an index set
of nonzero asymptotic density. This extends and provides a streamlined proof of the main
result given by Olsen in [Math. Proc. Cambridge Philos. Soc. 137 (2004), 43–53]. We
provide analogues in the context of analytic P-ideals and regular matrices.

1. Introduction

A real number x ∈ (0, 1] is normal if, informally, for each base b ≥ 2, its b-adic expansion
contains every finite string with the expected uniform limit frequency (the precise definition
is given in the next few lines). It is well known that most numbers x are normal from a
measure theoretic viewpoint, see e.g. [5] for history and generalizations. However, it has
been recently shown that certain subsets of nonnormal numbers may have full Hausdorff
dimension, see e.g. [1, 4]. The aim of this work is to show that, from a topological viewpoint,
most numbers are not normal in a strong sense. This provides another nonanalogue between
measure and category, cf. [25].

For each x ∈ (0, 1], denote its unique nonterminating b-adic expansion by

x =
∑

n≥1

db,n(x)

bn
, (1)

with each digit db,n(x) ∈ {0, 1, . . . , b − 1}, where b ≥ 2 is a given integer. Then, for each
string s = s1 · · · sk with digits sj ∈ {0, 1, . . . , b − 1} and each n ≥ 1, write πb,s,n(x) for the
proportion of strings s in the b-adic expansion of x which start at some position ≤ n, i.e.,

πb,s,n(x) :=
#{i ∈ {1, . . . , n} : db,i+j−1(x) = sj for all j = 1, . . . , k}

n
.

In addition, let Skb be the set of all possible strings s = s1 · · · sk in base b of length k, hence
#Skb = bk, and denote by πkb,n(x) the vector (πb,s,n(x) : s ∈ Skb ). Of course, πkb,n(x) belongs
to the (bk − 1)-dimensional simplex for each n. However, the components of πkb,n(x) satisfy
an additional requirement: if k ≥ 2 and s = s1 · · · sk−1 is a string in Sk−1b , then

πb,s,n(x) =
∑

sk
πb,ssk,n(x) =

∑
s0
πb,s0s,n(x) +O (1/n) as n→∞,
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where s0s and ssk stand for the concatened strings (indeed, the above identity is obtained
by a double counting of the occurrences of the string s as the occurrences of all possible
strings ssk; or, equivalently, as the occurrences of all possible strings s0s, with the caveat of
counting them correctly at the two extreme positions, hence with an error of at most 1). It
follows that the set Lkb (x) of accumulation points of the sequence of vectors (πkb,n(x) : n ≥ 1)

is contained in ∆k
b , where

∆k
b :=

{
(ps)s∈Sk

b
∈ Rbk :

∑
s
ps = 1, ps ≥ 0 for all s ∈ Skb ,

and
∑

s0
ps0s =

∑
sk
pssk for all s ∈ Sk−1b

}
.

Then x is said to be normal if
∀b ≥ 2,∀k ≥ 1,∀s ∈ Skb , lim

n→∞
πb,s,n(x) = 1/bk.

Hence, if x is normal, then Lkb (x) = {(1/bk, . . . , 1/bk)}. Olsen proved in [23] that the subset
of nonnormal numbers with maximal set of accumulation points is topologically large:

Theorem 1.1. The set {x ∈ (0, 1] : Lkb (x) = ∆k
b for all b ≥ 2, k ≥ 1} is comeager.

First, we strenghten Theorem 1.1 by showing that the set of accumulation points Lkb (x) can
be replaced by the much smaller subset of accumulation points η such that every neighbor-
hood of η contains “sufficiently many” elements of the sequence, where “sufficiently many” is
meant with respect to a suitable ideal I of subsets of the positive integers N; see Theorem
2.1. Hence, Theorem 1.1 corresponds to the case where I is the family of finite sets.

Then, for certain ideals I (including the case of the family of asymptotic density zero
sets), we even strenghten the latter result by showing that each accumulation point η can
be chosen to be the limit of a subsequence with “sufficiently many” indexes (as we will see in
the next Section, these additional requirements are not equivalent); see Theorem 2.3. The
precise definitions, together with the main results, follow in Section 2.

2. Main results

An ideal I ⊆ P(N) is a family closed under finite union and subsets. It is also assumed
that I contains the family of finite sets Fin and it is different from P(N). Every subset of
P(N) is endowed with the relative Cantor-space topology. In particular, we may speak about
Gδ-subsets of P(N), Fσ-ideals, meager ideals, analytic ideals, etc. In addition, we say that
I is a P-ideal if it is σ-directed modulo finite sets, i.e., for each sequence (Sn) of sets in I
there exists S ∈ I such that Sn \ S is finite for all n ∈ N. Lastly, we denote by Z the ideal
of asymptotic density zero sets, i.e.,

Z = {S ⊆ N : d?(S) = 0} , (2)
where d?(S) := lim supn

1
n
#(S ∩ [1, n]) stands for the upper asymptotic density of S, see e.g.

[20]. We refer to [14] for a recent survey on ideals and associated filters.
Let x = (xn) be a sequence taking values in a topological vector space X. Then we say that

η ∈ X is an I-cluster point of x if {n ∈ N : xn ∈ U} /∈ I for all open neighborhoods U of η.
Note that Fin-cluster points are the ordinary accumulation points. Usually Z-cluster points
are referred to as statistical cluster points, see e.g. [13]. It is worth noting that I-cluster



Most numbers are not normal 3

points have been studied much before under a different name. Indeed, as it follows by [19,
Theorem 4.2] and [16, Lemma 2.2], they correspond to classical “cluster points” of a filter
(depending on x) on the underlying space, cf. [7, Definition 2, p.69].

With these premises, for each x ∈ (0, 1] and for all integers b ≥ 2 and k ≥ 1, let Γkb (x, I)
be the set of I-cluster points of the sequence (πkb,n(x) : n ≥ 1).

Theorem 2.1. The set {x ∈ (0, 1] : Γkb (x, I) = ∆k
b for all b ≥ 2, k ≥ 1} is comeager, provided

that I is a meager ideal.

The class of meager ideals is really broad. Indeed, it contains Fin, Z, the summable ideal
{S ⊆ N :

∑
n∈S 1/n < ∞}, the ideal generated by the upper Banach density, the analytic

P-ideals, the Fubini sum Fin× Fin, the random graph ideal, etc.; cf. e.g. [3, 14]. Note that
Γkb (x, I) = Lkb (x) if I = Fin. Therefore Theorem 2.1 significantly strenghtens Theorem 1.1.

Remark 2.2. It is not difficult to see that Theorem 2.1 does not hold without any restriction
on I. Indeed, if I is a maximal ideal (i.e., the complement of a free ultrafilter on N), then
for each x ∈ (0, 1] and all integers b ≥ 2, k ≥ 1, we have that the sequence (πkb,n(x) : n ≥ 1)

is bounded, hence it is I-convergent so that Γkb (x, I) is a singleton.

On a similar direction, if x = (xn) is a sequence taking values in a topological vector
space X, then η ∈ X is an I-limit point of x if there exists a subsequence (xnk

) such that
limk xnk

= η and N \ {n1, n2, . . .} ∈ I. Usually Z-limit points are referred to as statistical
limit points, see e.g. [13]. Similarly, for each x ∈ (0, 1] and for all integers b ≥ 2 and k ≥ 1,
let Λk

b (x, I) be the set of I-limit points of the sequence (πkb,n(x) : n ≥ 1). The analogue of
Theorem 2.1 for I-limit points follows.

Theorem 2.3. The set {x ∈ (0, 1] : Λk
b (x, I) = ∆k

b for all b ≥ 2, k ≥ 1} is comeager,
provided that I is an analytic P-ideal or an Fσ-ideal.

It is known that every I-limit point is always an I-cluster point, however they can be
highly different, as it is shown in [2, Theorem 3.1]. This implies that Theorem 2.3 provides
a further improvement on Theorem 2.1 for the subfamily of analytic P-ideals.

It is remarkable that there exist Fσ-ideals which are not P-ideals, see e.g. [11, Section 1.11].
Also, the family of analytic P-ideals is well understood and has been characterized with the
aid of lower semicontinuous submeasures, cf. Section 3. The results in [6] suggest that the
study of the interplay between the theory of analytic P-ideals and their representability may
have some relevant yet unexploited potential for the study of the geometry of Banach spaces.

Finally, recalling that the ideal Z defined in (2) is an analytic P-ideal, an immediate
consequence of Theorem 2.3 (as pointed out in the abstract) follows:

Corollary 2.4. The set of x ∈ (0, 1] such that, for all b ≥ 2 and k ≥ 1, every vector in ∆k
b

is a statistical limit point of the sequence (πkb,n(x) : n ≥ 1) is comeager.

It would also be interesting to investigate to what extend the same results for nonnormal
points belonging to self-similar fractals (as studied, e.g., by Olsen and West in [24] in the
context of iterated function systems) are valid.

We leave as open question for the interested reader to check whether Theorem 2.3 can
be extended for all Fσδ-ideals including, in particular, the ideal I generated by the upper
Banach density (which is known to not be a P-ideal, see e.g. [12, p.299]).
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3. Proofs of the main results

Proof of Theorem 2.1. Let I be a meager ideal on N. It follows by Talagrand’s characteri-
zation of meager ideals [28, Theorem 21] that it is possible to define a partition {I1, I2, . . .}
of N into nonempty finite subsets such that S /∈ I whenever In ⊆ S for infinitely many n.
Moreover, we can assume without loss of generality that max In < min In+1 for all n ∈ N.

The claimed set can be rewritten as
⋂
b≥2
⋂
k≥1X

k
b , where Xk

b := {x ∈ (0, 1] : Γkb (x, I) =

∆k
b}. Since the family of meager subsets of (0, 1] is a σ-ideal, it is enough to show that the

complement of each Xk
b is meager. To this aim, fix b ≥ 2 and k ≥ 1 and denote by ‖ · ‖

the Euclidean norm on Rbk . Considering that {η1,η2, . . .} := ∆k
b ∩Qbk is a countable dense

subset of ∆k
b and that Γkb (x, I) is a closed subset of ∆k

b by [19, Lemma 3.1(iv)], it follows that

(0, 1] \Xk
b =

⋃
t≥1
{x ∈ (0, 1] : ηt /∈ Γkb (x, I)}

=
⋃

t≥1
{x ∈ (0, 1] : ∃ε > 0, {n ∈ N : ‖πkb,n(x)− ηt‖ < ε} ∈ I}

⊆
⋃

t,p,m≥1
{x ∈ (0, 1] : ∀q ≥ p,∃n ∈ Iq, ‖πkb,n(x)− ηt‖ ≥ 1/m}.

Denote by St,m,p the set in the latter union. Thus it is sufficient to show that each St,p,m is
nowhere dense. To this aim, fix t, p,m ∈ N and a nonempty relatively open set G ⊆ (0, 1].
We claim there exists a nonempty open set U contained in G and disjoint from St,p,m. Since
G is nonempty and open in (0, 1], there exists a string s̃ = s1 · · · sj ∈ Sjb such that x ∈ G
whenever db,i(x) = si for all i = 1, . . . , j. Now, pick x? ∈ (0, 1] such that limn π

k
b,n(x?) = ηt,

which exists by [22, Theorem 1]. In addition, we can assume without loss of generality that
db,i(x

?) = si for all i = 1, . . . , j. Since πkb,n(x?) is convergent to ηt, there exists q ≥ p + j

such that ‖πkb,n(x?) − ηt‖ < 1/m for all n ≥ min Iq. Define V := {x ∈ (0, 1] : db,i(x) =
db,i(x

?) for all i = 1, . . . ,max Iq + k} and note that V ⊆ G because db,i(x) = si for all i ≤ j
and x ∈ V , and V ∩St,m,p = ∅ because, for each x ∈ V , the required property is not satisfied
for this choice of q since πkb,n(x) = πkb,n(x?) for all n ≤ max Iq. Clearly, V has nonempty
interior, hence it is possible to choose such U ⊆ V .

This proves that each St,m,p is nowhere dense, concluding the proof. �

Before we proceed to the proof of Theorem 2.3, we need to recall the classical Solecki’s
characterization of analytic P-ideals. A lower semicontinuous submeasure (in short, lscsm) is
a monotone subadditive function ϕ : P(N) → [0,∞] such that ϕ(∅) = 0, ϕ({n}) < ∞, and
ϕ(A) = limm ϕ(A∩ [1,m]) for all A ⊆ N and n ∈ N. It follows by [26, Theorem 3.1] that an
ideal I is an analytic P-ideal if and only if there exists a lscsm ϕ such that

I = {A ⊆ N : ‖A‖ϕ = 0}, ‖N‖ϕ = 1, and ϕ(N) <∞. (3)

Here, ‖A‖ϕ := limn ϕ(A \ [1, n]) for all A ⊆ N. Note that ‖A‖ϕ = ‖B‖ϕ whenever the
symmetric difference A4 B is finite, cf. [11, Lemma 1.3.3(b)]. Easy examples of lscsms are
ϕ(A) := #A or ϕ(A) := supn

1
n
#(A ∩ [1, n]) for all A ⊆ N which lead, respectively, to the

ideals Fin and Z through the representation (3).
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Proof of Theorem 2.3. First, let us suppose that I is an Fσ-ideal. We obtain by [2, Theorem
2.3] that Λk

b (x, I) = Γkb (x, I) for each b ≥ 2, k ≥ 1, and x ∈ (0, 1]. Therefore the claim
follows by Theorem 2.1.

Then, we assume hereafter that I is an analytic P-ideal generated by a lscsm ϕ as in (3).
Fix integers b ≥ 2 and k ≥ 1, and define the function

u : (0, 1]×∆k
b → R : (x,η) 7→ lim

t→∞
‖{n ∈ N : ‖πkb,n(x)− η‖ ≤ 1/t}‖ϕ

where ‖ · ‖ stands for the Euclidean norm on Rbk . It follows by [2, Lemma 2.1] that every
section u(x, ·) is upper semicontinuous, so that the set

Λk
b (x, I, q) := {η ∈ ∆k

b : u(x,η) ≥ q}

is closed for each x ∈ (0, 1] and q ∈ R.
At this point, we prove that, for each η ∈ ∆k

b , the set X(η) := {x ∈ (0, 1] : u(x,η) ≥ 1/2}
is comeager. To this aim, fix η ∈ ∆k

b and notice that

(0, 1] \X(η) =
⋃

t≥1
{x ∈ (0, 1] : ‖{n ∈ N : ‖πkb,n(x)− η‖ ≤ 1/t}‖ϕ < 1/2}

=
⋃

t≥1
{x ∈ (0, 1] : lim

h→∞
ϕ({n ≥ h : ‖πkb,n(x)− η‖ ≤ 1/t}) < 1/2}

=
⋃

t,h≥1
{x ∈ (0, 1] : ϕ({n ≥ h : ‖πkb,n(x)− η‖ ≤ 1/t}) < 1/2}.

Denoting by Yt,h the inner set above, it is sufficient to show that each Yt,h is nowhere dense.
Hence, fix G ⊆ (0, 1], s̃ ∈ Sjb , and x? ∈ (0, 1] as in the proof of Theorem 2.1. Considering
that ‖ · ‖ϕ is invariant under finite sets, it follows that

ϕ({n ≥ j′ : ‖πkb,n(x?)− η‖ ≤ 1/t}) ≥ ‖{n ≥ j′ : ‖πkb,n(x?)− η‖ ≤ 1/t}‖ϕ = u(x?,η) = 1,

where j′ := j + h. Since ϕ is lower semicontinuous, there exists an integer j′′ > j′ such that

ϕ({n ∈ [j′, j′′] : ‖πkb,n(x?)− η‖ ≤ 1/t}) ≥ 1/2.

Define V := {x ∈ (0, 1] : db,i(x) = db,i(x
?) for all i = 1, . . . , j′′}. Similarly, note that V ⊆ G

because db,i(x) = si for all i ≤ j and x ∈ V , and V ∩ Yt,h = ∅ because ϕ({n ≥ h :
‖πkb,n(x) − η‖ ≤ 1/t}) is at least ϕ({n ∈ [j′, j′′] : ‖πkb,n(x) − η‖ ≤ 1/t}) ≥ 1/2 for all x ∈ V .
Since V has nonempty interior, it is possible to choose U ⊆ V with the required property.

Finally, let E be a countable dense subset of ∆k
b . Considering that X := {x ∈ (0, 1] :

E ⊆ Λk
b (x, I, 1/2)} is equal to

⋂
η∈E X(η), it follows that the set X is comeager. However,

considering that

Λk
b (x, I) =

⋃
q>0

Λk
b (x, I, q)

by [2, Theorem 2.2] and that Λk
b (x, I, 1/2) is a closed subset such that E ⊆ Λk

b (x, I, 1/2) ⊆
Λk
b (x, I) ⊆ ∆k

b for all x ∈ X, we obtain that Λk
b (x, I, 1/2) = Λk

b (x, I) = ∆k
b for all x ∈ X. In

particular, the claimed set contains X, which is comeager. This concludes the proof. �
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4. Applications

4.1. Hausdorff and packing dimensions. We refer to [10, Chapter 3] for the definitions
of the Hausdorff dimension and the packing dimension.
Proposition 4.1. The sets defined in Theorem 2.1 and Theorem 2.3 have Hausdorff dimen-
sion 0 and packing dimension 1.
Proof. Reasoning as in [23], the claimed sets are contained in the corresponding ones with
ideal Fin, which have Hausdorff dimension 0 by [22, Theorem 2.1]. In addition, since all sets
are comeager, we conclude that they have packing dimension 1 by [10, Corollary 3.10(b)]. �

4.2. Regular matrices. We extend the main results contained in [15, 27]. To this aim, let
A = (an,i : n, i ∈ N) be a regular matrix, that is, an infinite real-valued matrix such that,
if z = (zn) is a Rd-valued sequence convergent to η, then Anz :=

∑
i an,izi exists for all

n ∈ N and limnAnz = η, see e.g. [9, Chapter 4]. Then, for each x ∈ (0, 1] and integers
b ≥ 2 and k ≥ 1, let Γkb (x, I, A) be the set of I-cluster points of the sequence of vectors(
Anπ

k
b (x) : n ≥ 1

)
, where πkb (x) is the sequence (πkb,n(x) : n ≥ 1).

In particular, Γkb (x, I, A) = Γkb (x, I) if A is the infinite identity matrix.
Theorem 4.2. The set {x ∈ (0, 1] : Γkb (x, I, A) ⊇ ∆k

b for all b ≥ 2, k ≥ 1} is comeager,
provided that I is a meager ideal and A is a regular matrix.
Proof. Fix a regular matrix A = (an,i) and a meager ideal I. The proof goes along the same
lines as the proof of Theorem 2.1, replacing the definition of St,m,p with

S ′t,m,p := {x ∈ (0, 1] : ∀q ≥ p,∃n ∈ Iq, ‖Anπkb (x)− ηt‖ ≥ 1/m}.
Recall that, thanks to the classical Silverman–Toeplitz characterization of regular matrices,
see e.g. [9, Theorem 4.1, II] or [8], we have that supn

∑
i |an,i| <∞. Since limn π

k
b,n(x?) = ηt,

it follows that there exist sufficiently large integers q ≥ p + j and jA ≥ j such that, if
db,i(x) = db,i(x

?) for all i = 1, . . . , jA + k, then

‖Anπkb (x)− ηt‖ ≤ ‖Anπkb,(x?)− ηt‖+
∥∥∥∑

i
an,i(π

k
b,i(x)− πkb,i(x?))

∥∥∥
≤ ‖Anπkb (x?)− ηt‖+

∑
i
|an,i| ‖πkb,i(x)− πkb,i(x?)‖

≤ ‖Anπkb (x?)− ηt‖+
∑

i>jA
|an,i| <

1

m

(4)

for all n ∈ Iq. We conclude analogously that S ′t,m,p is nowhere dense. �

The main result in [27] corresponds to the case I = Fin and k = 1, although with a
different proof; cf. also Example 4.10 below.

At this point, we need an intermediate result which is of independent interest. For each
bounded sequence x = (xn) with values in Rk, let K-core(x) be the Knopp core of x, that
is, the convex hull of the set of accumulation points of x. In other words, K-core(x) = co Lx,
where coS is the convex hull of S ⊆ Rk and Lx is the set of accumulation points of x. The
ideal version of the Knopp core has been studied in [18, 16]. The classical Knopp theorem
states that, if k = 2 and A is a nonnegative regular matrix, then

K-core(Ax) ⊆ K-core(x) (5)
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for all bounded sequences x, where Ax = (Anx : n ≥ 1), see [17, p. 115]; cf. [9, Chapter 6]
for a textbook exposition. A generalization in the case k = 1 can be found in [21]. We show,
in particular, that a stronger version of Knopp’s theorem holds for every k ∈ N.

Proposition 4.3. Let x = (xn) be a bounded sequence taking values in Rk, and fix a regular
matrix A such that limn

∑
i |an,i| = 1. Then inclusion (5) holds.

Proof. Define κ := supn ‖xn‖ and let η be an accumulation point of Ax. It is sufficient to
show that η ∈ K := K-core(x). Possibly deleting some rows of A, we can assume without loss
of generality that limAx = η. For each m ∈ N, let Km be the closure of co{xm, xm+1, . . .},
hence K ⊆ Km. Define d(a, C) := minb∈C ‖a − b‖ for all a ∈ Rk and nonempty compact
sets C ⊆ Rk. In addition, for each m ∈ N, let Qm(a) ∈ Km be the unique vector such
that d(a, Km) = ‖a − Qm(a)‖. Similarly, let Q(a) be the vector in K which minimizes its
distance with a. Then, notice that, for all n,m ∈ N, we have

d(Anx, K) ≤ infb∈K infc∈Rk(‖Anx− c‖+ ‖c− b‖)
≤ infc∈Km infb∈K(‖Anx− c‖+ ‖c− b‖)
≤ infc∈Km ‖Anx− c‖+ supy∈Km

infb∈K ‖y − b‖
= d(Anx, Km) + supy∈Km

d(y, K)

Since d(η, K) = limn d(Anx, K) by the continuity of d(·, K), it is sufficient to show that
both d(Anx, Km) and supy∈Km

d(y, K) are sufficiently small if n is sufficiently large and m
is chosen properly.

To this aim, fix ε > 0 and choose m ∈ N such that supy∈Km
d(y, K) ≤ ε/2. Indeed, it is

sufficient to choosem ∈ N such that d(xn,Lx) < ε/2 for all n ≥ m: indeed, in the opposite, the
subsequence (xj)j∈J , where J := {n ∈ N : d(xn,Lx) ≥ ε/2}, would be bounded and without
any accumulation point, which is impossible. Now pick y ∈ Km so that y =

∑
j λijxij for

some strictly increasing sequence (ij) of positive integers such that i1 ≥ m and some real
nonnegative sequence (λij) with

∑
j λij = 1. It follows that

d(y, K) ≤
∥∥∥y −∑

j
λijQ(xij)

∥∥∥ ≤∑
j
λij
∥∥xij −Q(xij)

∥∥ ≤∑
j
λijd(xij , Lx) ≤ ε

2
.

Suppose for the moment that A has nonnegative entries. Since A is regular, we get
limn

∑
i an,i = 1 and limn

∑
i<m an,i = 0 by the Silverman–Toeplitz characterization, hence

limn

∑
i≥m an,i = 1 and there exists n0 ∈ N such that

∑
i≥m an,i ≥ 1/2 for all n ≥ n0. Thus,

for each n ≥ n0, we obtain that d(Anx, Km) = ‖Anx−Qm(Anx)‖ ≤ αn + βn + γn, where

αn :=

∥∥∥∥Anx− Anx∑
i an,i

∥∥∥∥ , βn :=

∥∥∥∥ Anx∑
i an,i

−Qm

(
Anx∑
i an,i

)∥∥∥∥ ,
and

γn :=

∥∥∥∥Qm

(
Anx∑
i an,i

)
−Qm(Anx)

∥∥∥∥ .
Recalling that κ = supn ‖xn‖, it is easy to see that

γn ≤ αn ≤ κ
∑

i
|an,i| ·

(
1− 1∑

i an,i

)
.
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In addition, setting tn :=
∑

i≥m an,i/
∑

i an,i ∈ [0, 1] for all n ≥ n0, we get

βn ≤

∥∥∥∥∥
∑?

i∑
i an,i

−
∑?

i≥m∑
i≥m an,i

∥∥∥∥∥
=

1∑
i≥m an,i

∑
i an,i

∥∥∥∑
i≥m

an,i

(∑?

i<m
+
∑?

i≥m

)
−
∑

i
an,i

∑?

i≥m

∥∥∥
=

1∑
i≥m an,i

∥∥∥tn∑?

i<m
+(1− tn)

∑?

i≥m

∥∥∥
≤ 2κ

(
tn
∑

i<m
|an,i|+ (1− tn)

∑
i
|an,i|

)
.

(6)

where
∑?

i∈I stands for
∑

i∈I an,ixi. Note that the hypothesis that the entries of A are non-
negative has been used only in the first line of (6), so that

∑?
i≥m /

∑
i≥m an,i ∈ Km. Since

limn

∑
i<m |an,i| = 0, limn tn = 1, and supn

∑
i |an,i| < ∞ by the regularity of A, it follows

that all αn, βn, γn are smaller than ε/6 if n is sufficiently large. Therefore d(Anx, K) ≤ ε and,
since ε is arbitrary, we conclude that η = limnAnx ∈ K.

Lastly, suppose that A is a regular matrix such that limn

∑
i |an,i| = 1 and let B = (bn,i)

be the nonnegative regular matrix defined by bn,i = |an,i| for all n, i ∈ N. Considering that

d(Anx, Km) ≤ ‖Anx−Bnx‖+ d(Bnx, Km) ≤ κ
∑

i
|an,i − |an,i||+ ε,

and that limn

∑
i |an,i−|an,i|| = 0 because limn

∑
i an,i = limn

∑
i |an,i| = 1, we conclude that

d(Anx, Km) ≤ 2ε whenever n is sufficiently large. The claim follows as before. �

The following corollary is immediate:

Corollary 4.4. Let x = (xn) be a bounded sequence taking values in Rk, and fix a nonneg-
ative regular matrix A. Then inclusion (5) holds.

Remark 4.5. Inclusion (5) fails for an arbitrary regular matrix: indeed, let A = (an,i) be
the matrix defined by an,2n = 2, an,2n−1 = −1 for all n ∈ N, and an,i = 0 otherwise. Set also
k = 1 and let x be the sequence such that xn = (−1)n for all n ∈ N. Then A is regular and
limAx = 3 /∈ {−1, 1} = K-core(x).

Remark 4.6. Proposition 4.3 keeps holding on a (possibly infinite dimensional) Hilbert space
X with the following provisoes: replace the definition of K-core(x) with the closure of co Lx
(this coincides in the case that X = Rk) and assume that the sequence x is contained in a
compact set (so that K-core(x) is also nonempty).

With these premises, we can strenghten Theorem 4.2 as follows.

Theorem 4.7. The set {x ∈ (0, 1] : Γkb (x, I, A) = ∆k
b for all b ≥ 2, k ≥ 1} is comeager,

provided that I is a meager ideal and A is a regular matrix such that limn

∑
i |an,i| = 1.

Proof. Let us suppose that A = (an,i) is nonnegative regular matrix, i.e., an,i ≥ 0 for all n, i ∈
N, and fix a meager ideal I, a real x ∈ (0, 1], and integers b ≥ 2, k ≥ 1. Thanks to Theorem
4.2, it is sufficient to show that every accumulation point of the sequence (Anπ

k
b (x) : n ≥ 1)

is contained in the convex hull of the set of accumulation points of (πkb,n(x) : n ≥ 1), which
is in turn contained into ∆k

b . This follows by Proposition 4.3. �
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Since the family of meager sets is a σ-ideal, the following is immediate by Theorem 4.7.

Corollary 4.8. Let A be a countable family of regular matrices such that limn

∑
i |an,i| = 1.

Then the set {x ∈ (0, 1] : Γkb (x, I, A) = ∆k
b for all b ≥ 2, k ≥ 1, and all A ∈ A } is comeager,

provided that I is a meager ideal.

It is worth to remark that the main result [15] is obtained as an instance of Corollary 4.8,
letting A be the set of iterates of the Cesàro matrix (note that they are nonnegative regular
matrices), and setting k = 1 and I = Fin. The same holds for the iterates of the Hölder
matrix and the logarithmic Riesz matrix as in [24, Sections 3 and 4].

Next, we show that the hypothesis limn

∑
i |an,i| = 1 for the entries of the regular matrix

in Theorem 4.7 cannot be removed.

Example 4.9. Let A = (an,i) be the matrix such that an,(2n−1)! = −1 and an,(2n)! = 2 for all
n ∈ N, and an,i = 0 otherwise. It is easily seen that A is regular. Then, set b = 2, k = 1, and
I = Fin. We claim that the set of all x ∈ (0, 1] such that 2 is an accumulation point of the
sequence π2,1(x) = (π2,1,n(x) : n ≥ 1) is comeager. Indeed, its complement can be rewritten
as
⋃
m,p Sm,p, where

Sm,p := {x ∈ (0, 1] : |Anπ2,1(x)− 2| ≥ 1/m for all n ≥ p}.
Let x? ∈ (0, 1] such that d2,n(x?) = 1 if and only if (2i − 1)! ≤ n < (2i)! for some i ∈ N.
Then it is easily seen that limn π2,1,n(x?) = 2. Along the same lines of the proof of Theorem
4.2, it follows that each Sm,p is meager. We conclude that {x ∈ (0, 1] : Γ1

2(x,Fin, A) = ∆1
2} is

meager, which proves that the condition limn

∑
i |an,i| = 1 in the statement of Theorem 4.7

cannot be removed.

In addition, the main result in [27] states that Theorem 4.2, specialized to the case I =
Fin and k = 1, can be further strengtened so that the set {x ∈ (0, 1] : Γ1

b(x,Fin, A) ⊇
∆1
b for all b ≥ 2 and all regular A} is comeager. Taking into account the argument in the

proof of Theorem 4.7, this would imply that the set
{x ∈ (0, 1] : Γ1

b(x,Fin, A) = ∆1
b for all b ≥ 2 and all nonnegative regular A} (7)

should be comeager. However, this is false as it is shown in the next example.

Example 4.10. For each y ∈ (0, 1], let (ey,k : k ≥ 1) be the increasing enumeration of the
infinite set {n ∈ N : d2,n(y) = 1}. Then, let A = {Ay : y ∈ (0, 1]} be family of matrices
Ay = (a

(y)
n,i) with entries in {0, 1} so that a(y)n,i = 1 if and only if ey,n = i for all y ∈ (0, 1] and

all n, i ∈ N. Then each Ay is a nonnegative regular matrix. It follows, for each ideal I,
{x ∈ (0, 1] : Γ1

2(x, I, A) = ∆1
2 for all A ∈ A } = ∅.

Indeed, for each x ∈ (0, 1], the sequence π1
2(x) = (π1

2,n(x) : n ≥ 1) has an accumulation
point η ∈ ∆1

2. Hence there exists a subsequence (π1
2,nk

(x) : k ≥ 1) which is convergent to η.
Equivalently, limAyπ

1
2(x) = η, where y ∈ (0, 1] is defined such that ey,k = nk for all k ∈ N.

Therefore {η} = Γ1
2(x, I, Ay) 6= ∆1

2. in particular, the set defined in (7) is empty.

Lastly, the analogues of Theorem 4.2 and Theorem 4.7 hold for I-limit points, if I is an
Fσ-ideal or an analytic P-ideal. Indeed, denoting with Λk

b (x, I, A) the set of I-limit points
of the sequence (Anπ

k
b (x) : n ≥ 1), we obtain:
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Theorem 4.11. Let A be a regular matrix and let I be an Fσ-ideal or an analytic P-ideal.
Then the set {x ∈ (0, 1] : Λk

b (x, I, A) ⊇ ∆k
b for all b ≥ 2, k ≥ 1} is comeager.

Moreover, the set {x ∈ (0, 1] : Λk
b (x, I, A) = ∆k

b for all b ≥ 2, k ≥ 1} is comeager if, in
addition, A satisfies limn

∑
i |an,i| = 1.

Proof. The first part goes along the same lines of the proof of Theorem 2.3. Here, we replace
πkb (x) with (Anπ

k
b (x) : n ≥ 1) and using the chain of inequalities (4): more precisely, we

consider j′′ ∈ N such that ϕ({n ∈ [j′, j′′] : ‖Anπkb (x′) − η‖ ≤ 1/2t}) ≥ 1/2, and, taking into
considering (4), we define V := {x ∈ (0, 1] : db,i(x) = db,i(x

?) for all i = 1, . . . , k+ j′′′}, where
j′′′ is a sufficiently large integer such that

∑
i>j′′′ |an,i| ≤ 1/2t for all n ∈ [j′, j′′].

The second part follows, as in Theorem 4.7, by the fact that every accumulation point of
(Anπ

k
b (x) : n ≥ 1) belongs to ∆k

b . �
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