MOST NUMBERS ARE NOT NORMAL

ANDREA AVENI AND PAOLO LEONETTI

ABSTRACT. We show, from a topological viewpoint, that most numbers are not normal in a strong sense. More precisely, the set of numbers $x \in (0, 1]$ with the following property is comeager: for all integers $b \ge 2$ and $k \ge 1$, the sequence of vectors made by the frequencies of all possibile strings of length k in the b-adic representation of x has a maximal subset of accumulation points, and each of them is the limit of a subsequence with an index set of nonzero asymptotic density. This extends and provides a streamlined proof of the main result given by Olsen in [Math. Proc. Cambridge Philos. Soc. **137** (2004), 43–53]. We provide analogues in the context of analytic P-ideals and regular matrices.

1. INTRODUCTION

A real number $x \in (0, 1]$ is normal if, informally, for each base $b \ge 2$, its b-adic expansion contains every finite string with the expected uniform limit frequency (the precise definition is given in the next few lines). It is well known that most numbers x are normal from a measure theoretic viewpoint, see e.g. [5] for history and generalizations. However, it has been recently shown that certain subsets of nonnormal numbers may have full Hausdorff dimension, see e.g. [1, 4]. The aim of this work is to show that, from a topological viewpoint, most numbers are not normal in a strong sense. This provides another nonanalogue between measure and category, cf. [25].

For each $x \in (0, 1]$, denote its unique nonterminating b-adic expansion by

$$x = \sum_{n \ge 1} \frac{d_{b,n}(x)}{b^n},\tag{1}$$

with each digit $d_{b,n}(x) \in \{0, 1, \ldots, b-1\}$, where $b \geq 2$ is a given integer. Then, for each string $\mathbf{s} = s_1 \cdots s_k$ with digits $s_j \in \{0, 1, \ldots, b-1\}$ and each $n \geq 1$, write $\pi_{b,s,n}(x)$ for the proportion of strings \mathbf{s} in the *b*-adic expansion of x which start at some position $\leq n$, i.e.,

$$\pi_{b,s,n}(x) := \frac{\#\{i \in \{1,\ldots,n\} : d_{b,i+j-1}(x) = s_j \text{ for all } j = 1,\ldots,k\}}{n}$$

In addition, let S_b^k be the set of all possible strings $\mathbf{s} = s_1 \cdots s_k$ in base *b* of length *k*, hence $\#S_b^k = b^k$, and denote by $\pi_{b,n}^k(x)$ the vector $(\pi_{b,s,n}(x) : \mathbf{s} \in S_b^k)$. Of course, $\pi_{b,n}^k(x)$ belongs to the $(b^k - 1)$ -dimensional simplex for each *n*. However, the components of $\pi_{b,n}^k(x)$ satisfy an additional requirement: if $k \geq 2$ and $\mathbf{s} = s_1 \cdots s_{k-1}$ is a string in S_b^{k-1} , then

$$\pi_{b,s,n}(x) = \sum_{s_k} \pi_{b,s_{s_k},n}(x) = \sum_{s_0} \pi_{b,s_0,n}(x) + O(1/n) \quad \text{as } n \to \infty,$$

1991 Mathematics Subject Classification. Primary: 11K16. Secondary: 40A35, 11A63.

Key words and phrases. Normal numbers; ideal cluster points; ideal limit points; maximal set of accumulation points; regular matrices; Knopp core.

where $s_0 s$ and ss_k stand for the concatened strings (indeed, the above identity is obtained by a double counting of the occurrences of the string s as the occurrences of all possible strings ss_k ; or, equivalently, as the occurrences of all possible strings $s_0 s$, with the caveat of counting them correctly at the two extreme positions, hence with an error of at most 1). It follows that the set $L_b^k(x)$ of accumulation points of the sequence of vectors $(\pi_{b,n}^k(x) : n \ge 1)$ is contained in Δ_b^k , where

$$\Delta_b^k := \left\{ (p_{\boldsymbol{s}})_{\boldsymbol{s} \in S_b^k} \in \mathbf{R}^{b^k} : \sum_{\boldsymbol{s}} p_{\boldsymbol{s}} = 1, \, p_{\boldsymbol{s}} \ge 0 \text{ for all } \boldsymbol{s} \in S_b^k, \\ \text{and } \sum_{s_0} p_{s_0 \boldsymbol{s}} = \sum_{s_k} p_{\boldsymbol{s} s_k} \text{ for all } \boldsymbol{s} \in S_b^{k-1} \right\}.$$

Then x is said to be *normal* if

$$\forall b \ge 2, \forall k \ge 1, \forall s \in S_b^k, \quad \lim_{n \to \infty} \pi_{b,s,n}(x) = 1/b^k.$$

Hence, if x is normal, then $L_b^k(x) = \{(1/b^k, \ldots, 1/b^k)\}$. Olsen proved in [23] that the subset of nonnormal numbers with maximal set of accumulation points is topologically large:

Theorem 1.1. The set $\{x \in (0,1] : L_b^k(x) = \Delta_b^k \text{ for all } b \ge 2, k \ge 1\}$ is comeager.

First, we strenghten Theorem 1.1 by showing that the set of accumulation points $L_b^k(x)$ can be replaced by the much smaller subset of accumulation points η such that every neighborhood of η contains "sufficiently many" elements of the sequence, where "sufficiently many" is meant with respect to a suitable ideal \mathcal{I} of subsets of the positive integers N; see Theorem 2.1. Hence, Theorem 1.1 corresponds to the case where \mathcal{I} is the family of finite sets.

Then, for certain ideals \mathcal{I} (including the case of the family of asymptotic density zero sets), we even strenghten the latter result by showing that each accumulation point η can be chosen to be the limit of a subsequence with "sufficiently many" indexes (as we will see in the next Section, these additional requirements are not equivalent); see Theorem 2.3. The precise definitions, together with the main results, follow in Section 2.

2. Main results

An ideal $\mathcal{I} \subseteq \mathcal{P}(\mathbf{N})$ is a family closed under finite union and subsets. It is also assumed that \mathcal{I} contains the family of finite sets Fin and it is different from $\mathcal{P}(\mathbf{N})$. Every subset of $\mathcal{P}(\mathbf{N})$ is endowed with the relative Cantor-space topology. In particular, we may speak about G_{δ} -subsets of $\mathcal{P}(\mathbf{N})$, F_{σ} -ideals, meager ideals, analytic ideals, etc. In addition, we say that \mathcal{I} is a P-ideal if it is σ -directed modulo finite sets, i.e., for each sequence (S_n) of sets in \mathcal{I} there exists $S \in \mathcal{I}$ such that $S_n \setminus S$ is finite for all $n \in \mathbf{N}$. Lastly, we denote by \mathcal{Z} the ideal of asymptotic density zero sets, i.e.,

$$\mathcal{Z} = \{ S \subseteq \mathbf{N} : \mathsf{d}^{\star}(S) = 0 \}, \qquad (2)$$

where $d^{\star}(S) := \limsup_{n \to \infty} \frac{1}{n} \#(S \cap [1, n])$ stands for the upper asymptotic density of S, see e.g. [20]. We refer to [14] for a recent survey on ideals and associated filters.

Let $x = (x_n)$ be a sequence taking values in a topological vector space X. Then we say that $\eta \in X$ is an \mathcal{I} -cluster point of x if $\{n \in \mathbb{N} : x_n \in U\} \notin \mathcal{I}$ for all open neighborhoods U of η . Note that Fin-cluster points are the ordinary accumulation points. Usually \mathcal{Z} -cluster points are referred to as *statistical cluster points*, see e.g. [13]. It is worth noting that \mathcal{I} -cluster points have been studied much before under a different name. Indeed, as it follows by [19, Theorem 4.2] and [16, Lemma 2.2], they correspond to classical "cluster points" of a filter (depending on x) on the underlying space, cf. [7, Definition 2, p.69].

With these premises, for each $x \in (0, 1]$ and for all integers $b \ge 2$ and $k \ge 1$, let $\Gamma_b^k(x, \mathcal{I})$ be the set of \mathcal{I} -cluster points of the sequence $(\pi_{b,n}^k(x) : n \ge 1)$.

Theorem 2.1. The set $\{x \in (0,1] : \Gamma_b^k(x,\mathcal{I}) = \Delta_b^k \text{ for all } b \ge 2, k \ge 1\}$ is comeager, provided that \mathcal{I} is a meager ideal.

The class of meager ideals is really broad. Indeed, it contains Fin, \mathcal{Z} , the summable ideal $\{S \subseteq \mathbf{N} : \sum_{n \in S} 1/n < \infty\}$, the ideal generated by the upper Banach density, the analytic P-ideals, the Fubini sum Fin × Fin, the random graph ideal, etc.; cf. e.g. [3, 14]. Note that $\Gamma_b^k(x,\mathcal{I}) = \mathcal{L}_b^k(x)$ if $\mathcal{I} = \text{Fin}$. Therefore Theorem 2.1 significantly strenghtens Theorem 1.1.

Remark 2.2. It is not difficult to see that Theorem 2.1 does not hold without any restriction on \mathcal{I} . Indeed, if \mathcal{I} is a maximal ideal (i.e., the complement of a free ultrafilter on **N**), then for each $x \in (0, 1]$ and all integers $b \ge 2, k \ge 1$, we have that the sequence $(\boldsymbol{\pi}_{b,n}^k(x) : n \ge 1)$ is bounded, hence it is \mathcal{I} -convergent so that $\Gamma_b^k(x, \mathcal{I})$ is a singleton.

On a similar direction, if $x = (x_n)$ is a sequence taking values in a topological vector space X, then $\eta \in X$ is an \mathcal{I} -limit point of x if there exists a subsequence (x_{n_k}) such that $\lim_k x_{n_k} = \eta$ and $\mathbf{N} \setminus \{n_1, n_2, \ldots\} \in \mathcal{I}$. Usually \mathcal{Z} -limit points are referred to as *statistical limit points*, see e.g. [13]. Similarly, for each $x \in (0, 1]$ and for all integers $b \geq 2$ and $k \geq 1$, let $\Lambda_b^k(x, \mathcal{I})$ be the set of \mathcal{I} -limit points of the sequence $(\pi_{b,n}^k(x) : n \geq 1)$. The analogue of Theorem 2.1 for \mathcal{I} -limit points follows.

Theorem 2.3. The set $\{x \in (0,1] : \Lambda_b^k(x,\mathcal{I}) = \Delta_b^k \text{ for all } b \geq 2, k \geq 1\}$ is comeager, provided that \mathcal{I} is an analytic P-ideal or an F_{σ} -ideal.

It is known that every \mathcal{I} -limit point is always an \mathcal{I} -cluster point, however they can be highly different, as it is shown in [2, Theorem 3.1]. This implies that Theorem 2.3 provides a further improvement on Theorem 2.1 for the subfamily of analytic P-ideals.

It is remarkable that there exist F_{σ} -ideals which are not P-ideals, see e.g. [11, Section 1.11]. Also, the family of analytic P-ideals is well understood and has been characterized with the aid of lower semicontinuous submeasures, cf. Section 3. The results in [6] suggest that the study of the interplay between the theory of analytic P-ideals and their representability may have some relevant yet unexploited potential for the study of the geometry of Banach spaces.

Finally, recalling that the ideal \mathcal{Z} defined in (2) is an analytic P-ideal, an immediate consequence of Theorem 2.3 (as pointed out in the abstract) follows:

Corollary 2.4. The set of $x \in (0,1]$ such that, for all $b \ge 2$ and $k \ge 1$, every vector in Δ_b^k is a statistical limit point of the sequence $(\boldsymbol{\pi}_{b,n}^k(x):n\ge 1)$ is comeager.

It would also be interesting to investigate to what extend the same results for nonnormal points belonging to self-similar fractals (as studied, e.g., by Olsen and West in [24] in the context of iterated function systems) are valid.

We leave as open question for the interested reader to check whether Theorem 2.3 can be extended for all $F_{\sigma\delta}$ -ideals including, in particular, the ideal \mathcal{I} generated by the upper Banach density (which is known to not be a P-ideal, see e.g. [12, p.299]).

3. PROOFS OF THE MAIN RESULTS

Proof of Theorem 2.1. Let \mathcal{I} be a meager ideal on N. It follows by Talagrand's characterization of meager ideals [28, Theorem 21] that it is possible to define a partition $\{I_1, I_2, \ldots\}$ of N into nonempty finite subsets such that $S \notin \mathcal{I}$ whenever $I_n \subseteq S$ for infinitely many n. Moreover, we can assume without loss of generality that $\max I_n < \min I_{n+1}$ for all $n \in \mathbb{N}$.

The claimed set can be rewritten as $\bigcap_{b\geq 2} \bigcap_{k\geq 1} X_b^k$, where $X_b^k := \{x \in (0,1] : \Gamma_b^k(x,\mathcal{I}) = \Delta_b^k\}$. Since the family of meager subsets of (0,1] is a σ -ideal, it is enough to show that the complement of each X_b^k is meager. To this aim, fix $b \geq 2$ and $k \geq 1$ and denote by $\|\cdot\|$ the Euclidean norm on \mathbf{R}^{b^k} . Considering that $\{\eta_1, \eta_2, \ldots\} := \Delta_b^k \cap \mathbf{Q}^{b^k}$ is a countable dense subset of Δ_b^k and that $\Gamma_b^k(x,\mathcal{I})$ is a closed subset of Δ_b^k by [19, Lemma 3.1(iv)], it follows that

$$\begin{aligned} (0,1] \setminus X_b^k &= \bigcup_{t \ge 1} \{ x \in (0,1] : \boldsymbol{\eta}_t \notin \Gamma_b^k(x,\mathcal{I}) \} \\ &= \bigcup_{t \ge 1} \{ x \in (0,1] : \exists \varepsilon > 0, \{ n \in \mathbf{N} : \| \boldsymbol{\pi}_{b,n}^k(x) - \boldsymbol{\eta}_t \| < \varepsilon \} \in \mathcal{I} \} \\ &\subseteq \bigcup_{t,p,m \ge 1} \{ x \in (0,1] : \forall q \ge p, \exists n \in I_q, \| \boldsymbol{\pi}_{b,n}^k(x) - \boldsymbol{\eta}_t \| \ge 1/m \}. \end{aligned}$$

Denote by $S_{t,m,p}$ the set in the latter union. Thus it is sufficient to show that each $S_{t,p,m}$ is nowhere dense. To this aim, fix $t, p, m \in \mathbb{N}$ and a nonempty relatively open set $G \subseteq (0, 1]$. We claim there exists a nonempty open set U contained in G and disjoint from $S_{t,p,m}$. Since G is nonempty and open in (0, 1], there exists a string $\tilde{s} = s_1 \cdots s_j \in S_b^j$ such that $x \in G$ whenever $d_{b,i}(x) = s_i$ for all $i = 1, \ldots, j$. Now, pick $x^* \in (0, 1]$ such that $\lim_n \pi_{b,n}^k(x^*) = \eta_t$, which exists by [22, Theorem 1]. In addition, we can assume without loss of generality that $d_{b,i}(x^*) = s_i$ for all $i = 1, \ldots, j$. Since $\pi_{b,n}^k(x^*)$ is convergent to η_t , there exists $q \ge p + j$ such that $\|\pi_{b,n}^k(x^*) - \eta_t\| < 1/m$ for all $n \ge \min I_q$. Define $V := \{x \in (0,1] : d_{b,i}(x) =$ $d_{b,i}(x^*)$ for all $i = 1, \ldots, \max I_q + k\}$ and note that $V \subseteq G$ because $d_{b,i}(x) = s_i$ for all $i \le j$ and $x \in V$, and $V \cap S_{t,m,p} = \emptyset$ because, for each $x \in V$, the required property is not satisfied for this choice of q since $\pi_{b,n}^k(x^*)$ for all $n \le \max I_q$. Clearly, V has nonempty interior, hence it is possible to choose such $U \subseteq V$.

This proves that each $S_{t,m,p}$ is nowhere dense, concluding the proof.

Before we proceed to the proof of Theorem 2.3, we need to recall the classical Solecki's characterization of analytic P-ideals. A lower semicontinuous submeasure (in short, lscsm) is a monotone subadditive function $\varphi : \mathcal{P}(\mathbf{N}) \to [0, \infty]$ such that $\varphi(\emptyset) = 0$, $\varphi(\{n\}) < \infty$, and $\varphi(A) = \lim_{m \to \infty} \varphi(A \cap [1, m])$ for all $A \subseteq \mathbf{N}$ and $n \in \mathbf{N}$. It follows by [26, Theorem 3.1] that an ideal \mathcal{I} is an analytic P-ideal if and only if there exists a lscsm φ such that

$$\mathcal{I} = \{ A \subseteq \mathbf{N} : \|A\|_{\varphi} = 0 \}, \ \|\mathbf{N}\|_{\varphi} = 1, \text{ and } \varphi(\mathbf{N}) < \infty.$$
(3)

Here, $||A||_{\varphi} := \lim_{n} \varphi(A \setminus [1, n])$ for all $A \subseteq \mathbf{N}$. Note that $||A||_{\varphi} = ||B||_{\varphi}$ whenever the symmetric difference $A \bigtriangleup B$ is finite, cf. [11, Lemma 1.3.3(b)]. Easy examples of lscsms are $\varphi(A) := \#A$ or $\varphi(A) := \sup_{n} \frac{1}{n} \#(A \cap [1, n])$ for all $A \subseteq \mathbf{N}$ which lead, respectively, to the ideals Fin and \mathcal{Z} through the representation (3).

Proof of Theorem 2.3. First, let us suppose that \mathcal{I} is an F_{σ} -ideal. We obtain by [2, Theorem 2.3] that $\Lambda_b^k(x,\mathcal{I}) = \Gamma_b^k(x,\mathcal{I})$ for each $b \geq 2, k \geq 1$, and $x \in (0,1]$. Therefore the claim follows by Theorem 2.1.

Then, we assume hereafter that \mathcal{I} is an analytic P-ideal generated by a lscsm φ as in (3). Fix integers $b \geq 2$ and $k \geq 1$, and define the function

$$\mathbf{u}: (0,1] \times \Delta_b^k \to \mathbf{R}: (x, \boldsymbol{\eta}) \mapsto \lim_{t \to \infty} \|\{n \in \mathbf{N}: \|\boldsymbol{\pi}_{b,n}^k(x) - \boldsymbol{\eta}\| \le 1/t\}\|_{\varphi}$$

where $\|\cdot\|$ stands for the Euclidean norm on \mathbf{R}^{b^k} . It follows by [2, Lemma 2.1] that every section $\mathfrak{u}(x,\cdot)$ is upper semicontinuous, so that the set

$$\Lambda_b^k(x,\mathcal{I},q) := \{ \boldsymbol{\eta} \in \Delta_b^k : \mathfrak{u}(x,\boldsymbol{\eta}) \ge q \}$$

is closed for each $x \in (0, 1]$ and $q \in \mathbf{R}$.

At this point, we prove that, for each $\eta \in \Delta_b^k$, the set $X(\eta) := \{x \in (0,1] : \mathfrak{u}(x,\eta) \ge 1/2\}$ is comeager. To this aim, fix $\eta \in \Delta_b^k$ and notice that

$$\begin{aligned} (0,1] \setminus X(\boldsymbol{\eta}) &= \bigcup_{t \ge 1} \{ x \in (0,1] : \| \{ n \in \mathbf{N} : \| \boldsymbol{\pi}_{b,n}^k(x) - \boldsymbol{\eta} \| \le 1/t \} \|_{\varphi} < 1/2 \} \\ &= \bigcup_{t \ge 1} \{ x \in (0,1] : \lim_{h \to \infty} \varphi(\{ n \ge h : \| \boldsymbol{\pi}_{b,n}^k(x) - \boldsymbol{\eta} \| \le 1/t \}) < 1/2 \} \\ &= \bigcup_{t,h \ge 1} \{ x \in (0,1] : \varphi(\{ n \ge h : \| \boldsymbol{\pi}_{b,n}^k(x) - \boldsymbol{\eta} \| \le 1/t \}) < 1/2 \}. \end{aligned}$$

Denoting by $Y_{t,h}$ the inner set above, it is sufficient to show that each $Y_{t,h}$ is nowhere dense. Hence, fix $G \subseteq (0,1]$, $\tilde{s} \in S_b^j$, and $x^* \in (0,1]$ as in the proof of Theorem 2.1. Considering that $\|\cdot\|_{\varphi}$ is invariant under finite sets, it follows that

$$\varphi(\{n \ge j' : \|\boldsymbol{\pi}_{b,n}^k(x^*) - \boldsymbol{\eta}\| \le 1/t\}) \ge \|\{n \ge j' : \|\boldsymbol{\pi}_{b,n}^k(x^*) - \boldsymbol{\eta}\| \le 1/t\}\|_{\varphi} = \mathfrak{u}(x^*, \boldsymbol{\eta}) = 1,$$

where j' := j + h. Since φ is lower semicontinuous, there exists an integer j'' > j' such that

$$\varphi(\{n \in [j', j''] : \|\boldsymbol{\pi}_{b,n}^k(x^*) - \boldsymbol{\eta}\| \le 1/t\}) \ge 1/2.$$

Define $V := \{x \in (0,1] : d_{b,i}(x) = d_{b,i}(x^*) \text{ for all } i = 1, \ldots, j''\}$. Similarly, note that $V \subseteq G$ because $d_{b,i}(x) = s_i$ for all $i \leq j$ and $x \in V$, and $V \cap Y_{t,h} = \emptyset$ because $\varphi(\{n \geq h : \|\boldsymbol{\pi}_{b,n}^k(x) - \boldsymbol{\eta}\| \leq \frac{1}{t}\})$ is at least $\varphi(\{n \in [j', j''] : \|\boldsymbol{\pi}_{b,n}^k(x) - \boldsymbol{\eta}\| \leq \frac{1}{t}\}) \geq \frac{1}{2}$ for all $x \in V$. Since V has nonempty interior, it is possible to choose $U \subseteq V$ with the required property.

Finally, let E be a countable dense subset of Δ_b^k . Considering that $X := \{x \in (0, 1] : E \subseteq \Lambda_b^k(x, \mathcal{I}, 1/2)\}$ is equal to $\bigcap_{\eta \in E} X(\eta)$, it follows that the set X is comeager. However, considering that

$$\Lambda_b^k(x,\mathcal{I}) = \bigcup_{q>0} \Lambda_b^k(x,\mathcal{I},q)$$

by [2, Theorem 2.2] and that $\Lambda_b^k(x, \mathcal{I}, 1/2)$ is a closed subset such that $E \subseteq \Lambda_b^k(x, \mathcal{I}, 1/2) \subseteq \Lambda_b^k(x, \mathcal{I}) \subseteq \Delta_b^k$ for all $x \in X$, we obtain that $\Lambda_b^k(x, \mathcal{I}, 1/2) = \Lambda_b^k(x, \mathcal{I}) = \Delta_b^k$ for all $x \in X$. In particular, the claimed set contains X, which is comeager. This concludes the proof. \Box

4. Applications

4.1. Hausdorff and packing dimensions. We refer to [10, Chapter 3] for the definitions of the Hausdorff dimension and the packing dimension.

Proposition 4.1. The sets defined in Theorem 2.1 and Theorem 2.3 have Hausdorff dimension 0 and packing dimension 1.

Proof. Reasoning as in [23], the claimed sets are contained in the corresponding ones with ideal Fin, which have Hausdorff dimension 0 by [22, Theorem 2.1]. In addition, since all sets are comeager, we conclude that they have packing dimension 1 by [10, Corollary 3.10(b)]. \Box

4.2. Regular matrices. We extend the main results contained in [15, 27]. To this aim, let $A = (a_{n,i} : n, i \in \mathbf{N})$ be a regular matrix, that is, an infinite real-valued matrix such that, if $\mathbf{z} = (\mathbf{z}_n)$ is a \mathbf{R}^d -valued sequence convergent to $\boldsymbol{\eta}$, then $A_n \mathbf{z} := \sum_i a_{n,i} \mathbf{z}_i$ exists for all $n \in \mathbf{N}$ and $\lim_n A_n \mathbf{z} = \boldsymbol{\eta}$, see e.g. [9, Chapter 4]. Then, for each $x \in (0, 1]$ and integers $b \geq 2$ and $k \geq 1$, let $\Gamma_b^k(x, \mathcal{I}, A)$ be the set of \mathcal{I} -cluster points of the sequence of vectors $(A_n \boldsymbol{\pi}_b^k(x) : n \geq 1)$, where $\boldsymbol{\pi}_b^k(x)$ is the sequence $(\boldsymbol{\pi}_{b,n}^k(x) : n \geq 1)$.

In particular, $\Gamma_h^k(x, \mathcal{I}, A) = \Gamma_h^k(x, \mathcal{I})$ if A is the infinite identity matrix.

Theorem 4.2. The set $\{x \in (0,1] : \Gamma_b^k(x,\mathcal{I},A) \supseteq \Delta_b^k \text{ for all } b \ge 2, k \ge 1\}$ is comeager, provided that \mathcal{I} is a meager ideal and A is a regular matrix.

Proof. Fix a regular matrix $A = (a_{n,i})$ and a meager ideal \mathcal{I} . The proof goes along the same lines as the proof of Theorem 2.1, replacing the definition of $S_{t,m,p}$ with

$$S'_{t,m,p} := \{ x \in (0,1] : \forall q \ge p, \exists n \in I_q, \|A_n \pi_b^k(x) - \eta_t\| \ge 1/m \}.$$

Recall that, thanks to the classical Silverman–Toeplitz characterization of regular matrices, see e.g. [9, Theorem 4.1, II] or [8], we have that $\sup_n \sum_i |a_{n,i}| < \infty$. Since $\lim_n \pi_{b,n}^k(x^*) = \eta_t$, it follows that there exist sufficiently large integers $q \ge p + j$ and $j_A \ge j$ such that, if $d_{b,i}(x) = d_{b,i}(x^*)$ for all $i = 1, \ldots, j_A + k$, then

$$\|A_{n}\boldsymbol{\pi}_{b}^{k}(x) - \boldsymbol{\eta}_{t}\| \leq \|A_{n}\boldsymbol{\pi}_{b,i}^{k}(x^{\star}) - \boldsymbol{\eta}_{t}\| + \left\|\sum_{i}a_{n,i}(\boldsymbol{\pi}_{b,i}^{k}(x) - \boldsymbol{\pi}_{b,i}^{k}(x^{\star}))\right\|$$

$$\leq \|A_{n}\boldsymbol{\pi}_{b}^{k}(x^{\star}) - \boldsymbol{\eta}_{t}\| + \sum_{i}|a_{n,i}| \|\boldsymbol{\pi}_{b,i}^{k}(x) - \boldsymbol{\pi}_{b,i}^{k}(x^{\star})\|$$

$$\leq \|A_{n}\boldsymbol{\pi}_{b}^{k}(x^{\star}) - \boldsymbol{\eta}_{t}\| + \sum_{i>j_{A}}|a_{n,i}| < \frac{1}{m}$$
(4)

for all $n \in I_q$. We conclude analogously that $S'_{t,m,p}$ is nowhere dense.

The main result in [27] corresponds to the case $\mathcal{I} = \text{Fin}$ and k = 1, although with a different proof; cf. also Example 4.10 below.

At this point, we need an intermediate result which is of independent interest. For each bounded sequence $\boldsymbol{x} = (\boldsymbol{x}_n)$ with values in \mathbf{R}^k , let K-core(\boldsymbol{x}) be the Knopp core of \boldsymbol{x} , that is, the convex hull of the set of accumulation points of \boldsymbol{x} . In other words, K-core(\boldsymbol{x}) = co L_x, where co S is the convex hull of $S \subseteq \mathbf{R}^k$ and L_x is the set of accumulation points of \boldsymbol{x} . The ideal version of the Knopp core has been studied in [18, 16]. The classical Knopp theorem states that, if k = 2 and A is a nonnegative regular matrix, then

$$K-core(A\boldsymbol{x}) \subseteq K-core(\boldsymbol{x}) \tag{5}$$

for all bounded sequences \boldsymbol{x} , where $A\boldsymbol{x} = (A_n\boldsymbol{x} : n \ge 1)$, see [17, p. 115]; cf. [9, Chapter 6] for a textbook exposition. A generalization in the case k = 1 can be found in [21]. We show, in particular, that a stronger version of Knopp's theorem holds for every $k \in \mathbf{N}$.

Proposition 4.3. Let $\boldsymbol{x} = (\boldsymbol{x}_n)$ be a bounded sequence taking values in \mathbf{R}^k , and fix a regular matrix A such that $\lim_n \sum_i |a_{n,i}| = 1$. Then inclusion (5) holds.

Proof. Define $\kappa := \sup_n \|\boldsymbol{x}_n\|$ and let $\boldsymbol{\eta}$ be an accumulation point of $A\boldsymbol{x}$. It is sufficient to show that $\boldsymbol{\eta} \in K := \text{K-core}(\boldsymbol{x})$. Possibly deleting some rows of A, we can assume without loss of generality that $\lim A\boldsymbol{x} = \boldsymbol{\eta}$. For each $m \in \mathbf{N}$, let K_m be the closure of $\operatorname{co}\{x_m, x_{m+1}, \ldots\}$, hence $K \subseteq K_m$. Define $d(\boldsymbol{a}, C) := \min_{\boldsymbol{b} \in C} \|\boldsymbol{a} - \boldsymbol{b}\|$ for all $\boldsymbol{a} \in \mathbf{R}^k$ and nonempty compact sets $C \subseteq \mathbf{R}^k$. In addition, for each $m \in \mathbf{N}$, let $Q_m(\boldsymbol{a}) \in K_m$ be the unique vector such that $d(\boldsymbol{a}, K_m) = \|\boldsymbol{a} - Q_m(\boldsymbol{a})\|$. Similarly, let $Q(\boldsymbol{a})$ be the vector in K which minimizes its distance with \boldsymbol{a} . Then, notice that, for all $n, m \in \mathbf{N}$, we have

$$d(A_n \boldsymbol{x}, K) \leq \inf_{\boldsymbol{b} \in K} \inf_{\boldsymbol{c} \in \mathbf{R}^k} (\|A_n \boldsymbol{x} - \boldsymbol{c}\| + \|\boldsymbol{c} - \boldsymbol{b}\|)$$

$$\leq \inf_{\boldsymbol{c} \in K_m} \inf_{\boldsymbol{b} \in K} (\|A_n \boldsymbol{x} - \boldsymbol{c}\| + \|\boldsymbol{c} - \boldsymbol{b}\|)$$

$$\leq \inf_{\boldsymbol{c} \in K_m} \|A_n \boldsymbol{x} - \boldsymbol{c}\| + \sup_{\boldsymbol{y} \in K_m} \inf_{\boldsymbol{b} \in K} \|\boldsymbol{y} - \boldsymbol{b}\|$$

$$= d(A_n \boldsymbol{x}, K_m) + \sup_{\boldsymbol{y} \in K_m} d(\boldsymbol{y}, K)$$

Since $d(\boldsymbol{\eta}, K) = \lim_{n \to \infty} d(A_n \boldsymbol{x}, K)$ by the continuity of $d(\cdot, K)$, it is sufficient to show that both $d(A_n \boldsymbol{x}, K_m)$ and $\sup_{\boldsymbol{y} \in K_m} d(\boldsymbol{y}, K)$ are sufficiently small if n is sufficiently large and m is chosen properly.

To this aim, fix $\varepsilon > 0$ and choose $m \in \mathbf{N}$ such that $\sup_{\mathbf{y} \in K_m} d(\mathbf{y}, K) \leq \varepsilon/2$. Indeed, it is sufficient to choose $m \in \mathbf{N}$ such that $d(\mathbf{x}_n, \mathbf{L}_{\mathbf{x}}) < \varepsilon/2$ for all $n \geq m$: indeed, in the opposite, the subsequence $(\mathbf{x}_j)_{j \in J}$, where $J := \{n \in \mathbf{N} : d(\mathbf{x}_n, \mathbf{L}_{\mathbf{x}}) \geq \varepsilon/2\}$, would be bounded and without any accumulation point, which is impossible. Now pick $\mathbf{y} \in K_m$ so that $\mathbf{y} = \sum_j \lambda_{i_j} \mathbf{x}_{i_j}$ for some strictly increasing sequence (i_j) of positive integers such that $i_1 \geq m$ and some real nonnegative sequence (λ_{i_j}) with $\sum_j \lambda_{i_j} = 1$. It follows that

$$d(\boldsymbol{y}, K) \leq \left\| \boldsymbol{y} - \sum_{j} \lambda_{i_j} Q(\boldsymbol{x}_{i_j}) \right\| \leq \sum_{j} \lambda_{i_j} \left\| \boldsymbol{x}_{i_j} - Q(\boldsymbol{x}_{i_j}) \right\| \leq \sum_{j} \lambda_{i_j} d(\boldsymbol{x}_{i_j}, L_{\boldsymbol{x}}) \leq \frac{\varepsilon}{2}.$$

Suppose for the moment that A has nonnegative entries. Since A is regular, we get $\lim_{n} \sum_{i \geq m} a_{n,i} = 1$ and $\lim_{n} \sum_{i < m} a_{n,i} = 0$ by the Silverman–Toeplitz characterization, hence $\lim_{n} \sum_{i \geq m} a_{n,i} = 1$ and there exists $n_0 \in \mathbf{N}$ such that $\sum_{i \geq m} a_{n,i} \geq 1/2$ for all $n \geq n_0$. Thus, for each $n \geq n_0$, we obtain that $d(A_n \boldsymbol{x}, K_m) = ||A_n \boldsymbol{x} - Q_m(A_n \boldsymbol{x})|| \leq \alpha_n + \beta_n + \gamma_n$, where

$$\alpha_n := \left\| A_n \boldsymbol{x} - \frac{A_n \boldsymbol{x}}{\sum_i a_{n,i}} \right\|, \quad \beta_n := \left\| \frac{A_n \boldsymbol{x}}{\sum_i a_{n,i}} - Q_m \left(\frac{A_n \boldsymbol{x}}{\sum_i a_{n,i}} \right) \right\|,$$

and

$$\gamma_n := \left\| Q_m \left(\frac{A_n \boldsymbol{x}}{\sum_i a_{n,i}} \right) - Q_m (A_n \boldsymbol{x}) \right\|$$

Recalling that $\kappa = \sup_n \|\boldsymbol{x}_n\|$, it is easy to see that

$$\gamma_n \le \alpha_n \le \kappa \sum_i |a_{n,i}| \cdot \left(1 - \frac{1}{\sum_i a_{n,i}}\right).$$

In addition, setting $t_n := \sum_{i \ge m} a_{n,i} / \sum_i a_{n,i} \in [0,1]$ for all $n \ge n_0$, we get

$$\beta_{n} \leq \left\| \frac{\sum_{i}^{\star}}{\sum_{i} a_{n,i}} - \frac{\sum_{i\geq m}^{\star}}{\sum_{i\geq m} a_{n,i}} \right\|$$

$$= \frac{1}{\sum_{i\geq m} a_{n,i} \sum_{i} a_{n,i}} \left\| \sum_{i\geq m} a_{n,i} \left(\sum_{i

$$= \frac{1}{\sum_{i\geq m} a_{n,i}} \left\| t_{n} \sum_{i

$$\leq 2\kappa \left(t_{n} \sum_{i
(6)$$$$$$

where $\sum_{i\in I}^{\star}$ stands for $\sum_{i\in I} a_{n,i}\boldsymbol{x}_i$. Note that the hypothesis that the entries of A are nonnegative has been used only in the first line of (6), so that $\sum_{i\geq m}^{\star} / \sum_{i\geq m} a_{n,i} \in K_m$. Since $\lim_n \sum_{i<m} |a_{n,i}| = 0$, $\lim_n t_n = 1$, and $\sup_n \sum_i |a_{n,i}| < \infty$ by the regularity of A, it follows that all $\alpha_n, \beta_n, \gamma_n$ are smaller than ε/ϵ if n is sufficiently large. Therefore $d(A_n\boldsymbol{x}, K) \leq \varepsilon$ and, since ε is arbitrary, we conclude that $\boldsymbol{\eta} = \lim_n A_n \boldsymbol{x} \in K$.

Lastly, suppose that A is a regular matrix such that $\lim_{n \to i} \sum_{i} |a_{n,i}| = 1$ and let $B = (b_{n,i})$ be the nonnegative regular matrix defined by $b_{n,i} = |a_{n,i}|$ for all $n, i \in \mathbb{N}$. Considering that

$$d(A_n\boldsymbol{x}, K_m) \leq \|A_n\boldsymbol{x} - B_n\boldsymbol{x}\| + d(B_n\boldsymbol{x}, K_m) \leq \kappa \sum_i |a_{n,i} - |a_{n,i}|| + \varepsilon,$$

and that $\lim_{n} \sum_{i} |a_{n,i} - |a_{n,i}|| = 0$ because $\lim_{n} \sum_{i} a_{n,i} = \lim_{n} \sum_{i} |a_{n,i}| = 1$, we conclude that $d(A_n \boldsymbol{x}, K_m) \leq 2\varepsilon$ whenever *n* is sufficiently large. The claim follows as before.

The following corollary is immediate:

Corollary 4.4. Let $\boldsymbol{x} = (\boldsymbol{x}_n)$ be a bounded sequence taking values in \mathbf{R}^k , and fix a nonnegative regular matrix A. Then inclusion (5) holds.

Remark 4.5. Inclusion (5) fails for an arbitrary regular matrix: indeed, let $A = (a_{n,i})$ be the matrix defined by $a_{n,2n} = 2$, $a_{n,2n-1} = -1$ for all $n \in \mathbb{N}$, and $a_{n,i} = 0$ otherwise. Set also k = 1 and let x be the sequence such that $x_n = (-1)^n$ for all $n \in \mathbb{N}$. Then A is regular and $\lim Ax = 3 \notin \{-1, 1\} = \text{K-core}(x)$.

Remark 4.6. Proposition 4.3 keeps holding on a (possibly infinite dimensional) Hilbert space X with the following provisoes: replace the definition of K-core(\boldsymbol{x}) with the *closure* of co L_{\boldsymbol{x}} (this coincides in the case that $X = \mathbf{R}^k$) and assume that the sequence \boldsymbol{x} is contained in a compact set (so that K-core(\boldsymbol{x}) is also nonempty).

With these premises, we can strengthen Theorem 4.2 as follows.

Theorem 4.7. The set $\{x \in (0,1] : \Gamma_b^k(x,\mathcal{I},A) = \Delta_b^k \text{ for all } b \ge 2, k \ge 1\}$ is comeager, provided that \mathcal{I} is a meager ideal and A is a regular matrix such that $\lim_n \sum_i |a_{n,i}| = 1$.

Proof. Let us suppose that $A = (a_{n,i})$ is nonnegative regular matrix, i.e., $a_{n,i} \ge 0$ for all $n, i \in \mathbb{N}$, and fix a meager ideal \mathcal{I} , a real $x \in (0, 1]$, and integers $b \ge 2, k \ge 1$. Thanks to Theorem 4.2, it is sufficient to show that every accumulation point of the sequence $(A_n \pi_b^k(x) : n \ge 1)$ is contained in the convex hull of the set of accumulation points of $(\pi_{b,n}^k(x) : n \ge 1)$, which is in turn contained into Δ_b^k . This follows by Proposition 4.3.

Since the family of meager sets is a σ -ideal, the following is immediate by Theorem 4.7.

Corollary 4.8. Let \mathscr{A} be a countable family of regular matrices such that $\lim_{n} \sum_{i} |a_{n,i}| = 1$. Then the set $\{x \in (0,1] : \Gamma_b^k(x,\mathcal{I},A) = \Delta_b^k \text{ for all } b \ge 2, k \ge 1, \text{ and all } A \in \mathscr{A}\}$ is comeager, provided that \mathcal{I} is a meager ideal.

It is worth to remark that the main result [15] is obtained as an instance of Corollary 4.8, letting \mathscr{A} be the set of iterates of the Cesàro matrix (note that they are nonnegative regular matrices), and setting k = 1 and $\mathcal{I} = \text{Fin}$. The same holds for the iterates of the Hölder matrix and the logarithmic Riesz matrix as in [24, Sections 3 and 4].

Next, we show that the hypothesis $\lim_{n} \sum_{i} |a_{n,i}| = 1$ for the entries of the regular matrix in Theorem 4.7 cannot be removed.

Example 4.9. Let $A = (a_{n,i})$ be the matrix such that $a_{n,(2n-1)!} = -1$ and $a_{n,(2n)!} = 2$ for all $n \in \mathbb{N}$, and $a_{n,i} = 0$ otherwise. It is easily seen that A is regular. Then, set b = 2, k = 1, and $\mathcal{I} = \mathrm{Fin}$. We claim that the set of all $x \in (0, 1]$ such that 2 is an accumulation point of the sequence $\pi_{2,1}(x) = (\pi_{2,1,n}(x) : n \ge 1)$ is comeager. Indeed, its complement can be rewritten as $\bigcup_{m,p} S_{m,p}$, where

$$S_{m,p} := \{ x \in (0,1] : |A_n \pi_{2,1}(x) - 2| \ge 1/m \text{ for all } n \ge p \}.$$

Let $x^* \in (0,1]$ such that $d_{2,n}(x^*) = 1$ if and only if $(2i-1)! \leq n < (2i)!$ for some $i \in \mathbb{N}$. Then it is easily seen that $\lim_n \pi_{2,1,n}(x^*) = 2$. Along the same lines of the proof of Theorem 4.2, it follows that each $S_{m,p}$ is meager. We conclude that $\{x \in (0,1] : \Gamma_2^1(x, \operatorname{Fin}, A) = \Delta_2^1\}$ is meager, which proves that the condition $\lim_n \sum_i |a_{n,i}| = 1$ in the statement of Theorem 4.7 cannot be removed.

In addition, the main result in [27] states that Theorem 4.2, specialized to the case $\mathcal{I} =$ Fin and k = 1, can be further strengtened so that the set $\{x \in (0,1] : \Gamma_b^1(x, \operatorname{Fin}, A) \supseteq \Delta_b^1 \text{ for all } b \geq 2 \text{ and all regular } A\}$ is comeager. Taking into account the argument in the proof of Theorem 4.7, this would imply that the set

$$\{x \in (0,1] : \Gamma_b^1(x, \operatorname{Fin}, A) = \Delta_b^1 \text{ for all } b \ge 2 \text{ and all nonnegative regular } A\}$$
(7)

should be comeager. However, this is false as it is shown in the next example.

Example 4.10. For each $y \in (0, 1]$, let $(e_{y,k} : k \ge 1)$ be the increasing enumeration of the infinite set $\{n \in \mathbb{N} : d_{2,n}(y) = 1\}$. Then, let $\mathscr{A} = \{A_y : y \in (0, 1]\}$ be family of matrices $A_y = (a_{n,i}^{(y)})$ with entries in $\{0, 1\}$ so that $a_{n,i}^{(y)} = 1$ if and only if $e_{y,n} = i$ for all $y \in (0, 1]$ and all $n, i \in \mathbb{N}$. Then each A_y is a nonnegative regular matrix. It follows, for each ideal \mathcal{I} ,

$$\{x \in (0,1] : \Gamma_2^1(x,\mathcal{I},A) = \Delta_2^1 \text{ for all } A \in \mathscr{A}\} = \emptyset.$$

Indeed, for each $x \in (0,1]$, the sequence $\pi_2^1(x) = (\pi_{2,n}^1(x) : n \ge 1)$ has an accumulation point $\eta \in \Delta_2^1$. Hence there exists a subsequence $(\pi_{2,n_k}^1(x) : k \ge 1)$ which is convergent to η . Equivalently, $\lim A_y \pi_2^1(x) = \eta$, where $y \in (0,1]$ is defined such that $e_{y,k} = n_k$ for all $k \in \mathbb{N}$. Therefore $\{\eta\} = \Gamma_2^1(x, \mathcal{I}, A_y) \neq \Delta_2^1$. in particular, the set defined in (7) is empty.

Lastly, the analogues of Theorem 4.2 and Theorem 4.7 hold for \mathcal{I} -limit points, if \mathcal{I} is an F_{σ} -ideal or an analytic P-ideal. Indeed, denoting with $\Lambda_b^k(x, \mathcal{I}, A)$ the set of \mathcal{I} -limit points of the sequence $(A_n \pi_b^k(x) : n \ge 1)$, we obtain:

Theorem 4.11. Let A be a regular matrix and let \mathcal{I} be an F_{σ} -ideal or an analytic P-ideal. Then the set $\{x \in (0,1] : \Lambda_b^k(x,\mathcal{I},A) \supseteq \Delta_b^k \text{ for all } b \ge 2, k \ge 1\}$ is comeager.

Moreover, the set $\{x \in (0,1] : \Lambda_b^k(x,\mathcal{I},A) = \Delta_b^k \text{ for all } b \ge 2, k \ge 1\}$ is comeager if, in addition, A satisfies $\lim_n \sum_i |a_{n,i}| = 1$.

Proof. The first part goes along the same lines of the proof of Theorem 2.3. Here, we replace $\pi_b^k(x)$ with $(A_n \pi_b^k(x) : n \ge 1)$ and using the chain of inequalities (4): more precisely, we consider $j'' \in \mathbf{N}$ such that $\varphi(\{n \in [j', j''] : \|A_n \pi_b^k(x') - \eta\| \le 1/2t\}) \ge 1/2$, and, taking into considering (4), we define $V := \{x \in (0, 1] : d_{b,i}(x) = d_{b,i}(x^*) \text{ for all } i = 1, \ldots, k + j'''\}$, where j''' is a sufficiently large integer such that $\sum_{i>j''} |a_{n,i}| \le 1/2t$ for all $n \in [j', j'']$.

The second part follows, as in Theorem 4.7, by the fact that every accumulation point of $(A_n \pi_b^k(x) : n \ge 1)$ belongs to Δ_b^k .

5. Acknowledgments.

P. Leonetti is grateful to PRIN 2017 (grant 2017CY2NCA) for financial support.

References

- S. Albeverio, M. Pratsiovytyi, and G. Torbin, Topological and fractal properties of real numbers which are not normal, Bull. Sci. Math. 129 (2005), no. 8, 615–630.
- M. Balcerzak and P. Leonetti, On the relationship between ideal cluster points and ideal limit points, Topology Appl. 252 (2019), 178–190.
- M. Balcerzak, P. Leonetti, and S. Głąb, Another characterization of meager ideals, preprint, last updated: Sep 11, 2021 (arXiv:2109.05266).
- L. Barreira and J. Schmeling, Sets of "non-typical" points have full topological entropy and full Hausdorff dimension, Israel J. Math. 116 (2000), 29–70.
- V. Bergelson, T. Downarowicz, and M. Misiurewicz, A fresh look at the notion of normality, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 21 (2020), 27–88.
- P. Borodulin-Nadzieja and B. Farkas, Analytic P-ideals and Banach spaces, J. Funct. Anal. 279 (2020), no. 8, 108702, 31.
- N. Bourbaki, General topology. Chapters 1–4, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 1998, Translated from the French, Reprint of the 1989 English translation.
- 8. J. Connor and P. Leonetti, A characterization of $(\mathcal{I}, \mathcal{J})$ -regular matrices, J. Math. Anal. Appl. 504 (2021), no. 1, 125374.
- 9. R. G. Cooke, Infinite matrices and sequence spaces, Dover Publications, Inc., New York, 1965.
- K. Falconer, *Fractal geometry*, third ed., John Wiley & Sons, Ltd., Chichester, 2014, Mathematical foundations and applications.
- 11. I. Farah, Analytic quotients: theory of liftings for quotients over analytic ideals on the integers, Mem. Amer. Math. Soc. 148 (2000), no. 702, xvi+177.
- 12. A. R. Freedman and J. J. Sember, Densities and summability, Pacific J. Math. 95 (1981), no. 2, 293–305.
- 13. J. A. Fridy, *Statistical limit points*, Proc. Amer. Math. Soc. **118** (1993), no. 4, 1187–1192.
- M. Hrušák, *Combinatorics of filters and ideals*, Set theory and its applications, Contemp. Math., vol. 533, Amer. Math. Soc., Providence, RI, 2011, pp. 29–69.
- J. Hyde, V. Laschos, L. Olsen, I. Petrykiewicz, and A. Shaw, Iterated Cesàro averages, frequencies of digits, and Baire category, Acta Arith. 144 (2010), no. 3, 287–293.
- V. Kadets and D. Seliutin, On relation between the ideal core and ideal cluster points, J. Math. Anal. Appl. 492 (2020), no. 1, 124430, 7.
- 17. K. Knopp, Zur Theorie der Limitierungsverfahren, Math. Z. 31 (1930), no. 1, 97–127.
- 18. P. Leonetti, Characterizations of the Ideal Core, J. Math. Anal. Appl. 477 (2019), no. 2, 1063–1071.

- P. Leonetti and F. Maccheroni, *Characterizations of ideal cluster points*, Analysis (Berlin) **39** (2019), no. 1, 19–26.
- P. Leonetti and S. Tringali, On the notions of upper and lower density, Proc. Edinb. Math. Soc. (2) 63 (2020), no. 1, 139–167.
- I. J. Maddox, Some analogues of Knopp's core theorem, Internat. J. Math. Math. Sci. 2 (1979), no. 4, 605–614.
- 22. L. Olsen, Applications of multifractal divergence points to sets of numbers defined by their N-adic expansion, Math. Proc. Cambridge Philos. Soc. **136** (2004), no. 1, 139–165.
- 23. L. Olsen, Extremely non-normal numbers, Math. Proc. Cambridge Philos. Soc. 137 (2004), no. 1, 43–53.
- 24. L. Olsen and M. West, Average frequencies of digits in infinite IFS's and applications to continued fractions and Lüroth expansions, Monatsh. Math. **193** (2020), no. 2, 441–478.
- 25. J. C. Oxtoby, *Measure and category*, second ed., Graduate Texts in Mathematics, vol. 2, Springer-Verlag, New York-Berlin, 1980, A survey of the analogies between topological and measure spaces.
- 26. S. Solecki, Analytic ideals and their applications, Ann. Pure Appl. Logic 99 (1999), no. 1-3, 51–72.
- 27. A. Stylianou, A typical number is extremely non-normal, Unif. Distrib. Theory 67 (1980), no. 1, 13–43.
- M. Talagrand, Compacts de fonctions mesurables et filtres non mesurables, Studia Math. 17 (2022), 77–88.

DEPARTMENT OF STATISTICAL SCIENCE, DUKE UNIVERSITY, 214 OLD CHEMISTRY, DURHAM, NC 27708-0251

 $Email \ address:$ and rea. aveni@duke.edu

Department of Economics, Università degli Studi dell'Insubria, via Monte Generoso 71, Varese 21100, Italy

Email address: leonetti.paolo@gmail.com URL: https://sites.google.com/site/leonettipaolo/