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In the framework of the analog Hawking radiation for dielectric media, we analyze a toy model and also the
2D reduction of theHopfieldmodel for a specificmonotone and realistic profile for the refractive index.We are
able to provide exact solutions, which do not require any weak dispersion approximation. The theory of
Fuchsian ordinary differential equations is the basic tool for recovering exact solutions, which are rigorously
identified and involve the so-called generalized hypergeometric functions 4F3ðα1; α2; α3; α4; β1; β2; β3; zÞ.
A complete set of connection formulas are available, both for the subcritical case and for the transcritical one,
and also the Stokes phenomenon occurring in the problem is fully discussed. From the physical point of view,
we focus on the problemof thermality. Under suitable conditions, theHawking temperature is deduced, andwe
show that it is in full agreementwith the expressiondeduced inother frameworks under various approximations.
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I. INTRODUCTION

We are interested to focus our attention on analytical
calculations of the analog Hawking effect in dielectric media
and in the presence of dispersion. Analytical calculations for
the analog Hawking effect, introduced in the seminal
paper [1] for nondispersive media, and also in the dispersive
case, have been largely discussed in literature [see, e.g., the
following (nonexhaustive) list of papers [2–23] ]; for weak
dispersion and the transcritical case, a rather general math-
ematical framework, able to encompass in an unified picture
very relevant models even for the experiments [24–35], has
been discussed in [36–38]. In [39], the authors introduced a
new mathematical perspective in the analog Hawking effect
by relating the problem to the solution of a fourth-order
Fuchsian equation for the subcritical case. As a remarkable
example of the possibilities offered by Fuchsian equations,
we provide here an exact solution of a particular scattering
problem inside a dielectric. We stress that this represents a
very relevant achievement, both on the physical side and on
the mathematical one. Indeed, as far as the Hawking effect in
dielectric media is concerned, no exact solution has been
provided in the physical literature before. Exact analytical
solutions represent an actually very hard task in this field and

allow one to explore physical situations that are forbidden in
approximate solutions, and as happens in any physical field
at hand, they constitute a strong conceptual reference for
further studies. We shall provide this exact solution under a
specific but physically very relevant choice of the back-
ground pulse giving rise to the Hawking radiation (see
below), and we are also able to corroborate existing results
in approximate models by means of suitable limits of our
solutions. Furthermore, a deepening of our general compre-
hension of theHawking effect in the presence of dispersion is
made possible by our analysis. In particular, we show that
nontrivial connection formulas between in- and outgoing
states are associated with the presence of pair creation, and,
moreover, this nontriviality is in turn related to a Stokes
phenomenon. This relevance is mostly evident in the
subcritical case, where, e.g., a naive WKB approach would
fail to provide any pair-creation process. From a mathemati-
cal point of view, our achievement is also important, as we
provide exact solutions in awell-grounded physical model to
a fourth-order Fuchsian equation, which is also of great
interest on the mathematical side.
We choose a monotonic refractive index profile traveling

inside the dielectric at a fixed velocity. This kind of back-
ground represents a fundamental setting for a good under-
standing of the pair-creation process, and monotonic
backgrounds are often considered in analytical computations
in the transcritical regime and in numerical simulations of
analog systems (see, e.g., [40]).We stress that exact solutions
for the dispersive case of the analog Hawking effect are very
hard to be obtained, as even solutions of ordinary differential
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equations of the fourth order. The only other examplewe can
find is contained in the paper by Philbin [18], which provides
exact solutions for the Corley model [3,9]. Therein solutions
are obtained at the price of introducing an interesting but
somehow unrealistic linear velocity profile vðxÞ ¼ −αx.
The plan of the paper is the following. In Sec. II, we

present the model and the monotonic background we are
going to consider. In Sec. III, starting from the equation of
motion for our model, we show that, by means of a suitable
change of the independent spatial variable in the comoving
frame of the pulse, we are able to obtain a fourth-order
Fuchsian equation. We provide a detailed characterization of
its localmonodromy and spectral type. In Sec. IV,we provide
the exact solution and recover rigorously that the generalized
hypergeometric functions 4F3ðα1; α2; α3; α4; β1; β2; β3; zÞ
are involved. Furthermore, we provide a study of the
Stokes phenomenon, and we study some physical conse-
quences for the scattering problem at hand. In Sec. V, we
consider a generalization of the previous analysis to the case
of the original model (the so-called ϕψ model) to which the
Hopfield model reduces in the 2D case, and again we
consider the scattering problem and the thermality of the
spectrum, which is recovered to coincide with the one
deduced in the weak dispersion limit discussed in [36] under
suitable conditions. In Sec. VI, we summarize our achieve-
ments and display future perspectives for our analysis.

II. THE CAUCHY MODEL AND THE CHOICE
OF BACKGROUND

The model we consider is the modified ϕ − ψ model (or
“Cauchy model”) introduced by the authors in [39]. In the
laboratory frame, it is expressed by the Lagrangian

L¼ 1

2
ð∂tlϕÞ2þ

1

2
ðð∂tlψÞ2þμ2ψ2Þþgϕ∂xlψ −

λ

4!
ψ4: ð1Þ

Aswe shall discuss further on in the following, thismodel has
its ratio in the fact that it provides us the simplest model for
analyzing the Hawking effect in dielectrics, due to its simple
dispersion relation and for the simplifications it provides in
analytical calculations. The Cauchy model at hand simulates
an effective description of the interaction between the
electromagnetic field and a dielectric medium and it is
inspired by the physical model discussed in Sec. V, which
is the two-dimensional reduction of the Hopfield model: in
that model, the field ϕ represents the electromagnetic field,
and the field ψ takes the role of the polarization field. The
Lagrangian (1) involves a coupling term between ϕ and ψ
and a nonlinear term in the polarization field, and its structure
is aimed to reproduce the Cauchy-like dispersion relation
[Eq. (4)], i.e., the simplest dispersion relation for the
electromagnetic field in dielectrics. Even though its structure
is oversimplified, we can show that this model provides a
very interesting benchmark for analytical studies and also
preserves all the basic features of the more tricky physical
model discussed in Sec. V.

The linearized equations of motion (EOMs) around a
background solution ψB, in the lab frame, are

∂
2
tlϕ − g∂xlψ ¼ 0; ð2Þ

∂
2
tlψ þ g∂xlψ − μ2ϕþ λ

2
ψ2
Bψ ¼ 0: ð3Þ

The free-field solutions (for λ ¼ 0) are plane waves
eiωlabtl−iklabxl which satisfy

n20ðωlabÞ ≔
k2lab
ω2
lab

¼ μ2

g2
þ ω2

lab

g2
≕Aþ Bω2

lab: ð4Þ

The dispersion relation, in a reference frame moving with
velocity V with respect to the lab frame, has four solutions
(see Fig. 1): expanding kðωÞ for ω → 0, the four modes
have the following expressions:

kH ¼ μ − gV
g − μV

ωþOðω3Þ; ð5Þ

kB ¼ −
μþ gV
gþ μV

ωþOðω3Þ; ð6Þ

kP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 − μ2V2

p
γV2

−
�
1

V
þ g2

γ2Vðg2 − μ2V2Þ
�
ω

−
g2ð2g2 þ μ2V2Þ
2γðg2 − μ2V2Þ5=2 ω

2 þOðω3Þ; ð7Þ

kN ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 − μ2V2

p
γV2

−
�
1

V
þ g2

γ2Vðg2 − μ2V2Þ
�
ω

þ g2ð2g2 þ μ2V2Þ
2γðg2 − μ2V2Þ5=2 ω

2 þOðω3Þ: ð8Þ

FIG. 1. The dispersion relation (4) represented in the comoving
frame with the background, with g ¼ 1, μ ¼ 1.2; for 0 < ω <
ωMAX there are four real solutions.
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The reason for the choice of the model lies in the simple
expression of the dispersion relation: however, in many
cases we will refer to DRðkÞ as a generic fourth-order
polynomial, so the choice of a particular dispersion relation
is not really crucial. We are going to solve the linearized
equations (2) and (3) with a particular choice of back-
ground. In the experiments the background field is repre-
sented by a laser pulse, which is naturally localized and
travels rigidly at a certain velocity V. We will instead
consider a monotonic background

ψbðx − VtÞ2 ¼ 1 − tanhðβðx − VtÞÞ: ð9Þ
We claim that this is a good model for the right side of a
laser pulse; moreover, a monotonic background represents
a better model for an event horizon and allows one to better
understand the nature of Hawking radiation. Examples of
applications for such kinds of monotonic profiles to
refractive index perturbations in dielectric media can be
found, e.g., in [14] (see also the associated Supplemental
Material of this reference for more details), and cf. also
Chap. 10 in [41], as far as the original ϕψ model, to be

discussed in Sec. V, is concerned. We remark that the
refractive index perturbation δn one is able to associate with
the aforementioned model in the Cauchy dispersion rela-
tion regime is substantially proportional to ψ2

b. Monotonic
backgrounds of this type were also used in some previous
studies of analog black holes and white holes (see, for
example, [40]). Even if the most realistic description of a
laser pulse perturbation in a dielectric is associated with a
profile involving both a rising part (white hole) of the
dielectric perturbation and also a decreasing side (black
hole) of it [42], suitable settings can properly simulate an
interaction with only, e.g., the rising part, described by the
monotone perturbation (see also the discussion in [14]).
The linearized equations (2) and (3) can be put together

to a fourth-order equation of generalized Orr-Sommerfeld
type. It is convenient to write these equations in the
comoving coordinates t ¼ γðtl − VxlÞ, x ¼ γðxl − VtlÞ.
Since the potential term is independent of the comoving
time, we seek a solution in the form ψ ¼ e−iωtfðxÞ,
ϕ ¼ e−iωtgðxÞ. By applying ðvμ∂μÞ2 to the second equation,
we obtain a single fourth-order equation for fðxÞ only,

0 ¼ V4γ4fð4ÞðxÞ þ 4iV3ωγ4fð3ÞðxÞ

þ 1

2
γ2f00ðxÞ

h
−λV2 tanhðβ̃xÞ þ 2g2 þ λV2 − 2μ2V2 − 12V2ω2γ2

i

þ iγ2Vf0ðxÞ
h
iβ̃λVsech2ðβ̃xÞ þ ω

�
−λ tanhðβ̃xÞ þ 2g2 þ λ − 2μ2 − 4ω2γ2

�i

þ 1

2
γ2fðxÞ

h
ω2

�
λ tanhðβ̃xÞ − 2g2V2 − λþ 2μ2 þ 2ω2γ2

�
þ 2β̃λVsech2ðβ̃xÞðβ̃V tanhðβ̃xÞ − iωÞ

i
; ð10Þ

where β̃ ¼ β
γ.

III. REDUCTION TO A FUCHSIAN EQUATION:
MONODROMY AND RIEMANN SCHEME

As in [39], we perform the following change of variables
on Eq. (10):

z ¼ −e2β̃x; ð11Þ

which implies

∂x ¼ 2β̃θz ≔ 2β̃z
d
dz

: ð12Þ

By defining the rescaled parameters G ¼ g
2β̃
, Ω ¼ ω

2β̃
,

M ¼ μ
2β̃
, and Λ ¼ λ

4β̃2
, we end up with the following

equation:

0 ¼ V4γ4z4fð4ÞðzÞ þ fð3ÞðzÞð6V4γ4z3 − 4iV3Ωγ4z3Þ þ f00ðzÞ
�
G2γ2z2 − V2γ2z2

�
Λ

z − 1
þM2

�

− 6V2Ω2γ4z2 − 12iV3Ωγ4z2 þ 7V4γ4z2
�
þ f0ðzÞ

�
−2iG2VΩγ2zþ G2γ2zþ V2γ2z

�
Λ

ð1 − zÞ2 −M2

�

− 2iVΩγ2z
�

Λ
ð1 − zÞ −M2

�
þ 2ΛV2γ2z2

ð1 − zÞ2 − 6V2Ω2γ4z − 4iV3Ωγ4zþ V4γ4zþ 4iVΩ3γ4z

�

þ fðzÞ
�
−G2V2Ω2γ2 þΩ2γ2

�
Λ

1 − z
þM2

�
þ 2ΛV2γ2z2

ð1 − zÞ3 þ ΛV2γ2z
ð1 − zÞ3 −

2iΛVΩγ2z
ð1 − zÞ2 þΩ4γ4

�
: ð13Þ

This equation is of Fuchsian type, with three singular points, z ¼ 0; 1;∞.
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As an alternative form, we can write the EOMs (2) and (3) as a system of first order and perform the same change of
variables as before. With this procedure we obtain the system

dU
dz

¼ AðzÞU; ð14Þ

where

U ¼

0
BBB@

gðzÞ
g0ðzÞ
fðzÞ
f0ðzÞ

1
CCCA; ð15Þ

AðzÞ ¼

0
BBBBB@

0 1 0 0
Ω2

V2z2 − V2γ2z−2iVΩγ2z
V2γ2z2

iGΩ
Vγz2 − G

V2γz

0 0 0 1

− iGΩ
Vγz2

G
V2γz −− Λ

1−z−M
2−Ω2γ2

V2γ2z2 − V2γ2z−2iVΩγ2z
V2γ2z2

1
CCCCCA
: ð16Þ

We can reduce (14) to a “Fuchsian system of normal
form” [43] by changing variables to

YðzÞ ¼ PðzÞUðzÞ; ð17Þ

PðzÞ ¼ diag

�
1

z
; 1;

1

z
; 1

�
: ð18Þ

The system has now the form

dY
dz

¼
�
A1

z
þ A2

z − 1

�
Y; ð19Þ

A1 ¼

0
BBBBB@

−1 1 0 0
Ω2

V2
−V−2iΩ

V − iGΩ
Vγ − G

V2γ

0 0 −1 1
iGΩ
Vγ

G
V2γ

ΛþM2þΩ2γ2

V2γ2
−V−2iΩ

V

1
CCCCCA
; ð20Þ

A2 ¼

0
BBBBB@

0 0 0 0

0 0 0 0

0 0 0 0

0 0 − Λ
V2γ2

0

1
CCCCCA
: ð21Þ

The matrices A1 and A2 are constant and they are,
respectively, the residue at the simple poles z ¼ 0 and
z ¼ 1. We may also define

A0 ≔ −A1 − A2; ð22Þ

which corresponds to the residue at the simple pole z ¼ ∞.

A. The local solutions and monodromy

We start looking for local solutions of (13) around
z ¼ ∞. After changing variables to t ¼ 1=z, we can look
for a solution in the form

fðtÞ ¼ t−iα
X∞
n¼0

cntn: ð23Þ

The characteristic equation for the exponent k ≔ 2β̃α is

DRðkÞ ≔ γ2ðμ2ðkV þ ωÞ2 − g2ðkþ VωÞ2 þ ðkV þ ωÞ4γ2Þ
¼ 0; ð24Þ

which is nothing but the dispersion relation (4) as written in
the comoving reference frame with the background.
Equation (24) has, in general, four distinct complex
solutions, so we find four independent solutions in the
form (23): the spectral type of the equation at z ¼ ∞ is thus
(1111). There is the possibility of emergence of a resonant
case, where the difference between eigenvalues is an
integer, still in a zero measure set in the space of available
parameters appearing in our model.
A similar behavior is found at z ¼ 0: we find four

independent local solutions of the form

fðzÞ ¼ ziα̃
X∞
n¼0

cnzn; ð25Þ

where k̃ ≔ 2β̃ α̃ satisfies
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DR0ðkÞ≔ γ2
�
−g2ðk̃þVωÞ2

þðk̃VþωÞ2ðλþμ2þðk̃VþωÞ2γ2Þ
�
¼ 0: ð26Þ

Equation (26) is equivalent to (24) if one maps
μ2 ↦ μ2 þ λ. The spectral type at z ¼ 0 is again (1111),
again almost everywhere in the space of available param-
eters appearing in our model. Some interesting formulas
concerning (24) and (26) are discussed in Appendix A.
The situation at z ¼ 1 is different. After defining y ¼

z − 1, the characteristic equation for solutions of the form

fðyÞ ¼ ya
X∞
n¼0

cnyn ð27Þ

has four integer solutions a ¼ 0, 1, 2, 3. This situation is
known in literature as the resonant case (cf., e.g., [43]) and
requires a particular study. We refer mostly to [44], where
still the discussion is left incomplete, and, particularly, to
the thorough analysis appearing in [45], and also to [46]. As
suggested in the aforementioned literature, we apply the so-
called Frobenius method for the analysis of solutions at a
Fuchsian singularity, also in the resonant case, and we can
also verify if there are logarithmic contributions (even in
the resonant case, they might also not appear).
By means of the Frobenius method, we obtain three

independent integer solutions

u1ðyÞ ¼ y3 þ y4
�
−
3

2
þ Λ
12γ2V2

þ i
Ω
V

�
þ oðy4Þ; ð28Þ

u2ðyÞ ¼ y2 þ y3
�
−2þ Λ

6γ2V2
þ i

4Ω
3V

�
þ oðy3Þ; ð29Þ

u3ðyÞ ¼ yþ y2
�
−3þ Λ

2γ2V2
þ i

2Ω
V

�
þ oðy2Þ; ð30Þ

and one logarithmic solution

u0ðyÞ ¼ 1þ y

�
−6 −

Λ
V2γ2

þ 4iΩ
V

�
þ oðyÞ

þ logðyÞðR1u1ðyÞ þ R2u2ðyÞ þ R3u3ðyÞÞ; ð31Þ
where

R3 ¼
Λ

V2γ2
; ð32Þ

R2 ¼
Λð5V − 2iΩÞ

4V3γ2
; ð33Þ

R1 ¼
Λð9V2 − 6iΩV −Ω2Þ

18V4γ2
: ð34Þ

The study of the monodromy of the solution is important
for the characterization of the equation [43]. Starting from a

basis of solutions ðu1ðz̄Þ;…; u4ðz̄ÞÞ evaluated at some z̄∈C,
we can prolong these solutions along a path that goes around
a singular pointa∈C and closes back to z̄ (without enclosing
other singular points): the new vector ðu01ðz̄Þ;…; u04ðz̄ÞÞ that
results from this transformation is related to the initial one by
amatrixMa. Suchmatrix is independent on the point z̄ and is
called the “monodromy”matrix of the solutions ðu1;…; u4Þ
at the point a. The monodromy matrix of the solutions
ðu0ðyÞ; u1ðyÞ; u2ðyÞ; u3ðyÞÞ of (28)–(31) at z ¼ 1 is easily
computed as

M1 ¼

0
BBB@

1 2πiR1 2πiR2 2πiR3

0 1 0 0

0 0 1 0

0 0 0 1

1
CCCA; ð35Þ

whose Jordan form is

JM1
¼

0
BBB@

1 0 0 0

0 1 0 0

0 0 1 1

0 0 0 1

1
CCCA: ð36Þ

The monodromy at z ¼ 0 and z ¼ ∞ are even more easy to
determine and they are represented, respectively, by the
diagonal matrices

M0 ¼ diagðei2πα̃1 ; ei2πα̃2 ; ei2πα̃3 ; ei2πα̃4Þ; ð37Þ

M∞ ¼ diagðe−i2πα1 ; e−i2πα2 ; e−i2πα3 ; e−i2πα4Þ; ð38Þ

whose Jordan form is JM0
¼ JM∞

¼ I4. From the Jordan
form we can infer that the spectral type of the equation at
z ¼ 1 is (3,1) (see [43]). The spectral type of the equation is
thus [(1111),(31),(1111)]: this spectral type is classified as
“rigid.” Without entering into mathematical details, an
equation is called rigid if the local monodromy class of its
solutions uniquely determines also the “global”monodromy
class. Another way of expressing the same concept is that the
equation only depends on its “local data” (i.e., the character-
istic exponents) and there are no “accessory parameters.”We
can also calculate the so-called index of rigidity [43]

ι ¼
Xp
j¼0

dimZðMjÞ − ðp − 1Þn2; ð39Þ

where ZðMjÞ is the centralizer of the matrix Mj (i.e., the
dimension of the vector space of matrices that commutewith
Mj) andpþ 1 is the number of distinct singular points of the
equation. A known result says that a Fuchsian system is rigid
if and only if ι ¼ 2. In our case, a simple computation leads to
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ZðM0Þ þ ZðM1Þ þ ZðM∞Þ − ð4Þ2 ¼ 4þ 10þ 4 − 16

¼ 2: ð40Þ

Rigid equations have thus a simple structure and there are
many results available for their characterization and sol-
ution. The rigidity of the equation allows one, in principle, to
find integral representations of the solutions and write exact
expressions of connection coefficients for the local solutions
at the different singular points: for the physical problem of
the scattering. Another consequence of rigidity is that the
local monodromy classes uniquely determine the global
monodromy: this is interesting for physics, since the action
of the global monodromy can be interpreted as the result of
the scattering of awave, so the scattering coefficientsmay be
derived from the monodromy matrices [47,48].

B. Gauge transformation and Riemann scheme

We start again from Eq. (13) and we perform a so-called
gauge transformation in order to put to zero as one of the
characteristic exponents. We look for a solution of the form

fðzÞ ≔ zi
k̃1
2β̃ðz − 1ÞuðzÞ; ð41Þ

where k̃1 satisfies

DR0ðk̃1Þ ¼ 0:

The exponent of (z − 1) was chosen to lower the order of
the singularities at z ¼ 1. The function uðzÞ now satisfies

uðzÞ
h
γ2
�
G2ðk̃1 þVΩÞ2 − ðk̃1V þΩÞ2

�
γ2ðk̃1V þΩÞ2 þΛþM2

��

þ γ2z
�
−G2ðk̃1 þVΩ− iÞ2 þM2ðΩþ ðk̃1 − iÞVÞ2 þ γ2ðΩþ ðk̃1 − iÞVÞ4

�i

þ u0ðzÞ
h
γ2z

�
Vð2ik1V þV þ 2iΩÞð−iγ2ðð1þ iÞk1V − iV þ ð1þ iÞΩÞðð1þ iÞk1V þV þ ð1þ iÞΩÞ þLþM2Þ

− iG2ð2k1 þ 2VΩ− iÞ
�

þ γ2z2
�
−iVð2Ωþ ð2k1 − 3iÞVÞðM2 þ γ2ðð−5þ 2k1ðk1 − 3iÞÞV2 þ 2ð2k1 − 3iÞVΩþ 2Ω2ÞÞ2iG2k1 þ 2iG2VΩþ 3G2

�i

þ u00ðzÞ
h
γ2z2

�
−G2 þ 6k̃21V

4γ2 þ 12k̃1V3Ωγ2 − 12ik̃1V4γ2 þΛV2 þM2V2 þ 6V2Ω2γ2 − 12iV3Ωγ2 − 7V4γ2
�

þ γ2z3
�
G2 − 6k̃21V

4γ2 − 12ðk̃1 − 2iÞV3Ωγ2 þ 24ik̃1V4γ2 −M2V2 − 6V2Ω2γ2 þ 25V4γ2
�i

þ uð3ÞðzÞ
h
γ2z4

�
4ik̃1V4γ2 þ 4iV3Ωγ2 þ 10V4γ2

�
þ γ2z3

�
−4ik̃1V4γ2 − 4iV3Ωγ2 − 6V4γ2

�i

þ uð4ÞðzÞz4ðz− 1ÞV4γ4 ¼ 0: ð42Þ

The last equation can be written in a more convenient form using (24) and (26),

uðzÞ½−DR0ðk̃1Þ þ zDRðk̃1 − iÞ� þ u0ðzÞ
h
zðDR0ðk̃1Þ − DR0ðk̃1 − iÞÞ − z2ðDRðk̃1 − iÞ − DRðk̃1 − 2iÞÞ

i

þ u00ðzÞ
�
1

2
z3ðDRðk̃1 − iÞ − 2DRðk̃1 − 2iÞ þ DRðk̃1 − 3iÞÞ − 1

2
z2ðDR0ðk̃1Þ − 2DR0ðk̃1 − iÞ þ DR0ðk̃1 − 2iÞÞ

�

þ uð3ÞðzÞ
�
1

6
z3ðDR0ðk̃1Þ − 3DR0ðk̃1 − iÞ þ 3DR0ðk̃1 − 2iÞ − DR0ðk̃1 − 3iÞÞ

−
1

6
z4ðDRðk̃1 − iÞ − 3DRðk̃1 − 2iÞ þ 3DRðk̃1 − 3iÞ − DRðk̃1 − 4iÞÞ

�

þ uð4ÞðzÞ
�
1

24
z5ðDRðk̃1 − iÞ − 4DRðk̃1 − 2iÞ þ 6DRðk̃1 − 3iÞ − 4DRðk̃1 − 4iÞ þ DRðk̃1 − 5iÞÞ

−
1

24
z4ðDR0ðk̃1Þ − 4DR0ðk̃1 − iÞ þ 6DR0ðk̃1 − 2iÞ − 4DR0ðk̃1 − 3iÞ þ DR0ðk̃1 − 4iÞÞ

�
¼ 0; ð43Þ

where DR0ðk̃jÞ ¼ 0 and DRðkjÞ ¼ 0.
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It is easy to verify, by studying the local solutions as in
Sec. III A, that the characteristic exponents of Eq. (43) are

2
666666664

z ¼ 0 z ¼ 1 z ¼ ∞
0 0 1 − i

2β̃
ðk1 − k̃1Þ

i
2β̃
ðk̃2 − k̃1Þ 1 1 − i

2β̃
ðk2 − k̃1Þ

i
2β̃
ðk̃3 − k̃1Þ 2 1 − i

2β̃
ðk3 − k̃1Þ

i
2β̃
ðk̃4 − k̃1Þ −1 1 − i

2β̃
ðk4 − k̃1Þ

3
777777775
: ð44Þ

Equation (44) is the so-called Riemann scheme of the
equation: the Riemann P scheme is usually written as

P

8>>>>>><
>>>>>>:

w0 w00 w000

a1 b1 c1
a2 b2 c2
a3 b3 c3
a4 b4 c4

; z

9>>>>>>=
>>>>>>;

ð45Þ

and indicates independently the equations and the solu-
tions. By defining

αi ≔ 1 −
i

2β̃
ðki − k̃1Þ; i ¼ 1; 2; 3; 4; ð46Þ

βj ≔ 1 −
i

2β̃
ðk̃jþ1 − k̃1Þ; j ¼ 1; 2; 3; ð47Þ

we can write Eq. (44) as

2
6666664

z ¼ 0 z ¼ 1 z ¼ ∞
0 0 α1

1 − β1 1 α2

1 − β2 2 α3

1 − β3 −β4 α4

3
7777775
; ð48Þ

which corresponds to the Riemann scheme of the hyper-
geometric function

4F3ðα1; α2; α3; α4; β1; β2; β3; zÞ

in the standard form [49]. The exponent β4 in the hyper-
geometric function is defined by

P
4
i¼0 αi ¼

P
4
i¼0 βi and is

indeed equal to 1. Therefore, the spectral type and the
Riemann scheme of our fourth-order equation coincide
with those of the hypergeometric function 4F3. Since the
system is rigid, Eq. (42) has to be equivalent to the
hypergeometric equation 4E3 [50], and 4F3 has to be a
solution, as we are now going to show.

IV. THE EXACT SOLUTION: HYPERGEOMETRIC

4F3, STOKES PHENOMENON, AND CONNECTION
FORMULAS

We look for a locally holomorphic solution of Eq. (43)
around z ¼ 0,

uðzÞ ¼ 1þ c1zþ c2z2 þ � � � : ð49Þ

We are going to prove the following proposition that gives
the explicit expression of the coefficients cn:
Proposition 1. Given any two fourth-order polynomials

DRðkÞ and DR0ðkÞ, let k̃1 be one of the roots of DR0. Let
uðzÞ be a meromorphic function which solves Eq. (43) and
suppose that uðzÞ is locally holomorphic around z ¼ 0.
Then, the general term of the series expansion (49) satisfies

cn ¼
Q

n
r¼1DRðk̃1 − riÞQ
n
s¼1DR0ðk̃1 − siÞ : ð50Þ

Proof. See Appendix B. ▪
Using the definitions (46) and (47) and writing the
dispersion relations in terms of their roots as in (A1)
and (A2), we easily find

cn ¼
Q

4
i¼1 αiðαi þ 1Þ…ðαi þ nÞ

n!
Q

3
j¼1 βjðβj þ 1Þ…ðβj þ nÞ : ð51Þ

This is precisely the general term of the hypergeometric
function 4F3. So we can say that

uðzÞ ¼ 4F3ðα1; α2; α3; α4; β1; β2; β3; zÞ ð52Þ

is an exact solution of (42), and

fðzÞ ¼ zi
k̃1
2β̃ðz − 1Þ4F3ðα1; α2; α3; α4; β1; β2; β3; zÞ ð53Þ

is a solution of (13). Solving the scattering problems now
just amounts to writing the connection coefficients of the
hypergeometric function between z ¼ 0 and z ¼ ∞: for
example, the connection coefficient k̃1 → k1 is

Ck̃1→k1
¼Γðβ1ÞΓðβ2ÞΓðβ3ÞΓðα2−α1ÞΓðα3−α1ÞΓðα4−α1Þ
Γðα2ÞΓðα3ÞΓðα4ÞΓðβ1−α1ÞΓðβ2−α1ÞΓðβ3−α1Þ

:

ð54Þ

Notice that in the generic case (excluding resonances) a
basis of solution is automatically obtained replacing k̃1 (and
k1) with any of the k̃j (and kj). Indeed, the equation is
invariant under permutation of the j’s. To be more explicit,
we have the following basis of solutions:

ðf1ðzÞ; f2ðzÞ; f3ðzÞ; f4ðzÞÞ; ð55Þ
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where fjðzÞ, with j > 1, are just obtained from (53) by
replacing k̃1 (and k1) with any of the k̃j (and kj). As a
consequence, we also obtain the general solution of our
equation of motion as follows:

FðzÞ ¼
X4
i¼1

DifiðzÞ; ð56Þ

where the constants Di have to be fixed according to the
scattering process one is considering. It is remarkable that
the basis is already diagonal in the k̃i, in the sense that the
physical modes on the left side (corresponding to x → −∞,
see also the following subsection) are asymptotically
represented by just the element of the basis with index
j: fjðxÞ ∝ eik̃jx as x → −∞.
Some physical considerations are mandatory. The afore-

mentioned connection coefficients are responsible for the
phenomenon of mode conversion in the scattering process,
i.e., they show that, from passing from the left, i.e., at
x ¼ −∞, with input mode k̃1, to the right, i.e., x ¼ ∞, with
potential output modes kj, j ¼ 1, 2, 3, 4, the S matrix is not,
in general, diagonal, as output modes with j ≠ 1 are
allowed. In making this possible, a fundamental role is
played by the Stokes phenomenon, which is discussed in
the following subsection. The following point is to be
stressed: the Stokes phenomenon is present when at least an
irregular singularity appears (see, e.g., [43]). In the present
case, the equation with z as independent variable displays
three Fuchsian singularities, as seen, i.e., three regular
singular points z ¼ 0; z ¼ 1; z ¼ ∞. Still, by coming back
to the original variable x, which is the relevant one for the
physical problem, one finds that, actually, x ¼ �∞ on the
real axis corresponds to irregular singularities, as essential
singularities in tanhðβxÞ and in cosh−2ðβxÞ appear in the
coefficients of the equation itself. This fact is at the root of
the Stokes phenomenon in the physical problem at hand.

A. Integral representation and Stokes phenomenon

By using the integral representation of the hypergeo-
metric function and changing variable back to x, we can
write the selected solution of the EOM as

fðxÞ¼ Γðβ1ÞΓðβ2ÞΓðβ3Þ
2πiΓðα1ÞΓðα2ÞΓðα3ÞΓðα4Þ

eik̃1xð1þe2β̃xÞ

×
Z

γþi∞

γ−i∞
ds

ΓðsÞΓðα1−sÞΓðα2−sÞΓðα3−sÞΓðα4−sÞ
Γðβ1−sÞΓðβ2−sÞΓðβ3−sÞ

×ð−1Þ−se−2β̃xs; ð57Þ

with 0 < γ < 1. The integrand function has simple poles in
the s plane that are disposed on five lines parallel to the real
axis. The poles are found at

s ¼ s̃n ≔ −n;

s ¼ s1;n ≔ α1 þ n;

s ¼ s2;n ≔ α2 þ n;

s ¼ s3;n ≔ α3 þ n;

s ¼ s4;n ≔ α4 þ n;

with n ¼ 0; 1; 2; 3…. The poles are represented in Fig. 2,
where the relative position of the poles is fixed by the
following identification of the modes (see Fig. 1):

“1”¼H; “2”¼ B; “3”¼ P; “4”¼ N: ð58Þ

We can analytically continue the function f in the
complex x plane in order to study the behavior for
x → ∞eiθ for different angles θ. By writing

x ¼ jxjeiθ; s ¼ jsjeiϕ;

we see that the integral is convergent only in the half-plane
defined by

cos θ cosϕ − sin θ sinϕ ≥ 0;

which defines a half-plane delimited by the line
tanϕ ¼ cot θ. Namely, as the angle θ varies, the corre-
sponding half-plane in the variable s is defined by
ϕ∈ ½θ − π

2
; θ þ π

2
�.

Starting from θ ¼ π, which represents the solution at
x < 0 (inside the horizon), the integral is defined for
ϕ∈ ½π

2
; 3
2
π�: in this sector, the integral reduces to the sum

of the residues at s ¼ s̃n. The sum of the residues gives the
series

FIG. 2. The poles of the integrand function of Eq. (57). The
gray line represents the path of integration. This figure holds true
just when kj and k̃j are real for all j ¼ 1, 2, 3, 4, i.e., in the
subcritical case.
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fðx < 0Þ ¼ eik̃1xð1þ e2β̃xÞ
×
�
1þ α1α2α3α4

β1β2β3
e2β̃x þ

X
n≥2

Oððe2β̃xÞnÞ
�

∼x→−∞eik̃1x: ð59Þ

As we move θ, the asymptotic expansion (59) remains valid
until we encounter new poles in the corresponding half-
plane in s: this happens, as one can see from Fig. 3, when
ϕ ¼ argα3 or ϕ ¼ argα4. As we pass those lines, a new
term appears in the asymptotic expansion, corresponding to
the residue at the pole s3;0 ¼ α3 or s4;0 ¼ α4. The appear-
ance of new terms in the asymptotic expansion is known as
the Stokes phenomenon: by the previous analysis, we thus
identified a first Stokes sector, given by

θ∈
�
π

2
þ argα4;

3

2
π þ arg α3

�
;

and the boundaries of this sector are two Stokes lines. As
we move θ past the Stokes line θ ¼ 3

2
π þ arg α3, we include

a new pole, s3;0, in the contour: the asymptotic expansion
becomes

fðxÞ ¼ eik̃1xð1þOðe−2β̃jxjÞÞ þ Ck̃1→k3
eik3x;

so the new term introduces mode mixing. This expansion is
true until we reach the next pole.
Now, we note that the residues at the poles sj;n are

Ress¼sj;n ∼ eðik̃1þ2β̃−2β̃sj;nÞx ¼ eikjxe−nx:

Therefore, the contributions of the poles with n ≥ 1 are
negligible as long as we are interested in the asymptotic
expansion (jxj → ∞). From this consideration we under-
stand that the only poles that are related to the Stokes
phenomenon are s ¼ sj;0. The next Stokes lines are thus
met at θ ¼ 3

2
π þ arg α1 or θ ¼ π

2
þ arg α2.

It is now easy to figure out, by continuing the argument
exposed above, all the Stokes lines of the function fðxÞ,
which, ordered by increasing θ, correspond to

θ1 ¼
π

2
þ argα3; θ2 ¼

π

2
þ argα1; θ3 ¼

π

2
;

θ4 ¼
π

2
þ argα2; θ5 ¼

π

2
þ argα4; θ6 ¼

3

2
πþ argα3;

θ7 ¼
3

2
πþ argα1; θ8 ¼

3

2
π;

θ9 ¼
3

2
πþ argα2; θ10 ¼

3

2
πþ argα4:

The value of argαj depends on the values of the
momenta kj and k̃1. The momenta kj, being unperturbed
by the background, are always real. On the other hand, as
we will discuss also in Sec. IV C, k̃1 is real in the subcritical
regime and complex in the transcritical regime: in that case
we have Imk̃1 < 0. We can thus evaluate arg αj as

argαj ¼
8<
:

arctan
�
− kj−k̃1

2β̃

�
; subcritical regime;

arctan
�
− kj−Rek̃1

2β̃−Imk̃1

�
; transcritical regime:

B. Subcritical scattering

The solution (53), for z → 0 (which corresponds to the
left asymptotic region x → −∞) is

f ∼ zi
k̃1
2β̃ ¼ eik̃1x: ð60Þ

At right infinity x → þ∞ (z → ∞) it splits into a sum of
plane waves

f ∼
X4
j¼1

Cjz
i
ikj
2β̃ ¼

X4
j¼1

Cjeikjx; ð61Þ

where the connection coefficient

Cj ≔ Ck̃1→kj

can be obtained from (54) by switching α1 ↔ αj. If we put

k̃1 ¼ k̃H;

the function fðxÞ represents the scattering of the ingoing
modes H from left infinity and P, N, and B from right

FIG. 3. Three contours of integration representing three values
of θ. Full line, θ ¼ π; dashed line, θ ¼ 3

2
π þ arg α3; dash-dotted

line, θ ¼ π
2
þ arg α4. The latest two are Stokes lines, because the

corresponding contour in the s plane (defined by the ϕ angle)
includes a new pole, giving rise to an additional term in the
asymptotic expansion. Also this figure holds true just for the
subcritical case.
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infinity, which produces an outgoing H mode at right
infinity. This is the process that, since Hawking’s seminal
work, is usually considered in black hole physics to deduce
the spontaneous particle creation. Following backward the
outgoing H mode, we find that it originates from a mixture
of modes: in particular, the coefficient CN represents the
mixing with the negative-norm N mode. As it is shown
in [39], the expected number of spontaneously created
Hawking particles is

jNj ¼
				 jCN j2vN∂ωDRðω; kÞjkN
jCHj2vH∂ωDRðω; kÞjkH

				: ð62Þ

Notice that the function DRðkÞ defined in (24) is slightly
different from the function DRðω; kÞ that appears in (62),

which derives from the normalization of the quantum
theory: they differ by a global factor ðωþ VkÞ2.
The momenta k̃jðωÞ (which correspond to the normal

modes at x → −∞) depend on the background amplitude λ.
For large enough values of λ, themomenta k̃HðωÞ and k̃PðωÞ
can become imaginary, as can be seen from Figs. 4(a)
and 4(b). In the current literature, the distinction between the
subcritical and transcritical regimes is governed by the
presence or absence of a horizon, corresponding to a turning
point in the differential equation of motion: the subcritical
case is when no such turning point appears. On the other
hand, the two regimes can be characterized also in a different
way: one identifies the transcritical case by the fact that, in
the asymptotic dispersion relation, two roots which are real
in the unperturbed asymptotic region become complex
conjugates in the perturbed region. This is exactly the
criterion we adopt in our approach to the problem; see also
the discussion in Sec. V E.
We start considering the case where all k̃j are real (i.e.,

subcritical regime). In this case, the square module of (54)
can be written explicitly,

jC1j2¼
ðk̃1− k̃2Þðk̃1− k̃3Þðk̃1− k̃4Þðk̃2−k1Þðk1− k̃3Þðk1− k̃4Þ
ðk̃1−k2Þðk̃1−k3Þðk̃1−k4Þðk1−k2Þðk1−k3Þðk1−k4Þ

×
sinhðπγðk̃1−k2Þ

2β Þsinhðπγðk̃1−k3Þ
2β Þsinhðπγðk̃1−k4Þ

2β Þ
sinhðπγðk̃1−k̃2Þ

2β Þsinhðπγðk̃1−k̃3Þ
2β Þsinhðπγðk̃1−k̃4Þ

2β Þ

×
sinhðπγðk̃2−k1Þ

2β Þsinhðπγðk̃3−k1Þ
2β Þsinhðπγðk̃4−k1Þ

2β Þ
sinhðπγðk1−k2Þ

2β Þsinhðπγðk1−k3Þ
2β Þsinhðπðk1−k4ÞÞ

; ð63Þ

and similarly jCjj2 are obtained by rotations of the indices.
We want to compare these results with the perturbative
expansion we made in [39]. We start by writing explicitly

jNj ¼ ðk̃H − kNÞðkN − k̃PÞðkN − k̃NÞðkN − k̃BÞðωþ kHVÞ2
ðk̃H − kHÞðkH − k̃PÞðkH − k̃NÞðkH − k̃BÞðωþ kNVÞ2

×
sinhðπγðk̃H−kHÞ

2β Þ sinhðπγðk̃P−kNÞ
2β Þ sinhðπγðk̃N−kNÞ

2β Þ
sinhðπγðk̃H−kNÞ

2β Þ sinhðπγðk̃P−kHÞ
2β Þ sinhðπγðk̃N−kHÞ

2β Þ

×
sinhðπγðk̃B−kNÞ

2β Þ sinhðπγðkH−kPÞ
2β Þ sinhðπγðkH−kBÞ

2β Þ
sinhðπγðk̃B−kHÞ

2β Þ sinhðπγðkP−kNÞ
2β Þ sinhðπγðkN−kBÞ

2β Þ
; ð64Þ

where we have used the expression for the flux factors

viðωÞ∂ωDRjki ¼ −
γ2V4

ω2
labjki

Y
j≠i

ðkiðωÞ − kjðωÞÞ; ð65Þ

which was deduced in the Appendix of [39]. We use the
low-frequency expressions of the momenta kjðωÞ, written
in (5)–(8). Notice that the expressions of k̃jðωÞ are simply
obtained by the shift μ2 ↦ μ2 þ λ.

FIG. 4. (a) The dispersion relation (26) in the perturbed region
(x → −∞) for λ < λcrit. The modes 0 < ω < ωMIN do not
experience an event horizon (subcritical regime). (b) The
dispersion relation (26) for λ > λcrit. In this case, for any ω,
the modes H and P become imaginary as they experience an
event horizon: this is referred to as transcritical regime.
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We stress that, up to this point, our results are exact, in
the sense that no approximation has been made. Still, in
order to provide analytical expressions to the moments
kj; k̃j, we are forced to introduce some approximations,
indeed kj; k̃j are roots of a fourth-degree equation: one
might provide explicit expressions for the corresponding
roots, but at the price of writing very long and by no means
perspicuous expressions. As a consequence, for these roots
we use approximate expressions for low ω, as discussed
in the previous sections. With the help of Wolfram’s
Mathematica, we compute the leading order of jNj both
in λ and in ω: we checked that the two limits commute, so
the order of the two expansions makes no difference. We
obtain

jNj ¼

0
B@
π2λ2ωgðgþ μVÞsinh2

�
π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2−μ2V2

p
2βV2

�

16β2γμðg − μVÞðg2 − μ2V2Þ3=2 þOðω2Þ

1
CCA

þOðλ3Þ: ð66Þ

We notice that the qualitative behavior is the same as
in [39], and in particular we have N ∼ ω: this behavior
confirms what was found for the subcritical case also
in [20]. This is a strong confirmation that such a behavior
should be expected in subcritical systems, and it seems not
to depend on particular approximations nor on the char-
acteristics of the background function.
An even more interesting comparison is the estimation of

the “effective temperature” that the authors found in [39]
for the subcritical case. The ratio jPj

jNj, in the case k̃j ∈R as
before, becomes

jPj
jNj ¼

ðk̃H−kPÞðkP− k̃PÞðkP− k̃NÞðkP− k̃BÞðkNVþΩÞ2
ðk̃H −kNÞðk̃P−kNÞðk̃N −kNÞðk̃B−kNÞðkPVþΩÞ2

×
sinhðπγðk̃H−kNÞ

2β Þsinhðπγðk̃N−kPÞ
2β Þsinhðπγðk̃P−kPÞ

2β Þ
sinhðπγðk̃H−kPÞ

2β Þsinhðπγðk̃P−kNÞ
2β Þsinhðπγðk̃N−kNÞ

2β Þ

×
sinhðπγðk̃B−kPÞ

2β ÞsinhðπγðkH−kNÞ
2β ÞsinhðπγðkN−kBÞ

2β Þ
sinhðπγðk̃B−kNÞ

2β ÞsinhðπγðkH−kPÞ
2β ÞsinhðπγðkP−kBÞ

2β Þ
: ð67Þ

To estimate the temperature we compute the leading order

in ω of logðjPjjNjÞ. We use the low-ω expressions of the modes

kj that we have written in Eqs. (5)–(8). The momenta k̃j can
be obtained by the switch μ2 → μ2 þ λ: they can be also
written as follows:

k̃N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ λ

p
− gV

g −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ λ

p
V
ωþOðω3Þ; ð68Þ

k̃B ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ λ

p
þ gV

gþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ λ

p
V
ωþOðω3Þ; ð69Þ

k̃P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λcrit − λ

p
γV

−
�
1

V
þ g2

γ2V3ðλcrit − λÞ
�
ω

−
g2ð2g2 þ ðμ2 þ λÞV2Þ
2γV5ðλcrit − λÞ5=2 ω2 þOðω3Þ; ð70Þ

k̃H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λcrit − λ

p
γV

−
�
1

V
þ g2

γ2V3ðλcrit − λÞ
�
ω

þ g2ð2g2 þ ðμ2 þ λÞV2Þ
2γV5ðλcrit − λÞ5=2 ω2 þOðω3Þ; ð71Þ

where

λcrit ¼
g2 − μ2V2

V2
: ð72Þ

These expressions make clear that the subcritical regime
(i.e., k̃j ∈R) corresponds to λ < λcrit.
The leading order of logðjPjjNjÞ is

log

�jPj
jNj

�
¼ πgω

βγVðg2 − μ2V2Þ3=2ðg2 − V2ðλþ μ2ÞÞ
�
gλV2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 − μ2V2

q

×

�
coth

�
πð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 − μ2V2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 − V2ðλþ μ2Þ

p
Þ

2βV2

�
þ coth

�
πð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 − V2ðλþ μ2Þ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 − μ2V2

p
Þ

2βV2

��

þ 2
�
g2V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλþ μ2Þðg2 − μ2V2Þ

q
− 2gV2ðλþ μ2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 − μ2V2

q �

− 2
�
μ2V3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλþ μ2Þðg2 − μ2V2Þ

q
þ 2g3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 − μ2V2

q �
coth

�
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 − μ2V2

p
2βV2

��
þOðω2Þ: ð73Þ
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In order to compare it to the perturbative result, we take
the limit λ → 0,

2gω
�
πð2gþ μVÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 − μ2V2

p
coth

�
π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2−μ2V2

p
2βV2

�
þ 2βgV2

�
βγVðg2 − μ2V2Þ3=2 :

ð74Þ

For β ∼ 0, which amounts physically to considering small
values for the derivative of the dielectric pulse, we find

log

�jPj
jNj

�
≈ βpertω; ð75Þ

βpert ¼
2πgð2gþ μVÞ
βγVðg2 − μ2V2Þ ¼

πγ

β
lim
ω→0

2kH − kP − kN
ω

: ð76Þ

These results confirm the validity of the prediction made
in [39] and that the value of Tpert is not strongly dependent
on the peculiarities of the background. We notice, however,
that the expression (73) allows one to study how the
temperature depends on λ: in particular, for λ ¼ λcrit, we
have

Tðλ ¼ λcritÞ ¼
ω

logðP=NÞ
				
λ¼λcrit

¼ 0: ð77Þ

The vanishing of the temperature at λ ¼ λcrit is very
puzzling, in the sense that thermal particle creation may
be found both in the subcritical and in the transcritical case,
whereas a discontinuous behavior between the two regimes
is just suggested by such a result when λ ¼ λcrit. It has also
been stressed that, in the above scheme of approximation
for low ω, for λ ¼ λcrit one finds a degeneracy, at least at the
leading order, of k̃P with k̃N , and a singular behavior of the
subleading ones. This kind of phenomenon will be inves-
tigated in future analysis.

C. Transcritical scattering

We now consider the solution in the transcritical case,
that is λ > λcrit. In this case, the k̃H and k̃P become
complex, as it is shown in Fig. 4(b). This fact is the direct
consequence of the presence of an event horizon: these
modes cannot propagate to the left infinity. The low-ω
expressions are found from Eqs. (68)–(71) for λ > λcrit:
notice, however, that the modes have now the wrong label,
since the mode that is labeled N becomes complex, while
the H mode is real, in contradiction with the visual
interpretation of Fig. 4(b). Thus, for the transcritical
regime, we need to rename the modes in the following way:

k̃N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ λ

p
− gV

g −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ λ

p
V
ωþOðω3Þ; ð78Þ

k̃B ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ λ

p
þ gV

gþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ λ

p
V
ωþOðω3Þ; ð79Þ

k̃P ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ − λcrit

p
γV

−
�
1

V
−

g2

γ2V3ðλ − λcritÞ
�
ω

þ i
g2ð2g2 þ ðμ2 þ λÞV2Þ
2γV5ðλ − λcritÞ5=2

ω2 þOðω3Þ; ð80Þ

k̃H ¼ −i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ − λcrit

p
γV

−
�
1

V
−

g2

γ2V3ðλ − λcritÞ
�
ω

− i
g2ð2g2 þ ðμ2 þ λÞV2Þ
2γV5ðλ − λcritÞ5=2

ω2 þOðω3Þ: ð81Þ

Notice that it holds

ðk̃HÞ� ¼ k̃P: ð82Þ

This is not true just in the low-ω limit, but for all ω. Indeed,
the modes k̃ are the roots of a fourth-order polynomial with
real coefficients: since the roots k̃N and k̃B are always real,
the other two roots must be either real or complex
conjugates. Another very relevant observation is that, being
the basis (55) asymptotically diagonal in the k̃i, as
discussed in the previous sections, we have also the
possibility to get rid of the unwanted complex and
exponentially growing mode, say k̃4 (about the growing
mode cf., e.g., the discussion in [9]), simply by imposing
that the corresponding coefficient D4 is zero. Actually, in
our following discussion, we put only D1 ≠ 0. Note also
that the connection coefficients, being connecting k̃1 to ki,
i ¼ 1, 2, 3, 4, cannot resume the aforementioned grow-
ing mode.
Thanks to (82), we can simplify the expression of jPj

jNj:
indeed, when computing CPC�

P
CNC�

N
, one finds a factor

Γ
�
1þ iðk̃H−kPÞγ

2β

�
Γ
�
− iðk̃P−kNÞγ

2β

�

Γ
�
1þ iðk̃H−kNÞγ

2β

�
Γ
�
− iðk̃P−kPÞγ

2β

� Γ
�
1þ iðkP−k̃�HÞγ

2β

�
Γ
�
iðk̃�P−kNÞγ

2β

�

Γ
�
1þ iðkN−ik̃�HÞγ

2β

�
Γ
�
iγðk̃�P−kPÞ

2β

�;

which, using (82) and recalling Γð1þ zÞ=ΓðzÞ ¼ z,
reduces to

ðkP − k̃PÞðk̃�P − kPÞ
ðk̃P − kNÞðk̃�P − kNÞ

¼ jkP − k̃Pj2
jkN − k̃Pj2

:

The final exact expression is
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jPj
jNj ¼

ðkP − k̃NÞðkP − k̃BÞjkP − k̃Pj2ðkNV þ ωÞ2
ðkN − k̃NÞðkN − k̃BÞjkN − k̃Pj2ðkPV þ ωÞ2

sinh
�
πγðk̃N−kPÞ

2β

�
sinh

�
πγðk̃B−kPÞ

2β

�
sinh

�
πγðkH−kNÞ

2β

�
sinh

�
πγðkN−kBÞ

2β

�

sinh
�
πγðk̃N−kNÞ

2β

�
sinh

�
πγðk̃B−kNÞ

2β

�
sinh

�
πγðkH−kPÞ

2β

�
sinh

�
πγðkP−kBÞ

2β

� : ð83Þ

As we did in the previous section, we compute, to the
leading order in ω,

log

�jPj
jNj

�
¼

2πωg2 coth

�
π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2−μ2V2

p
2βV2

�

βγVðg2 − μ2V2Þð1 − λcrit=λÞ
þOðω2Þ: ð84Þ

We can now write the Hawking temperature

TðλÞ¼ ω

log
�
jPj
jNj
�¼ βγVðg2−μ2V2Þ

2πg2coth
�
π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2−μ2V2

p
2βγV2

�
�
1−

λcrit
λ

�
: ð85Þ

This result confirms what was found for the subcritical
case, that is

TðλcritÞ ¼ 0:

More interestingly, in the far critical case λ ≫ λcrit, if we
consider β ∼ 0 as previously done, we find

TH ¼ βγVðg2 − μ2V2Þ
2πg2

; ð86Þ

which coincides with the far critical limit that was obtained
in [39] using the Orr-Sommerfeld approach.
In Fig. 5(b) we plot the temperature in units of TH,

namely,

TðλÞ
TH

¼ ω

TH log
�
jPj
jNj
� ; ð87Þ

for various values of λ, both in the subcritical and tran-
scritical cases. As in the perturbative approach of the
previous section, for the plot we choose g ¼ 1, μ ¼ 1.2;
we then choose a near critical pulse velocity V ¼ 0.8 and a
low value β ¼ 0.02. We clearly observe what was predicted
in [39] using a perturbative approach: the effective temper-
ature computed for λ ≪ λcrit (subcritical regime) is

Tðλ ∼ 0Þ ≈ TH

3
: ð88Þ

Starting from this value, the temperature decreases for
increasing λ until it reaches zero at λ ¼ λcrit. For λ > λcrit
the temperature starts growing again, and for λ ≫ λcrit it
stabilizes at the value TH.
So far, the exact solution we provided has confirmed the

predictions that were made using different approximations

in different regimes. In the future, an even deeper study of
this solution may allow one to describe precisely the
transition between the subcritical and the transcritical
regime, the onset of thermality and formation of the event
horizon.

V. THE ORIGINAL ϕψ MODEL, EXACT
SOLUTIONS, AND THERMALITY

In this section, we provide results concerning a reduction
of the so-called Hopfield model, which represents an
effective description of the interaction between the electro-
magnetic field and a dielectric medium. In particular, atoms
and molecules of the dielectric are replaced by a meso-
scopic polarization field, still providing an efficient physi-
cal description. The electromagnetic Lagrangian for the full
Hopfield model is quite involved and has been discussed,
by means of different theoretical tools, in [19,51]. A
simplified model, introduced in [16], can be related to
the two-dimensional reduction of the Hopfield model
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FIG. 5. The temperature TðλÞ in units of TH, as defined in (87),
for different values of λ, in (a) subcritical regime and (b) tran-
scritical regime. The plots are made for a near critical pulse
velocity and a low value of the parameter β. Starting from
Tðλ ∼ 0Þ ≈ TH=3, the temperature decreases until reaching zero
for λ ¼ λcrit; for λ > 0 (transcritical) the temperature increases
again, reaching TH for λ ≫ λcrit.
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adopted in [52] and is such that the electromagnetic field
and the polarization field are simulated by a pair of scalar
fields, φ and ψ , respectively, in the so-called φψ model.
Despite its simplification, it is still set up in such a way that
we get exactly the same dispersion relation and, moreover,
we can simulate the same coupling as in the full case. Its
Lagrangian is

Lφψ ¼ 1

2
ð∂μφÞð∂μφÞ þ

1

2χω2
0

½ðvα∂αψÞ2 − ω2
0ψ

2�

−
g
c
ðvα∂αψÞφþ λ

4!
ψ4; ð89Þ

where χ plays the role of the dielectric susceptibility, vμ is
the usual four-velocity vector of the dielectric, ω0 is the
proper frequency of the medium, and g is the coupling
constant between the fields. The latter constant is hence-
forth put equal to 1, as its original motivation (see [16]) can
be relaxed without problems in a more advanced discussion
(cf. also [36]). As shown in [38], we may introduce the
above fourth-order nonlinear term in the polarization field
ψ in the Lagrangian. Herein, we assume λ > 0.
By extending our analysis, and on the grounds of the

previous sections, we adopt a phenomenological model
where we can leave room for a spacetime dependence of the
microscopic parameters χ;ω0, in such a way that χω2

0 is a
constant. The equations of motion are

□φþ 1

c
ðvα∂αψÞ ¼ 0; ð90Þ

1

χω2
0

ðvα∂αÞ2ψ þ 1

χ
ψ −

1

c
vα∂αφ ¼ 0: ð91Þ

In particular, we define

ϵ2 ≔
1

χω2
0

; ð92Þ

which corresponds to the parameter appearing in the Orr-
Sommerfeld-like equation (master equation, cf. [36]). We
can separate the above system, obtaining equations involv-
ing only one of the fields φ;ψ . We can also separate the
equations for φ;ψ, and, in order to maintain the same line

of reasoning as in the previous sections, we focus on ψ ,
obtaining

ϵ2□ðvα∂αÞ2ψ þ□
1

χ
ψ þ 1

c2
ðvα∂αÞ2ψ ¼ 0: ð93Þ

Let us also choose, as usual, the comoving frame; if we put
ψðt; xÞ ¼ e−iωthðxÞ, we obtain

ϵ2hð4ÞðxÞþ2iϵ2
ω

v
hð3ÞðxÞþ

�
1−γ2 v

2

c2 χðxÞ
γ2v2χðxÞ −ϵ2

w2

γ2v2

�
hð2ÞðxÞ

þ
�
−
2iω
c2v

−
2χ0ðxÞ

γ2v2χ2ðxÞþ
2ϵ2iω3

c2v

�
hð1ÞðxÞ

þ
�

ω2

c2γ2v2χðxÞð1þγ2χðxÞÞþ2χ02ðxÞ−χðxÞχ00ðxÞ
γ2v2χ3ðxÞ

−ϵ2
ω4

v2c2

�
hðxÞ¼0; ð94Þ

where χ0ðxÞ; χ00ðxÞ indicate the first and the second deriva-
tive with respect to x. We stress that, with respect to [36],
we do not eliminate the third-order term, as we do not need
to grant an Orr-Sommerfeld form for our equation of
motion, as we are going to compute exact solutions, i.e.,
solutions that do not depend on the smallness of the
parameter ϵ. In the following, we assume the monotone
profile in the comoving frame,

1

χðxÞ ¼
1

χ0
−
1

2
λð1 − tanhðβ̃xÞÞ; ð95Þ

where χ0 is a constant value of the dielectric susceptibility
and we define the parameter β̃ ¼ β

γ as in the previous model.
We discuss some physical consequences of our choice in
Appendix C.

A. A Fuchsian framework for the equation of motion

We consider the following change of variable:
z ¼ −e2β̃x. As a consequence, we obtain

1

χðzÞ ¼
1

χ0
−

λ

1 − z
; ð96Þ

and

16ϵ2β̃4z4hð4ÞðzÞ þ 16ϵ2
ð6β̃vþ iωÞ

v
β̃3z3hð3ÞðzÞ

þ 4

�
−1þ ϵ2ω2

c2
þ 1 − zþ χ0ð−λþ ϵ2γ2ð28β̃2v2 þ 12iβ̃vω − ω2ÞÞð1þ zÞ

χ0γ
2v2ð1 − zÞ

�
β̃2z2hð2ÞðzÞ

þ 4

�
4β̃3ϵ2 þ 4iβ̃2ϵ2ω

v
þ β̃ð−1þ ϵ2ω2Þ

c2
þ iωð−1þ ϵ2ω2Þ

c2v
þ β̃

γ2v2

�
1

χ0
−
λð1þ zÞ
ð1 − zÞ2 − ϵ2γ2ω2

��
β̃zhð1ÞðzÞ

þ
�
−
4β̃2λzðzþ 1Þ
γ2v2ð1 − zÞ3 −

ϵ2ω4

v2c2
þ ω2ð1 − z − χ0λÞ
c2χ0γ2v2ð1 − zÞ þ

ω2

c2v2

�
hðzÞ ¼ 0: ð97Þ
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We start looking for local solutions, along the path
sketched for (13), around z ¼ ∞. By introducing t ¼ 1=z, a
series expansion for the solutions can be provided in the
following form:

fðtÞ ¼ t−iα
X∞
n¼0

cntn: ð98Þ

The characteristic equation for the exponent k ≔ 2β̃α is

DRðkÞ ≔ ðω2 − χ0γ
2ðkvþ ωÞ2ð−1þ ϵ2ω2Þ

þ c2k2ð−1þ χ0ϵ
2γ2ðkvþ ωÞ2ÞÞ ¼ 0: ð99Þ

As in the previous sections, except possibly for a zero
measure set in the space of available parameters in our
model, we have four distinct roots that, moreover, not differ
from each other by an integer value. As a consequence, the
spectral type is (1111).
At z ¼ 0, we get four independent local solutions of the

form

fðzÞ ¼ ziα̃
X∞
n¼0

cnzn; ð100Þ

where k̃ ≔ 2β̃ α̃ satisfies

DR0ðk̃Þ≔ ðω2−χ0λω
2−χ0γ

2ðk̃vþωÞ2ð−1þ ϵ2ω2Þ
þc2k̃2ð−1þχ0ðλþ ϵ2γ2ðk̃vþωÞ2ÞÞÞ¼ 0: ð101Þ

The spectral type at z ¼ 0 is again (1111), again almost
everywhere in the space of available parameters appearing
in our model.
Also in this case, at z ¼ 1 the so-called resonant

case [43] is verified. Let us define y ≔ z − 1. Then, the
characteristic equation for solutions of the form

fðyÞ ¼ ya
X∞
n¼0

cnyn ð102Þ

has four integer solutions a ¼ 0, 1, 2, 3. This situation,
again, requires a particular study, which we perform by
means of the Frobenius method.
We can show that there exist three independent integer

solutions

u1ðyÞ¼ y3þy4
�
−
3

2
−

λ

48β̃2ϵ2γ2v2
− i

ω

4β̃v

�
þoðy4Þ; ð103Þ

u2ðyÞ¼ y2þy3
�
−2−

λ

24β̃2ϵ2γ2v2
− i

ω

3β̃v

�
þoðy3Þ; ð104Þ

u3ðyÞ ¼ yþ y2
�
−3 −

λ

8β̃2ϵ2γ2v2
− i

ω

2β̃v

�
þ oðy2Þ; ð105Þ

and one logarithmic solution

u0ðyÞ¼ 1þy

�
−6þ λ

4β̃2ϵ2γ2v2
− i

ω

β̃v

�
þoðyÞ

þ logðyÞ
�
R1u1ðyÞþR2u2ðyÞþR3u3ðyÞ

�
; ð106Þ

where

R3 ¼ −
λ

4β̃2ϵ2γ2v2
; ð107Þ

R2 ¼ −
5λ

16β̃2ϵ2γ2v2
; ð108Þ

R1 ¼ −
λð36β̃2c2 þ ω2Þ
288β̃4c2ϵ2γ2v2

: ð109Þ

B. Monodromy and rigidity

The monodromy matrix of the solutions ðu0ðyÞ; u1ðyÞ;
u2ðyÞ; u3ðyÞÞ at z ¼ 1 is easily computed as

M1 ¼

0
BBB@

1 2πiR1 2πiR2 2πiR3

0 1 0 0

0 0 1 0

0 0 0 1

1
CCCA; ð110Þ

whose Jordan form is

JM1
¼

0
BBB@

1 0 0 0

0 1 0 0

0 0 1 1

0 0 0 1

1
CCCA: ð111Þ

The monodromies at z ¼ 0 and z ¼ ∞ are, also in this case,
represented, respectively, by the diagonal matrices

M0 ¼ diagðei2πα̃1 ; ei2πα̃2 ; ei2πα̃3 ; ei2πα̃4Þ; ð112Þ

M∞ ¼ diagðe−i2πα1 ; e−i2πα2 ; e−i2πα3 ; e−i2πα4Þ; ð113Þ

whose Jordan form is JM0
¼ JM∞

¼ I4. As a consequence,
the spectral type of the equation at z ¼ 1 is (3,1), and the
spectral type of the equation is [(1111),(31),(1111)], i.e., it
is rigid as in the case discussed in the previous section.

C. Gauge transformation and Riemann scheme

As in the previous sections for the simplified model, we
can obtain a solution of the form

fðzÞ ≔ zi
k̃1
2β̃ðz − 1ÞuðzÞ; ð114Þ
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where k̃1 satisfies

DR0ðk̃1Þ ¼ 0:

The function uðzÞ now satisfies an equation that is analog to
(42), which we avoid writing explicitly, as it is quite long.
What happens is that one may verify that for the solution
uðzÞ, also in the case of the standard ϕψ model, the same
Eq. (43) holds true, where now the dispersion relations are
the ones in (99) and in (101), respectively. Also the so-
called Riemann scheme of the equation is the same as in
(44). Also in this case, by letting

αi ≔ 1 −
i

2β̃
ðki − k̃1Þ; i ¼ 1; 2; 3; 4; ð115Þ

βj ≔ 1 −
i

2β̃
ðk̃jþ1 − k̃1Þ; j ¼ 1; 2; 3; ð116Þ

we can write Eq. (44) as
2
6666664

z ¼ 0 z ¼ 1 z ¼ ∞
0 0 α1

1 − β1 1 α2

1 − β2 2 α3

1 − β3 −β4 α4

3
7777775
; ð117Þ

which, as discussed in the previous sections, corresponds to
the Riemann scheme of the hypergeometric function

4F3ðα1; α2; α3; α4; β1; β2; β3; zÞ
in the standard form.

D. The Hawking temperature

The scattering coefficients Cj for the Hopfield model
have the same form as the ones of the previous sections,
apart for the different expressions of the momenta kjðωÞ
and k̃jðωÞ. As in the previous section, one is able to deal
with analytical expressions for the momenta only in
suitable limits, and this is the strategy that is adopted also
in the present case.
In the low-ω limit, the right-infinity modes are

kH ¼ χ0γ
2vþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2ð1þ χ0Þ

p
c2 − χ0γ

2v2
ωþ oðωÞ; ð118Þ

kB ¼ χ0γ
2v −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2ð1þ χ0Þ

p
c2 − χ0γ

2v2
ωþ oðωÞ; ð119Þ

kP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 − χ0γ

2v2
p

c
ffiffiffiffiffi
χ0

p
ϵγv

þ c2ω
vðχ0γ2v2 − c2Þ þ oðωÞ; ð120Þ

kN ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 − χ0γ

2v2
p

c
ffiffiffiffiffi
χ0

p
ϵγv

þ c2ω
vðχ0γ2v2 − c2Þ þ oðωÞ; ð121Þ

while the left-infinity modes are given by

k̃H ¼ χ0γ
2vþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2ð1þ χ0 þ χ20ðλ − 1Þλ − 2χ0λÞ

p
c2 − χ0γ

2v2 − c2χ0λ
ω

þ oðωÞ; ð122Þ

k̃B ¼ χ0γ
2v −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2ð1þ χ0 þ χ20ðλ − 1Þλ − 2χ0λÞ

p
c2 − χ0γ

2v2 − c2χ0λ
ω

þ oðωÞ; ð123Þ

k̃P ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ0ðλcrit − λÞp

ϵγv
−

ð1 − χ0λÞω
vχ0ðλcrit − λÞ ; ð124Þ

k̃N ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ0ðλcrit − λÞp

ϵγv
−

ð1 − χ0λÞω
vχ0ðλcrit − λÞ : ð125Þ

The transition between subcritical and transcritical regime
happens at λ ¼ λcrit, which in this case is

λcrit ¼
1 − χ0γ

2 v2

c2

χ0
: ð126Þ

We assume the condition λcrit > 0.
As we did in Secs. IV B and IV C, we expand the factor

jPj
jNj in order to find an expression of the Hawking temper-
ature. The flux factors that appear in the expressions of jPj
and jNj [see Eq. (62)] for the Hopfield model are given by

viðωÞ∂ωDRjki ¼ −
γ2V4

ω2 − kiðωÞ2
Y
j≠i

ðkiðωÞ − kjðωÞÞ: ð127Þ

1. Subcritical case

In the subcritical case, expanding for low-ω and low-λ
we find

log

�jPj
jNj

�
¼ ðβsub þ oðλÞÞωþ oðωÞ; ð128Þ

where

βsub ¼
2

�
πð1 − v2ðχ0 þ 1ÞÞðγ2v2χ0 þ v

ffiffiffiffiffiffiffiffiffiffiffiffiffi
χ0 þ 1

p þ 1Þ coth
�

πγ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−v2ðχ0þ1Þ

p
2βv

ffiffiffiffi
χ0

p
ϵ

�
þ 2βγv3χ03=2ϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2ðχ0 þ 1Þ

p �

βγvððχ0 þ 1Þv2 − 1Þ2 : ð129Þ
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Once again, for β ∼ 0 we find

βsub ≈
2πðγ2v2χ0 þ v

ffiffiffiffiffiffiffiffiffiffiffiffiffi
χ0 þ 1

p þ 1Þ
βγvð1 − v2ðχ0 þ 1ÞÞ ; ð130Þ

which is the same result that was found in [39] with a
perturbative approach. Notice that, for this model, taking
the limit β ∼ 0 in (129) is the same as taking the limit ϵ ∼ 0:
this corresponds to the weak dispersion limit, a situation
that is often studied in literature.
We can expand log jPj

jNj for λ≲ λcrit, and we find

log
jPj
jNj ¼

�
A

λcrit
λ −1

þBþO

�
λcrit
λ

−1

��
ωþoðωÞ; ð131Þ

with determined factors A and B. From this expansion we
deduce the temperature in the near critical regime is

TncðλÞ

≈
βð1−v2ðχ0þ1ÞÞtanh

�
πγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−v2ðχ0þ1Þ

p
2βv

ffiffiffiffi
χ0

p
ϵ

�
4πγvχ0

�
λcrit
λ

−1

�
: ð132Þ

In particular, notice as before that

Tðλ ¼ λcritÞ ¼ 0:

The same considerations as in the previous section hold
true about this point.

2. Transcritical case

The transcritical regime is reached for λ > λcrit. In this
case, the low-ω expansion gives a much simpler result,

log
jPj
jNj ¼ βðλÞωþ oðωÞ; ð133Þ

where

βðλÞ ¼
2πγvχ0 coth

�
πγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−v2ðχ0þ1Þ

p
2βv

ffiffiffiffi
χ0

p
ϵ

�
βð1 − v2ðχ0 þ 1ÞÞð1 − λcrit

λ Þ
: ð134Þ

Thus, the Hawking temperature in transcritical regime is

TcðλÞ

¼
βð1−v2ðχ0þ1ÞÞtanh

�
πγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−v2ðχ0þ1Þ

p
2βv

ffiffiffiffi
χ0

p
ϵ

�
2πγvχ0

�
1−

λcrit
λ

�
: ð135Þ

In the limit λ ≫ λcrit (see also Appendix C), we reach the
limit temperature

TH ¼
βð1 − v2ðχ0 þ 1ÞÞ tanh

�
πγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−v2ðχ0þ1Þ

p
2βv

ffiffiffiffi
χ0

p
ϵ

�
2πγvχ0

: ð136Þ

This result, for β ∼ 0, again coincides with what was found
in [39] using the Orr-Sommerfeld approach. It is also to be
stressed, as for the subcritical case, that if, in place of β ∼ 0,
one considers in the last equation ϵ ∼ 0, i.e., the usual weak
dispersion limit which is commonly adopted in the liter-
ature on the dispersive analog Hawking effect, we get the
same result. In order to provide a more extensive com-
parison with the Orr-Sommerfeld approach and some more
insights, in the following subsection we sketch the basic
calculations involved.

E. The transcritical case in the Orr-Sommerfeld picture

The separated equation of motion for the spatial part of
the polarization field hðxÞ, has been displayed in (94),
where, in the present case, the specific profile (95) is
understood. We eliminate, as usual [36], the third-order
term by putting hðxÞ ¼ expð−2i ωv xÞfðxÞ. Then we obtain
the following equation:

ϵ2fð4ÞðxÞ þ
X2
i¼0

p3−iðx; ϵÞfð2−iÞðxÞ ¼ 0; ð137Þ

where the coefficients piðx; ϵÞ are, in the Orr-Sommerfeld
approach, analytic functions in ϵ,

piðx; ϵÞ ¼
X∞
n¼0

ϵnpinðxÞ:

A real turning point x ¼ xtp, i.e., a horizon, is found when
p30ðxtpÞ ¼ 0. See [36] and references therein, with par-
ticular focus on the papers by Nishimoto. We get

p3ðx; ϵÞ ¼
��

1 − χ0γ
2
v2

c2

�
−

λ

2γ2v2

�
1 − tanhðβ̃xÞ

��

þ ϵ2ω2
1

2v2

�
1þ 2

v2

c2

�
: ð138Þ

We can easily identify the turning point by solving
p30ðx ¼ xtpÞ ¼ 0. We find

β̃xtp ¼ arctanh

�
1 − 2

λcrit
λ

�
: ð139Þ

It interesting to notice that, by assuming λ and λcrit both
positive, as in our previous analysis, the condition λ > λcrit
amounts to the reality of the critical point at hand, i.e., to
ð1 − 2 λcrit

λ Þ∈ ð−1; 1Þ. This is in agreement with the
assumption of the transcritical case and with the interpre-
tation of λcrit. We also have [36]
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TH ¼ γ2v2jn0ðxtpÞj
2π

; ð140Þ

where the refractive index is given by nðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ χðxÞp

.
Then, after restoring the parameter β ¼ γβ̃, we obtain

TH ¼
βc2

�
1 − ð1þ χ0Þ v2c2

�
ð1 − λcrit

λ Þ
2πvγχ0

; ð141Þ

which is in perfect agreement with (135) if one considers
the limit as ϵ → 0 in (135), because, trivially, the contri-
bution of the factor involving the hyperbolic tangent goes
to 1 in that limit.

VI. CONCLUSIONS

In the framework of the analog Hawking effect in
dielectric media, we have taken into account both the
Cauchy model, which has the characteristic to be as simple
as possible, and the original ϕψ model, with the explicit
aim to find out exact solutions for the scattering problem
for a suitable but physically meaningful monotone profile
for the dielectric refractive index perturbation. On the one
hand, this has required us to embed the physical problem,
from a mathematical point of view, in the framework of
Fuchsian equations on the Riemann sphere. We have first
introduced the complex variable z and obtained a fourth-
order equation displaying three regular singular points
z ¼ 0; 1;∞. We have determined the monodromy proper-
ties of the solutions near the aforementioned singular points
and also found that our equations satisfy the so-called
rigidity properties, which have eventually allowed us to
conclude that exact global solutions are available and
involve the generalized hypergeometric function 4F3. For
this hypergeometric function, a study of the Mellin-Barnes
integral representation has allowed us to reach two funda-
mental goals: a complete analysis of the Stokes phenome-
non and also a complete set of connection formulas, which
are at the root of the description of the S-matrix for the
scattering process associated with the analog Hawking
effect.
On the other hand, we have taken into account some

fundamental physical problems, which, of course, involve,
as a focal point, the determination of the analog Hawking
temperature. This part of the analysis has required some
approximations, as fully analytical calculations are hard to
be managed successfully. In particular, for the asymptotic
expressions of the momenta of the modes involved in the
scattering, we have adopted an expansion for low frequen-
cies ω, which is still standard in analytical calculations in
literature. We have also considered both the subcritical
regime and the transcritical one, and found explicit
expressions for the Hawking temperature that are compat-
ible both with the ones obtained in a perturbative frame-
work in [39] and, in the limit of weak dispersive effects,

in [36]. The aforementioned analysis, from a physical point
of view, is just a very interesting but still incomplete one, as
other regimes (beyond the low-frequency one) can be
investigated, and further amplitudes can be calculated,
for a complete description of the full scattering matrix
involved in the problem. We deserve a deepening and an
extension of our study to future investigations.
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APPENDIX A: USEFUL RELATIONS

We write (24) and (26) as

DRðkÞ ¼ γ4V4ðk − k1Þðk − k2Þðk − k3Þðk − k4Þ; ðA1Þ

DR0ðkÞ ¼ γ4V4ðk − k̃1Þðk − k̃2Þðk − k̃3Þðk − k̃4Þ; ðA2Þ

where kj is a solution of DRðkÞ ¼ 0 and k̃j is a solution of
DR0ðk̃Þ ¼ 0. By confronting (24) with (A1) we deduce the
following useful relations:

1

ð2βÞ4 k1k2k3k4 ¼
Ω2ð−G2V2 þM2 þΩ2γ2Þ

V4γ2
; ðA3Þ

1

ð2βÞ3
X
i≠j≠l

kikjkl ¼ −
2Ωð−G2 þM2 þ 2Ω2γ2Þ

V3γ2
; ðA4Þ

1

ð2βÞ2
X
i≠j

kikj ¼
V2ðM2 þ 6Ω2γ2Þ − G2

V4γ2
; ðA5Þ

1

ð2βÞ
X
i

ki ¼ −
4Ω
V

; ðA6Þ

and similarly from (26) and (A2),

1

ð2βÞ4 k̃1k̃2k̃3k̃4 ¼
Ω2ð−G2V2þΛþM2þΩ2γ2Þ

V4γ2
; ðA7Þ

1

ð2βÞ3
X
i≠j≠l

k̃ik̃jk̃l ¼−
2Ωð−G2þΛþM2þ2Ω2γ2Þ

V3γ2
; ðA8Þ

1

ð2βÞ2
X
i≠j

k̃ik̃j ¼
V2ðΛþM2 þ 6Ω2γ2Þ −G2

V4γ2
; ðA9Þ

1

ð2βÞ
X
i

k̃i ¼ −
4Ω
V

: ðA10Þ
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APPENDIX B: PROOF OF PROPOSITION 1

We prove the theorem by induction. It is easy to verify that Eq. (50) holds for n ¼ 1, 2, 3, 4: indeed, substituting (49) into
(43) and truncating at order 4 [using DR0ðk̃1Þ ¼ 0] gives

0 ¼ z
�
−c1DR0ðk̃1 − iÞ þ DRðk̃1 − iÞ

�
þ z2

�
c1DRðk̃1 − 2iÞ þ 3c1DR0ðk̃1 − iÞ − c2DR0ðk̃1 − 2iÞ − 3DRðk̃1 − iÞ

�

þ z3
�
−3c1

�
DRðk̃1 − 2iÞ þ DR0ðk̃1 − iÞ

�
þ c2DRðk̃1 − 3iÞ þ 3c2DR0ðk̃1 − 2iÞ − c3DR0ðk̃1 − 3iÞ þ 3DRðk̃1 − iÞ

�

þ z4
�
3c1DRðk̃1 − 2iÞ þ c1DR0ðk̃1 − iÞ − 3c2

�
DRðk̃1 − 3iÞ þ DR0ðk̃1 − 2iÞ

�
þ c3DRðk̃1 − 4iÞ þ 3c3DR0ðk̃1 − 3iÞ

− c4DR0ðk̃1 − 4iÞ − DRðk̃1 − iÞ
�
þOðz5Þ; ðB1Þ

from which one can compute c1; ...; c4 by annihilating the
coefficient of each order. Even though it is not necessary for
the sake of the proof, we can verify (50) also for some
further n, by using the following identity, that is true for any
fourth-order polynomial P4ðkÞ,

0 ¼
Xn
m¼0

�
n

m

�
ð−1ÞmP4ð−imÞ; n > 4: ðB2Þ

The identity holds more generally for any polynomial of
order k,

Xn
m¼0

�
n

m

�
ð−1ÞmPkðmÞ ¼ 0; n > k;

and it derives immediately from the following property of
binomial coefficients:

Xn
m¼0

�
n

m

�
ð−1Þmmk ¼ 0; n > k:

The identity (B2) allows one to write DRðk̃1 − inÞ (n ≥ 5)
as a linear combination of DRðk̃1 − iÞ, DRðk̃1 − 2iÞ,
DRðk̃1 − 3iÞ, and DRðk̃1 − 4iÞ, and similarly for DR0.
Now, for n generic, assume that cn, cnþ1, cnþ2, cnþ3

satisfy (50). Take any two fourth-degree polynomials

DRðkÞ ¼ a0 þ a1kþ a2k2 þ a3k3 þ a4k4;

DR0ðkÞ ¼ b0 þ b1kþ b2k2 þ b3k3 þ b4k4:

Substituting (49) into (43), we find that the coefficient cnþ4

satisfies the recurrence relation

A0cn þ A1cnþ1 þ A2cnþ2 þ A3cnþ3 þ A4cnþ4 ¼ 0; ðB3Þ

where

A0 ¼ ðb0 − ib1ðnþ 1Þ − b2ðnþ 1Þ2 þ ib3ðnþ 1Þ3 þ b4ðnþ 1Þ4Þ
þ k1ðb1 − 2ib2ðnþ 1Þ − 3b3ðnþ 1Þ2 þ 4ib4ðnþ 1Þ3Þ
þ k21ðb2 − 3ib3ðnþ 1Þ − 6b4ðnþ 1Þ2Þ þ k31ðb3 − 4ib4ðnþ 1ÞÞ þ b4k41; ðB4Þ

A1 ¼ −ða0 − ia1ðnþ 1Þ − a2n2 − 2a2n − a2 þ ia3n3 þ 3ia3n2 þ 3ia3nþ ia3 þ a4n4

þ 4a4n3 þ 6a4n2 þ 4a4nþ a4 þ 3b0 − 3ib1n − 6ib1 − 3b2n2 − 12b2n − 12b2 þ 3ib3n3

þ 18ib3n2 þ 36ib3nþ 24ib3 þ 3b4n4 þ 24b4n3 þ 72b4n2 þ 96b4nþ 48b4Þ
− k1ða1 − 2ia2n − 2ia2 − 3a3n2 − 6a3n − 3a3 þ 4ia4n3 þ 12ia4n2 þ 12ia4nþ 4ia4

þ 3b1 − 6ib2n − 12ib2 − 9b3n2 − 36b3n − 36b3 þ 12ib4n3 þ 72ib4n2 þ 144ib4nþ 96ib4Þ
− k21ða2 − 3ia3n − 3ia3 − 6a4n2 − 12a4n − 6a4 þ 3b2 − 9ib3n − 18ib3 − 18b4n2 − 72b4n − 72b4Þ
− k31ða3 − 4ia4n − 4ia4 þ 3b3 − 12ib4n − 24ib4Þ − k41ða4 þ 3b4Þ; ðB5Þ
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A2 ¼ 3ða0 − ia1ðnþ 2Þ − a2n2 − 4a2n − 4a2 þ ia3n3 þ 6ia3n2 þ 12ia3nþ 8ia3 þ a4n4

þ 8a4n3 þ 24a4n2 þ 32a4nþ 16a4 þ b0 − ib1n − 3ib1 − b2n2 − 6b2n − 9b2 þ ib3n3 þ 9ib3n2

þ 27ib3nþ 27ib3 þ b4n4 þ 12b4n3 þ 54b4n2 þ 108b4nþ 81b4Þ
þ 3k1ða1 − 2ia2n − 4ia2 − 3a3n2 − 12a3n − 12a3 þ 4ia4n3 þ 24ia4n2 þ 48ia4n

þ 32ia4 þ b1 − 2ib2n − 6ib2 − 3b3n2 − 18b3n − 27b3 þ 4ib4n3 þ 36ib4n2 þ 108ib4nþ 108ib4Þ
þ 3k21ða2 − 3ia3n − 6ia3 − 6a4n2 − 24a4n − 24a4 þ b2 − 3ib3n − 9ib3 − 6b4n2 − 36b4n − 54b4Þ
þ 3k31ða3 − 4ia4n − 8ia4 þ b3 − 4ib4n − 12ib4Þ þ 3k41ða4 þ b4Þ; ðB6Þ

A3 ¼ −3ð3a0 − 3ia1ðnþ 3Þ − 3a2n2 − 18a2n − 27a2 þ 3ia3n3 þ 27ia3n2 þ 81ia3nþ 81ia3

þ 3a4n4 þ 36a4n3 þ 162a4n2 þ 324a4nþ 243a4 þ b0 − ib1n − 4ib1 − b2n2 − 8b2n − 16b2

þ ib3n3 þ 12ib3n2 þ 48ib3nþ 64ib3 þ b4n4 þ 16b4n3 þ 96b4n2 þ 256b4nþ 256b4Þ
− k1ð3a1 − 6ia2n − 18ia2 − 9a3n2 − 54a3n − 81a3 þ 12ia4n3 þ 108ia4n2 þ 324ia4n

þ 324ia4 þ b1 − 2ib2n − 8ib2 − 3b3n2 − 24b3n − 48b3 þ 4ib4n3 þ 48ib4n2 þ 192ib4nþ 256ib4Þ
− k21ð3a2 − 9ia3n − 27ia3 − 18a4n2 − 108a4n − 162a4 þ b2 − 3ib3n − 12ib3

− 6b4n2 − 48b4n − 96b4Þ
− k31ð3a3 − 12ia4n − 36ia4 þ b3 − 4ib4n − 16ib4Þ − k41ð3a4 þ b4Þ; ðB7Þ

A4 ¼ ða0 − ia1ðnþ 4Þ − a2ðnþ 4Þ2 þ ia3ðnþ 4Þ3 þ a4ðnþ 4Þ4Þ
þ k1ða1 − 2ia2ðnþ 4Þ − 3a3ðnþ 4Þ2 þ 4ia4ðnþ 4Þ3Þ
þ k21ða2 − 3ia3ðnþ 4Þ − 6a4ðnþ 4Þ2Þ þ k31ða3 − 4ia4ðnþ 4ÞÞ þ a4k41: ðB8Þ

Substituting the expressions for cn; ...; cnþ3 into Eq. (B3), we find that cnþ4 satisfies (50) if and only if

A0DR0ðk̃1 − iðnþ 1ÞÞDR0ðk̃1 − iðnþ 2ÞÞDR0ðk̃1 − iðnþ 3ÞÞDR0ðk̃1 − iðnþ 4ÞÞ
þ A1DRðk̃1 − iðnþ 1ÞÞDR0ðk̃1 − iðnþ 2ÞÞDR0ðk̃1 − iðnþ 3ÞÞDR0ðk̃1 − iðnþ 4ÞÞ
þ A2DRðk̃1 − iðnþ 1ÞÞDRðk̃1 − iðnþ 2ÞÞDR0ðk̃1 − iðnþ 3ÞÞDR0ðk̃1 − iðnþ 4ÞÞ
þ A3DRðk̃1 − iðnþ 1ÞÞDRðk̃1 − iðnþ 2ÞÞDRðk̃1 − iðnþ 3ÞÞDR0ðk̃1 − iðnþ 4ÞÞ
þ A4DRðk̃1 − iðnþ 1ÞÞDRðk̃1 − iðnþ 2ÞÞDRðk̃1 − iðnþ 3ÞÞDRðk1 − iðnþ 4ÞÞ ¼ 0; ðB9Þ

which indeed is true for any n, as can be checked by direct
algebra or using Wolfram’s Mathematica. ▪

APPENDIX C: PHYSICAL CONSEQUENCES
OF ASSUMPTION (95)

We define, as in the nondispersive case and in the weakly
dispersive one, the refractive index to be

nðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χðxÞ þ 1

p
: ðC1Þ

Also, it is useful to define n20 ≔ χ0 þ 1. We can rewrite (95)
as follows:

n2ðxÞ − 1 ¼ n20 − 1

1 − λ
2
ðn20 − 1Þð1 − tanhðβxÞÞ : ðC2Þ

We obtain

lim
x→þ∞

ðn2ðxÞ − 1Þ ¼ n20 − 1; ðC3Þ

lim
x→−∞

ðn2ðxÞ − 1Þ ¼ n20 − 1

1 − λðn20 − 1Þ : ðC4Þ

In standard materials we expect n2 > 1. As a consequence,
(C3) impliesn2>1 as x → þ∞ forn20 > 1. The same request
leads to 1−λðn20−1Þ>0, which means λ<λsup, where

TREVISAN, BELGIORNO, and CACCIATORI PHYS. REV. D 110, 085009 (2024)

085009-20



λsup ≔
1

n20 − 1
¼ 1

χ0
: ðC5Þ

Wecan alsowonder ifwe are assuminga blackhole condition
[decreasing nðxÞ] or a white hole one [increasing nðxÞ]
(cf., e.g., [36]). Given our monotone profile, we find that, by
assuming, as we did, λ > 0we obtain a black hole geometry.
A white hole one would be allowed by a negative λ. It is
also to be noted that it is possible to satisfy both λ < λsup

and λ ≫ λcrit, as in the discussion following (135), indeed
we have

λcrit ¼ λsupγ
2

�
1 − n20

v2

c2

�
; ðC6Þ

so that, for n20 very near c2

v2 − δ, for 0 < δ ≪ 1, we get
λsup ≫ λcrit, and then λsup > λ ≫ λcrit is allowed.
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