PHYSICAL REVIEW D 110, 085009 (2024)

Exact solutions for analog Hawking effect in dielectric media
S. Trevisan ,1 F. Belgiorno ,2’3 and S. L. Cacciatori®™*>
lDepartment of Information Engineering, Univerita di Padova, Via Gradenigo 6/b, IT-35131 Padova, Italy
2Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo 32, IT-20133 Milano, Italy
3INdAM—GNFM, Piazzale Aldo Moro, 5, Roma, Italy
4Departmem‘ of Science and High Technology, Universita dell’Insubria,
Via Valleggio 11, IT-22100 Como, Italy
SINFN sezione di Milano, via Celoria 16, IT-20133 Milano, Italy

® (Received 6 June 2024; accepted 17 September 2024; published 8 October 2024)

In the framework of the analog Hawking radiation for dielectric media, we analyze a toy model and also the
2D reduction of the Hopfield model for a specific monotone and realistic profile for the refractive index. We are
able to provide exact solutions, which do not require any weak dispersion approximation. The theory of
Fuchsian ordinary differential equations is the basic tool for recovering exact solutions, which are rigorously
identified and involve the so-called generalized hypergeometric functions ,F3(ay, @y, a3, ay; f1, 2. B33 2).
A complete set of connection formulas are available, both for the subcritical case and for the transcritical one,
and also the Stokes phenomenon occurring in the problem is fully discussed. From the physical point of view,
we focus on the problem of thermality. Under suitable conditions, the Hawking temperature is deduced, and we
show thatitis in full agreement with the expression deduced in other frameworks under various approximations.
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I. INTRODUCTION

We are interested to focus our attention on analytical
calculations of the analog Hawking effect in dielectric media
and in the presence of dispersion. Analytical calculations for
the analog Hawking effect, introduced in the seminal
paper [1] for nondispersive media, and also in the dispersive
case, have been largely discussed in literature [see, e.g., the
following (nonexhaustive) list of papers [2-23] ]; for weak
dispersion and the transcritical case, a rather general math-
ematical framework, able to encompass in an unified picture
very relevant models even for the experiments [24—-35], has
been discussed in [36-38]. In [39], the authors introduced a
new mathematical perspective in the analog Hawking effect
by relating the problem to the solution of a fourth-order
Fuchsian equation for the subcritical case. As a remarkable
example of the possibilities offered by Fuchsian equations,
we provide here an exact solution of a particular scattering
problem inside a dielectric. We stress that this represents a
very relevant achievement, both on the physical side and on
the mathematical one. Indeed, as far as the Hawking effect in
dielectric media is concerned, no exact solution has been
provided in the physical literature before. Exact analytical
solutions represent an actually very hard task in this field and
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allow one to explore physical situations that are forbidden in
approximate solutions, and as happens in any physical field
at hand, they constitute a strong conceptual reference for
further studies. We shall provide this exact solution under a
specific but physically very relevant choice of the back-
ground pulse giving rise to the Hawking radiation (see
below), and we are also able to corroborate existing results
in approximate models by means of suitable limits of our
solutions. Furthermore, a deepening of our general compre-
hension of the Hawking effect in the presence of dispersion is
made possible by our analysis. In particular, we show that
nontrivial connection formulas between in- and outgoing
states are associated with the presence of pair creation, and,
moreover, this nontriviality is in turn related to a Stokes
phenomenon. This relevance is mostly evident in the
subcritical case, where, e.g., a naive WKB approach would
fail to provide any pair-creation process. From a mathemati-
cal point of view, our achievement is also important, as we
provide exact solutions in a well-grounded physical model to
a fourth-order Fuchsian equation, which is also of great
interest on the mathematical side.

We choose a monotonic refractive index profile traveling
inside the dielectric at a fixed velocity. This kind of back-
ground represents a fundamental setting for a good under-
standing of the pair-creation process, and monotonic
backgrounds are often considered in analytical computations
in the transcritical regime and in numerical simulations of
analog systems (see, e.g., [40]). We stress that exact solutions
for the dispersive case of the analog Hawking effect are very
hard to be obtained, as even solutions of ordinary differential
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equations of the fourth order. The only other example we can
find is contained in the paper by Philbin [ 18], which provides
exact solutions for the Corley model [3,9]. Therein solutions
are obtained at the price of introducing an interesting but
somehow unrealistic linear velocity profile v(x) = —ax.
The plan of the paper is the following. In Sec. II, we
present the model and the monotonic background we are
going to consider. In Sec. III, starting from the equation of
motion for our model, we show that, by means of a suitable
change of the independent spatial variable in the comoving
frame of the pulse, we are able to obtain a fourth-order
Fuchsian equation. We provide a detailed characterization of
its local monodromy and spectral type. In Sec. IV, we provide
the exact solution and recover rigorously that the generalized
hypergeometric functions ,Fs3(a;, @, az, aq;f1,f2. P35 2)
are involved. Furthermore, we provide a study of the
Stokes phenomenon, and we study some physical conse-
quences for the scattering problem at hand. In Sec. V, we
consider a generalization of the previous analysis to the case
of the original model (the so-called ¢y model) to which the
Hopfield model reduces in the 2D case, and again we
consider the scattering problem and the thermality of the
spectrum, which is recovered to coincide with the one
deduced in the weak dispersion limit discussed in [36] under
suitable conditions. In Sec. VI, we summarize our achieve-
ments and display future perspectives for our analysis.

II. THE CAUCHY MODEL AND THE CHOICE
OF BACKGROUND

The model we consider is the modified ¢p — y model (or
“Cauchy model”) introduced by the authors in [39]. In the
laboratory frame, it is expressed by the Lagrangian

1 1 A
L=5(0,0) +5(O)* +#2y?) +gddw — v (1)
As we shall discuss further on in the following, this model has
its ratio in the fact that it provides us the simplest model for
analyzing the Hawking effect in dielectrics, due to its simple
dispersion relation and for the simplifications it provides in
analytical calculations. The Cauchy model at hand simulates
an effective description of the interaction between the
electromagnetic field and a dielectric medium and it is
inspired by the physical model discussed in Sec. V, which
is the two-dimensional reduction of the Hopfield model: in
that model, the field ¢ represents the electromagnetic field,
and the field y takes the role of the polarization field. The
Lagrangian (1) involves a coupling term between ¢ and y
and anonlinear term in the polarization field, and its structure
is aimed to reproduce the Cauchy-like dispersion relation
[Eq. (4)], i.e., the simplest dispersion relation for the
electromagnetic field in dielectrics. Even though its structure
is oversimplified, we can show that this model provides a
very interesting benchmark for analytical studies and also
preserves all the basic features of the more tricky physical
model discussed in Sec. V.

The linearized equations of motion (EOMs) around a
background solution g, in the lab frame, are

o} — gow =0, (2)
2 2 A 2
i + 9oxy — '+ Swiy = 0. (3)

The free-field solutions (for 1 =0) are plane waves
e@wi=ikanXt ywhich satisfy

22 a?
ny (o) = ﬁ = 7 + ?b =:A + Boj,. (4)
al

The dispersion relation, in a reference frame moving with
velocity V with respect to the lab frame, has four solutions
(see Fig. 1): expanding k(w) for @ — 0, the four modes
have the following expressions:

n—gVv
ky = o+ O(0?), (5
" )
u+gv 3
kg = — O(w?), 6
b=y @t 0@ (6)

/2 — 122 1

kp = g éu _<_ 2 29222)“’
rv VorV(g —puV?)

_ 928 +wV?)

2(g? = w?V2)?

Vg —wV: (1 7
="yt )?
v VoriVig Vo)
725 +wV?)
2¢(g* —w*V2)*?

o + O(@?), (7)

@ + O(?). (8)
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FIG. 1. The dispersion relation (4) represented in the comoving
frame with the background, with g =1, u =1.2; for 0 < w <
wyax there are four real solutions.
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The reason for the choice of the model lies in the simple
expression of the dispersion relation: however, in many
cases we will refer to DR(k) as a generic fourth-order
polynomial, so the choice of a particular dispersion relation
is not really crucial. We are going to solve the linearized
equations (2) and (3) with a particular choice of back-
ground. In the experiments the background field is repre-
sented by a laser pulse, which is naturally localized and
travels rigidly at a certain velocity V. We will instead
consider a monotonic background

wy(x = V)2 = 1 — tanh(B(x — V1)) (9)

We claim that this is a good model for the right side of a
laser pulse; moreover, a monotonic background represents
a better model for an event horizon and allows one to better
understand the nature of Hawking radiation. Examples of
applications for such kinds of monotonic profiles to
refractive index perturbations in dielectric media can be
found, e.g., in [14] (see also the associated Supplemental
Material of this reference for more details), and cf. also
Chap. 10 in [41], as far as the original ¢y model, to be
|

0 = V¥4 f® (x) + 4iV3ay* O (x)

discussed in Sec. V, is concerned. We remark that the
refractive index perturbation on one is able to associate with
the aforementioned model in the Cauchy dispersion rela-
tion regime is substantially proportional to y?. Monotonic
backgrounds of this type were also used in some previous
studies of analog black holes and white holes (see, for
example, [40]). Even if the most realistic description of a
laser pulse perturbation in a dielectric is associated with a
profile involving both a rising part (white hole) of the
dielectric perturbation and also a decreasing side (black
hole) of it [42], suitable settings can properly simulate an
interaction with only, e.g., the rising part, described by the
monotone perturbation (see also the discussion in [14]).
The linearized equations (2) and (3) can be put together
to a fourth-order equation of generalized Orr-Sommerfeld
type. It is convenient to write these equations in the
comoving coordinates ¢t =y(t; — Vx;), x =y(x;— V1.
Since the potential term is independent of the comoving
time, we seek a solution in the form w = e~ f(x),
¢ = e"'g(x). By applying (v#9,)? to the second equation,
we obtain a single fourth-order equation for f(x) only,

| _
+ 37" () [—/Wz tanh(Bx) + 2¢% + AV? — 242V? — 12V2w2y2]

+ iV (x) [iB/IVsechz (Bx) + o (—/1 tanh(Bx) + 2¢% + A — 2% — 4(1)27/2)}

+ %ﬁ £(x) [(02 (/1 tanh(fx) — 22V? — A + 242 + 20)2;/2) + 2BAVsech?(fx) (BV tanh(fx) — ia))] . (10)

where = g

III. REDUCTION TO A FUCHSIAN EQUATION:
MONODROMY AND RIEMANN SCHEME
As in [39], we perform the following change of variables
on Eq. (10):
7= —er, (11)
|

[
which implies

- - d
0, =2p0, :=2pz—. 12
i =200 = 2Pz (12)
By defining the rescaled parameters G :%, Q :%,

M :2"7, and A = ﬁ, we end up with the following
equation:

A
0= V4}’4Z4f(4) (Z) +f(3) (Z)(6V4y4z3 _ 4iV3Qy4z3) +f"(z) <G2y2Z2 _ V2y212< : + Mz)

—6V2Q%4 2 — 12iV3Qy*? + 7V4y412> + f(z) <—2iG2VQy2z +G*%z + V2y2z<

7 —

=

A
(1-2)?

A 2AVZy22
_2iVQy?; < i M2> + (1_72; —6V2Q2 4 — 4iVAQyA s + Vi + 4iVQ3y4z>
A 2AV?22 AVZy2z 2iAVQyz
_GRVAQt 22 (B 2 - 'yt ). 13
+f(z)< v l—z+ * (1-2) (1-2°% (1-2)? Ty (13)

This equation is of Fuchsian type, with three singular points, z = 0, 1, co.
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As an alternative form, we can write the EOMs (2) and (3) as a system of first order and perform the same change of
variables as before. With this procedure we obtain the system

dUu
dz
where
U =
0 1
Q? _ V2iveyiz
V222 VZyZZZ
Az) =
0 0
_iGQ G
Vyz? V2yz

We can reduce (14) to a “Fuchsian system of normal
form” [43] by changing variables to

Y(z) = P(2)U(2). (17)
P() = diag( 1,51 (18)
= dia; BRI .
¢ & Z Z
The system has now the form
dy A A,
—=|—+ Y, 19
dz < z  z- 1) (19)
-1 1 0 0
@ -v22i0 _iGQ _ G
v v Vy VZy
A = 20
! 0 0 -1 T R
iGQ G AM+Q%? _V2iQ
Vy Viy V22 vV
0 0 0 0
0 0 0 0
=100 0o o 1)
A
0 0 — v, 0

The matrices A; and A, are constant and they are,
respectively, the residue at the simple poles z =0 and
z = 1. We may also define

Ag = —A; — Ay, (22)

which corresponds to the residue at the simple pole z = 0.

A(2)U. (14)
9(z)
/
J(z) 7 1s)
f(z)
f'(z)
0 0
104 -
ng \I 7z (16)
_ _l%z_MZ_QZY2 _ VHP2iVeys
V2y212 Vz},zzz

A. The local solutions and monodromy

We start looking for local solutions of (13) around
7z = oo. After changing variables to t = 1/z, we can look
for a solution in the form

flo)y=r" i: cpt. (23)
n=0

The characteristic equation for the exponent k := 25 is

DR(k) := y* (1> (kV + ©)> — ¢ (k + Vw)? + (kV + w)*y?)
=0, (24)

which is nothing but the dispersion relation (4) as written in
the comoving reference frame with the background.
Equation (24) has, in general, four distinct complex
solutions, so we find four independent solutions in the
form (23): the spectral type of the equation at 7 = oo is thus
(1111). There is the possibility of emergence of a resonant
case, where the difference between eigenvalues is an
integer, still in a zero measure set in the space of available
parameters appearing in our model.

A similar behavior is found at z =0: we find four
independent local solutions of the form

(25)

where k := 2/ & satisfies
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DR, (k) =7 (—gz(ﬂ Vo)?
+(kV + @)?(A+p* + (l”cv+a))2y2)> =0. (26)

Equation (26) is equivalent to (24) if one maps
u> +— p?> + 1. The spectral type at z = 0 is again (1111),
again almost everywhere in the space of available param-
eters appearing in our model. Some interesting formulas
concerning (24) and (26) are discussed in Appendix A.
The situation at z =1 is different. After defining y =
z — 1, the characteristic equation for solutions of the form

fly) =y i " (27)
n=0

has four integer solutions @ = 0, 1, 2, 3. This situation is
known in literature as the resonant case (cf., e.g., [43]) and
requires a particular study. We refer mostly to [44], where
still the discussion is left incomplete, and, particularly, to
the thorough analysis appearing in [45], and also to [46]. As
suggested in the aforementioned literature, we apply the so-
called Frobenius method for the analysis of solutions at a
Fuchsian singularity, also in the resonant case, and we can
also verify if there are logarithmic contributions (even in
the resonant case, they might also not appear).

By means of the Frobenius method, we obtain three
independent integer solutions

0 =7 -3+ ot 1] o0, 28)

0) =57 3 |2+ ki) + o) (9

s0) =y 734 i i et (0
and one logarithmic solution
uo(y)=1+y[—6—vziy2+$} +o(y)

+1og(y)(Ryui (y) + Roun (y) + Rsuz(y)),  (31)

where
Ry —% (32)
R, :A<54VV;;Q> (33)
R 3

The study of the monodromy of the solution is important
for the characterization of the equation [43]. Starting from a

basis of solutions (u,(Z), ..., u4(Z)) evaluated at some z € C,
we can prolong these solutions along a path that goes around
asingular point a € C and closes back to 7 (without enclosing
other singular points): the new vector (i} (Z), ..., u}(Z)) that
results from this transformation is related to the initial one by
amatrix M ,. Such matrix is independent on the point Z and is
called the “monodromy” matrix of the solutions (uy, ..., uy)
at the point a. The monodromy matrix of the solutions
(19(3). 4y (), (). 13(») of (28)-(31) at 2 = 1 is easily
computed as

1 2#iR, 2#iR, 2niR;
M. 0 1 0 0 (35)
"o o 1 o |
0 0 0 1
whose Jordan form is

1 0 0O
;o 01 0 O (36)

MTlo 0011

0 0 0 1

The monodromy at z = 0 and z = oo are even more easy to
determine and they are represented, respectively, by the
diagonal matrices

MO — diag(eiZn'ﬁtl , eiZﬂdz’ ei2m}3’ ei27t554)7 (37)
]‘/[oo — diag(e—iZﬂal , e—i27m2’ e—i27m3’ e—i27m4)’ (38)

whose Jordan form is Jy, = Jy_ = I;. From the Jordan
form we can infer that the spectral type of the equation at
z = 11s(3,1) (see [43]). The spectral type of the equation is
thus [(1111),(31),(1111)]: this spectral type is classified as
“rigid.” Without entering into mathematical details, an
equation is called rigid if the local monodromy class of its
solutions uniquely determines also the “global” monodromy
class. Another way of expressing the same concept is that the
equation only depends on its “local data” (i.e., the character-
istic exponents) and there are no “‘accessory parameters.” We
can also calculate the so-called index of rigidity [43]

p

Z dimZ(M;) - (p — 1)n?, (39)

j=0
where Z(M;) is the centralizer of the matrix M; (i.e., the
dimension of the vector space of matrices that commute with
M ;) and p + 1is the number of distinct singular points of the
equation. A known result says that a Fuchsian system is rigid
ifand only if 1 = 2. In our case, a simple computation leads to
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ZMy) +Z(M)+Z(My)— (4)>=4+10+4-16

=2. (40)

Rigid equations have thus a simple structure and there are
many results available for their characterization and sol-
ution. The rigidity of the equation allows one, in principle, to
find integral representations of the solutions and write exact
expressions of connection coefficients for the local solutions
at the different singular points: for the physical problem of
the scattering. Another consequence of rigidity is that the
local monodromy classes uniquely determine the global
monodromy: this is interesting for physics, since the action
of the global monodromy can be interpreted as the result of
the scattering of a wave, so the scattering coefficients may be
derived from the monodromy matrices [47,48].
|

B. Gauge transformation and Riemann scheme

We start again from Eq. (13) and we perform a so-called
gauge transformation in order to put to zero as one of the
characteristic exponents. We look for a solution of the form

i
f(2) = 27(z = Nu(2), (41)
where k; satisfies
DR()(]}]) — O

The exponent of (z — 1) was chosen to lower the order of
the singularities at z = 1. The function u(z) now satisfies

u(z) [7/2(62(121+VQ)2—(1}1V+Q) ( (},V+Q) +A+M2)>

+72(=GA Rk + VR = i)+ MA@+ (ki = i)V)2 + (@
+(2) [Pe (Vi V +V 4+ 2i0) (-

—iG?(2k, +2VQ — i))

+(ki=)v)*)]

(1+ )k V =iV 4+ (1+D)Q)((1 +

Dk\V+V+(140)Q)+ L+ M?)

+y22 (—iV(ZQ + (2ky = 30)V) (M + 72 (=5 + 2k, (ky = 30))V2 +2(2k; = 3)VQ + 292))2iG?k, + 2iG>VQ + 362)]

+'(2) |72

(—G2 FORVA2 1 128, V3Q? — 12if, VA2 + AV + M2V2 4 6V2Q% % — 12iV3Qy? — 7V4y2)

(GZ 6k2V4y2 — 12(Ry — 20)V3Qy2 + 24ik, V4 2—M2V2—6V292y2+25V4y2)}

(z [ (4ilélv4y2+4iv39y2+10V4y2) +72 (—4i7qv4 2—4iV3Qy2—6V4y2)}

+u<>(z) Hz=1)V¥*=0. (42)
The last equation can be written in a more convenient form using (24) and (26),
u(z)[=DRo(k,) + zDR(k, — i)] + 1 (2) [Z(DRO(/EI) — DRy(k, - i)) — 22(DR(k; — i) — DR(k; — 2i))}
+u"(z) Bz (DR(k; — i) — 2DR(k; — 2i) + DR(k; — 3i)) — %f(DRO(/}l) — 2DRy(k; — i) + DRy (k; — 21'))}
+uB(z) E 23(DRy(k;) — 3DRy(k; — i) + 3DRy(k; — 2i) — DRy (k; — 3i))
—~ lz‘*(DR(icl — i) — 3DR(k; — 2i) + 3DR(k, — 3i) — DR(k; — 41'))]
®(z) { 2 (DR(k; — i) — 4DR(k; — 2i) + 6DR(k; — 3i) — 4DR(k; — 4i) + DR(k; — 5i))
- 2—14z4(DR0(7<1) — 4DR(k; — i) + 6DRy(k; — 2i) — 4DR(k; — 3i) + DRy (k; — 4i))} =0, (43)

where DRy (k;) = 0 and DR(k;) = 0.
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It is easy to verify, by studying the local solutions as in
Sec. I A, that the characteristic exponents of Eq. (43) are

Equation (44) is the so-called Riemann scheme of the
equation: the Riemann P scheme is usually written as

/ Z /1

w w w
ap by ¢
P 25 bz Cy 32 (45)

as by ¢

ay b4 Cy

and indicates independently the equations and the solu-
tions. By defining

i -
<:=1——,~ k_k ) .:1727374? 46
a; 2ﬂ( i 1) l ( )

B =1 j=1.2.3 (47

I ~ ~
_ﬁ(kjﬂ —ky),

we can write Eq. (44) as

z=0 z=1 z=0
0 0 a
1=/ 1 a , (48)
-7, 2 a3
LI=Fs —Pa ay

which corresponds to the Riemann scheme of the hyper-
geometric function

4F3(f11,02,03,(14;,51,,521,53%)

in the standard form [49]. The exponent f, in the hyper-
geometric function is defined by > % (a; = > % ; and is
indeed equal to 1. Therefore, the spectral type and the
Riemann scheme of our fourth-order equation coincide
with those of the hypergeometric function ,F5. Since the
system is rigid, Eq. (42) has to be equivalent to the
hypergeometric equation ,E5 [50], and ,F5; has to be a
solution, as we are now going to show.

IV. THE EXACT SOLUTION: HYPERGEOMETRIC
43, STOKES PHENOMENON, AND CONNECTION
FORMULAS

We look for a locally holomorphic solution of Eq. (43)
around z = 0,
u(z) =l+ciz+ ez +---. (49)
We are going to prove the following proposition that gives
the explicit expression of the coefficients c,:
Proposition 1. Given any two fourth-order polynomials
DR (k) and DR (k), let k; be one of the roots of DRy Let
u(z) be a meromorphic function which solves Eq. (43) and

suppose that u(z) is locally holomorphic around z = 0.
Then, the general term of the series expansion (49) satisfies

"_DR(k; —ri
¢y = =) = ri) (50)
Hs:l DRO(kl - Sl)
Proof. See Appendix B. m

Using the definitions (46) and (47) and writing the
dispersion relations in terms of their roots as in (Al)
and (A2), we easily find

_ [T ai(a; +1)...(a; + n)
" n!H?Zlﬂj(ﬁj +1)...(8;+n)

C

(s51)

This is precisely the general term of the hypergeometric
function ,F5. So we can say that

u(z) = 4F3(ay, 00, 03,043 By, B, B33 2) (52)

is an exact solution of (42), and

f(z) = Zi%(z = 1)4Fs(ay, a0, a3, 43 1. B2, P33 2)  (53)

is a solution of (13). Solving the scattering problems now
just amounts to writing the connection coefficients of the
hypergeometric function between z =0 and z = oco: for
example, the connection coefficient ky = ky is

_ F(ﬂl )F(ﬁz)F(ﬁ3)F(a2 —ay )F(a3 —ay )F(OM - 0!1)
R (o) (o) (ag)T(B1 — ) )T(By—a )L (B3 — )
(54)

Ct,

Notice that in the generic case (excluding resonances) a
basis of solution is automatically obtained replacing k; (and
ky) with any of the l~<j (and k;). Indeed, the equation is
invariant under permutation of the j’s. To be more explicit,
we have the following basis of solutions:

(f1(2): f2(2). f3(2). f4(2)). (55)
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where f;(z), with j > 1, are just obtained from (53) by
replacing k; (and k;) with any of the I~cj (and k;). As a
consequence, we also obtain the general solution of our
equation of motion as follows:

(56)

4
= ZDifi(Z)
i=1

where the constants D; have to be fixed according to the
scattering process one is considering. It is remarkable that
the basis is already diagonal in the k;, in the sense that the
physical modes on the left side (corresponding to x — —oo,
see also the following subsection) are asymptotically
represented by just the element of the basis with index
Jji fi(x) e e as x > —o0.

Some physical considerations are mandatory. The afore-
mentioned connection coefficients are responsible for the
phenomenon of mode conversion in the scattering process,
i.e., they show that, from passing from the left, i.e., at
X = —oo, with input mode l~cl, to the right, i.e., x = oo, with
potential output modes kj, j=1,2,3,4, the S matrix is not,
in general, diagonal, as output modes with j# 1 are
allowed. In making this possible, a fundamental role is
played by the Stokes phenomenon, which is discussed in
the following subsection. The following point is to be
stressed: the Stokes phenomenon is present when at least an
irregular singularity appears (see, e.g., [43]). In the present
case, the equation with z as independent variable displays
three Fuchsian singularities, as seen, i.e., three regular
singular points z = 0,z = 1, z = oo. Still, by coming back
to the original variable x, which is the relevant one for the
physical problem, one finds that, actually, x = +oc0 on the
real axis corresponds to irregular singularities, as essential
singularities in tanh(fx) and in cosh™2(fx) appear in the
coefficients of the equation itself. This fact is at the root of
the Stokes phenomenon in the physical problem at hand.

A. Integral representation and Stokes phenomenon

By using the integral representation of the hypergeo-
metric function and changing variable back to x, we can
write the selected solution of the EOM as

LB ()T (B3)
271 ()T ()T (a3)T(ay)

» / rrieo | T(s)l(a1 =)@y —s)[(a3 —5)l (0 = 5)
y—ico F(ﬁ1—s> (ﬁz—s)F(ﬁ3—s)
X (—1)“"6‘2/}”,

flx)= eh(14e)

(57)

with 0 < y < 1. The integrand function has simple poles in
the s plane that are disposed on five lines parallel to the real
axis. The poles are found at

s =5, = -n,

S =S81,=0 +n,
§ =S8, =0 +n,
s =S83,=az+n,
§ =845 =Q+ 0,

with n =0, 1,2,3.... The poles are represented in Fig. 2,
where the relative position of the poles is fixed by the
following identification of the modes (see Fig. 1):

“1” — H, “2” — B, “3” — P, “4” — N (58)

We can analytically continue the function f in the
complex x plane in order to study the behavior for
x — oo’ for different angles 6. By writing

x = |x]e®, s = |s|e,

we see that the integral is convergent only in the half-plane
defined by

cos@cos ¢ —sinfsing > 0,

which defines a half-plane delimited by the line
tan ¢ = cotd. Namely, as the angle @ varies, the corre-
sponding half-plane in the variable s is defined by
pel0-%,0+1%.

Starting from € = z, which represents the solution at
x < 0 (inside the horizon), the integral is defined for
¢ €[Z,3x]: in this sector, the integral reduces to the sum
of the residues at s = §,. The sum of the residues gives the
series

Tm(s) |

X X X X

54,0

X X X X

52,0 82,1

Re(s)

HK—H—HK—H—X— } } }

51,0 S1,1 51,2

X X X X

53,0 ...

FIG. 2. The poles of the integrand function of Eq. (57). The
gray line represents the path of integration. This figure holds true
just when k; and Ich are real for all j =1, 2, 3, 4, i.e., in the
subcritical case.
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flx < 0) = ehr(1 4 )

N DA ofi 2/3x " )
X (1 +— + O((
B1P2Ps ;

TR ®etkix, (59)
As we move 6, the asymptotic expansion (59) remains valid
until we encounter new poles in the corresponding half-
plane in s: this happens, as one can see from Fig. 3, when
¢ = argaz or ¢p = arga,. As we pass those lines, a new
term appears in the asymptotic expansion, corresponding to
the residue at the pole 53 = a3 or 549 = a4. The appear-
ance of new terms in the asymptotic expansion is known as
the Stokes phenomenon: by the previous analysis, we thus
identified a first Stokes sector, given by

T 3
oe 7+arga4,§ﬂ+arga3 ,

2

and the boundaries of this sector are two Stokes lines. As
we move 6 past the Stokes line 6 = %7[ + arg a3, we include
a new pole, s3, in the contour: the asymptotic expansion
becomes

F) = &5 (1 4 0@ 4 Gy e,

3
so the new term introduces mode mixing. This expansion is
true until we reach the next pole.

Now, we note that the residues at the poles s;, are

(il~c1+2ﬁ—2ﬁxm)x ikix —nx

Res,_, ~e = e'ie
S=Sjn

Im(s)

FIG. 3. Three contours of integration representing three values
of 6. Full line, @ = x; dashed line, 6 = %77.’ + arg a3; dash-dotted
line, 0 = 7 + arg ay. The latest two are Stokes lines, because the
corresponding contour in the s plane (defined by the ¢ angle)
includes a new pole, giving rise to an additional term in the
asymptotic expansion. Also this figure holds true just for the
subcritical case.

Therefore, the contributions of the poles with n > 1 are
negligible as long as we are interested in the asymptotic
expansion (|x| - o0). From this consideration we under-
stand that the only poles that are related to the Stokes
phenomenon are s = s;,. The next Stokes lines are thus
met at =37 + arga; or 6 =%+ arga,.

It is now easy to figure out, by continuing the argument
exposed above, all the Stokes lines of the function f(x),
which, ordered by increasing 6, correspond to

V3 T 7
91:§+arga3, 62:5+arga1, 93—5’
3
94:E+arga2, 95:§+arga4, O =57 +argas,
2 2 -
3 3
97:§7r+arga1, 93—577’
3

3
Oy = 37 +arga,, 6O9= 37 +argay.

The value of arga; depends on the values of the
momenta k; and k;. The momenta k;, being unperturbed
by the background, are always real. On the other hand, as
we will discuss also in Sec. IV C, k; is real in the subcritical
regime and complex in the transcritical regime: in that case
we have Imk; < 0. We can thus evaluate arg a; as

ki—k .. .
arctan (— ’2/} '), subcritical regime,
arga; = :
= arctan ( — f=Rek transcritical regime
k) iti gime.

B. Subcritical scattering

The solution (53), for z — 0 (which corresponds to the
left asymptotic region x - —o0) is

k -
[ = ehix, (60)

At right infinity x - +o00 (z — o0) it splits into a sum of
plane waves

4 e 4
f~ 3O = 3 Gt (61)
J=1 =1
where the connection coefficient
C.f = C1~c|—>k]-
can be obtained from (54) by switching a; <> «;. If we put
]}1 — ]~€H,

the function f(x) represents the scattering of the ingoing
modes H from left infinity and P, N, and B from right
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infinity, which produces an outgoing H mode at right
infinity. This is the process that, since Hawking’s seminal
work, is usually considered in black hole physics to deduce
the spontaneous particle creation. Following backward the
outgoing H mode, we find that it originates from a mixture
of modes: in particular, the coefficient C, represents the
mixing with the negative-norm N mode. As it is shown
in [39], the expected number of spontaneously created
Hawking particles is

|CN|2UNawDR(w7 k) |kN

N| = .
N =] ¢, Foyo,DR@. 1)\,

(62)

Notice that the function DR(k) defined in (24) is slightly
different from the function DR(w, k) that appears in (62),

w
0.4
\ ‘ WMAX

0.2
WMIN

0.0
-0.2

-04+

\

0.2

0.0

-0.2r

-04

FIG. 4. (a) The dispersion relation (26) in the perturbed region
(x » —o0) for 1 < Ay The modes 0 < w < wyyy do not
experience an event horizon (subcritical regime). (b) The
dispersion relation (26) for 1 > A.;. In this case, for any w,
the modes H and P become imaginary as they experience an
event horizon: this is referred to as transcritical regime.

which derives from the normalization of the quantum
theory: they differ by a global factor (o + Vk)?2.

The momenta k;(w) (which correspond to the normal
modes at x — —o0) depend on the background amphtude A.
For large enough values of A, the momenta k(@) and kp (@)
can become imaginary, as can be seen from Figs. 4(a)
and 4(b). In the current literature, the distinction between the
subcritical and transcritical regimes is governed by the
presence or absence of a horizon, corresponding to a turning
point in the differential equation of motion: the subcritical
case is when no such turning point appears. On the other
hand, the two regimes can be characterized also in a different
way: one identifies the transcritical case by the fact that, in
the asymptotic dispersion relation, two roots which are real
in the unperturbed asymptotic region become complex
conjugates in the perturbed region. This is exactly the
criterion we adopt in our approach to the problem; see also
the discussion in Sec. V E.

We start considering the case where all k ; are real (i.e.,
subcritical regime). In this case, the square module of (54)
can be written explicitly,

(ky = ks ) (ky —k3) (K —7‘4)(]}2 — k) (ky = k) (kg —ks)
k ky—ky) (ki —ks) (ki —ky)

sinh(”y(/;‘_kZ))sinh( (’;‘ﬂ k3))s1nh(”y k k“))

Sinh(ﬂy(lzzlﬂ_léz)) Sinh(”ﬂklﬂ k3)) Slnh(ﬂy kl k4))
ky ))

sinh (Fk2=k1)y ginh (. k3 k1)) ginh (ks
(7 i s (T

X
s1nh(”7(k2‘ﬁ ka)y smh(”ﬂkz‘ﬂ k3 )sinh(z(k; —ky))’

and similarly |C,|* are obtained by rotations of the indices.
We want to compare these results with the perturbative
expansion we made in [39]. We start by writing explicitly

IN| = (ky — kN)(kN — kp)(ky — ky)(ky — kg) (@ + kyV)?

(kg )(kH — kp)(ky — ky)(kyy — k) (@ + kyV)?
smh( ” ki) )smh(”” (k—hy) ) sinh(*£ kN_kN))
sinh(*£ k” k) ) sin (”7 k” ki) ) sin (”7 (ky —ks) )

sm (”7 (k—ky) ) sinh(”y (ki —kp) ) smh(”y (ki =Kp) ) (64
smh(”y kB ki) ) sinh (% kgﬂ k) ) sinh (% kg’ﬂ k) )

where we have used the expression for the flux factors

]/2 V4

vi(®)9,DR|;, = - [[(ki(@) = k;(@)). ~ (65)

wlab | k; JEi

which was deduced in the Appendix of [39]. We use the
low-frequency expressions of the momenta k;(w), written

in (5)~(8). Notice that the expressions of k;(w) are simply
obtained by the shift p? > u? + 1.
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We stress that, up to this point, our results are exact, in
the sense that no approximation has been made. Still, in
order to provide analytical expressions to the moments
k],kj, we are forced to introduce some approximations,
indeed kj,Ich are roots of a fourth-degree equation: one
might provide explicit expressions for the corresponding
roots, but at the price of writing very long and by no means
perspicuous expressions. As a consequence, for these roots
we use approximate expressions for low w, as discussed
in the previous sections. With the help of Wolfram’s
Mathematica, we compute the leading order of |N| both
in A and in w: we checked that the two limits commute, so
the order of the two expansions makes no difference. We
obtain

Ty
m*2wg(g + uV)sinh? (29;/’2”/> i
N|= + 0
O T P P R

+0(2%). (66)
We notice that the qualitative behavior is the same as
in [39], and in particular we have N ~ w: this behavior
confirms what was found for the subcritical case also
in [20]. This is a strong confirmation that such a behavior
should be expected in subcritical systems, and it seems not
to depend on particular approximations nor on the char-
acteristics of the background function.

An even more interesting comparison is the estimation of
the “effective temperature” that the authors found in [39]
for the subcritical case. The ratio “N“ in the case k €R as
before, becomes

(kyy —kp) (kp —kp) (kp — ky) (kp — k) (kyV 4 Q)?

L )(
(kg — k) (kp — k) (kyy — k) (kg — k) (kpV +Q)?

NI

ﬂ}’(léévﬁ—kf')) Sinh(”}’(icpﬁ—kp))

kN ky)

(67)

(

( ) (* )
sinh("Y(i{"_k")) sinh(”y k” k) )smh(”y kN k) )

( ) (Fletal)

ngw

PP
1°g<W>‘ﬁyv< VI

WM+M){
2—VF =V + )

g

x<mm(”V® —iV

2pV?

To estimate the temperature we compute the leading order

|P|
IN|

k; that we have written in Egs. (5)—(8). The momenta k jcan
be obtained by the switch y> — u? + A: they can be also
written as follows:

in @ of log(+x). We use the low-w expressions of the modes

- _\//,LZ—H—gV

ky = w + O(0?), (68)
N gV tav
_ i+ A+ gV
fp— VATV L 0(0?), (69)
g+ Vi +AV
- Aesit — A 1 e
fop = et 2 (I
P ]/V <V * j/2V3 (Acril - /‘L)>w
2 2 2 2
g2y + W +A)VvV7) , 3
- + O(w?), 70
2V =2 @ T 0@ (0)
. Acrit — A 1 7
By = Yleit 7”2 [
" rv (V * 7*V3 (Aerie — ﬂ)) “
2 2 2 2
9(29 +(ﬂ +’1)V) > 3
O(a?), 71
* 27V5(ﬂcrit_/1)5/2 @ (w) ( )
where
o = LY (12)

V2

These expressions make clear that the subcritical regime
(ie., k € R) corresponds to 4 < A

The leadmg order of log(“N“)

4

+ coth (”

(V& =V +4) + /¢ —#2V2)>>

2pV?

+2< 2V\//H-,uz)(g —u2VE =29V (A4 u* )/ & —,u2V2)

- 2<M2V3 \/(/1 + 1) (G = p*V?) +2¢°\/ ¢ — ,uZVZ) coth(

(73)

Vo =i )] + 0(a?).

2pV?
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In order to compare it to the perturbative result, we take
the limit 4 — 0,

P Ty
2gw (n(Zg +uV)\/g> — u*V? coth (;—é’) + 2ﬂgV2)
Prv(g* —p2v2)e '

(74)

For f ~ 0, which amounts physically to considering small
values for the derivative of the dielectric pulse, we find

P
g (121 % B 75)
2rg(2g + uV zy 2ky —kp — k
ﬂpert = % li L £ x (76)
PrV(G —iV?) o0 o

These results confirm the validity of the prediction made
in [39] and that the value of T',,,,, is not strongly dependent
on the peculiarities of the background. We notice, however,
that the expression (73) allows one to study how the
temperature depends on A: in particular, for 1 = A, we
have

w

T(A' )’Crlt) 10g(P/N) i 0 (77)
The vanishing of the temperature at A = A, is very
puzzling, in the sense that thermal particle creation may
be found both in the subcritical and in the transcritical case,
whereas a discontinuous behavior between the two regimes
is just suggested by such a result when 4 = 4. It has also
been stressed that, in the above scheme of approximation
for low w, for A = A, one finds a degeneracy, at least at the
leading order, of INcP with INcN, and a singular behavior of the
subleading ones. This kind of phenomenon will be inves-
tigated in future analysis.

C. Transcritical scattering

We now consider the solution in the transcritical case,
that is 4 > A, In this case, the ky and kp become
complex, as it is shown in Fig. 4(b). This fact is the direct
consequence of the presence of an event horizon: these
modes cannot propagate to the left infinity. The low-w
expressions are found from Egs. (68)—(71) for A > A
notice, however, that the modes have now the wrong label,
since the mode that is labeled N becomes complex, while
the H mode is real, in contradiction with the visual
interpretation of Fig. 4(b). Thus, for the transcritical
regime, we need to rename the modes in the following way:

~ \//4 +iA-gV

k w + O(0?), (78)
Vo g—\pr+av

- _\//12—4—/1+9V

kg = e T + 0(w?), (79)
lép—iil_’lcm_G_iz . 7 )a)

yV Vo oy VA= Ait)
R o), (0

yV Vo V(A = Aeit)
LRV o s

Notice that it holds

(IEH)* = ];P- (82)

This is not true just in the low-@ limit, but for all w. Indeed,
the modes k are the roots of a fourth-order polynomial with
real coefficients: since the roots ky and kp are always real,
the other two roots must be either real or complex
conjugates. Another very relevant observation is that, being
the basis (55) asymptotically diagonal in the k;, as
discussed in the previous sections, we have also the
possibility to get rid of the unwanted complex and
exponentially growing mode, say k, (about the growing
mode cf., e.g., the discussion in [9]), simply by imposing
that the corresponding coefficient D, is zero. Actually, in
our following discussion, we put only D; # 0. Note also
that the connection coefficients, being connecting k; to k;,
i=1, 2, 3, 4, cannot resume the aforementioned grow-
ing mode.

Thanks to (82), we can simplify the expression of £ W N‘

indeed, when computing o gf , one finds a factor
i(ky=kp)y i(kp=ky) itkp =K )r \ 1~ (i(kp=kn)r
Gl ) A e o ),
i(ky=ky)y i(kp=kp) itky=ik;)7\ 1~ (ir(p=kp)\
(1) (g 1+ i) (255)

which, using (82) and recalling T'(1+2z)/T(z) =
reduces to

(kp = kp)(kp = kp) _ |kp = kp|*

(kp = k) (kp —ky) k= kp[*”

The final exact expression is

085009-12



EXACT SOLUTIONS FOR ANALOG HAWKING EFFECT IN ...

PHYS. REV. D 110, 085009 (2024)

k T 7 3 ay(ky—kp)
|P| _ (kp —ky)(kp — kp)lkp — kp|?(kyV + w)? smh( 5

) sinh (”7(/23—@)) sinh (”Y(kgl/;kN)) sinh (W(kévﬁ—ks)>

NI (ky = k) (ky = k) ke = kp[* (kpV + @)? sinh (”7(kN_kN)> sinh (”y(ics_kN)) sinh <”7(k”_k”)) sinh (”7(kp_k3)> .

As we did in the previous section, we compute, to the
leading order in w,

2nwg? coth (”—W)

os(12) -
NI} BrV(g* = V(1 = Aeie/ A)

We can now write the Hawking temperature

PrV(g*—u*V?) Acrit
T()=—2 = L (1——). (85)
log (‘P‘) 2rg*coth <”7”g_”v) A

IN] 267V?

+0(0?). (84)

This result confirms what was found for the subcritical
case, that is

T(ﬂcrit) =0.

More interestingly, in the far critical case 4 > A, if we
consider f# ~ 0 as previously done, we find

_BrV(g —wV?)

T b
" 2ng?

(86)

which coincides with the far critical limit that was obtained
in [39] using the Orr-Sommerfeld approach.

In Fig. 5(b) we plot the temperature in units of Ty,
namely,

) a) (87)

Ty Tylog (%) ’

for various values of A, both in the subcritical and tran-
scritical cases. As in the perturbative approach of the
previous section, for the plot we choose g =1, p = 1.2;
we then choose a near critical pulse velocity V = 0.8 and a
low value # = 0.02. We clearly observe what was predicted
in [39] using a perturbative approach: the effective temper-
ature computed for 4 < A (subcritical regime) is

T(h~0)~ % (88)

Starting from this value, the temperature decreases for
increasing A until it reaches zero at 4 = A.;. For 4 > A
the temperature starts growing again, and for A > A, it
stabilizes at the value T'y.

So far, the exact solution we provided has confirmed the
predictions that were made using different approximations

(83)

25 2P

in different regimes. In the future, an even deeper study of
this solution may allow one to describe precisely the
transition between the subcritical and the transcritical
regime, the onset of thermality and formation of the event
horizon.

V. THE ORIGINAL ¢y MODEL, EXACT
SOLUTIONS, AND THERMALITY

In this section, we provide results concerning a reduction
of the so-called Hopfield model, which represents an
effective description of the interaction between the electro-
magnetic field and a dielectric medium. In particular, atoms
and molecules of the dielectric are replaced by a meso-
scopic polarization field, still providing an efficient physi-
cal description. The electromagnetic Lagrangian for the full
Hopfield model is quite involved and has been discussed,
by means of different theoretical tools, in [19,51]. A
simplified model, introduced in [16], can be related to
the two-dimensional reduction of the Hopfield model

T(A) /Ty
1.0
MAgit=0.02
0.8} NAgi=0.4
o6p  aeees NAqit=0.8
o4r e AMAit=0.98
0.2f —
0.0050010  0.0500.100 0500 1 W/ wWwax
(a)
TA) ITy
10 e
_________________________________ Mgi=1.1
08 Ng=1.6
o6 MAgit=8.2
04— O e NAg=40.8
0.2F
0.0050.010 0.0500.100 os00 1 @ I wwax
(b)
FIG.5. The temperature 7(1) in units of 7y, as defined in (87),

for different values of 4, in (a) subcritical regime and (b) tran-
scritical regime. The plots are made for a near critical pulse
velocity and a low value of the parameter f. Starting from
T(A~0) =~ Ty/3, the temperature decreases until reaching zero
for 1 = Agy; for 4 > 0 (transcritical) the temperature increases
again, reaching Ty for 1> 1.
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adopted in [52] and is such that the electromagnetic field
and the polarization field are simulated by a pair of scalar
fields, ¢ and y, respectively, in the so-called ¢y model.
Despite its simplification, it is still set up in such a way that
we get exactly the same dispersion relation and, moreover,
we can simulate the same coupling as in the full case. Its
Lagrangian is

L

|
(0,0) (") + 2y [(0%0p)? — Gy

| =

oy =

g, . A
_E(vl al//)(p +_l//4’

o (89)

where y plays the role of the dielectric susceptibility, v# is
the usual four-velocity vector of the dielectric, @, is the
proper frequency of the medium, and g is the coupling
constant between the fields. The latter constant is hence-
forth put equal to 1, as its original motivation (see [16]) can
be relaxed without problems in a more advanced discussion
(cf. also [36]). As shown in [38], we may introduce the
above fourth-order nonlinear term in the polarization field
y in the Lagrangian. Herein, we assume 4 > 0.

By extending our analysis, and on the grounds of the
previous sections, we adopt a phenomenological model
where we can leave room for a spacetime dependence of the
microscopic parameters y, @, in such a way that ;(a)% is a
constant. The equations of motion are

of reasoning as in the previous sections, we focus on v,
obtaining

11
E0(v%0,)*w + O-y 4+ — (v%0,)’w = 0. (93)
¥ c

Let us also choose, as usual, the comoving frame; if we put
w(t,x) = e "'h(x), we obtain

172 (x 2
2726 4 )_62 vzv 2) h®)(x)
rox(x)
2%/ (x)  2€%ia’
- A0
< v yzvz)(z(x)+ v ()

h® (x) +2i2 2O (x) + (
v

2iw

_|_

w? 2% (x) -
W(1+J’ZZ(X))+ 707

+

g
—6‘2@) h(X) :O,
where y’(x), ¥”(x) indicate the first and the second deriva-
tive with respect to x. We stress that, with respect to [36],
we do not eliminate the third-order term, as we do not need
to grant an Orr-Sommerfeld form for our equation of
motion, as we are going to compute exact solutions, i.e.,
solutions that do not depend on the smallness of the
parameter €. In the following, we assume the monotone
profile in the comoving frame,

1 1 1 ~
L . —— =———A(1 — tanh(fx)), 95
g+ (%0) =0, (90) W@ g2 anh() ©5)
1 1 1 where y is a constant value of the dielectric susceptibility
po (0%0,)*w +)—( y— "0, = 0. (91)  and we define the parameter § = g as in the previous model.
0 We discuss some physical consequences of our choice in
In particular, we define Appendix C.
&2 = BN (92) A. A Fuchsian framework for the equation of motion
P We consider the following change of variable:
— _ 2ﬁx :
which corresponds to the parameter appearing in the Orr-  ° — e As a consequence, we obtain
Sommerfeld-like equation (master equation, cf. [36]). We 1 1 2
can separate the above system, obtaining equations involv- m = o 1-2 (96)
ing only one of the fields ¢,y. We can also separate the 0
equations for ¢, y, and, in order to maintain the same line and
|
- 6fv + iw) ~
162324 h () + 1662 P19 3339
v
—14+ 0?1 —z+ yo(=A+ 2 (285*0* + 12ipvw — o)) (1 + 2)\ ~
+4( - + /}4/0( 4 ( zlﬁz IB ))( ) ﬁ2Z2h<2)(Z)
c Xor’v*(1-z)
B 4~"’2 2 73 -1 2.2 iwo(—1 2.2 i 1 A1 5
La(ape Yo PRIt o) ol veo) B ME) o000 ) a0
v c v r’v* \xo (1-2)
4Pz(z+1) Eo* 0 (1 —z—yoh 0}
<_62( 3)_22 2(22 10 75 | Mz) = 0. (97)
yvr(1—2)° v*c¢® oy vi(l—2z) v
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We start looking for local solutions, along the path
sketched for (13), around z = oo. By introducing t = 1/z,a
series expansion for the solutions can be provided in the
following form:

£ =11 eyt (98)
n=0

The characteristic equation for the exponent k := 2fa is

DR(k) := (@® — yor* (kv + @)* (=1 + €*w?)

+ K (=1 + yoe*y? (kv + w)?)) = 0. (99)

As in the previous sections, except possibly for a zero
measure set in the space of available parameters in our
model, we have four distinct roots that, moreover, not differ
from each other by an integer value. As a consequence, the
spectral type is (1111).

At z = 0, we get four independent local solutions of the
form

(100)

(6]
7)=2"¢ g c, 2",
n=0
where k := 28 & satisfies

DR, (k) := (0? — yoAw* — yor* (kv + ) (=1 + 2w?)
+ P (=14 yo(A+ X2 (kv +w)?))) =0. (101)

The spectral type at z = 0 is again (1111), again almost
everywhere in the space of available parameters appearing
in our model.

Also in this case, at z =1 the so-called resonant
case [43] is verified. Let us define y := z — 1. Then, the
characteristic equation for solutions of the form

V) =y ey
n=0

has four integer solutions a =0, 1, 2, 3. This situation,
again, requires a particular study, which we perform by
means of the Frobenius method.

We can show that there exist three independent integer
solutions

(102)

[ ] To(y*). (103)

— 3 4
 (y) =y +y* =5 SR

A )

- ;7 3
24522y 02 13,31}] Foly). (104)

w(y) =y +y°| -2
A W

— 2
M3 (y> - y + y ﬂzezyzvz l%

} oG, (105)

and one logarithmic solution

uo(y):l—i—y[ 6+—=

W ﬂv} +o(y)

+10g(y)(Rlul(y)+Rzuz(y)+R3u3(y)), (106)
where
A
Ry = ﬂ262y2v2 (107)
54
Ry=—— 108
2 16[}262]/2122 ( )
y) 36~2 2 2
1= ( ﬂ462 jg)z) (109)
288F c ey v

B. Monodromy and rigidity

The monodromy matrix of the solutions (uy(y), u;(y),
uy(y),usz(y)) at z =1 is easily computed as

1 2#iR, 2#iR, 2niR;
M, = 0 1 0 0 C10)
0 0 1 0
0 0 0 1
whose Jordan form is
1 00 O
g, = 01 00 (111)
] 0 0 1 1
0 0 0 1

The monodromies at z = 0 and z = oo are, also in this case,
represented, respectively, by the diagonal matrices

— diag(eﬂm”xl , ei27r5c2 , ei2ﬂ5¢3 , ei2ﬂ&4)’ (1 12)

ZW00 — diag(e—iZﬂal , e—i27r0127 e—i2na3’ e—iZna4)’ (1 13)
whose Jordan form is Jy,, = Jy_ = I4. As a consequence,
the spectral type of the equation at z = 1 is (3,1), and the
spectral type of the equation is [(1111),(31),(1111)], i.e., it
is rigid as in the case discussed in the previous section.

C. Gauge transformation and Riemann scheme

As in the previous sections for the simplified model, we
can obtain a solution of the form

£(2) = 2 - Dulz). (114)
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where k, satisfies
DRo(l‘%]) — 0

The function u(z) now satisfies an equation that is analog to
(42), which we avoid writing explicitly, as it is quite long.
What happens is that one may verify that for the solution
u(z), also in the case of the standard ¢y model, the same
Eq. (43) holds true, where now the dispersion relations are
the ones in (99) and in (101), respectively. Also the so-
called Riemann scheme of the equation is the same as in
(44). Also in this case, by letting

i ~
i:=1__~ kl_k ) .:17273747 115
aim 1= gs =), (1s)
i~ ~ .
ﬁj:=1_2_ﬁ<kj+l_k1)’ ]:1,2,3, (116)
we can write Eq. (44) as
z=0 z=1 z=o0]
0 0 ap
1-p 1 ay , (117)
1—p, 2 a3
1= =P ay

which, as discussed in the previous sections, corresponds to
the Riemann scheme of the hypergeometric function

4F3(al7“27“3’(14;,51’:52“53;1)

in the standard form.

D. The Hawking temperature

The scattering coefficients C; for the Hopfield model
have the same form as the ones of the previous sections,
apart for the different expressions of the momenta k;(w)
and l}j(a}). As in the previous section, one is able to deal
with analytical expressions for the momenta only in
suitable limits, and this is the strategy that is adopted also
in the present case.

In the low-w limit, the right-infinity modes are

kyy = XoY 1)—1-\/ +)(0

), (118)

/.2 2,2 2
C v c
XoV

kp = + o(w), 120
r C\/Xo€rv v(yor*v? — c?) (@) (120)
Ve = yor*v? w
ky = — + + o(w), 121
N C\/X0€rV v(yor*v? — c?) (@) (121)
while the left-infinity modes are given by
o _xorv+ e+ + x50~ DA = 200)
H = & — 2P0 — ol @
oy X0
+ o(w), (122)
7 :;(0;/211— \/62 +)(0 +)((2)(/1— 1)A- 2;(0/1)
B — xor*v? — xoh
+o(w), (123)
- Agrit — A 1 —yol
kp — + /’(0( crit )_ < /YO )0) , (124)
€yv VX0 (lcrit - ’1)
- Aerit — A 1 =yl
eyv 020 (Aeric — 4)

The transition between subcritical and transcritical regime
happens at A = A, which in this case is

|
gy = —2 (126)
X0

We assume the condition A > O.
As we did in Secs. IV B and IV C, we expand the factor
in order to find an expression of the Hawking temper-

12l

[N]
ature. The flux factors that appear in the expressions of |P|
and |N| [see Eq. (62)] for the Hopfield model are given by

k(wzH

J#

vi(®)9,DR]y, = — kj(w)). (127)

1. Subcritical case

In the subcritical case, expanding for low-@ and low-4
we find

c —)(07/ v |P|
g (171) = (s + oD +ofa). (129
)sz— (1+;() IV
ky =%° 2w+ o(w), (119)
c? = yor*v? where
|
2(”(1 = 0*(xo + 1)) (0’20 + ov/ro + T+ )COth(TXSH) + 2By xe* e/ 1 = v (ro + ))
Psub = (129)

Brv((xo + 1)v* = 1)?
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Once again, for f ~ 0 we find

x(r* v’ + oo + 1+ 1)
Pro(1—v*(yo+1))

2
ﬂsub ~ (130)

which is the same result that was found in [39] with a
perturbative approach. Notice that, for this model, taking
the limit # ~ 0 in (129) is the same as taking the limit ¢ ~ 0:
this corresponds to the weak dispersion limit, a situation
that is often studied in literature.

We can expand log% for 1 < A, and we find

|P| A Acn't
logr—= B -1 131
0g|N| 43’“—1+ +0 1 w+o(w), (131)

with determined factors A and B. From this expansion we
deduce the temperature in the near critical regime is

T"C(l)
ﬁ(l—vz(;(o—i—l))tanh(mivl_”z(M) 1
~ P it 1), (132)
Ay, A '

In particular, notice as before that
T(’l = )*crit) =0.

The same considerations as in the previous section hold
true about this point.

2. Transcritical case

The transcritical regime is reached for 1 > A.;. In this
case, the low-w expansion gives a much simpler result,

P
log||7| =p(lo+ o(w), (133)
where
27y vy, coth <7M Vz}};”;(fgﬂ))
B(4) = (134)

B(1 =02 (o + 1))(1 = %)

Thus, the Hawking temperature in transcritical regime is

7.0

ﬁ(l—vz(;(o—i—l))tanh(w—”l_vz(M) 1

- Frvwe ) ([ tei) (135
2myvy, 1)

In the limit A > A (see also Appendix C), we reach the
limit temperature

2pv\/x0€

B =02 (zo + 1)) tanh(ﬂiyv “”20{0“))

Ty

136
2myvyg ( )

This result, for  ~ 0, again coincides with what was found
in [39] using the Orr-Sommerfeld approach. It is also to be
stressed, as for the subcritical case, that if, in place of § ~ 0,
one considers in the last equation € ~ 0, i.e., the usual weak
dispersion limit which is commonly adopted in the liter-
ature on the dispersive analog Hawking effect, we get the
same result. In order to provide a more extensive com-
parison with the Orr-Sommerfeld approach and some more
insights, in the following subsection we sketch the basic
calculations involved.

E. The transcritical case in the Orr-Sommerfeld picture

The separated equation of motion for the spatial part of
the polarization field %i(x), has been displayed in (94),
where, in the present case, the specific profile (95) is
understood. We eliminate, as usual [36], the third-order
term by putting /1(x) = exp(—2i2x)f(x). Then we obtain
the following equation:

SO + ) prni(r @ =0, (137)

where the coefficients p;(x, €) are, in the Orr-Sommerfeld
approach, analytic functions in e,

pilx.e) = i €" pin(x).
n=0

A real turning point x = x,,,, i.e., a horizon, is found when
P30(x;,) = 0. See [36] and references therein, with par-
ticular focus on the papers by Nishimoto. We get

5 v? A ~
p3(x.e) = || 1= xor 2) "o <1 - tanh([;’x))
1 v?

20 — (1+25).
rew 20° ( + c2>

We can easily identify the turning point by solving
P3o(x = x;,) = 0. We find

(138)

px,, = arctanh <1 - 2’13“). (139)
It interesting to notice that, by assuming A and A both
positive, as in our previous analysis, the condition 4 > A,
amounts to the reality of the critical point at hand, i.e., to
(1—2%u)e(=1,1). This is in agreement with the
assumption of the transcritical case and with the interpre-
tation of A;,. We also have [36]
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Py
"= 27 ’

where the refractive index is given by n(x) = /1 + y(x).
Then, after restoring the parameter = yf3, we obtain

(140)

g (1= () 5) (=)

T
" 2rvyyo

, (141)

which is in perfect agreement with (135) if one considers
the limit as € — 0 in (135), because, trivially, the contri-
bution of the factor involving the hyperbolic tangent goes
to 1 in that limit.

VI. CONCLUSIONS

In the framework of the analog Hawking effect in
dielectric media, we have taken into account both the
Cauchy model, which has the characteristic to be as simple
as possible, and the original ¢y model, with the explicit
aim to find out exact solutions for the scattering problem
for a suitable but physically meaningful monotone profile
for the dielectric refractive index perturbation. On the one
hand, this has required us to embed the physical problem,
from a mathematical point of view, in the framework of
Fuchsian equations on the Riemann sphere. We have first
introduced the complex variable z and obtained a fourth-
order equation displaying three regular singular points
z=0,1, c0o. We have determined the monodromy proper-
ties of the solutions near the aforementioned singular points
and also found that our equations satisfy the so-called
rigidity properties, which have eventually allowed us to
conclude that exact global solutions are available and
involve the generalized hypergeometric function ,F5. For
this hypergeometric function, a study of the Mellin-Barnes
integral representation has allowed us to reach two funda-
mental goals: a complete analysis of the Stokes phenome-
non and also a complete set of connection formulas, which
are at the root of the description of the S-matrix for the
scattering process associated with the analog Hawking
effect.

On the other hand, we have taken into account some
fundamental physical problems, which, of course, involve,
as a focal point, the determination of the analog Hawking
temperature. This part of the analysis has required some
approximations, as fully analytical calculations are hard to
be managed successfully. In particular, for the asymptotic
expressions of the momenta of the modes involved in the
scattering, we have adopted an expansion for low frequen-
cies w, which is still standard in analytical calculations in
literature. We have also considered both the subcritical
regime and the transcritical one, and found explicit
expressions for the Hawking temperature that are compat-
ible both with the ones obtained in a perturbative frame-
work in [39] and, in the limit of weak dispersive effects,

in [36]. The aforementioned analysis, from a physical point
of view, is just a very interesting but still incomplete one, as
other regimes (beyond the low-frequency one) can be
investigated, and further amplitudes can be calculated,
for a complete description of the full scattering matrix
involved in the problem. We deserve a deepening and an
extension of our study to future investigations.
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APPENDIX A: USEFUL RELATIONS
We write (24) and (26) as

DR(k) = y*V*(k = ki) (k — k) (k = k3)(k = k). (A1)

DRy (k) = y*V4(k = k) (k = k) (k = ks)(k — k). (A2)

where k; is a solution of DR(k) = 0 and £; is a solution of

DRy (k) = 0. By confronting (24) with (A1) we deduce the
following useful relations:

1 QZ _G2v2 M2 QZ 2
gk, = GV ML) )
(28) Viy

1 2Q(=G? + M? +2Q%?
@W Zkikjkl == ( +V3y2 a r) . (A4)
i#j#l
1 Vi(M? + 6Q%y?) — G?
s Y kikj = o : (AS)
(28)" < Viy
1 4Q
and similarly from (26) and (A2),
1 - -2 Q=G*V24+ A+ M?+ Q%2
ik =S COVARIMAET) - ag)
(28) Viy
1 s 20(—G?+ A+ M? 42022
=Y kikik =— (=67 + :rz ha ”, (A8)
(2ﬂ>\ i# £l V*}’
1 - VHA+M?+6Q%2) - G?
—— Y kk;= , A9
RN o
1 . 4Q
5 Zk,» =- (A10)

085009-18



EXACT SOLUTIONS FOR ANALOG HAWKING EFFECT IN ...

PHYS. REV. D 110, 085009 (2024)

APPENDIX B: PROOF OF PROPOSITION 1

We prove the theorem by induction. It is easy to verify that Eq. (50) holds for n = 1, 2, 3, 4: indeed, substituting (49) into

(43) and truncating at order 4 [using DRy(k;) = 0] gives

0— z(—chRo(fq — i) + DR(k, — i)) 42 (chR(fcl — 2i) + 3¢,DRy(k; — i) — ¢,DRy(k, — 2i) — 3DR(k; — i))

+ (—3c1 (DR(]E1 —2i) + DRy(k, — i)) + ¢,DR(k, — 3i) + 3¢,DRy (K, — 2i) — ¢3DRy(k, — 3i) + 3DR(k, — i))

4 (3c1DR(1}1 —2i) + ¢;DRy(ky — i) — 3¢, (DR(}E1 ~3i) + DRy(k, — 21')) + ¢sDR(F, — 4i) + 3¢3DRy(k, — 3i)

— ¢,DRy(k, — 4i) = DR(k, — i)) + o).

from which one can compute cy, ..., ¢4 by annihilating the
coefficient of each order. Even though it is not necessary for
the sake of the proof, we can verify (50) also for some
further n, by using the following identity, that is true for any
fourth-order polynomial Py (k),

0= ;(;)<—1>mm<—im>,

The identity holds more generally for any polynomial of
order k,

n>4. (B2)

S(2)rrm=o. nok

m=0 \ 1"

and it derives immediately from the following property of
binomial coefficients:

(et o

m=0 \ 11

(B1)

The identity (B2) allows one to write DR(k; —in) (n > 5)
as a linear combination of DR(k; —i), DR(k; — 2i),
DR(k, — 3i), and DR(k; — 4i), and similarly for DR,
Now, for n generic, assume that c,, ¢,.|, C 12, Cpi3
satisfy (50). Take any two fourth-degree polynomials

DR(k) = ay + a k + axk* + a3k® + a,k?,
DRo(k) = bo + blk + b2k2 + b3k3 + b4k4.

Substituting (49) into (43), we find that the coefficient ¢, 4
satisfies the recurrence relation

Ag = (bo—iby(n+ 1) = by(n + 1)* + ibs(n +1)° + by(n +1)*)
+ kl (bl - 21b2(n + 1) - 3b3(n + 1)2 +4lb4(l’l + 1)3)

Ay = —(ag —ia;(n+ 1) — ayn® = 2a,n — a, + iazn® + 3iazn® + 3iazn + iaz + azn*
+ 4ayn® + 6a4n® + 4asn + a4 + 3by — 3ibyn — 6iby — 3byn* — 12b,n — 12b, + 3ibsn?
+ 181[’)3}’12 + 36lb3n + 24lb3 + 3]74114 + 24b41’l3 + 72b4n2 + 96b4l’l + 48b4)

— ki (ay = 2ian — 2iay — 3azn* — 6asn — 3az + diagn® + 12iaun® + 12iaun + 4ia,

+ 3[91 - 6ib2n - 121b2 - 9]93”2 - 36[931’1 - 36b3 + 12”94713 + 72ib4n2 + 144lb4l’l + 961[94)

AOCn + Alcn+l + AZC)1+2 + A3cn+3 + A4cn+4 = 0’ (B3)
where
(B4)
- k%(az - 3i(13l’l - 3ia3 - 6(14}’12 - 126141’1 - 6614 + 3[92 - 9lb3n - 181b3 - 18]94”2 - 72b4l’l - 72[94)
(BS)

- k?(a3 - 4i(14l’l - 4ia4 + 3b3 - 121b47’l - 24lb4> - k?(a4 + 3b4),

085009-19



TREVISAN, BELGIORNO, and CACCIATORI

PHYS. REV. D 110, 085009 (2024)

Ay = 3(ag — ia;(n + 2) — ayn® — dan — 4ay + iazn® + 6iasn® + 12iasn + 8iaz + aun*
+ 8ayn® + 24a4n® + 32a,n + 16ay + by — ibyn — 3ib; — byn®> — 6byn — b, + ibsn® 4 9ibyn®
+27ibsn + 27ibs + byn* + 12b,n* + 54b,n* + 108b,n + 81b,)
+ 3k (a, — 2ian — 4iay — 3azn® — 12a3n — 12a5 + 4iaun® + 24iaun® + 48iaun
+ 32iay + by — 2ibyn — 6iby — 3bsn* — 18bsn — 27bs + 4ibyn® + 36ibyn* + 108ibyn + 108ib,)
+ 3k3(ay — 3iasn — 6iay — 6aun® — 24aun — 24ay + by — 3ibsn — 9iby — 6byn? — 36byn — 54b,)

+ 3k?(a3 - 4ia4n - 8ia4 + b3 - 4ib4l’l - 12lb4) + 3]{?((14 + b4), (B6)
As = =3(3ay — 3ia,(n + 3) — 3a,n* — 18ayn — 27a, + 3iazn® + 27iasn® + 8liasn + 8lias

+ 3ayn* + 36a4n’ + 162a,n* + 324a4n + 243a, + by — ibyn — 4iby — byn® — 8byn — 16b,

+ ibyn® + 12ibyn® + 48ibyn + 64ibsy + byn* + 16b,n’ 4 96byn* + 256b4n + 256b,)

— ki (3a, — 6ian — 18ia, — 9asn® — 54asn — 8laz + 12iasn® + 108ia,n* + 324iaun

+ 324iay, + by — 2ibyn — 8iby — 3b3n? — 24bsn — 48by + 4ibyn’ + 48ibyn® + 192ibyn + 256ib,)

— k3(3ay — 9iazn — 27ias — 18ayn* — 108ayn — 162a, + by — 3ibsn — 12ibs

- 6b4n2 - 48b4l’l - 96[94)

—_ k?(3d3 - 12ia4n —_ 36id4 + b3 —_ 4ib4l’l - 16lb4> —_ k?(3a4 + b4), (B7)
Ay = (ag—iay(n+4) —ay(n+4)* + ias(n + 4)* + ay(n +4)*)

+ki(a; —2iay(n +4) —3az(n + 4)> + diag(n + 4)3)

+ ki(ay = 3iaz(n +4) = 6as(n +4)%) + ki (az — 4ias(n +4)) + agki. (B8)

Substituting the expressions for c,,, ..., ¢, 3 into Eq. (B3), we find that c, 4 satisfies (50) if and only if
AoDRy(k; — i(n 4 1))DRy(k; — i(n + 2))DRy(k; — i(n + 3))DRy(k; — i(n +4))

+ A DR(k; —i(n + 1))DRg(k; — i(n +2))DRg(k; — i(n + 3))DR(k; — i(n + 4))

+ A,DR(k; —i(n + 1))DR(k, — i(n + 2))DRy(k; — i(n + 3))DRy(k; — i(n + 4))

+ A3DR(k; —i(n + 1))DR(k; — i(n + 2))DR(k; — i(n + 3))DRy(k; — i(n +4))

+ A4,DR(k; —i(n + 1))DR(k; — i(n + 2))DR(k; — i(n + 3))DR(k; —i(n + 4)) =0, (B9)
which indeed is true for any #, as can be checked by direct 2x) =1 = n(z) -1 (€2)
algebra or using Wolfram’s Mathematica. n nmix 1 Z(nZ = 1)(1 — tanh(px))

APPENDIX C: PHYSICAL CONSEQUENCES We obtain
OF ASSUMPTION (95)
; 206 1) — 2 _

We define, as in the nondispersive case and in the weakly XETOO(H () =1 =n—1, (©3)

dispersive one, the refractive index to be
2
-1
lim (n(x) — 1) = —0 (C4)
n(x) = v/x(x) + 1. (1) e = A5 —1)

Also, it is useful to define n% = yo + 1. We can rewrite (95)
as follows:

In standard materials we expect n> > 1. As a consequence,
(C3)implies n> > 1 asx — +oo forn} > 1. The same request

leads to 1 —/l(ng —1) >0, which means 1 < Asup» Where
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1 1
Asup = P (CS5)
We can also wonder if we are assuming a black hole condition
[decreasing n(x)] or a white hole one [increasing n(x)]
(cf., e.g., [36]). Given our monotone profile, we find that, by
assuming, as we did, 4 > 0 we obtain a black hole geometry.
A white hole one would be allowed by a negative A. It is
also to be noted that it is possible to satisfy both 4 < A,

and A > Ay, as in the discussion following (135), indeed
we have

2 , V2
Aerit = lsupy (1 — C2> s (C6)

so that, for n% very near ;—2— o, for 0 <61, we get
Asup > Acrig> and then Ag,, > 4> A 18 allowed.
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