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Abstract: Continuous adaptations of the movement system to changing environments or task de-
mands rely on superposed fractal processes exhibiting power laws, that is, multifractality. The
estimators of the multifractal spectrum potentially reflect the adaptive use of perception, cognition,
and action. To observe time-specific behavior in multifractal dynamics, a multiscale multifractal
analysis based on DFA (MFMS-DFA) has been recently proposed and applied to cardiovascular
dynamics. Here we aimed at evaluating whether MFMS-DFA allows identifying multiscale structures
in the dynamics of human movements. Thirty-six (12 females) participants pedaled freely, after a
metronomic initiation of the cadence at 60 rpm, against a light workload for 10 min: in reference to
cycling (C), cycling while playing “Tetris” on a computer, alone (CT) or collaboratively (CTC) with
another pedaling participant. Pedal revolution periods (PRP) series were examined with MFMS-DFA
and compared to linearized surrogates, which attested to a presence of multifractality at almost
all scales. A marked alteration in multifractality when playing Tetris was evidenced at two scales,
τ ≈ 16 and τ ≈ 64 s, yet less marked at τ ≈ 16 s when playing collaboratively. Playing Tetris in collab-
oration attenuated these alterations, especially in the best Tetris players. This observation suggests
the high sensitivity to cognitive demand of MFMS-DFA estimators, extending to the assessment of
skill/demand interplay from individual behavior. So, by identifying scale-dependent multifractal
structures in movement dynamics, MFMS-DFA has obvious potential for examining brain-movement
coordinative structures, likely with sufficient sensitivity to find echo in diagnosing disorders and
monitoring the progress of diseases that affect cognition and movement control.

Keywords: detrended fluctuation analysis; multifractal; multiscale analysis; cycling; Tetris; multifrac-
tal cumulative function; Legendre spectrum

1. Introduction

The complex dynamics of human movements result from the interactions among
perceptive, cognitive, and motor systems aimed at responding to changes in the environ-
ment or achieving specific tasks. Such interactions are responsible for continuous motor
adaptations, and the resulting variability reflects the superposition of fractal processes
with different power laws. For this reason, the intrinsic variability of human movements is
characterized by multifractal dynamics [1–4].

Among the estimators of the multifractal spectrum, the detrended fluctuation analysis
(DFA) [5] for multifractal series (MF-DFA) [6] has gained popularity in the study of motor
control due to the statistical performance of the recently proposed focus-based approach [7].
In fact, a limit of most studies is to find a reasonable trade-off between two contrasting
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requirements: On the one hand, recording long time series to improve the statistical consis-
tency of the regressions that estimate the scale exponents; on the other hand, restricting the
duration of motor or cognitive tasks to avoid fatigue, learning or habituation phenomena.
The focus-based approach assumes that the DFA regressions of each multifractal exponent
converge to a theoretical focus, and it improves the estimates by calculating the focus empir-
ically and by forcing the passage of the regression lines through the calculated focus. Since
it provides statistically stable estimates for relatively short series, the focus-based MF-DFA
has been used to assess human movements during concurrent visuomotor tasks [8] or
complexity-matching phenomena between coupled neural networks [9].

Often, however, the fractal dynamics of physiological systems exhibit different power
laws at different temporal scales, that is, a multiscale spectrum. This was soon recognized in
the heart-rate series for which the DFA coefficients are traditionally estimated at short and
long scales separately [5]. Multiscale analyses have also been used for the monofractal DFA of
human movements [10,11]. By contrast, the focus-based approach implicitly assumes that the
multifractal exponents are the same at all scales; thus, it cannot separate “short-term” from
“long-term” exponents. Therefore, the possible presence of multiscale structures can only be
inferred by progressively removing the shorter scales from the multifractal analysis [9].

In this regard, a method for quantifying the multifractal DFA coefficients at each
scale separately has been proposed recently [12]. This method improves the statistical
consistency of the estimates by splitting the series into maximally overlapped blocks and
does not require any assumption on the linear convergence of the DFA variability functions
into focus. Based on this approach, a scale-by-scale measure of multifractality that avoids
the inapplicability of the Legendre transform when the convexity hypothesis is not satisfied
has been also proposed [13]. This multifractal and multiscale approach (MFMS-DFA) has
been applied so far to cardiovascular series only [14], but it could be a valuable tool for
studying the temporal structures of the multifractal spectrum of human movements as
well. By investigating the multifractal dynamics at different scales, such a tool could allow
for better assessing the interactions of cognitive- and motor-neural networks in patients
after a trauma, or more accurately monitoring the progression of degenerative diseases, as
well as the effectiveness of rehabilitation treatments, over time.

Therefore, the present methodological work aims to evaluate whether the recently pro-
posed MFMS-DFA allows effective identification of multiscale structures also in the multi-
fractal dynamics of human movements and quantifying their possible alterations. For this
aim, we will describe the multifractal multiscale structure of cycling by maintaining a target
pedal rate as the reference multifractal motor task. Furthermore, we will quantify the possible
alterations in the multifractal structure of the pedal revolution intervals when a cognitive task
is performed simultaneously. We expect that the performance of the reference motor task may
be altered due to the greater dual-task cognitive demand and because of the limitations in
simultaneously processing the associated interfering streams of information [15,16]. Thus, we
aim to describe the intrinsic multifractal dynamics that should characterize the time series of
pedal revolution periods and the possible alterations induced in such structure by a dual-task
cognitive load, which in our study consists of playing Tetris while cycling.

Therefore, if the recently proposed MFMS-DFA can properly assess the complex dynam-
ics of human movements, we expect to identify possible alterations induced by the cognitive
tasks in the multifractal structure at specific scales; and that the presence of multifractality,
which is expected to characterize the intrinsic variability of human movements, should be
detected also within this temporal structure of multifractal scale coefficients.

2. Materials and Methods
2.1. Subjects and Data Collection

Thirty-six healthy participants (12 females) aged 31.1 ± 12.5 years, all students or
university members, gave their written informed consent to participate in this study, which
was approved and authorized by the Institutional Review Board Faculte des STAPS and
followed the rules of the Declaration of Helsinki.
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In order to get temporal variability in movement repetitions emitted by a free-running
neurophysiological system, the participants followed a synchronization-continuation
paradigm [17]. They were asked to pedal on a friction-loaded cycle ergometer (Monark
818E, Monark, Vansbro, Sweden), imposing the cadence of 60 revolutions per minute (rpm)
by a metronome for the first 60 s period (no recordings). The metronome was subsequently
stopped, and the participants were asked to keep the same pedaling cadence for the next
10 min against a friction load amounting to 10N. A previous study already reported that
such a cycling protocol generates fractal fluctuations in the pedaling cadence [18].

The duration of each pedal revolution period (PRP) was obtained thanks to a Light
Meter Pod connected to a PowerLab acquisition system (ADInstruments, Sydney, Australia)
at a 1 kHz sampling rate, detecting the changes in light when the pedal passed by the
sensor. Each participant reiterated the above procedure in three conditions. The first is the
reference cycling (C) condition with the participant’s arm resting on an elevated table in
front of the bicycle. The second is the dual-task condition, cycling and playing “Tetris” [19]
on a computer placed on the table (CT). In Tetris, the player observes a field on the screen
in which pieces of different geometric shapes descend from the top. The player can rotate
and move the pieces laterally and accelerate them as they fall to create the greatest number
of complete horizontal lines of blocks; when a line is completed, it disappears granting
points. Thus, Tetris can be considered a progressively demanding cognitive task requiring
visuospatial functions. The third condition is again a dual-task performance but cycling
simultaneously playing Tetris collaboratively (CTC) on shared screens with the one cycling
concomitantly on their side (hidden by a board). In the latter condition, one subject could
turn the pieces, the other one could shift them horizontally while they drop and accelerate the
drop. Since in CTC the tasks of turning the pieces and moving them horizontally/vertically
are no longer performed by a single player, as in CT, but each of the two players takes care
of a single task, we expect a somehow lower cognitive load of playing Tetris collaboratively.
Tetris collaborations were matched by gender and age.

We recorded the Tetris best score achieved by each participant during CT. At the end of
each condition, participants reported the workload they perceived by compiling the NASA
Task Load Index (NASA-TLX) questionnaire [20]. The score of the overall workload may
range between the minimum value of 0 up to the maximum value equal to 100. Figure 1
shows an example of a PRP series recorded in one participant.
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Figure 1. Example of pedal revolution periods, PRP. Recording in the same participant (a) during
cycling, C; (b) cycling playing Tetris alone, CT; (c) cycling playing Tetris collaboratively, CTC.

2.2. Multifractal Multiscale DFA
2.2.1. Estimation of Multifractal Multiscale Coefficients

The PRP fluctuations around the desired set point of 60 rpm result from the superim-
position and interaction of several factors. If these factors act independently without any
underlying feedback control, we may expect that they produce uncorrelated deviations from
the set point. On the other hand, if they interact with the higher brain center of the motor
control to maintain the set point, we may expect long-term correlations in the PRP deviations.
The DFA coefficients may characterize this phenomenon as being equal to 0.5 for uncorrelated
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fluctuations (like white noise) and 1.0 for a purely self-similar process like the 1/f noise. Thus,
a decrease in the DFA coefficient might reflect a lower motor control of the higher brain center.
In our fractal model of motor control, the multifractal analysis allows to separately describe
interacting factors with different fractal dimensions; and the multiscale analysis might reveal
shifts of the correlated fluctuations among the temporal scales, possibly providing further
clues on the motor adaptation strategies during a dual-task performance.

We estimated the multifractal multiscale structure of the PRP series by the MFMS-DFA
algorithm described and downloadable in [12]. Briefly, we calculated the cumulative sum, yi, of
each PRP series and split yi into M maximally overlapped blocks of n samples. Then we detrended
each block with a least-square polynomial regression and calculated the variance of the residuals
in each k-th block, σ2

n(k). The variability function Fq(n) is the q-th moment of σ2
n [6]:

Fq(n) =

(
1
M

M
∑

k=1

(
σ2

n(k)
)q/2

)1/q

for q ̸= 0

Fq(n) = e
1

2M

M
∑

k=1
ln (σ2

n(k))
for q = 0

(1)

We calculated Fq(n) for −5≤ q ≤ 5 and 6 ≤ n ≤ L/4, with L the length in samples of the
PRP series. We mapped the scale units from number of pedal revolutions, n, to time τ, in
seconds, with the transformation:

τ = n × µPRP (2)

where µPRP is the mean PRP, in seconds. We spline-interpolated the log τ axis evenly [21]
between 8 and 128 s to consider the same scales in all the participants. Scales τ < 8 s
were excluded to avoid the large estimation bias for negative q at shorter scales [12]. We
calculated Fq(τ) twice, for detrending polynomials of first and second order (Figure 2)
because the second-order polynomial removes the longer trends more efficiently but it
over-fits block sizes shorter than 12 beats [12,22,23].
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Figure 2. MF-DFA variability functions. Fq(τ) after polynomial detrending of order 1 (p.o. = 1) in C (a),
CT (b), and CTC (c) and order 2 (p.o. = 2) in C (d), CT (e), and CTC (f): average of 36 participants.
Fq(τ) in red for q < 0, blue for q > 0, and black for q = 0; the dashed line is q = 2 (moment order of
the monofractal DFA). Note the larger effects of overfitting at the shorter scales for the second-order
polynomial, which, however, is expected to better remove trends at the larger scales.
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We calculated the multifractal coefficients as the derivative of log Fq(τ) vs. log τ

separately for the two detrending orders. The final estimate, α(q,τ), combined the coeffi-
cients of the two detrending orders with a weighted average that progressively weights
order 1 more at the shorter than longer scales, as described in [12]. To check the influence
of possibly present long-term drifts in the recorded series, we recalculated α(q,τ) twice,
after removing a linear or a quadratic drift from the original PRP series. We did not find
substantial effects of drift removal when the scale coefficients were estimated by combining
the two detrending orders (see Appendix A); thus, the analysis was performed without
drift removal so as not to introduce an additional pre-elaboration stage.

2.2.2. Statistical Comparison with the Reference Condition

We compared the α(q,τ) coefficients in “CT” and “CTC” vs. the reference “C” by
the Wilcoxon signed-rank test for each q and τ. In this way, we obtained the Wilcoxon
V signed-rank statistics as a function of both the moment order and scale: V(q,τ). The
significance of observing a given V(q,τ) value was represented by a color map. The map
allows visualizing the regions of the q-τ space with the more significant differences with
the reference condition.

To stratify the results by skill levels, the group was subdivided into tertiles according
to the individual Tetris score, and the comparisons were repeated in each tertile separately.

2.3. Degree of Multifractality Scale by Scale
2.3.1. Cumulative Multifractality Function

We quantified the degree of multifractality at each scale by the cumulative function of
the squared increments of scale exponents, αCF(τ):

αCF(τ) =
5

∑
q=−4

[α(q, τ)− α(q − 1, τ)]2 (3)

For empirical physiological time series, this index of multifractality is more stable than the
width of the singularity spectrum based on the Legendre transform [13].

2.3.2. Surrogate Data Analysis

We employed two generators of surrogate data [24]: (1) the “random phase” (RP)
algorithm that preserves the second-order statistics (e.g., the power spectrum) but not
the amplitude distribution by shuffling the phases of the Fourier spectrum; and (2) the
“iterative amplitude adjusted Fourier transform” (IAAFT) algorithm, which tries to preserve
both the power spectrum and the amplitude distribution through an iterative procedure of
gaussianization, phase randomization, and de-gaussianization. We created 100 surrogate
series for each PRP recording, both for the RP- and the IAAFT generator.

2.3.3. Statistical Comparison with the Surrogate Data

We tested the presence of multifractality at each τ by comparison with the surrogate
data. For each participant j, with 1 ≤ j ≤ 36, we first calculated the cumulative function
of the original series “O”, αO,j

CF (τ). Then we calculated the cumulative function of each of

100 RP-surrogate series i, αi,j
CF(τ), with 1 ≤ i ≤ 100, and their median values, αM,j

CF (τ). Finally,
we tested the presence of multifractality evaluating whether the cumulative function of the
original series, αO,j

CF (τ), was statistically greater than the median cumulative function of

the surrogate series, αM,j
CF (τ), at each scale τ, over the group of N = 36 participants, by the

Wilcoxon one-tailed paired test. The test was repeated for the IAAFT-surrogate series.
All the statistics were conducted using R (R Core Team, 2023) and RStudio (Posit

Team, 2023).
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3. Results
3.1. MFMS-DFA and Cognitive Tasks

Figure 3 compares the α(q,τ) coefficients in the reference cycling condition C with
cycling playing Tetris alone, CT, or collaboratively, CTC. Color maps show the statistical
significance at p < 1% in bright yellow and point out marked alterations induced by the
cognitive tasks. Playing Tetris alone produces changes at two scales, around τ = 16 s
and τ = 64 s, mainly for positive moment orders (the differences quickly lose significance
for q < −1). The upper left panel shows that for q > 0, α(q,τ) decreases from C to CT. In
particular, for q = 2 (moment order of the monofractal DFA, dashed lines in Figure 3), the
scale coefficient at τ = 16 s decreases from the value of a fractional Brownian motion process
(α > 1) to the value of pink noise (α = 1) and at τ = 64 s decreases from pink noise to the
value of a fractional Gaussian noise (α < 0.8).
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Playing Tetris collaboratively (CTC) produces marked changes too. While at τ = 64 s
the color map of C vs. CTC highlights the same α decrease we found in the C vs. CT
comparison, the decrease is less pronounced at τ = 16 s. Furthermore, playing Tetris
collaboratively slightly but significantly decreases α around τ = 32 s for q < 0.

3.2. Multifractality

Figure 4 compares the α(q,τ) functions for the original and surrogate series. Visually, a
lower dispersion of the multifractal coefficients is apparent at all the scales τ.
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Figure 4. MFMS-DFA coefficients for original and surrogate series. α(q,τ) of the original series in
C (a), CT (b), and CTC (c); RP-surrogate series in C (d), CT (e), and CTC (f); and IAAFT-surrogate
series in C (g), CT (h), and CTC (i). For the original series, the figure shows the average over N = 36
participants; for the surrogate series, the median over 100 surrogates was calculated for each of the
N = 36 participants and the figure shows the average over N = 36 medians.

The visual trend is confirmed by Figure 5 which shows the degree of multifractality of
the original and surrogate series and their statistical comparison. The cumulative function
αCF(τ) is significantly lower for the surrogate data over most of the scales, indicating
an almost ubiquitous presence of multifractality at all τ’s. It is worth noting a greater
significance of multifractality in C than in CT or CTC at τ < 32 s for both the RP and IAAFT
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surrogates and a systematically larger p (i.e., lower significance) when the comparison is
performed against the IAAFT than the RP surrogate.
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3.3. Stratification by Skill Level

Participants were subdivided into tertiles according to their Tetris best score. The
I tertile included 12 participants with a best score between 1400 and 7900; the II tertile
12 participants with a best score greater than 7900 up to 10,967; and the III tertile the
remaining 12 participants, with a best score from 10,967 to 32,200. Table 1 reports the
general characteristics of participants in each tertile separately. The three subgroups had
similar age and sex composition. They also reported similar scores for the perceived
workload of the three tasks, with greater scores for the dual tasks.

Table 1. Participants’ characteristics by tertiles of Tetris score.

I Tertile II Tertile III Tertile

Females/Males 4/8 5/7 3/9
Age (yoa) 34 (15) 32 (13) 28 (9)

NASA-Task Load Index of Total Workload
C 46.3 (27.8) 43.3 (21.2) 47.7 (11.3)

CT 64.7 (23.8) 60.3 (12.3) 66.7 (18.7)
CTC 65.3 (20.8) 67.0 (18.7) 63.3 (10.2)

Values as mean (standard deviation) for age, as median (interquartile range) for NASA-TLX questionnaire scores.
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The effects of playing Tetris, alone or collaboratively, are evident in the I tertile (partic-
ipants with the lower skill): By contrast, almost no effects of playing Tetris collaboratively
appear in the tertile with the highest skill level (Figure 6). The same high-skill participants,
however, when they played Tetris alone, that is, in the experimental condition where they
reached their best scores, showed a clear alteration in the α(q,τ) coefficients (CT vs. C) at
the scales around τ = 64 s and q > 0.
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4. Discussion and Conclusions

This work applied the recently proposed MFMS-DFA to quantify for the first time the
scale-by-scale profile of the multifractal exponents of motor time series. Multiscale DFA
is common in studies on cardiovascular dynamics, and the MFMS-DFA has been already
used on heart rate and blood pressure beat-to-beat recordings. By contrast, multifractal
analyses of motor series never exploited the temporal structure of scale exponents, and our
work provides evidence supporting the feasibility of the MFMS-DFA also in these studies.
In particular, we considered an experimental design where concurrent cognitive tasks
during cycling limited the duration of the recordings to no more than 10 min. Such short
recordings make particularly important the statistical consistency of the α(q,τ) estimates that
characterize the MFMS-DFA method, thanks to its strategy of maximizing the overlapping
between consecutive blocks. There are two other innovative solutions for the assessment
of fractal analysis that can be applied using the MFMS-DFA and that the present work
employs for the first time in a study on motor control. The first solution is the possibility of
progressively shifting the order of the detrending polynomials fitting each block of data
according to the block size n: The progressive increase from the first- to the second order
by mixing the scale coefficients with a weighted average allowed us to efficiently remove
second-order trends from the longer data blocks without introducing important polynomial
overfitting in the shorter blocks (see also the Appendix A). The second solution is the use of
the multifractal cumulative function for quantifying the degree of multifractality scale by
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scale: This index of multifractality is more stable compared to the traditional width of the
Legendre spectrum, which often exhibits “zigzag shapes rather than the expected parabolic
shape” on empirical series, as reported by other authors [9,25].

Our results highlighted the usefulness of a multiscale approach to multifractality
also for motor time series because the MFMS-DFA identified alterations in the PRP fractal
structure induced by the cognitive task, i.e., playing Tetris, separately at short (τ ≈ 16 s)
and long (τ ≈ 64 s) scales (Figure 3e). The alterations occurring at short and long scales
may have a different nature because the short-term alterations prevail in the less skilled
participants compared to the other volunteers (Figure 6a–c), while long-term alterations
appear with high statistical significance in the subgroup with the best Tetris scores in which,
by contrast, short-term alterations are almost absent. A multifractal structure presenting
different α coefficients at positive and negative moment orders q suggests that fractal
processes with different amplitudes are acting simultaneously, being the influence of the
fractal processes with lower amplitude amplified by q < 0 and decreased by q > 0 while the
opposite is true for the fractal processes with higher amplitude. Thus, our results suggest
that playing Tetris influences significantly the fractal processes with larger amplitude.

When Tetris was played in collaboration with another participant, the MFMS-DFA
suggested a reorganization of the interactions among neural networks that may alter the
fractal components with a lower amplitude (Figure 3d). The stratification by skill level
provides further insights. While the multifractal structure of the PRP time series was again
importantly altered in the less skilled subgroup (Figure 6d), we did not find significant
alterations induced by the collaborative task in the subgroup with the best Tetris score,
over the whole range of scales and for all the moment orders (Figure 6f). The present
work, aimed at evaluating the applicability of the MFMS-DFA for assessing the fractal
dynamics of human movements, is not designed to identify the mechanisms underlying
the adaptations of brain motor centers during dual-task performance. However, our results
appear consistent with the hypothesized phenomenon of dual-task interference, meaning
that the performance of a specific task is impaired when the task is executed simultaneously
with another task [15]. An explanation of dual-task interference is a limitation in the
cognitive capacity of processing the flow of information. The latter has been experimentally
associated with the limited recruitment of the neurons in the lateral prefrontal cortex: These
neurons may be overloaded by the task-relevant information that increases proportionally
with the demands of the concurrent tasks [26]. In our participants, we found significant
changes in the MFMS-DFA of the PRP series at different scales and in all moment orders
when cycling was performed while playing Tetris (Figure 3). These changes support the
hypothesis that playing Tetris interferes with cycling. Actually, the dual-task performance
is perceived as more demanding than the single task, according to the scores of the NASA-
TLX questionnaire (Table 1). Interestingly, the NASA-TLX scores appear similarly high in
CT and CTC compared to the single task in all the tertiles of Tetris best score. This indicates
that the dual task was perceived as equally challenging by both more skilled and less skilled
players. However, CTC is expected to be less cognitively demanding than CT, since the
player can focus on one of the two actions of the Tetris game only: block rotation or block
shift. Thus, we may hypothesize that in the less skilled players, the higher brain centers
involved in the dual tasks were overloaded by the cognitive task of playing Tetris even
when Tetris was played together with another participant. We may also hypothesize that
in contrast the task of playing Tetris collaboratively was much less demanding for more
skilled players. Thus, in the higher tertile of participants, the lower flow of information
to be processed to play Tetris collaboratively allowed the higher brain centers to better
elaborate the information required for the motor task of cycling. This would explain why
in terms of the multifractal multiscale dynamics, the PRP series of the more skilled players
did not differ substantially when cycling was executed as the single task or while playing
Tetris collaboratively.
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A final comment regards the assessment of multifractality by the MFMS-DFA ap-
proach. The multifractal cumulative function, αCF, was able to significantly identify the
multifractality, which is expected in cyclic motor time series, over a wide range of scales. By
describing the degree of multifractality as a function of τ, αCF showed a stronger statistical
significance at the larger scales (τ > 32 s, Figure 5), suggesting the superposition of fractal
processes with long dynamics. In the comparison with the surrogate data, αCF was also
sufficiently sensitive to quantify more significant differences with the RP than the IAAFT
surrogates, indicating that nonlinear dynamical components affect not only the Fourier
phase but also the amplitude distribution of the PRP values [24].

In conclusion, the recently proposed MFMS-DFA provides statistically consistent
estimates of the multifractal dynamics when applied on the relatively short time series
typical of the studies on the interactions among the neural networks involved in motor
control and cognitive processes. Its ability to quantify the multifractal structure separately
over different ranges of scales may help to better identify the underlying mechanisms, with
promising perspectives in the diagnosis of motor disorders and on the course monitoring
of diseases affecting the neural networks involved in motor control.

Limitations

Since the aim of the study was to evaluate the feasibility of the MFMS-DFA approach,
the results should be considered carefully before proposing physiological interpretation
or if they should be the reference in healthy controls for future comparison with diseased
conditions. First, we may expect gender differences that require a larger population than the
number of participants, 2/3 males and 1/3 females, enrolled in the present work. Second,
our participants are healthy, young and middle-aged adults, and for future evaluations
of the effects of specific diseases, likely to affect older ages, healthy volunteers properly
matched by age with the patients are required.

Author Contributions: Conceptualization and methodology, P.C., L.M.A., V.D.-A. and A.F.; software,
A.F.; validation and formal analysis, A.F. and P.C.; investigation, P.C., L.M.A., V.D.-A. and A.F.;
resources, L.M.A. and V.D.-A.; data curation, L.M.A. and V.D.-A.; writing—original draft preparation,
P.C. and A.F.; writing—review and editing, P.C., L.M.A., V.D.-A. and A.F.; visualization, A.F.; supervi-
sion, P.C.; project administration and funding acquisition, P.C., L.M.A., V.D.-A. and A.F. All authors
have read and agreed to the published version of the manuscript.

Funding: A.F. was funded by the Italian Ministry of Health (Ricerca Corrente); Fondazione Don Gnoc-
chi was supported by #NEXTGENERATIONEU (NGEU) and funded by the Ministry of University
and Research (MUR), National Recovery and Resilience Plan (NRRP), project MNESYS (PE0000006)—
a multiscale integrated approach to the study of the nervous system in health and disease (DN. 1553
11.10.2022).

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki and approved by the Institutional Review Board “Faculte des STAPS”.

Data Availability Statement: The data supporting the main findings of this study are available on
reasonable request with access granted on justified request to researchers meeting the criteria for
access to confidential data.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Appendix A

Possibly present long-term drifts in the recordings may influence the DFA coefficients,
and trend removal is generally recommended [27]. Drifts can be removed by subtracting
linear or quadratic polynomials least-square fitting the series. However, to calculate Fq(n)
in Equation (1), the DFA already detrends each block of size of n samples by a polynomial
fitting. In our approach, we used both first- and second-order detrending polynomials,
which may have mitigated differently the effects of long-term drifts. Thus, to evaluate how
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importantly long-term drifts may have influenced our results, we calculated the MFMS
DFA coefficients, α(q,τ), without drift removal and removing linear or quadratic drifts. This
was carried out using both detrending polynomials of first and second order (Figure A1).
The results show that when the second-order polynomial detrending is used within each
block of size n, the α(q,τ) coefficients without or with drift removals are virtually identical.
This means that long-term linear or quadratic drifts are automatically removed at all the
scales by the DFA method itself which employs the second-order detrending. 
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Figure A1. Scale coefficients after quadratic (a–f) or linear (g–l) drift removal or without drift removal
(m–r) calculated with first- or second-order detrending in each of the three experimental conditions.
Colors as in Figure 2.

We also calculated α(q,τ) coefficients using the first-order detrending to avoid overfit-
ting effects. Figure A1 shows that in this case only the coefficients estimated at the larger
scales (τ > 30 s) are influenced by the drift removal.

Our final estimate mixes the two detrending orders with a weighted average of
the α(q,τ) coefficients after first- and second-order detrending. In the weighted average,
estimates with first-order detrending prevail at the shorter scales (to remove the overfitting
effect) but have no weight at the larger scales to fully detrend the larger blocks with a
parabolic fitting. Thus, we do not expect any substantial influence of drift removal on our
estimates. This is confirmed by Figure A2: The mixed coefficients, calculated either without
or with drift removal, are virtually identical.



Entropy 2024, 26, 148 13 of 14Entropy 2024, 26, x FOR PEER REVIEW 14 of 15 
 

 

 
Figure A2. MFMS DFA coefficients estimated with a weighted average of the scale coefficients ob-
tained by first- and second-order detrending: values calculated after quadratic (a–c) and linear (d–
f) drift removal and without drift removal (g–i). Colors as in Figure 2. 

References 
1. Ihlen, E.A.F.; Vereijken, B. Multifractal Formalisms of Human Behavior. Hum. Mov. Sci. 2013, 32, 633–651. 

https://doi.org/10.1016/j.humov.2013.01.008. 
2. Dixon, J.A.; Holden, J.G.; Mirman, D.; Stephen, D.G. Multifractal Dynamics in the Emergence of Cognitive Structure. Top. Cogn. 

Sci. 2012, 4, 51–62. https://doi.org/10.1111/j.1756-8765.2011.01162.x. 
3. Shimizu, Y.; Thurner, S.; Ehrenberger, K. Multifractal spectra as a measure of complexity in human posture. Fractals 2002, 10, 

103–116. https://doi.org/10.1142/S0218348X02001130. 
4. Wilson, T.J.; Mangalam, M.; Stergiou, N.; Likens, A.D. Multifractality in Stride-to-Stride Variations Reveals That Walking In-

volves More Movement Tuning and Adjusting than Running. Front. Netw. Physiol. 2023, 3, 1294545. 
https://doi.org/10.3389/fnetp.2023.1294545. 

5. Peng, C.K.; Havlin, S.; Hausdorff, J.M.; Mietus, J.E.; Stanley, H.E.; Goldberger, A.L. Fractal Mechanisms and Heart Rate Dynam-
ics. Long-Range Correlations and Their Breakdown with Disease. J. Electrocardiol. 1995, 28, 59–65. 

6. Kantelhardt, J.W.; Zschiegner, S.A.; Koscielny-Bunde, E.; Havlin, S.; Bunde, A.; Stanley, H.E. Multifractal Detrended Fluctuation 
Analysis of Nonstationary Time Series. Phys. A Stat. Mech. Appl. 2002, 316, 87–114. 

7. Mukli, P.; Nagy, Z.; Eke, A. Multifractal Formalism by Enforcing the Universal Behavior of Scaling Functions. Phys. A Stat. Mech. 
Appl. 2015, 417, 150–167. https://doi.org/10.1016/j.physa.2014.09.002. 

8. Pratviel, Y.; Deschodt-Arsac, V.; Larrue, F.; Arsac, L.M. Fast Hand Movements Unveil Multifractal Roots of Adaptation in the 
Visuomotor Cognitive System. Front. Physiol. 2021, 12, 713076. https://doi.org/10.3389/fphys.2021.713076. 

9. Delignières, D.; Almurad, Z.M.H.; Roume, C.; Marmelat, V. Multifractal Signatures of Complexity Matching. Exp. Brain Res. 
2016, 234, 2773–2785. https://doi.org/10.1007/s00221-016-4679-4. 

Figure A2. MFMS DFA coefficients estimated with a weighted average of the scale coefficients
obtained by first- and second-order detrending: values calculated after quadratic (a–c) and linear
(d–f) drift removal and without drift removal (g–i). Colors as in Figure 2.

References
1. Ihlen, E.A.F.; Vereijken, B. Multifractal Formalisms of Human Behavior. Hum. Mov. Sci. 2013, 32, 633–651. [CrossRef] [PubMed]
2. Dixon, J.A.; Holden, J.G.; Mirman, D.; Stephen, D.G. Multifractal Dynamics in the Emergence of Cognitive Structure. Top. Cogn.

Sci. 2012, 4, 51–62. [CrossRef] [PubMed]
3. Shimizu, Y.; Thurner, S.; Ehrenberger, K. Multifractal spectra as a measure of complexity in human posture. Fractals 2002, 10,

103–116. [CrossRef]
4. Wilson, T.J.; Mangalam, M.; Stergiou, N.; Likens, A.D. Multifractality in Stride-to-Stride Variations Reveals That Walking Involves

More Movement Tuning and Adjusting than Running. Front. Netw. Physiol. 2023, 3, 1294545. [CrossRef] [PubMed]
5. Peng, C.K.; Havlin, S.; Hausdorff, J.M.; Mietus, J.E.; Stanley, H.E.; Goldberger, A.L. Fractal Mechanisms and Heart Rate Dynamics.

Long-Range Correlations and Their Breakdown with Disease. J. Electrocardiol. 1995, 28, 59–65. [CrossRef] [PubMed]
6. Kantelhardt, J.W.; Zschiegner, S.A.; Koscielny-Bunde, E.; Havlin, S.; Bunde, A.; Stanley, H.E. Multifractal Detrended Fluctuation

Analysis of Nonstationary Time Series. Phys. A Stat. Mech. Appl. 2002, 316, 87–114. [CrossRef]
7. Mukli, P.; Nagy, Z.; Eke, A. Multifractal Formalism by Enforcing the Universal Behavior of Scaling Functions. Phys. A Stat. Mech.

Appl. 2015, 417, 150–167. [CrossRef]
8. Pratviel, Y.; Deschodt-Arsac, V.; Larrue, F.; Arsac, L.M. Fast Hand Movements Unveil Multifractal Roots of Adaptation in the

Visuomotor Cognitive System. Front. Physiol. 2021, 12, 713076. [CrossRef]
9. Delignières, D.; Almurad, Z.M.H.; Roume, C.; Marmelat, V. Multifractal Signatures of Complexity Matching. Exp. Brain Res. 2016,

234, 2773–2785. [CrossRef]
10. Gilfriche, P.; Deschodt-Arsac, V.; Blons, E.; Arsac, L.M. Frequency-Specific Fractal Analysis of Postural Control Accounts for

Control Strategies. Front. Physiol. 2018, 9, 293. [CrossRef]
11. Delignières, D.; Marmelat, V. Strong Anticipation and Long-Range Cross-Correlation: Application of Detrended Cross-Correlation

Analysis to Human Behavioral Data. Phys. A Stat. Mech. Appl. 2014, 394, 47–60. [CrossRef]

https://doi.org/10.1016/j.humov.2013.01.008
https://www.ncbi.nlm.nih.gov/pubmed/24054900
https://doi.org/10.1111/j.1756-8765.2011.01162.x
https://www.ncbi.nlm.nih.gov/pubmed/22253177
https://doi.org/10.1142/S0218348X02001130
https://doi.org/10.3389/fnetp.2023.1294545
https://www.ncbi.nlm.nih.gov/pubmed/37928059
https://doi.org/10.1016/S0022-0736(95)80017-4
https://www.ncbi.nlm.nih.gov/pubmed/8656130
https://doi.org/10.1016/S0378-4371(02)01383-3
https://doi.org/10.1016/j.physa.2014.09.002
https://doi.org/10.3389/fphys.2021.713076
https://doi.org/10.1007/s00221-016-4679-4
https://doi.org/10.3389/fphys.2018.00293
https://doi.org/10.1016/j.physa.2013.09.037


Entropy 2024, 26, 148 14 of 14

12. Castiglioni, P.; Faini, A. A Fast DFA Algorithm for Multifractal Multiscale Analysis of Physiological Time Series. Front. Physiol.
2019, 10, 115. [CrossRef] [PubMed]

13. Faini, A.; Parati, G.; Castiglioni, P. Multiscale Assessment of the Degree of Multifractality for Physiological Time Series. Phil.
Trans. R. Soc. A. 2021, 379, 20200254. [CrossRef] [PubMed]

14. Castiglioni, P.; Omboni, S.; Parati, G.; Faini, A. Day and Night Changes of Cardiovascular Complexity: A Multi-Fractal Multi-Scale
Analysis. Entropy 2020, 22, 462. [CrossRef] [PubMed]

15. Pashler, H. Dual-Task Interference in Simple Tasks: Data and Theory. Psychol. Bull. 1994, 116, 220–244. [CrossRef] [PubMed]
16. Strobach, T. Cognitive Control and Meta-Control in Dual-Task Coordination. Psychon. Bull. Rev. 2023. [CrossRef] [PubMed]
17. Wing, A.M.; Kristofferson, A.B. The Timing of Interresponse Intervals. Percept. Psychophys. 1973, 13, 455–460. [CrossRef]
18. Arsac, L.M. Multifractal Dynamics in Executive Control When Adapting to Concurrent Motor Tasks. Front. Physiol. 2021, 12,

662076. [CrossRef]
19. Breukelaar, R.; Demaine, E.D.; Hohenberger, S.; Hoogeboom, H.J.; Kosters, W.A.; Liben-Nowell, D. Tetris is hard, even to

approximate. Int. J. Comput. Geom. Appl. 2004, 14, 41–68. [CrossRef]
20. Hart, S.G.; Staveland, L.E. Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research. In

Advances in Psychology; Elsevier: Amsterdam, The Netherlands, 1988; Volume 52, pp. 139–183. ISBN 978-0-444-70388-0.
21. Almurad, Z.M.H.; Delignières, D. Evenly Spacing in Detrended Fluctuation Analysis. Phys. A Stat. Mech. Appl. 2016, 451, 63–69.

[CrossRef]
22. Kantelhardt, J.W.; Koscielny-Bunde, E.; Rego, H.H.A.; Havlin, S.; Bunde, A. Detecting Long-Range Correlations with Detrended

Fluctuation Analysis. Phys. A Stat. Mech. Appl. 2001, 295, 441–454. [CrossRef]
23. Bunde, A.; Havlin, S.; Kantelhardt, J.W.; Penzel, T.; Peter, J.-H.; Voigt, K. Correlated and Uncorrelated Regions in Heart-Rate

Fluctuations during Sleep. Phys. Rev. Lett. 2000, 85, 3736–3739. [CrossRef] [PubMed]
24. Lancaster, G.; Iatsenko, D.; Pidde, A.; Ticcinelli, V.; Stefanovska, A. Surrogate Data for Hypothesis Testing of Physical Systems.

Phys. Rep. 2018, 748, 1–60. [CrossRef]
25. Makowiec, D.; Rynkiewicz, A.; Wdowczyk-Szulc, J.; Zarczynska-Buchowiecka, M.; Galaska, R.; Kryszewski, S. Aging in

Autonomic Control by Multifractal Studies of Cardiac Interbeat Intervals in the VLF Band. Physiol. Meas. 2011, 32, 1681–1699.
[CrossRef]

26. Watanabe, K.; Funahashi, S. Neural Mechanisms of Dual-Task Interference and Cognitive Capacity Limitation in the Prefrontal
Cortex. Nat. Neurosci. 2014, 17, 601–611. [CrossRef]

27. Hu, K.; Ivanov, P.C.; Chen, Z.; Carpena, P.; Stanley, H.E. Effect of Trends on Detrended Fluctuation Analysis. Phys. Rev. E Stat.
Nonlin. Soft. Matter. Phys. 2001, 64, 011114. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3389/fphys.2019.00115
https://www.ncbi.nlm.nih.gov/pubmed/30881308
https://doi.org/10.1098/rsta.2020.0254
https://www.ncbi.nlm.nih.gov/pubmed/34689623
https://doi.org/10.3390/e22040462
https://www.ncbi.nlm.nih.gov/pubmed/33286236
https://doi.org/10.1037/0033-2909.116.2.220
https://www.ncbi.nlm.nih.gov/pubmed/7972591
https://doi.org/10.3758/s13423-023-02427-7
https://www.ncbi.nlm.nih.gov/pubmed/38087064
https://doi.org/10.3758/BF03205802
https://doi.org/10.3389/fphys.2021.662076
https://doi.org/10.1142/S0218195904001354
https://doi.org/10.1016/j.physa.2015.12.155
https://doi.org/10.1016/S0378-4371(01)00144-3
https://doi.org/10.1103/PhysRevLett.85.3736
https://www.ncbi.nlm.nih.gov/pubmed/11030994
https://doi.org/10.1016/j.physrep.2018.06.001
https://doi.org/10.1088/0967-3334/32/10/014
https://doi.org/10.1038/nn.3667
https://doi.org/10.1103/PhysRevE.64.011114

	Introduction 
	Materials and Methods 
	Subjects and Data Collection 
	Multifractal Multiscale DFA 
	Estimation of Multifractal Multiscale Coefficients 
	Statistical Comparison with the Reference Condition 

	Degree of Multifractality Scale by Scale 
	Cumulative Multifractality Function 
	Surrogate Data Analysis 
	Statistical Comparison with the Surrogate Data 


	Results 
	MFMS-DFA and Cognitive Tasks 
	Multifractality 
	Stratification by Skill Level 

	Discussion and Conclusions 
	Appendix A
	References

