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Abstract
We investigate dense lineability and spaceability of sub-
sets of 𝓁∞ with a prescribed number of accumulation
points. We prove that the set of all bounded sequences
with exactly countably many accumulation points is
densely lineable in 𝓁∞, thus complementing a recent
result of Papathanasiou who proved the same for the
sequences with continuum many accumulation points.
We also prove that these sets are spaceable. We then
consider the same problems for the set of bounded
non-convergent sequences with a finite number of accu-
mulation points. We prove that such a set is densely
lineable in 𝓁∞ and that it is nevertheless not spaceable.
The said problems are also studied in the setting of ideal
convergence and in the space ℝ𝜔.
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1 INTRODUCTION

A subset𝑀 of a vector space 𝑋 is said to be lineable (resp., 𝜅-lineable, for a cardinal 𝜅) if𝑀 ∪ {0}

contains a vector space of infinite dimension (resp., of dimension 𝜅). Lineability problems have
been investigated in several areas of Mathematical Analysis; we refer to, for example, [1, 2, 6,
11–13, 24, 25] for a rather non-exhaustive list of results. Let us just quote here the seminal result of
Gurariy [14] that the set of continuous, nowhere differentiable functions is lineable in 𝐶([0, 1]).
There are several variants and strengthenings of the above definition. If 𝑋 is a Banach space (or,
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more generally, a topological vector space), a subset𝑀 of𝑋 is spaceable if𝑀 ∪ {0} contains a closed
infinite-dimensional subspace;𝑀 is densely lineable in𝑋 if𝑀 ∪ {0} contains a linear subspace that
is dense in 𝑋.
A particular case where these properties have been considered in the literature is when the

subset𝑀 has the form𝑋 ⧵ 𝑌, where 𝑌 is a closed subspace of𝑋; in which setting there are simple
and complete results, see [5, 18, 27]. In particular,𝑋 ⧵ 𝑌 is spaceable if and only if𝑋 ⧵ 𝑌 is lineable,
if and only if 𝑌 has infinite codimension (i.e., 𝑋∕𝑌 is infinite-dimensional) [27]. Moreover, for
separable 𝑋, these conditions are equivalent to 𝑋 ⧵ 𝑌 being densely lineable in 𝑋 [5]. For non-
separable spaces, Papathanasiou [21] very recently proved that 𝓁∞ ⧵ 𝑐0 is densely lineable in 𝓁∞.
It is however most unfortunate that his result is actually consequence of [5]; indeed, the very
same proof of [5, Theorem 2.5] gives the complete characterisation that 𝑋 ⧵ 𝑌 is densely lineable
in 𝑋 if and only if dim(𝑋∕𝑌) ⩾ dens(𝑋). For the sake of completeness, we record this result in
Corollary 3.2.
Yet, inspection of the proof in [21] gives the following more precise result: there is a dense

subspace𝑉 of𝓁∞ such that every non-zero vector in𝑉 has exactly continuummany accumulation
points. This result was the starting point of our research, as we were pondering lineability results
for subsets of 𝓁∞ with a prescribed number of accumulation points (see [3] for some results in
a similar direction). Before we can explain our results, it will be convenient to introduce a piece
of notation that we shall use extensively throughout the paper. For a vector 𝑥 ∈ 𝓁∞, we indicate
by L𝑥 the set of its accumulation points. If 𝜅 is a cardinal number, L(𝜅) stands for the set of all
𝑥 ∈ 𝓁∞ that have exactly 𝜅 accumulation points; in other words,

L(𝜅) = {𝑥 ∈ 𝓁∞∶ |L𝑥| = 𝜅}.

In this notation, the result in [21] asserts that L(𝔠) is densely lineable in 𝓁∞. As it turns out,
this more precise version can also be easily derived from [5, Theorem 2.5], as we can write
L(𝔠) = 𝓁∞ ⧵ 𝑌 where𝑌 is the linear subspace

⋃
𝜅⩽𝜔 L(𝜅) (see Remark 3.5). Similarly, we also show

that L(𝜔) is densely lineable in 𝓁∞ (Theorem 3.4). Notice that L(𝜅) = ∅ for uncountable 𝜅 < 𝔠,
as L𝑥 is a closed set; hence, these results settle the situation for sequences with infinitely many
accumulation points. Next, in Theorem 3.6 we prove that the set

⋃
2⩽𝑛<𝜔 L(𝑛) (that is, the set of

non-convergent sequenceswith finitelymany accumulation points) is also densely lineable in 𝓁∞.
We have to exclude 𝑛 = 1 in the above union, as

⋃
1⩽𝑛<𝜔 L(𝑛) clearly is a dense subspace of 𝓁∞.

Having answered the problem for what concerns dense lineability, in Section 4 we turn our
attention to spaceability of the said sets. Here, the results cannot be derived from the characteri-
sation mentioned in the second paragraph, as the result in [27, Section 6] only works when 𝑌 is a
closed subspace of 𝑋. This assumption is not available in our setting because the linear subspaces
that we consider are

⋃
𝜅⩽𝜔 L(𝜅) and

⋃
𝜅<𝜔 L(𝜅) that are both dense in 𝓁∞. Yet, we give a simple

direct proof that L(𝔠) and L(𝜔) are spaceable (Theorem 4.7). On the other hand, the main result
of the section is of negative nature as it asserts that

⋃
2⩽𝑛<𝜔 L(𝑛) is not spaceable (Theorem 4.6).

The proof of the latter relies on a result which we consider to be of independent interest: if
𝐴 ⊆ {2, 3, … } is a non-empty finite interval, then

⋃
𝑛∈𝐴 L(𝑛) (that is, the set of bounded sequences

with a number of accumulations points prescribed by𝐴) is |𝐴|-lineable and, in addition, the line-
ability constant |𝐴| is sharp (Theorem4.4). This opens theway, in Section 5, to the search of several
finer lineability results, in which we show that the lineability of

⋃
𝑛∈𝐴 L(𝑛) is a much harder task

when 𝐴 is not an interval. To wit, we prove that if 𝐴 ⊆ {2, 3, … } is a sufficiently ‘sparse’ infinite
set, then

⋃
𝑛∈𝐴 L(𝑛) is not even 2-lineable; for example, the sets

⋃
2⩽𝑛<𝜔 L(𝑛!) and

⋃
1⩽𝑛<𝜔 L(3

𝑛)
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DENSE LINEABILITY AND SPACEABILITY IN CERTAIN SUBSETS OF 𝓁∞ 2285

are not 2-lineable (Corollary 5.8). On the other hand, it is also possible that an infinite set 𝐴
contains no non-trivial intervals and yet

⋃
𝑛∈𝐴 L(𝑛) is 𝔠-lineable. Indeed, we prove in Theorem 5.9

that the set
⋃

1⩽𝑛<𝜔 L(2𝑛 + 1) is 𝔠-lineable. Finally, in Section 6 we discuss extensions of our
results when we replace convergent sequences and accumulation points with ideal convergent
sequences and -cluster points, respectively; we also discuss the same problems in the space ℝ𝜔

with the pointwise topology, instead of 𝓁∞. Finally, we collect some open problems that arise from
our research.

2 PRELIMINARIES

Our notation regarding Topology, Functional Analysis and Set Theory is quite standard, as in
most textbooks; we refer, for example, to [9, 10, 17] for unexplained notation and terminology.
The unique caveat is that by subspace of a normed space we understand a linear subspace,
not necessarily closed. This will cause no confusion, as we will almost only consider subspaces
that are either closed, or dense; when closedness is assumed, it will be stressed explicitly. For
𝑥 = (𝑥(𝑛))𝑛∈𝜔 ∈ 𝓁∞ we define suppt(𝑥) ∶= {𝑛 ∈ 𝜔∶ 𝑥(𝑛) ≠ 0}. Given a set Γ, |Γ| denotes the car-
dinality of Γ and (Γ) denotes the collection of all its subsets. We regard cardinal numbers as
initial ordinal numbers; in particular, we write 𝜔 for the smallest infinite cardinal. The cardinal-
ity of continuum is denoted by 𝔠. When 𝐴 and 𝐵 are subsets of Γ, we write 𝐴 ⊆∗ 𝐵 to mean that
𝐴 ⧵ 𝐵 is finite; similarly, 𝐴 =∗ 𝐵 means that the symmetric difference between 𝐴 and 𝐵 is finite.
𝑥↾𝐴 denotes the restriction of the function 𝑥 to the subset 𝐴 of its domain. For a subset 𝐴 ⊆ Γwe
denote by 𝟏𝐴 the characteristic function of𝐴. A familyℐ ⊆ (𝜔) is independent if for any distinct
sets 𝑋0,… , 𝑋𝑛, 𝑌0, … , 𝑌𝑚 ∈ ℐ

𝑋0 ∩⋯ ∩ 𝑋𝑛 ⧵ (𝑌0 ∪⋯ ∪ 𝑌𝑚) is infinite.

It is well-known that 𝜔 contains an independent family of cardinality 𝔠 (see [17, Lemma 7.7]).
Recall that for a sequence 𝑥 ∈ 𝓁∞ and 𝜂 ∈ ℝ, 𝜂 is an accumulation point of 𝑥 if {𝑛 ∈ 𝜔∶ |𝑥(𝑛) −

𝜂| < 𝜀} is infinite for all 𝜀 > 0. Let us record explicitly the following notation that we mentioned
already in Section 1.

Notation 2.1. For a vector 𝑥 ∈ 𝓁∞ and a cardinal number 𝜅, we write

L𝑥 ∶= {𝜂 ∈ ℝ∶ 𝜂 is an accumulation point of 𝑥}

L(𝜅) ∶= {𝑥 ∈ 𝓁∞∶ |L𝑥| = 𝜅}.

Given 𝑥, 𝑦 ∈ 𝓁∞ and 𝛼, 𝛽 ∈ ℝ it is clear that L𝛼𝑥+𝛽𝑦 ⊆ {𝛼𝜉 + 𝛽𝜂∶ 𝜉 ∈ L𝑥, 𝜂 ∈ L𝑦}. For
sequences with finitely many accumulation points we have the following simple consequence
that we shall use several times.

Lemma 2.2. Let 𝑥 ∈ L(𝑘), 𝑦 ∈ L(𝑛) and 𝑧 ∈ span{𝑥, 𝑦}. Then |L𝑧| ⩽ 𝑘𝑛. Moreover, if 𝑧 = 𝛼𝑥 + 𝛽𝑦

where both 𝛼 and 𝛽 are different from 0, then

max

{
𝑛

𝑘
,
𝑘

𝑛

}
⩽ |L𝑧| ⩽ 𝑘𝑛.
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2286 LEONETTI et al.

Proof. If 𝑧 = 𝛼𝑥 + 𝛽𝑦, then L𝑧 ⊆ {𝛼𝜉 + 𝛽𝜂∶ 𝜉 ∈ L𝑥, 𝜂 ∈ L𝑦} gives |L𝑧| ⩽ 𝑘𝑛. For the ‘Moreover’
part, we can assume that 𝑘 ⩽ 𝑛. As 𝛽 ≠ 0, 𝑦 ∈ span{𝑥, 𝑧}; hence the first part gives 𝑛 = |L𝑦| ⩽|L𝑧| ⋅ 𝑘, and we are done. □

We conclude the section by giving a convenient representation for a sequence with finitely
many accumulation points, that we shall use several times in what follows. We denote by ∼𝑐0

the
equivalence relation on 𝓁∞ defined by

𝑥 ∼𝑐0
𝑦 if and only if 𝑥 − 𝑦 ∈ 𝑐0.

Lemma 2.3. Fix 𝑛 ∈ 𝜔 and a sequence 𝑥 ∈ L(𝑛). Then there are a partition {𝑆1, … , 𝑆𝑛} of 𝜔 in
infinite sets and mutually distinct scalars 𝜉1, … , 𝜉𝑛 such that

𝑥 ∼𝑐0
𝜉1𝟏𝑆1 +⋯ + 𝜉𝑛𝟏𝑆𝑛 . (2.1)

Moreover, such a representation is unique up to the order and finite sets. More precisely, if 𝜂1𝟏𝑇1 +
⋯ + 𝜂𝑚𝟏𝑇𝑚 is another representation, then 𝑛 = 𝑚 and there is a bijection 𝜎 of {1, … , 𝑛} such that
𝜂𝑗 = 𝜉𝜎(𝑗) and 𝑇𝑗 =

∗ 𝑆𝜎(𝑗), for every 𝑗 ∈ {1, … , 𝑛}.

Remark 2.4. Note that if 𝑥 admits a representation as in (2.1), then L𝑥 = {𝜉1, … , 𝜉𝑛} and‖𝑥‖ ⩾ max{|𝜉𝑖|∶ 𝑖 ∈ {1, … , 𝑛}}. The shortest way to prove the second formula is to realise that
max{|𝜉𝑖|∶ 𝑖 ∈ {1, … , 𝑛}} = ‖𝑞(𝑥)‖𝓁∞∕𝑐0

⩽ ‖𝑥‖, where 𝑞∶ 𝓁∞ → 𝓁∞∕𝑐0 is the quotient map.

Proof. Let {𝜉1, … , 𝜉𝑛} be the accumulation points of 𝑥 and {𝑆1, … , 𝑆𝑛} be a partition of 𝜔 in infinite
sets such that lim𝑘∈𝑆𝑖

𝑥(𝑘) = 𝜉𝑖 for every 𝑖 ∈ {1, … , 𝑛}. Hence, we get 𝑥 ∼𝑐0
𝜉1𝟏𝑆1 +⋯ + 𝜉𝑛𝟏𝑆𝑛 .

Conversely, if 𝑥 has the representation (2.1), L𝑥 = {𝜉1, … , 𝜉𝑛}; therefore the scalars 𝜉1, … , 𝜉𝑛 are
uniquely determined up to the order. Suppose that there exists a second partition {𝑇1, … , 𝑇𝑛} such
that 𝑥 ∼𝑐0

𝜉1𝟏𝑇1 +⋯ + 𝜉𝑛𝟏𝑇𝑛 . Then, 𝜉1(𝟏𝑆1 − 𝟏𝑇1) +⋯ + 𝜉𝑛(𝟏𝑆𝑛 − 𝟏𝑇𝑛) ∈ 𝑐0 and it attains finitely
many values; hence such a sequence is eventually equal to zero, whence 𝑆𝑖 =∗ 𝑇𝑖 for every 𝑖 ∈

{1, … , 𝑛}. □

3 DENSE LINEABILITY

In this section, we prove that L(𝜔) and
⋃

2⩽𝑛<𝜔 L(𝑛) are densely lineable in 𝓁∞, thus comple-
menting the result from [21] that L(𝔠) is densely lineable in 𝓁∞. As it turns out, both results are
consequence of the extension of [5, Theorem 2.5] that we mentioned already in the Introduction.
Therefore, to beginwith, we recall [5, Theorem 2.5] in its general version. Even though the proof is
essentially the same as in [5], we provide a full argument for convenience of the reader. For a topo-
logical vector space𝑋, dens(𝑋) denotes the density character of𝑋 and dim(𝑋) its linear dimension
(namely, the cardinality of an algebraic basis). If 𝑌 is a linear subspace of 𝑋, the codimension of 𝑌
in 𝑋 is dim(𝑋∕𝑌). The weight of a topological space 𝑋 is denoted by w(𝑋).

Lemma 3.1. Let 𝑋 be a topological vector space and 𝑌 be a linear subspace such that w(𝑋) ⩽

dim(𝑋∕𝑌). Then 𝑋 ⧵ 𝑌 is densely lineable in 𝑋.
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Proof. Let 𝜅 ∶= w(𝑋) and {𝐵𝛼}𝛼∈𝜅 be a topological basis for𝑋. Assume that every𝐵𝛼 is non-empty.
We build by transfinite induction vectors {𝑥𝛼}𝛼∈𝜅 such that

𝑥𝛼 ∈ 𝐵𝛼 ⧵ span(𝑌 ∪ {𝑥𝛾}𝛾∈𝛼) for all 𝛼 < 𝜅.

As int(𝑌) = ∅, there is 𝑥0 ∈ 𝐵0 ⧵ 𝑌. Let 𝛼 < 𝜅 and suppose, by transfinite induction, that 𝑥𝛽 ∈

𝐵𝛽 ⧵ span(𝑌 ∪ {𝑥𝛾}𝛾∈𝛽) has been defined for every 𝛽 < 𝛼. Let 𝑌𝛼 ∶= span(𝑌 ∪ {𝑥𝛽}𝛽∈𝛼). The
assumption that 𝑌 has codimension at least 𝜅 in 𝑋 gives 𝑌𝛼 ⊊ 𝑋, so int(𝑌𝛼) = ∅. Hence, there
is 𝑥𝛼 ∈ 𝐵𝛼 ⧵ 𝑌𝛼. This shows the existence of the vectors {𝑥𝛼}𝛼∈𝜅. The subset {𝑥𝛼}𝛼∈𝜅 is dense in
𝑋, therefore 𝑉 ∶= span{𝑥𝛼}𝛼∈𝜅 is dense in 𝑋 and it is readily seen that 𝑉 ∩ 𝑌 = {0}. □

Corollary 3.2. Let𝑋 be ametrisable infinite-dimensional topological vector space with 𝜅 = dens(𝑋)

and 𝑌 be a linear subspace. Then the following are equivalent.

(i) 𝑋 ⧵ 𝑌 is densely lineable in 𝑋.
(ii) 𝑋 ⧵ 𝑌 is 𝜅-lineable.
(iii) 𝜅 ⩽ dim(𝑋∕𝑌).

Proof. Every metric space 𝑋 satisfies dens(𝑋) = w(𝑋); hence, (iii)⇒ (i) follows from Lemma 3.1.
(i)⇒ (ii) is obvious. For (ii)⇒ (iii), take a subspace𝑉 of𝑋 with dim(𝑉) = 𝜅 and such that𝑉 ∩ 𝑌 =

{0}; let 𝑞∶ 𝑋 → 𝑋∕𝑌 be the canonical quotient map. As 𝑞↾𝑉 is injective, we have 𝜅 = dim(𝑉) =

dim(𝑞[𝑉]) ⩽ dim(𝑋∕𝑌). □

To build a vector space of dimension 𝔠 inside L(𝜔) we shall exploit the ‘strong’ linear indepen-
dence of geometric sequences in order to prevent non-trivial linear combinations to have only
finitely many accumulation points. Similar uses of geometric sequences can be found in several
places in the literature, for example, [8, 15, 16, 19]. For this purpose, we will use the following
standard lemma, see, for example, [8, Proposition 2.1]; its proof is so simple that we give it here.

Lemma 3.3. Let 𝜆0, … , 𝜆𝑛 ∈ (0, 1) be mutually distinct scalars and let 𝛽0 … , 𝛽𝑛 ∈ ℝ not all equal
to 0. Then the sequence (

𝛽0𝜆
𝑗
0
+⋯ + 𝛽𝑛𝜆

𝑗
𝑛

)
𝑗∈𝜔

attains each of its values finitely many times. In particular, its range is an infinite set.

Proof. We can assume that 0 < 𝜆0 < ⋯ < 𝜆𝑛 < 1 and that 𝛽𝑖 ≠ 0 for every 𝑖 ∈ {0, … , 𝑛}. Moreover,
the conclusion is clearly true when 𝑛 = 0, so we assume 𝑛 ⩾ 1. Towards a contradiction, assume
that there are a subsequence (𝑗𝑘)𝑘∈𝜔 of 𝜔 and 𝛾 ∈ ℝ such that

𝛽0𝜆
𝑗𝑘
0
+⋯ + 𝛽𝑛𝜆

𝑗𝑘
𝑛 = 𝛾 for every 𝑘 ∈ 𝜔.

Letting 𝑘 → ∞ shows that 𝛾 = 0. Hence, we can divide by 𝜆𝑗𝑘𝑛 to get

𝛽0

(
𝜆0
𝜆𝑛

)𝑗𝑘

+⋯ + 𝛽𝑛−1

(
𝜆𝑛−1
𝜆𝑛

)𝑗𝑘

= −𝛽𝑛.

As 𝜆𝑖 < 𝜆𝑛 for 𝑖 ∈ {0, … , 𝑛 − 1}, letting 𝑘 → ∞ gives 𝛽𝑛 = 0, a contradiction. □
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2288 LEONETTI et al.

Theorem 3.4. L(𝜔) is densely lineable in 𝓁∞.

Proof. Let 𝑋 ∶=
⋃

𝜅⩽𝜔 L(𝜅) and 𝑌 ∶=
⋃

𝜅<𝜔 L(𝜅). Then 𝑋 and 𝑌 are linear subspaces of 𝓁∞, 𝑋 is
dense in 𝓁∞, and𝑋 ⧵ 𝑌 = L(𝜔). Therefore, if we prove that L(𝜔) is 𝔠-lineable, Corollary 3.2 would
yield us that L(𝜔) is densely lineable in 𝑋, hence also in 𝓁∞, which would conclude the proof.
To this aim, take disjoint subsets (𝐵𝑗)𝑗∈𝜔 of 𝜔 such that each 𝐵𝑗 is an infinite set. We can now

define, for every 𝑞 ∈ (0, 1), the following vector in 𝓁∞

𝑓𝑞 ∶=

∞∑
𝑗=0

𝑞𝑗𝟏𝐵𝑗 ; (3.1)

it is sufficient to prove, as we now do, that no linear combination of {𝑓𝑞 ∶ 𝑞 ∈ (0, 1)}with non-zero
scalars belongs to 𝑌. For this aim, take mutually distinct 𝑞0, … , 𝑞𝑁 ∈ (0, 1) and non-zero scalars
𝑑0, … , 𝑑𝑁 ∈ ℝ. Then we can write

𝑥 ∶=

𝑁∑
𝑛=0

𝑑𝑛𝑓𝑞𝑛 =

∞∑
𝑗=0

(
𝑁∑
𝑛=0

𝑑𝑛(𝑞𝑛)
𝑗

)
𝟏𝐵𝑗 . (3.2)

Lemma 3.3 yields us that the sequence (ℎ𝑗)𝑗∈𝜔, defined by

ℎ𝑗 ∶=

𝑁∑
𝑛=0

𝑑𝑛(𝑞𝑛)
𝑗 (3.3)

attains infinitely many distinct values. As each value is attained on the corresponding infinite set
𝐵𝑗 , it follows that the sequence 𝑥 admits infinitely many accumulation points. On the other hand,
ℎ𝑗 → 0; thus L𝑥 is the countable set

L𝑥 =
{
0, ℎ𝑗

}
𝑗∈𝜔

.

Hence, 𝑥 ∈ L(𝜔) and we are done. □

Remark 3.5. A small variation of the above proof gives an alternative argument that L(𝔠) is densely
lineable in 𝓁∞. Indeed, we now consider𝑋 ∶= 𝓁∞ and𝑌 ∶=

⋃
𝜅⩽𝜔 L(𝜅) and we only have to show

that 𝑋 ⧵ 𝑌 = L(𝔠) is 𝔠-lineable. Next, for every 𝑗 ∈ 𝜔 let 𝑟𝑗 ∶ 𝜔 → (0, 1) be a sequence such that
suppt(𝑟𝑗) = 𝐵𝑗 and L𝑟𝑗 = [0, 1]. Then replace the vectors 𝑓𝑞 given in (3.1) with

𝑓𝑞 ∶=

∞∑
𝑗=0

𝑞𝑗𝑟𝑗𝟏𝐵𝑗 (𝑞 ∈ (0, 1)).

At this point, if 𝑥 is as in (3.2) (with the extra factor 𝑟𝑗) and ℎ𝑗 is as in (3.3), take 𝑗 ∈ 𝜔 with
ℎ𝑗 ≠ 0. Then 𝑥↾𝐵𝑗 = ℎ𝑗𝑟𝑗↾𝐵𝑗 ∈ L(𝔠) (as L𝑟𝑗 = [0, 1]). Thus, 𝑥 ∈ L(𝔠), and we are done.

Finally, we cover the case of
⋃

2⩽𝑛<𝜔 L(𝑛).

Theorem 3.6.
⋃

2⩽𝑛<𝜔 L(𝑛) is densely lineable in 𝓁∞.
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Proof. In this case, we consider the linear subspaces of 𝓁∞ given by 𝑋 ∶=
⋃

𝑛<𝜔 L(𝑛) and 𝑌 =

L(1) = 𝑐 and, as above, we only need to prove that dim(𝑋∕𝑌) = 𝔠. This is consequence of the fact
that𝑋∕𝑐 is dense in𝓁∞∕𝑐, whose density character is 𝔠. Alternatively, one can take an independent
familyℐ ⊆ (𝜔) of cardinality 𝔠; then it is easy to see that span{𝟏𝐴 ∶ 𝐴 ∈ ℐ} has dimension equal
to 𝔠 and span{𝟏𝐴 ∶ 𝐴 ∈ ℐ} ∩ L(1) = {0}. □

4 SPACEABILITY

In this section, we focus on spaceability results for the sets
⋃

2⩽𝑛<𝜔 L(𝑛), L(𝜔) and L(𝔠). The main
result is Theorem 4.6 asserting that

⋃
2⩽𝑛<𝜔 L(𝑛) is not spaceable. A key ingredient in its proof is

Theorem 4.4, where we show that the subspace L(𝑛) ∪⋯ ∪ L(𝑛 + 𝑑) is (𝑑 + 1)-lineable but not
(𝑑 + 2)-lineable. As a complement to this, we conclude the section with the easy result that L(𝜔)
and L(𝔠) are spaceable.
The basic idea for the proof of Theorem 4.4 consists in finding certain linear combinations of

vectors in a way to suitably increase or decrease the number of accumulation points. This will
be achieved by means of the following lemmas. The first one will allow us to reduce the number
of accumulation points as much as possible; the second asserts that small perturbations can’t
decrease the number of accumulation points; the last one claims that if no linear combination of
two vectors increases the number of accumulation points, then the partitions associated to the
vectors as in Lemma 2.3 must be one finer than the other (modulo finite sets).

Lemma 4.1. Let 𝑥1, … , 𝑥𝑛 ∈ ℝ𝑛. Then there are scalars 𝑐1, … , 𝑐𝑛 ∈ ℝ, not all equal to zero, and
𝛾 ∈ ℝ such that

𝑐1𝑥1 +⋯ + 𝑐𝑛𝑥𝑛 = 𝛾(1, … , 1).

Proof. If the vectors 𝑥1, … , 𝑥𝑛 are linearly independent, their linear span is ℝ𝑛, so there exists a
linear combination that equals (1, … , 1). In the case they are linearly dependent, then there exists
a non-trivial linear combination of them that gives (0, … , 0). □

Lemma4.2. Let𝑥 ∈ 𝓁∞ be a sequencewith |L𝑥| < ∞. There is 𝜀 > 0 such that for all vectors 𝑦 ∈ 𝓁∞
with |L𝑦| < ∞ and ‖𝑦‖ < 𝜀,

|L𝑥+𝑦| ⩾ max{|L𝑥|, |L𝑦|}.
Proof. AsL𝑥 is a finite set, wemay take 𝜀 > 0 such thatL𝑥 is a 2𝜀-separated set (i.e., |𝛼 − 𝛽| ⩾ 2𝜀 for
distinct 𝛼, 𝛽 ∈ L𝑥). Now take any 𝑦 ∈ 𝓁∞ with |L𝑦| < ∞ and ‖𝑦‖ < 𝜀. According to Lemma 2.3,
we can write

𝑥 ∼𝑐0
𝜉1𝟏𝑆1 +⋯ + 𝜉𝑛𝟏𝑆𝑛 and 𝑦 ∼𝑐0

𝜂1𝟏𝑇1 +⋯ + 𝜂𝑘𝟏𝑇𝑘 .

To check that |L𝑥+𝑦| ⩾ |L𝑦| = 𝑘, fix 𝑖 ∈ {1, … , 𝑘} and take 𝑗𝑖 ∈ {1, … , 𝑛} such that 𝑇𝑖 ∩ 𝑆𝑗𝑖 is infi-
nite. Therefore, 𝜂𝑖 + 𝜉𝑗𝑖 is an accumulation point of 𝑥 + 𝑦. Hence, if by contradiction |L𝑥+𝑦| <|L𝑦| = 𝑘, theremust be distinct indices 𝑖, 𝑙 ∈ {1, … , 𝑘} such that 𝜂𝑖 + 𝜉𝑗𝑖 = 𝜂𝑙 + 𝜉𝑗𝑙 . If 𝑗𝑖 = 𝑗𝑙, we get
the absurd that 𝜂𝑖 = 𝜂𝑙. On the other hand, if 𝑗𝑖 ≠ 𝑗𝑙, then 2𝜀 ⩽ |𝜉𝑗𝑖 − 𝜉𝑗𝑙 | = |𝜂𝑖 − 𝜂𝑙| ⩽ 2‖𝑦‖ < 2𝜀,
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2290 LEONETTI et al.

a contradiction. The proof that |L𝑥+𝑦| ⩾ |L𝑥| is similar (starting with 𝑖 ∈ {1, … , 𝑛}), therefore we
omit it. □

Lemma 4.3. Assume 𝑥 ∈ L(𝑛) and 𝑦 ∈ L(𝑘) have the representation

𝑥 ∼𝑐0
𝜉1𝟏𝑆1 +⋯ + 𝜉𝑛𝟏𝑆𝑛 and 𝑦 ∼𝑐0

𝜂1𝟏𝑇1 +⋯ + 𝜂𝑘𝟏𝑇𝑘 ,

as in Lemma 2.3. Suppose also that 𝑛 ⩽ 𝑘 and that every 𝑧 ∈ span{𝑥, 𝑦} satisfies |L𝑧| ⩽ 𝑘. Then for
every 𝑖 ∈ {1, … , 𝑘}, there exists 𝑗 ∈ {1, … , 𝑛} such that 𝑇𝑖 ⊆

∗ 𝑆𝑗 .

Proof. Suppose by contradiction that there is 𝑖 ∈ {1, … , 𝑘} such that𝑇𝑖 ⊈
∗ 𝑆𝑗 for every 𝑗 ∈ {1, … , 𝑛}.

Then there are two distinct indices 𝑗1, 𝑗2 ∈ {1, … , 𝑛} such that 𝑇𝑖 ∩ 𝑆𝑗1 and 𝑇𝑖 ∩ 𝑆𝑗2 are both
infinite. According to Lemma 4.2, for sufficiently small 𝜀 > 0, (𝑥 + 𝜀𝑦)↾𝑇𝑖 has at least two accu-
mulation points (as 𝜉𝑗1 , 𝜉𝑗2 are accumulation points of 𝑥↾𝑇𝑖 ) and (𝑥 + 𝜀𝑦)↾𝜔⧵𝑇𝑖 has at least 𝑘 − 1

accumulation points (𝑦↾𝜔⧵𝑇𝑖 has 𝑘 − 1 accumulation points). Moreover, for small 𝜀 > 0, the sets
of accumulation points of the elements (𝑥 + 𝜀𝑦)↾𝑇𝑖 and (𝑥 + 𝜀𝑦)↾𝜔⧵𝑇𝑖 are disjoint. Thus, 𝑥 + 𝜀𝑦

has at least 𝑘 + 1 accumulation points, and we are done. □

We are now ready for the first main result of the section.

Theorem 4.4. Let 𝑛, 𝑑 ∈ 𝜔 be such that 𝑛 ⩾ 2. Then L(𝑛) ∪⋯ ∪ L(𝑛 + 𝑑) is (𝑑 + 1)-lineable, but
not (𝑑 + 2)-lineable.

Proof. We start by showing that L(𝑛) ∪⋯ ∪ L(𝑛 + 𝑑) is (𝑑 + 1)-lineable. We claim that there are
vectors 𝑣1, … , 𝑣𝑛+𝑑 ∈ ℝ𝑑+1 such that, for all non-zero 𝛼 ∶= (𝛼0, … , 𝛼𝑑) ∈ ℝ𝑑+1 the set {𝛼 ⋅ 𝑣𝑗}

𝑛+𝑑
𝑗=1

has cardinality at least 𝑛 (𝛼 ⋅ 𝑣𝑗 is the inner product of the vectors 𝛼 and 𝑣𝑗 in ℝ𝑑+1). As we didn’t
find a short proof of this claim, we decided to postpone its proof until Proposition 5.1. So, assuming
the validity of the claim for now, take vectors 𝑣1, … , 𝑣𝑛+𝑑 ∈ ℝ𝑑+1 as above and let (𝐵𝑗)

𝑛+𝑑
𝑗=1

be a
partition of 𝜔 into infinite sets. For 𝑘 ∈ {0, … , 𝑑}, define the vector

𝑒𝑘 ∶=

𝑛+𝑑∑
𝑗=1

𝟏𝐵𝑗𝑣𝑗(𝑘)

and let 𝑉 ∶= span{𝑒𝑘}
𝑑
𝑘=0

. As 𝑉 ⊆ span{𝟏𝐵1 , … , 𝟏𝐵𝑛+𝑑 } and the sets 𝐵𝑗 are disjoint and infinite, it
follows that every vector in𝑉 has at most 𝑛 + 𝑑 accumulation points. Thus, we only need to prove
that every non-zero vector in 𝑉 has at least 𝑛 accumulation points. Take scalars 𝛼0, … , 𝛼𝑑, not all
equal to 0, and note that

𝑑∑
𝑘=0

𝛼𝑘𝑒𝑘 =

𝑛+𝑑∑
𝑗=1

(
𝑑∑

𝑘=0

𝛼𝑘𝑣𝑗(𝑘)

)
𝟏𝐵𝑗 =

𝑛+𝑑∑
𝑗=1

𝛼 ⋅ 𝑣𝑗𝟏𝐵𝑗 .

Once more, the fact that the sets 𝐵𝑗 are disjoint and infinite yields that the accumulation points
of

∑𝑑
𝑘=0 𝛼𝑘𝑒𝑘 are exactly {

𝛼 ⋅ 𝑣𝑗
}𝑛+𝑑
𝑗=1

.

By our assumption, such a set has cardinality at least 𝑛, as desired.
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Next, we shall show that L(𝑛) ∪⋯ ∪ L(𝑛 + 𝑑) is not (𝑑 + 2)-lineable. Therefore, we fix 𝑛 ⩾ 2

and 𝑑 ∈ 𝜔 and assume, towards a contradiction, that 𝑉 is a vector space of dimension 𝑑 + 2 and
𝑉 ⊆ L(𝑛) ∪⋯ ∪ L(𝑛 + 𝑑) ∪ {0}. Define 𝑁 ∈ 𝜔 to be

𝑁 ∶= max{|L𝑥|∶ 𝑥 ∈ 𝑉};

our assumption yields that𝑁 ⩽ 𝑛 + 𝑑. Moreover, we can select 𝑒1 ∈ 𝑉 ∩ L(𝑁); hence we can find
a basis {𝑒1, 𝑒2, … , 𝑒𝑑+2} of𝑉 that contains 𝑒1. For 𝜀 > 0 sufficiently small, the vectors 𝑒𝑘 ∶= 𝑒𝑘 + 𝜀𝑒1
(𝑘 = 2,… , 𝑑 + 2) belong to L(𝑁): indeed, on the one hand, |L𝑒𝑘 | ⩾ |L𝑒1 | = 𝑁 by Lemma 4.2 and,
on the other one, |L𝑒𝑘 | ⩽ 𝑁 by definition of𝑁. Consequently, the set {𝑒1, … , 𝑒𝑑+2} forms a basis of
𝑉 and each 𝑒𝑘 belongs to L(𝑁).
Lemma 2.3 allows us to write

𝑒1 ∼𝑐0
𝜉1𝟏𝑆1 +⋯ + 𝜉𝑁𝟏𝑆𝑁 and 𝑒2 ∼𝑐0

𝜂1𝟏𝑇1 +⋯ + 𝜂𝑁𝟏𝑇𝑁 .

As every vector in the linear span of {𝑒1, 𝑒2} has at most 𝑁 accumulation points, an appeal
to Lemma 4.3 assures us that for every 𝑖 ∈ {1, … ,𝑁} there is 𝑗𝑖 ∈ {1, … ,𝑁} such that 𝑆𝑖 ⊆∗ 𝑇𝑗𝑖

.
{𝑆1, … , 𝑆𝑁} being a partition, we conclude that indeed 𝑆𝑖 =∗ 𝑇𝑗𝑖

. Up to a permutation in the repre-
sentation of 𝑒2, we can assume that 𝑆𝑖 =∗ 𝑇𝑖 for every 𝑖 ∈ {1, … ,𝑁}. If we repeat the same argument
with 𝑒1 and 𝑒𝑘 for every 𝑘 ∈ {3, … , 𝑑 + 2}, we obtain, for every 𝑘 ∈ {1, … , 𝑑 + 2}mutually distinct
scalars 𝜉1(𝑘), … , 𝜉𝑁(𝑘) such that

𝑒𝑘 ∼𝑐0
𝜉1(𝑘)𝟏𝑆1 +⋯ + 𝜉𝑁(𝑘)𝟏𝑆𝑁 .

Before we continue, let us observe that necessarily 𝑁 ⩾ 𝑑 + 2. Indeed, if not, the vec-
tors {𝜉1(𝑘)𝟏𝑆1 +⋯ + 𝜉𝑁(𝑘)𝟏𝑆𝑁 }

𝑑+2
𝑘=1

would be linearly dependent, so there would exist scalars
𝛼1, … , 𝛼𝑑+2, not all equal to zero and such that the corresponding linear combination of the
vectors {𝜉1(𝑘)𝟏𝑆1 +⋯ + 𝜉𝑁(𝑘)𝟏𝑆𝑁 }

𝑑+2
𝑘=1

would be equal to 0. Hence, 𝛼1𝑒1 +⋯ + 𝛼𝑑+2𝑒𝑑+2 ∈ 𝑐0, a
contradiction (note that the vector 𝛼1𝑒1 +⋯ + 𝛼𝑑+2𝑒𝑑+2 cannot be equal to 0, as the vectors 𝑒𝑘
are linearly independent by construction).
As 𝑁 ⩾ 𝑑 + 2, we can consider the vectors(

𝜉1(𝑘), … , 𝜉𝑑+2(𝑘)
)
∈ ℝ𝑑+2 (𝑘 ∈ {1, … , 𝑑 + 2})

and apply Lemma 4.1 to them. This yields us scalars 𝛼1, … , 𝛼𝑑+2 ∈ ℝ, not all equal to zero, and
𝛾 ∈ ℝ such that

𝑑+2∑
𝑘=1

𝛼𝑘
(
𝜉1(𝑘), … , 𝜉𝑑+2(𝑘)

)
= 𝛾(1, … , 1).

Consequently, we have

𝑑+2∑
𝑘=1

𝛼𝑘𝑒𝑘 ∼𝑐0
𝛾𝟏𝑆1∪⋯∪𝑆𝑑+2

+

(
𝑑+2∑
𝑘=1

𝛼𝑘𝜉𝑑+3(𝑘)

)
𝟏𝑆𝑑+3 +⋯ +

(
𝑑+2∑
𝑘=1

𝛼𝑘𝜉𝑁(𝑘)

)
𝟏𝑆𝑁 .

From this equation,we conclude that the non-zero vector
∑𝑑+2

𝑘=1 𝛼𝑘𝑒𝑘 (let us recall that {𝑒1, … , 𝑒𝑑+2}

is a linear basis of 𝑉) has at most (𝑁 − 𝑑 − 1) accumulation points. Finally, recalling that 𝑁 ⩽

𝑛 + 𝑑, we reach the contradiction that
∑𝑑+2

𝑘=1 𝛼𝑘𝑒𝑘 has at most (𝑛 − 1) accumulation points. □
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2292 LEONETTI et al.

As a particular case we have the following result. Note that it directly yields that the set⋃
𝑛∈𝐴 L(𝑛) is never lineable,when𝐴 is finite. Also, in case the set𝐴 is not an interval, this corollary

might fail to be sharp (see Corollary 5.7).

Corollary 4.5. Let𝐴 be a non-empty finite subset of 𝜔 such thatmin𝐴 ⩾ 2. Then
⋃

𝑛∈𝐴 L(𝑛) is not
(diam(𝐴) + 2)-lineable, where diam(𝐴) ∶= max 𝐴 −min𝐴.

We are now finally in position to pass to spaceability results. We first give the main result of
the section concerning

⋃
2⩽𝑛<𝜔 L(𝑛) and we then conclude the section with the simpler result for

L(𝜔) and L(𝔠).

Theorem 4.6.
⋃

2⩽𝑛<𝜔 L(𝑛) is not spaceable in 𝓁∞.

Proof. Towards a contradiction, assume that there is a closed, infinite-dimensional subspace 𝑌 of
𝓁∞ such that𝑌 ⊆

⋃
2⩽𝑛<𝜔 L(𝑛) ∪ {0}. According to Theorem 4.4,𝑌 is contained in

⋃
2⩽𝑛⩽𝑁 L(𝑛) ∪

{0} for no𝑁 ∈ 𝜔, so 𝑌 ∩ L(𝑛) is non-empty for infinitely many 𝑛 ∈ 𝜔. We shall build by induction
a sequence (𝜀𝑘)𝑘∈𝜔 of positive scalars with 𝜀𝑘+1 ⩽

1

2
𝜀𝑘 for every 𝑘 ∈ 𝜔, a sequence (𝑦𝑘)𝑘∈𝜔 of unit

vectors in 𝑌, and a strictly increasing sequence (𝑁𝑘)𝑘∈𝜔 of natural numbers, with the following
properties (for every 𝑘 ∈ 𝜔).

(i) 𝜀0𝑦0 +⋯ + 𝜀𝑘𝑦𝑘 ∈ L(𝑁𝑘).
(ii) 𝜀0𝑦0 +⋯ + 𝜀𝑘𝑦𝑘 + 𝑦 ∈

⋃
𝑁𝑘⩽𝑛<𝜔

L(𝑛) for every 𝑦 ∈ 𝑌 with ‖𝑦‖ ⩽ 2𝜀𝑘+1.

Indeed, to start the induction, we set 𝜀0 ∶= 1, we take any unit vector 𝑦0 ∈ 𝑌 and we set 𝑁0 ∶=|L𝑦0 |. Assuming inductively to have already found (𝜀𝑗)𝑗⩽𝑘, (𝑦𝑗)𝑗⩽𝑘 and (𝑁𝑗)𝑗⩽𝑘 as above, we apply
Lemma 4.2 to the vector 𝜀0𝑦0 +⋯ + 𝜀𝑘𝑦𝑘 and we find 𝜀𝑘+1 such that 𝜀0𝑦0 +⋯ + 𝜀𝑘𝑦𝑘 + 𝑦 has at
least max{𝑁𝑘, |L𝑦|} accumulation points for every 𝑦 ∈ 𝑌 with ‖𝑦‖ ⩽ 2𝜀𝑘+1; clearly, we can also
assume 2𝜀𝑘+1 ⩽ 𝜀𝑘. As 𝑌 ∩ L(𝑛) ≠ ∅ for infinitely many 𝑛 ∈ 𝜔, we are now in position to take
a unit vector 𝑦𝑘+1 ∈ 𝑌 with |L𝑦𝑘+1 | > 𝑁𝑘. By Lemma 4.2, the cardinality of the accumulation
points of 𝜀0𝑦0 +⋯ + 𝜀𝑘+1𝑦𝑘+1, which we denote by 𝑁𝑘+1, is greater than 𝑁𝑘. This concludes the
induction step.
Finally, as 𝑌 is closed, 𝑦 ∶=

∑∞
𝑘=0 𝜀𝑘𝑦𝑘 ∈ 𝑌. However, for every 𝑘 ∈ 𝜔 we have

‖‖‖‖‖‖
∞∑

𝑗=𝑘+1

𝜀𝑗𝑦𝑗

‖‖‖‖‖‖ ⩽

∞∑
𝑗=𝑘+1

𝜀𝑗 ⩽

∞∑
𝑗=0

2−𝑗𝜀𝑘+1 = 2𝜀𝑘+1.

Hence, if we write

𝑦 = 𝜀0𝑦0 +⋯ + 𝜀𝑘𝑦𝑘 +

∞∑
𝑗=𝑘+1

𝜀𝑗𝑦𝑗,

we see from (ii) that |L𝑦| ⩾ 𝑁𝑘. As 𝑘 ∈ 𝜔 was arbitrary and 𝑁𝑘 → ∞ when 𝑘 → ∞, we conclude
that 𝑦 ∉

⋃
2⩽𝑛<𝜔 L(𝑛), a contradiction. □

Theorem 4.7. L(𝜔) and L(𝔠) are spaceable in 𝓁∞. More precisely, L(𝜔) ∪ {0} contains 𝑐0
isometrically and L(𝔠) ∪ {0} contains 𝓁∞ isometrically.
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DENSE LINEABILITY AND SPACEABILITY IN CERTAIN SUBSETS OF 𝓁∞ 2293

Proof. We first consider the case of L(𝜔). Let (𝐴𝑛,𝑘)𝑛,𝑘∈𝜔 be a partition of 𝜔 into infinite sets and
define the vectors

𝑒𝑛 ∶=

∞∑
𝑘=0

𝑎𝑘 ⋅ 𝟏𝐴𝑛,𝑘
, (4.1)

where 𝑎𝑘 = 2−𝑘 for 𝑘 ∈ 𝜔. Each 𝑒𝑛 is a unit vector and 𝑒𝑛 ∈ L(𝜔) for each 𝑛 ∈ 𝜔. Moreover,
suppt(𝑒𝑛) =

⋃
𝑘∈𝜔 𝐴𝑛,𝑘, hence the vectors 𝑒𝑛 are disjointly supported. Thus the map (𝛼𝑛)𝑛∈𝜔 ↦∑∞

𝑛=0 𝛼𝑛𝑒𝑛 is an isometry from 𝑐0 onto𝑌 ∶= span{𝑒𝑛}𝑛∈𝜔 and each non-zero element of𝑌 belongs
to L(𝜔). Indeed, if 𝑥 ∶=

∑∞
𝑛=0 𝛼𝑛𝑒𝑛 ∈ 𝑌, then L𝑥 = {𝛼𝑛 ⋅ 𝑎𝑘}𝑛,𝑘∈𝜔 ∪ {0} (as both 𝛼𝑛 and 𝑎𝑘 tend to

0). If additionally 𝑥 ∈ 𝑌 ⧵ {0}, then some 𝛼𝑛 is non-zero, whence |L𝑥| = 𝜔, as desired.
For the case of L(𝔠), we replace the sequence 𝑎𝑘 = 2−𝑘 with an enumeration (𝑎𝑘)𝑘∈𝜔 of the

rationals in (0,1). The definition of the vectors 𝑒𝑛 is the same with the unique difference that the
series defining 𝑒𝑛 only converges in the pointwise topology. Now the subspace 𝑌 is defined as

𝑌 ∶=

{
∞∑
𝑛=1

𝛼𝑛𝑒𝑛 ∶ (𝛼𝑛)𝑛∈𝜔 ∈ 𝓁∞

}

(where, as before, the series converges pointwise). As the vectors 𝑒𝑛 are disjointly supported unit
vectors, the map (𝛼𝑛)𝑛∈𝜔 ↦

∑∞
𝑛=1 𝛼𝑛𝑒𝑛 defines an isometry of 𝓁∞ onto 𝑌. Finally, as before, we

see that 𝑌 ⧵ {0} ⊆ L(𝔠), as here L𝑒𝑛 = [0, 1]. □

5 FINER LINEABILITY RESULTS

In this section, we delve deeper into lineability results for the set
⋃

𝑛∈𝐴 L(𝑛), where 𝐴 is a (finite)
subset of 𝜔 such that min𝐴 ⩾ 2. In the first result we prove Proposition 5.1, whose validity was
claimed during the proof of Theorem 4.4. Next, we give some results that show how more com-
plicated the situation is when𝐴 is not an interval. In particular, there are infinite sets𝐴 such that⋃

𝑛∈𝐴 L(𝑛) is not 2-lineable (Corollary 5.8) and, on the other hand, there are sets 𝐴 that do not
contain non-trivial intervals and such that

⋃
𝑛∈𝐴 L(𝑛) is 𝔠-lineable (Theorem 5.9).

Proposition 5.1. Let 𝑛, 𝑑 ∈ 𝜔 with 𝑛 ⩾ 1. Then there are vectors {𝑣1, … , 𝑣𝑛+𝑑} ∈ ℝ𝑑+1 such that,
for all non-zero 𝛼 ∶= (𝛼0, … , 𝛼𝑑) ∈ ℝ𝑑+1, the set {𝛼 ⋅ 𝑣𝑘}

𝑛+𝑑
𝑘=1

has cardinality at least 𝑛.

We recall that we indicate by 𝛼 ⋅ 𝑣 the inner product of the vectors 𝛼, 𝑣 ∈ ℝ𝑑+1. Note that, by
Lemma 4.1, there is a non-zero𝛼 ∶= (𝛼0, … , 𝛼𝑑) ∈ ℝ𝑑+1 such that {𝛼 ⋅ 𝑣𝑘}

𝑑+1
𝑘=1

is a singleton.Hence,
for such 𝛼 the set {𝛼 ⋅ 𝑣𝑘}

𝑛+𝑑
𝑘=1

has cardinality at most 𝑛, so the above result is sharp.

Proof. The result is trivial for 𝑛 = 1, thus we assume that 𝑛 ⩾ 2. We begin by introducing a piece
of notation. Assume that  = {𝑣1, … , 𝑣𝑘} (where 𝑘 ⩾ 1) are vectors in ℝ𝑑+1 and {1, … ,𝑛−1} is a
partition of in exactly 𝑛 − 1, possibly empty, sets. For every 𝑗 ∈ {1, … , 𝑛 − 1} such that𝑗 is non-
empty we define a vector 𝑤𝑗 ∈ 𝑗 to be 𝑤𝑗 ∶= 𝑣𝑖 , where 𝑖 is the least index with 𝑣𝑖 ∈ 𝑗 . Roughly
speaking, 𝑤𝑗 is the ‘first’ vector in 𝑗 . Moreover, we define sets

𝑗 ∶=
{
𝑣 − 𝑤𝑗 ∶ 𝑣 ∈ 𝑗 ⧵ {𝑤𝑗}

}
, when 𝑗 ≠ ∅
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2294 LEONETTI et al.

and 𝑗 = ∅ otherwise. Finally, we say that the set  = {𝑣1, … , 𝑣𝑘} has the many increments
property (MIP, for short) if for every partition𝒱 = {1, … ,𝑛−1} of  :

(MIP1) the sets {𝑗}
𝑛−1
𝑗=1

are pairwise disjoint, and
(MIP2) setting ∶=

⋃𝑛−1
𝑗=1 𝑗 , span has dimension at leastmin{||, 𝑑 + 1}.

Claim 5.2. There exists a family  = {𝑣1, … , 𝑣𝑛+𝑑} ⊆ ℝ𝑑+1 consisting of mutually distinct vectors
and having property (MIP).

Assuming the claim for now, let us show that a family as in the claim also verifies the conclusion
of the proposition. In fact, given such a  , for any partition𝒱 = {1, … ,𝑛−1} of  , the above set
 satisfies span() = ℝ𝑑+1. Indeed, by (MIP1)

|| = 𝑛−1∑
𝑗=1

|||𝑗
||| ⩾ 𝑛−1∑

𝑗=1

(|𝑗| − 1) = || − (𝑛 − 1) = 𝑑 + 1.

So, span() has dimension 𝑑 + 1 by (MIP2). Suppose now that 𝛼 ∶= (𝛼0, … , 𝛼𝑑) ∈ ℝ𝑑+1 is such
that {𝛼 ⋅ 𝑣𝑘}

𝑛+𝑑
𝑘=1

has cardinality at most 𝑛 − 1. Then there is a partition {1, … ,𝑛−1} of  such that
{𝛼 ⋅ 𝑣∶ 𝑣 ∈ 𝑗} is at most a singleton for every 𝑗 ∈ {1, … , 𝑛 − 1} (in order to have exactly 𝑛 − 1

elements in the partition, some 𝑗 might be empty). But this means that

𝛼 ⋅ (𝑣 − 𝑤𝑗) = 0 for all 𝑗 such that 𝑗 ≠ ∅ and all 𝑣 ∈ 𝑗 ⧵ {𝑤𝑗}.

In other words, 𝛼 is orthogonal to all the vectors in  . Therefore, 𝛼 is orthogonal to span(),
which by our construction is equal to ℝ𝑑+1; thus 𝛼 = 0, as desired.
Therefore, we only need to prove Claim 5.2 and we build the vectors {𝑣1, … , 𝑣𝑛+𝑑} recursively

(recall that 𝑛 and 𝑑 are fixed). Set 𝑣1 ∶= 0 and note that, up to relabelling, the unique partition
{1, … ,𝑛−1} of {𝑣1} is given by 1 = {𝑣1} and 2 = ⋯ = 𝑛−1 = ∅. Hence, 𝑗 = ∅ for every 𝑗,
so the singleton {𝑣1} satisfies (MIP). Suppose now that, for some 𝑘 ⩽ 𝑛 + 𝑑 − 1, we have already
found vectors {𝑣1, … , 𝑣𝑘} satisfying property (MIP).We now look for conditions on 𝑣𝑘+1 so that the
property (MIP) holds also for {𝑣1, … , 𝑣𝑘+1}. First of all, we need 𝑣𝑘+1 ∉ {𝑣1, … , 𝑣𝑘}. Next, assume
that𝒱 = {1, … ,𝑛−1} is a partition of {𝑣1, … , 𝑣𝑘+1} and, up to relabelling the indices of the par-
tition, that 𝑣𝑘+1 ∈ 𝑛−1. If 𝑛−1 = {𝑣𝑘+1}, then 𝑛−1 = ∅, so (MIP1) and (MIP2) are satisfied
because of the inductive assumption applied to the partition {1, … ,𝑛−2, ∅} of {𝑣1, … , 𝑣𝑘}.
Therefore, we assume that 𝑛−1 is not a singleton, whence 𝑤𝑛−1 ≠ 𝑣𝑘+1, by definition of 𝑤𝑛−1.

To satisfy condition (MIP1) for the partition𝒱, the vector 𝑣𝑘+1 − 𝑤𝑛−1 should not belong to𝑗 for
every 𝑗 ∈ {1, … , 𝑛 − 2}. As there are only finitely many partitions {1, … ,𝑛−1} of {𝑣1, … , 𝑣𝑘+1}, we
conclude that 𝑣𝑘+1must be chosen outside a finite subset ofℝ𝑑+1. To verify (MIP2), we distinguish
two cases. If the vectors in

∗ ∶=

𝑛−2⋃
𝑗=1

𝑗 ∪
{
𝑣 − 𝑤𝑛−1 ∶ 𝑣 ∈ 𝑛−1 ⧵ {𝑤𝑛−1, 𝑣𝑘+1}

}
(5.1)

are at least 𝑑 + 1 in number, then their linear span has dimension at least 𝑑 + 1, by the (MIP2)
property of {𝑣1, … , 𝑣𝑘}. A fortiori, span has dimension at least 𝑑 + 1, so no condition is imposed
on 𝑣𝑘+1.
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DENSE LINEABILITY AND SPACEABILITY IN CERTAIN SUBSETS OF 𝓁∞ 2295

Otherwise, suppose that ∗ has cardinality at most 𝑑. Therefore, the linear span of ∗ is a
proper subspace 𝐻 of ℝ𝑑+1, of dimension exactly |∗| by (MIP2). Moreover, = ∗ ∪ {𝑣𝑘+1 −

𝑤𝑛−1}. Hence, the vectors {𝑣1, … , 𝑣𝑘+1} satisfy (MIP2) if and only if 𝑣𝑘+1 − 𝑤𝑛−1 is linearly inde-
pendent from𝐻. In other words, if and only if 𝑣𝑘+1 does not belong to the proper affine subspace
𝑤𝑛−1 + 𝐻. Consequently, as there are only finitely many partitions {1, … ,𝑛−1} of {𝑣1, … , 𝑣𝑘+1},
then the vector 𝑣𝑘+1 must be chosen outside finitely many proper affine subspaces of ℝ𝑑+1. This
yields that it is possible to select 𝑣𝑘+1 ∉ {𝑣1, … , 𝑣𝑘} such that {𝑣1, … , 𝑣𝑘+1} satisfies property (MIP)
and concludes the proof. □

For the second part of the section, it will be convenient to introduce the following notation. For
each non-empty set 𝐴 ⊆ 𝜔 withmin𝐴 ⩾ 2, define

𝓁(𝐴) ∶= sup

{
𝑚 ∈ 𝜔∶

⋃
𝑛∈𝐴

L(𝑛) is𝑚-lineable

}
.

Note that Theorem 4.4 can be equivalently rewritten as 𝓁(𝐴) = |𝐴| whenever 𝐴 ⊆ 𝜔 is a finite
non-empty interval withmin𝐴 ⩾ 2. The same theorem also implies

𝓁(𝐴) ⩾ sup{|𝐼|∶ 𝐼 ⊆ 𝐴 is an interval} (5.2)

whenever 𝐴 ⊆ 𝜔 is a non-empty set withmin𝐴 ⩾ 2. We will see in the forthcoming results that,
when𝐴 is not an interval, the inequality (5.2) can be very far from being sharp. Indeed, wewill see
in Theorem 5.9 that there exist sets 𝐴 with 𝓁(𝐴) = ∞ and which contain no non-trivial intervals.
Before this, we prove the existence of infinite sets 𝐴 such that 𝓁(𝐴) = 1 (see Corollary 5.8).

Lemma 5.3. Fix vectors 𝑥 ∈ L(𝑛) and 𝑦 ∈ L(𝑘), for some 𝑛, 𝑘 ∈ 𝜔, with representations

𝑥 ∼𝑐0
𝜉1𝟏𝑆1 +⋯ + 𝜉𝑛𝟏𝑆𝑛 and 𝑦 ∼𝑐0

𝜂1𝟏𝑇1 +⋯ + 𝜂𝑘𝟏𝑇𝑘 ,

respectively, as in Lemma 2.3. Define

 ∶=
{
(𝑖, 𝑗) ∈ {1, … , 𝑛} × {1, … , 𝑘}∶ 𝑆𝑖 ∩ 𝑇𝑗 is infinite

}
and suppose that the points in

 ∶=
{
(𝜉𝑖, 𝜂𝑗)∶ (𝑖, 𝑗) ∈ 

}
are not collinear. Then there is 𝑧 ∈ span{𝑥, 𝑦} such that⌊|| + 1

2

⌋
⩽ |L𝑧| ⩽ || − 1.

Proof. We begin with the following combinatorial observation. Let  be a set of𝑚 non-collinear
points in the plane. Then there exists a line 𝓁, determined by at least two points in  , such that if
ℒ is a set of parallel lines to 𝓁 and  ⊆ ℒ, then |ℒ| ⩾ ⌊𝑚+1

2
⌋. Indeed, according to [23], there are

a line 𝓁, determined by at least two points of , and ⌊𝑚−1

2
⌋ points in whose distances from 𝓁 are
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2296 LEONETTI et al.

positive and mutually distinct (see the first sentence in [23, Section 2]). Such points necessarily
belong to mutually distinct lines fromℒ ⧵ {𝓁}, so |ℒ| ⩾ ⌊𝑚−1

2
⌋ + 1 = ⌊𝑚+1

2
⌋.

Now let  ∶= {(𝜉𝑖, 𝜂𝑗)∶ (𝑖, 𝑗) ∈ } and note that || = ||, as the 𝜉𝑖 ’s and the 𝜂𝑗 ’s are mutually
distinct. Let 𝓁 be a line as in the observation above; then there are scalars 𝛼, 𝛽, 𝛾 ∈ ℝ such that
𝓁 = {(𝜉, 𝜂) ∈ ℝ2 ∶ 𝛼𝜉 + 𝛽𝜂 = 𝛾}. Therefore,⌊|| + 1

2

⌋
⩽ ||{𝛼𝜉𝑖 + 𝛽𝜂𝑗 ∶ (𝑖, 𝑗) ∈ 

}|| ⩽ || − 1,

the right-hand side inequality being true because two distinct points of  belong to 𝓁. The
conclusion follows observing that L𝛼𝑥+𝛽𝑦 = {𝛼𝜉𝑖 + 𝛽𝜂𝑗 ∶ (𝑖, 𝑗) ∈ }. □

Proposition 5.4. Fix a non-empty finite set 𝐴 ⊆ 𝜔 with min𝐴 ⩾ 2 and fix 𝑘 ∈ 𝜔 such that 𝑘 >

2max 𝐴. Then 𝓁(𝐴 ∪ {𝑘}) = 𝓁(𝐴).

Proof. Assume, towards a contradiction, that 𝓁(𝐴) < 𝓁(𝐴 ∪ {𝑘}) and take a subspace 𝑉 of⋃
𝑖∈𝐴∪{𝑘} L(𝑖) ∪ {0} of dimension 𝓁(𝐴) + 1. By definition of 𝓁(𝐴), there exists a vector 𝑦 ∈ 𝑉 ∩

L(𝑘). Moreover, as 𝓁(𝐴) + 1 ⩾ 2 and L(𝑘) is not 2-lineable by Theorem 4.4, we can take a vector
𝑥 ∈ 𝑉 such that |L𝑥| ∈ 𝐴. Hence, letting𝑀 ∶= max 𝐴, we have |L𝑥| ⩽ 𝑀. Thanks to Lemma 2.3,
we have the representations

𝑥 ∼𝑐0
𝜉1𝟏𝑆1 +⋯ + 𝜉𝑛𝟏𝑆𝑛 and 𝑦 ∼𝑐0

𝜂1𝟏𝑇1 +⋯ + 𝜂𝑘𝟏𝑇𝑘

(here 𝑛 ∶= |L𝑥| ⩽ 𝑀).
Consider the sets  and  corresponding to 𝑥 and 𝑦 as in the statement of Lemma 5.3. If all

points in  belong to the same line {(𝜉, 𝜂) ∈ ℝ2 ∶ 𝛼𝜉 + 𝛽𝜂 = 𝛾}, then the sequence 𝛼𝑥 + 𝛽𝑦 ∈ 𝑉

would be convergent to 𝛾, a contradiction. Hence, the points of  are not collinear. Moreover, by
our assumption on 𝑉, every linear combination of 𝑥 and 𝑦 has at most 𝑘 accumulation points.
Thus, by Lemma 4.3, there exists a partition {𝐼1, … , 𝐼𝑛} of {1, … , 𝑘} such that 𝑆𝑗 =∗ ⋃

𝑖∈𝐼𝑗
𝑇𝑖 for

𝑗 ∈ {1, … , 𝑛}. This assures us that || = 𝑘. Therefore, we can apply Lemma 5.3 and we obtain the
existence of a vector 𝑧 ∈ span{𝑥, 𝑦} such that⌊

𝑘 + 1

2

⌋
⩽ |L𝑧| ⩽ 𝑘 − 1.

However, the assumption 𝑘 > 2max 𝐴 implies ⌊𝑘+1
2
⌋ > max 𝐴, so L𝑧 ∉ 𝐴 ∪ {𝑘}, a contradiction

with the fact that span{𝑥, 𝑦} ⊆ 𝑉 ⊆
⋃

𝑖∈𝐴∪{𝑘} L(𝑖) ∪ {0}. □

Remark 5.5. The above proof shows that, if𝐴 and 𝑘 are as in the statement of Proposition 5.4, then
every vector space contained in

⋃
𝑛∈𝐴∪{𝑘} L(𝑛) ∪ {0} and of dimension at least 2 does not intersect

L(𝑘). This is not true anymore if 𝐴 and 𝑘 don’t satisfy the condition of the proposition, as the
following example shows.

Example 5.6. For each integer 𝑛 ⩾ 2, set 𝐴𝑛 ∶= {𝑛, 𝑛 + 1, 2𝑛} and take vectors 𝑥, 𝑦 ∈ L(2𝑛) with

𝑥 ∼𝑐0
𝜉1𝟏𝑆1 +⋯ + 𝜉2𝑛𝟏𝑆2𝑛 and 𝑦 ∼𝑐0

𝜂1𝟏𝑆1 +⋯ + 𝜂2𝑛𝟏𝑆2𝑛 ,
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DENSE LINEABILITY AND SPACEABILITY IN CERTAIN SUBSETS OF 𝓁∞ 2297

where {𝑆1, … , 𝑆2𝑛} is a partition of 𝜔 into infinite sets. Further, the two families of distinct scalars
{𝜉1, … , 𝜉2𝑛} and {𝜂1, … , 𝜂2𝑛} are chosen so that, if 𝑃𝑗 ∶= (𝜉𝑗, 𝜂𝑗), then  = {𝑃1, … , 𝑃2𝑛} are the ver-
tices of a regular polygon with 2𝑛 edges labelled in the clockwise order. Then 𝑉 ∶= span{𝑥, 𝑦} is
a 2-dimensional vector space such that 𝑉 ⊆

⋃
𝑘∈𝐴𝑛

L(𝑘) ∪ {0} and 𝑉 ∩ L(𝑘) ≠ ∅ for each 𝑘 ∈ 𝐴𝑛.
Indeed, if ℒ is a set of parallel lines such that  ⊆ ℒ and every line in ℒ contains a point of
 , then there are three cases. If every line in ℒ only contains one point of  , then |ℒ| = 2𝑛; if
one line inℒ contains 𝑃1 and 𝑃2, then |ℒ| = 𝑛; finally, if one line inℒ contains 𝑃1 and 𝑃3, then|ℒ| = 𝑛 + 1. We omit the elementary geometric considerations required to prove that there only
are these three cases (and we advise the reader to draw a picture).

We now give two examples of consequences of the above result. The first one implies in
particular that, if 𝐴 is not an interval, Corollary 4.5 might not be sharp:

Corollary 5.7. Let 𝑛, 𝑘 ∈ 𝜔 be such that 𝑛 ⩾ 2 and 𝑘 > 2𝑛. Then L(𝑛) ∪ L(𝑘) is not 2-lineable.

Proof. We have 𝓁({𝑛}) = 1 by Theorem 4.4. As 𝑘 > 2𝑛, we conclude by Proposition 5.4 that
𝓁({𝑛, 𝑘}) = 𝓁({𝑛}) = 1. □

By iteration of the above argument, we readily obtain the following result. It implies in
particular that

⋃
2⩽𝑛<𝜔 L(𝑛!) and

⋃
1⩽𝑛<𝜔 L(3

𝑛) are not 2-lineable.

Corollary 5.8. Let (𝑎𝑛)𝑛∈𝜔 be an increasing sequence in 𝜔 such that 𝑎0 ⩾ 2 and 𝑎𝑛+1 > 2𝑎𝑛 for all
𝑛 ∈ 𝜔. Then

⋃
𝑛∈𝜔 L(𝑎𝑛) is not 2-lineable.

Proof. Applying inductively Proposition 5.4 to {𝑎0, … , 𝑎𝑛} and 𝑎𝑛+1 we obtain that
⋃

𝑘⩽𝑁 L(𝑎𝑘) is
not 2-lineable for every𝑁 ∈ 𝜔. If there exists a 2-dimensional vector space 𝑉 ⊆

⋃
𝑘∈𝜔 L(𝑎𝑘) ∪ {0},

then, by Lemma 2.2, 𝑉 ⊆
⋃

𝑘⩽𝑁 L(𝑎𝑘) ∪ {0} for some 𝑁, a contradiction. □

These type of results and (5.2) might lead one to conjecture that 𝓁(𝐴) could be large only
if 𝐴 contains large intervals. The last result of the section gives a strong negative answer to
this conjecture. In particular, it follows that the inequality (5.2) is not sharp, even if 𝐴 is
finite.

Theorem 5.9.
⋃

1⩽𝑛<𝜔 L(2𝑛 + 1) is 𝔠-lineable.

Proof. Let 𝒜 ∶= {𝐴𝑒
𝛾 ∶ 𝑒 ∈ {−1, 0, 1}, 𝛾 ∈ 𝔠} ⊆ (𝜔) be such that {𝐴−1

𝛾 , 𝐴0
𝛾, 𝐴

1
𝛾} is a partition of 𝜔

for each 𝛾 ∈ 𝔠 and

𝐴
𝑒1
𝛾1
∩⋯ ∩ 𝐴

𝑒𝑘
𝛾𝑘
is an infinite set

for all 𝑘 ⩾ 1, all distinct 𝛾1, … , 𝛾𝑘 ∈ 𝔠 and all 𝑒 = (𝑒𝑗)
𝑘
𝑗=1

∈ {−1, 0, 1}𝑘. Let us observe that the exis-
tence of such a family𝒜 follows similarly as the existence of independent families (see, e.g., [22,
Example 2, p. 10]). Indeed, the set ℚ[𝑥] of polynomials with rational coefficients is countable,
hence we can construct 𝒜 as a subset of (ℚ[𝑥]). Therefore, it is sufficient to define, for each
𝛾 ∈ ℝ, 𝐴−1

𝛾 ∶= {𝑝 ∈ 𝑃∶ 𝑝(𝛾) ⩽ −1}, 𝐴0
𝛾 ∶= {𝑝 ∈ 𝑃∶ |𝑝(𝛾)| < 1} and 𝐴1

𝛾 ∶= {𝑝 ∈ 𝑃∶ 𝑝(𝛾) ⩾ 1}.
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2298 LEONETTI et al.

At this point, for each 𝛾 ∈ 𝔠, define the vector

𝑥𝛾 ∶= 𝟏𝐴1
𝛾
− 𝟏𝐴−1

𝛾
(5.3)

and set 𝑉 ∶= span{𝑥𝛾 ∶ 𝛾 ∈ 𝔠}. We claim that each non-zero 𝑧 ∈ 𝑉 is a non-convergent sequence
with an odd number of accumulation points. To this aim, suppose that 𝑧 =

∑𝑘
𝑗=1 𝛼𝑗𝑥𝛾𝑗 for some

non-zero 𝛼1, … , 𝛼𝑘 ∈ ℝ and some distinct 𝛾1, … , 𝛾𝑘 ∈ 𝔠.
Note that

L𝑧 =

{
𝑘∑

𝑗=1

𝛼𝑗𝑒𝑗 ∶ 𝑒 = (𝑒𝑗)
𝑘
𝑗=1 ∈ {−1, 0, 1}𝑘

}
.

As −𝑒 ∈ {−1, 0, 1}𝑘 whenever 𝑒 ∈ {−1, 0, 1}𝑘, we obtain that L𝑧 = −L𝑧. Moreover, setting 𝑒 =

(𝑒1, 0, … , 0) with 𝑒1 ∈ {−1, 0, 1}, we get that 𝛼1 ⋅ {−1, 0, 1} ⊆ L𝑧. Hence, |L𝑧| ⩾ 3 and 0 ∈ L𝑧.
Combining this with L𝑧 = −L𝑧, the result follows. □

Remark 5.10. The same argument as above, paired with Lemma 2.2, proves that span{𝑥0, 𝑥1} is a
2-dimensional vector space contained in

⋃
𝑛∈𝐴 L(𝑛) ∪ {0}, where 𝐴 ∶= {3, 5, 7, 9} and the vectors

𝑥𝑖 are defined as in (5.3). Therefore, 𝓁({3, 5, 7, 9}) ⩾ 2.

6 FINAL REMARKS

In this last section, we collect some observations concerning possible improvements of the results
presented in our paper. Let us start with one comment concerning maximal lineability. A sub-
set 𝑀 of a vector space 𝑋 is maximal lineable if 𝑀 ∪ {0} contains a linear subspace 𝑉 such that
dim(𝑉) = dim(𝑋). Clearly, every dense subspace 𝑉 of 𝓁∞ satisfies dim(𝑉) = 𝔠, merely because
dim(𝓁∞) = dens(𝓁∞) = 𝔠. Consequently, all our results concerning dense lineability in 𝓁∞ auto-
matically are ‘maximal dense lineability’ results (note that the situation is different if the Banach
space 𝑋 is separable, as maximal lineability would require finding a subspace of dimension
continuum, while a dense subspace might have countable dimension).

6.1 Ideal convergence

Next, we discuss extensions of our results to the setting of ideal convergence. Recall that an ideal 
on𝜔 is a proper subfamily of(𝜔) that is closed under subsets and finite unions and that contains
all singletons of 𝜔. We denote by Fin the ideal of finite sets; hence Fin ⊆  for every ideal . For
each sequence 𝑥 ∈ 𝓁∞, let Γ𝑥() be the set of its -cluster points, that is, the set of all 𝜂 ∈ ℝ such
that {𝑛 ∈ 𝜔∶ |𝑥(𝑛) − 𝜂| < 𝜀} ∉  for all 𝜀 > 0. It is easy to see each Γ𝑥() is non-empty, closed and
contained in L𝑥 = Γ𝑥(Fin). Given a cardinal 𝜅, define the set

Γ(, 𝜅) ∶= {𝑥 ∈ 𝓁∞∶ |Γ𝑥()| = 𝜅}.

Hence, Γ(Fin, 𝜅) = L(𝜅) for all 𝜅 and Γ(, 𝜅) = ∅ for uncountable 𝜅 < 𝔠.
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DENSE LINEABILITY AND SPACEABILITY IN CERTAIN SUBSETS OF 𝓁∞ 2299

Let  be an ideal on𝜔 such that there are disjoint subsets (𝐵𝑗)𝑗∈𝜔 of𝜔with 𝐵𝑗 ∉  for every 𝑗 ∈
𝜔. We stress here that this condition is satisfied by a large class of ideals. Besides the case  = Fin,
it holds for all meagre ideals, as it readily follows from a classical characterisation ofmeagre filters
due to Talagrand [26, Theorem 21], see also [4, Theorem 4.1.2].Moreover, this condition is satisfied
by all ideals that do not contain any isomorphic copy of amaximal ideal. Then,minimal variations
in the proofs of Theorem 3.4, Remark 3.5 and Theorem 4.7 give that both Γ(, 𝜔) and Γ(, 𝔠) are
densely lineable in 𝓁∞ and spaceable. We chose to state our main results only for  = Fin for the
sake of clarity of the exposition, but we now quickly discuss how to prove the more general case.
The spaceability results are obtained from Theorem 4.7 by using a partition (𝐴𝑗,𝑘)𝑗,𝑘∈𝜔 such

that 𝐴𝑗,𝑘 ∉ . The dense lineability of Γ(, 𝜔) in 𝓁∞ follows from the very same argument as in
Theorem 3.4, using again a partition (𝐵𝑗)𝑗∈𝜔 such that 𝐵𝑗 ∉ . Note that 𝑋 ∶=

⋃
𝜅⩽𝜔 Γ(, 𝜅) and

𝑌 ∶=
⋃

𝜅<𝜔 Γ(, 𝜅) are still vector spaces, due to the standard fact that

Γ𝑥+𝑦() ⊆ Γ𝑥() + Γ𝑦() (6.1)

(which readily follows, for example, from [7, Chapter I, Section 7, no. 3, Proposition 8]). For the
dense lineability of Γ(, 𝔠) in 𝓁∞, we need sequences 𝑟𝑗 ∶ 𝜔 → (0, 1) with suppt(𝑟𝑗) = 𝐵𝑗 and
Γ𝑟𝑗 () = [0, 1]. For this, take disjoint sets (𝐴𝑗,𝑘)𝑗,𝑘∈𝜔 with 𝐴𝑗,𝑘 ∉  and define 𝐵𝑗 ∶= ∪𝑘∈𝜔𝐴𝑗,𝑘.
Then, let (𝑞𝑘)𝑘∈𝜔 be an enumeration of ℚ ∩ (0, 1) and define 𝑟𝑗 to be equal to 𝑞𝑘 on 𝐴𝑘 (𝑘 ∈ 𝜔)
and 0 elsewhere. The same argument as in Remark 3.5, using again (6.1), gives the result.
Finally, we can also modify the proof of Theorem 3.6 to prove that

⋃
2⩽𝑛<𝜔 Γ(, 𝑛) is densely

lineable in 𝓁∞, for the same class of ideals. Indeed, let (𝐵𝑗)𝑗 ∈ 𝜔 be a partition of𝜔 as above and let
ℐ be an independent family on 𝜔 of cardinality 𝔠. For𝐴 ∈ ℐ define 𝐵𝐴 ∶=

⋃
𝑗∈𝐴 𝐵𝑗 and let𝒥 ∶=

{𝐵𝐴 ∶ 𝐴 ∈ ℐ}. Then𝑉 ∶= span{𝟏𝐵 ∶ 𝐵 ∈ 𝒥} is a vector space of dimension 𝔠, every vector in𝑉 has
finitelymany-cluster points, and𝑉 ∩ Γ(, 1) = {0}. To prove the last assertion, let𝐷0,… , 𝐷𝑁 ∈ 𝒥
and non-zero scalars 𝑑0, … , 𝑑𝑁 ∈ ℝ. By definition, the sets

𝐷0 ⧵ (𝐷1 ∪⋯ ∪ 𝐷𝑁) and 𝜔 ⧵ (𝐷0 ∪⋯ ∪ 𝐷𝑁)

do not belong to . Hence,
∑𝑁

𝑗=0 𝑑𝑗𝟏𝐷𝑗
attains the values 𝑑0 and 0 on sets that do not belong to ,

thus it is not -convergent.

6.2 ℝ𝝎 and pointwise convergence

Although all the paper remained in the realm of Banach spaces, we only used little Banach space
theoretic structure of 𝓁∞. Therefore, it is natural to ask whether similar results can be true if
we replace 𝓁∞ with the larger space ℝ𝜔 of all scalar sequences. For a sequence (𝑥(𝑛))𝑛∈𝜔 ∈ ℝ𝜔,
the set L𝑥 of accumulation points of 𝑥 is now defined as a subset of ℝ ∪ {±∞} (if a subsequence
of (𝑥(𝑛))𝑛∈𝜔 diverges to ±∞, ±∞ is considered to be an accumulation point of the sequence).
The definition of L(𝜅) is also modified accordingly; for example, every sequence (𝑥(𝑛))𝑛∈𝜔 that
diverges to∞ belongs to L(1).

ℝ𝜔 is a separable, completelymetrisable topological vector spacewhen endowedwith the point-
wise topology. (Throughout all the subsection, we always endowℝ𝜔 with the pointwise topology.)
In addition, 𝑐00 (and, hence, 𝓁∞) is dense in ℝ𝜔. Therefore, our results immediately imply that
L(𝔠), L(𝜔) and

⋃
2⩽𝑛<𝜔 L(𝑛) are densely lineable inℝ𝜔. Note, on the other hand, that the results for
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2300 LEONETTI et al.

𝓁∞ are stronger, as the norm topology is substantially finer than the pointwise one; in particular,
there is no obvious way to recover the results for 𝓁∞ from the corresponding one for ℝ𝜔.
As regards spaceability, the same argument as in Theorem 4.7 shows that L(𝔠) is spaceable in

ℝ𝜔. Indeed, if𝑌 ∶= span{𝑒𝑛}𝑛∈𝜔, where 𝑒𝑛 is as in (4.1) and the closure is in the pointwise topology,
then

𝑌 =

{
∞∑
𝑛=0

∞∑
𝑘=0

𝛼𝑛𝑎𝑘 ⋅ 𝟏𝐴𝑛,𝑘
∶ (𝛼𝑛)𝑛∈𝜔 ∈ ℝ𝜔

}

(here, the above series converge in the pointwise topology). Hence, if 𝑥 ∈ 𝑌 ⧵ {0}, write 𝑥 ∶=∑∞
𝑛=0

∑∞
𝑘=0 𝛼𝑛𝑎𝑘 ⋅ 𝟏𝐴𝑛,𝑘

and take 𝑛 ∈ 𝜔 with 𝛼𝑛 ≠ 0; thus 𝛼𝑛 ⋅ [0, 1] ⊆ L𝑥.
On the other hand, the above argument does not extend to prove that L(𝜔) is spaceable in ℝ𝜔

(because the sequence (𝛼𝑛)𝑛∈𝜔 ∈ ℝ𝜔 can create uncountably many accumulation points). Inter-
estingly, it turns out that, differently from Theorem 4.7, L(𝜔) is not spaceable in ℝ𝜔. In the next
theorem, we actually prove a more general result.

Theorem 6.1. For every closed infinite-dimensional subspace 𝑌 of ℝ𝜔 there is 𝑥 ∈ 𝑌 such that
L𝑥 = ℝ ∪ {±∞}. In particular,

⋃
𝜅⩽𝜔 L(𝜅) is not spaceable in ℝ𝜔.

Let us remark that, aside implying the non spaceability of L(𝜔), the result implies that also⋃
2⩽𝑛<𝜔 L(𝑛) is not spaceable in ℝ𝜔.

Proof. Notice that {𝑥 ∈ 𝑌∶ 𝑛 ⩽ min(suppt(𝑥))} has finite codimension in 𝑌 for every 𝑛 ∈ 𝜔.
Hence, by the fact that 𝑌 is infinite-dimensional, we can find a sequence (𝑥𝑛)𝑛∈𝜔 of non-zero
vectors of 𝑌 such that the sequence 𝑠𝑛 ∶= min(suppt(𝑥𝑛)) is strictly increasing. Then, let (𝑞𝑛)𝑛∈𝜔
be an enumeration of ℚ. Take (𝛼(𝑛))𝑛∈𝜔 ∈ ℝ𝜔 that solves the following system of equations:

𝑘∑
𝑗=0

𝛼(𝑗)𝑥𝑗(𝑠𝑘) = 𝑞𝑘 (𝑘 ∈ 𝜔).

Such a system can indeed be solved recursively, using the fact that 𝑥𝑘(𝑠𝑘) ≠ 0 for every 𝑘 ∈ 𝜔. We
are now in position to define the vectors

𝑢𝑘 ∶=

𝑘∑
𝑗=0

𝛼(𝑗)𝑥𝑗 ∈ 𝑌 and 𝑢 ∶=

∞∑
𝑗=0

𝛼(𝑗)𝑥𝑗.

Note that the series defining 𝑢 converges pointwise, due to the assumption that (𝑠𝑛)𝑛∈𝜔 is strictly
increasing. By the same reason, we also conclude that 𝑢𝑘 → 𝑢 pointwise, hence 𝑢 ∈ 𝑌. However,
𝑢(𝑠𝑘) = 𝑞𝑘 for every 𝑘 ∈ 𝜔, hence L𝑢 = ℝ ∪ {±∞}. □

6.3 Further research

In conclusion of our presentation, we shall highlight some directions for possible further research
that seem natural in light of the results presented. Concerning spaceability, recall that the two
closed subspaces that we constructed in Theorem 4.7, contained in L(𝜔) ∪ {0} and L(𝔠) ∪ {0}, are
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isometric to 𝑐0 and 𝓁∞, respectively. It would be interesting to knowwhether it is possible to build
a non-separable closed subspace also in the case of L(𝜔).

Problem 6.2. Does L(𝜔) ∪ {0} contain a closed non-separable subspace? Does it contain an
isometric copy of 𝓁∞? The same questions could be asked for

⋃
𝜅⩽𝜔 L(𝜅).

Another possible direction of investigation could consist in digging deeper in the linear struc-
ture of the sets

⋃
𝑛∈𝐴 L(𝑛), where𝐴 ⊆ 𝜔 andmin𝐴 ⩾ 2. In Theorem4.4, we gave a complete result

in the case when 𝐴 is an interval of the form {𝑛, 𝑛 + 1,… , 𝑛 + 𝑑}. On the other hand, we saw in
Section 5 that when𝐴 is not an interval the situation is less clear. For example, it is quite conceiv-
able that the assumption 𝑘 > 2max 𝐴 in Proposition 5.4 could be improved. In the same direction,
one might try to characterise those finite sets 𝐴 for which 𝓁(𝐴) = max{|𝐼|∶ 𝐼 ⊆ 𝐴 is an interval}.
A slightly different question, that we find particularly interesting, is the following (which ought

to be compared with Theorem 5.9).

Problem 6.3. Is
⋃

1⩽𝑛<𝜔 L(2𝑛) lineable?

Similarly, we could ask if
⋃

2⩽𝑛<𝜔 L(𝑛
2) is lineable. Note that we do not even know if these sets

are 2-lineable. In connection with Theorem 5.9, it is also natural to ask the following.

Problem 6.4. Is
⋃

1⩽𝑛<𝜔 L(2𝑛 + 1) densely lineable in 𝓁∞?

Added in proof

After the completion of our research, we were informed of some new results that were motivated
by our paper. Menet and Papathanasiou [20] recently obtained several interesting results that in
particular solve Problems 6.2 and 6.4 and imply that

⋃
2⩽𝑛<𝜔 L(𝑛

2) is not lineable. Although Prob-
lem 6.3 seems to be still open, Davide Ravasini recently showed that

⋃
1⩽𝑛<𝜔 L(2𝑛) is 2-lineable.

We are most grateful to him for allowing us to explain his argument here.
One uses the same notation and construction as in Example 5.6. Let  be the vertices of a

regular 15-gon and let  ⊆  be the vertices of an equilateral triangle. Then the points  ⧵  are
as desired. Indeed, ifℒ is a set of parallel lines with ⊆ ℒ and such that every line ofℒ contains
a point of  , then |ℒ| equals 15 or 8. In the first case, exactly 12 lines are needed to cover  ⧵  .
So, we can assume that |ℒ| = 8. Now, if one edge of  is parallel to the lines inℒ, then exactly 2
of the lines inℒ don’t contain points of  ⧵  (the line containing a unique point of  actually
contains a point of  ). In the other case, all 8 lines contain points of ⧵  . Hence, in order to cover
 ⧵  one needs 6, 8, or 12 parallel lines, which means that L(6) ∪ L(8) ∪ L(12) is 2-lineable.
Incidentally, the same construction works for every (2𝑛 − 1)-gon, provided that 𝑛 is even and

2𝑛 − 1 is a multiple of 3. Hence, for every 𝑘 ⩾ 1, L(6𝑘) ∪ L(6𝑘 + 2) ∪ L(12𝑘) is 2-lineable.
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