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Abstract: Radon is a naturally occurring radioactive gas found in rocks, soil, and building materials.
Precisely because of its gaseous nature, it tends to concentrate in indoor environments, resulting in a
danger to human health. The effects of radon have been described, documented, and attested by the
international scientific community and recognized as the second cause of lung cancer after cigarette
smoking and in synergy with it. In December 2013, the Council of the European Union issued Council
Directive 2013/59/Euratom, which establishes basic safety standards relating to protection against
the dangers deriving from exposure to ionized radiation and managing the health risks associated
with radon. In addition, designing buildings against radon risk in synergy with the use of low
environmental impact materials is one of the objectives of building sustainability certifications. This
work presents how radon creeps into buildings and reports several technologies that are needed to
remove and mitigate the risk associated with indoor radon in existing and new buildings.
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1. Introduction

Radon is a radioactive gas found under particular circumstances in rocks, soil, and
building materials. Through exhalation, it tends to accumulate in indoor environments,
where it can reach concentrations representing a significant risk to the health of the exposed
population [1–5]. Radon is an inert gas, colorless, odorless, soluble in water, and denser
than air. It is a noble gas. The two main isotopes are Rn-222, which belongs to the U-238
decay chain, and Rn-220, which forms in the Th-232 decay chain [1]. When inhaled, the
most significant health hazard from radon exposure is due to its decay products [6]. The
decay products of radon lead to the formation of solid chemical elements, which, in the
form of aerosols, adhere to the lung tissue after inhalation. Alpha and beta radiation
emitted by these radon decay products have a more significant ionization potential than
gamma radiation, directly impacting tissues. This interaction has significant implications
for human health, as it can stimulate the generation of free radicals and induce direct DNA
damage in cells [1–6]. The danger of radon exposure lies in its ability to pose a substantial
risk to human health through these complex mechanisms, underscoring the urgent need
for awareness and preventative measures.

Radon migration and diffusion in micro and mesoscale pores and cracks involve the
gas moving through soil and rock along concentration gradients, driven by advective
forces like pressure and temperature variations [1]. Diffusion occurs through pore spaces
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and cracks, with factors such as soil permeability, porosity, and environmental conditions
influencing the ease of radon transport. Microscale pores and mesoscale cracks provide
pathways for diffusion, and soil properties, including moisture content and temperature,
play crucial roles in these processes [6]. Understanding these mechanisms is vital for
assessing radon exposure risks and implementing effective mitigation strategies in diverse
geological and environmental contexts.

The effects of radon have been described, documented, and attested by the interna-
tional scientific community and recognized as the second cause of lung cancer in many
countries after cigarette smoking and in synergy with it [7–9]. Despite this, the perception
and awareness of the risk of people living in areas prone to exposure to radon seems
disproportionately low [9,10], similar to the existing policies and fighting measures [11].

In the European legal framework, the Council of the European Union has issued
Directive 2013/59/Euratom, which establishes basic safety standards for protection against
the dangers of exposure to ionizing radiation [2,12]. The radon hazard is classified as
external (gamma) and internal (alpha) indexes. Whilst the former can express the natural
hazard coming from the geological structure, the latter expresses the indoor hazard as a
function of multiple additional parameters concerning the dwellings and their inhabitants.
Regarding radon in buildings, the recommendation has suggested an average concentration
of 300 Bq m−3 in existing dwellings and 200 Bq m−3 in those built from January 2025. In
addition, member states must update the National Radon Action Plan (NRAP); in Italy, the
current NRAP was published in 2002 [13] and currently needs updating [14].

Furthermore, to achieve the goal of CO2 neutrality as indicated in the new European
Green Deal, the environmental certifications to guarantee sustainable construction are
increasingly important together with the whole waste management, including construction
and demolition ones, in accordance with circular economy concepts [15–18]. Among the
most widespread certifications in the world is the Leadership in Energy and Environment
Design (LEED), a voluntary certification created in 1988 by the US Green Building Council
(USGBC). In addition to energy performance standards, this certification provides for the
achievement of living comfort levels: for example, the use of measures to improve the air
quality of indoor environments and systems to reduce exposure to toxic agents [19,20]. In
detail, the LEED certification evaluates six macro-sections: sustainability of the construction
site, efficient water management, energy and the environment, materials and resources,
location and transport, and finally, the quality of the air in indoor environments [21]. The
mandatory prerequisite of the latter is the presence of systems for controlling contamination
generated by human activities and for protection against radon. From this, it emerges that
considering the risk associated with radon exposure is a fundamental part of designing
and building sustainably.

Knowledge of indoor radon sources is essential for adopting precautions for new
buildings and being able to undertake remedial actions in existing buildings. This work
reports how radon risk is identified, how it creeps into buildings, and what technologies
are used to decrease indoor concentration in existing and new buildings.

2. Mapping

In recent years, several studies have been performed throughout the world to identify
the areas most exposed to radon hazard in terms of geogenic potential, according to differ-
ent techniques and methodologies, which may be subdivided into geostatistical [22–28],
based on geochemical/geological models of the territory, eventually combined with Geo-
graphical Information Systems (GIS) [25,29], and non-geologically based techniques based
on statistics [30] typically empirically based on the survey of emissions. Such survey activi-
ties have been conducted and disseminated in several countries, including Austria [26,31],
Belgium [25,32,33], Bulgaria [34], Canada [35], China [36–38], Egypt [39], Finland [40],
France [29], Germany [41], Greenland [42], Iran [43], Ireland [11], Mexico [44], Norway [45],
Poland [46,47], Romania [48], Russia [49], Spain [50–52], Sweden [53,54], Switzerland [55],
the UK [56–58], the USA [59–64], Uzbekistan [65], and Italy [27,28,66–71]. It is noted that a



Sustainability 2024, 16, 324 3 of 16

priori identification of rock types likely to be implicated in radon hazard is difficult and
likely to be successful in only a few cases [72], and measurements of radon concentrations
in soil give only limited information about the radon concentrations to be expected in
new buildings [73]. Thus, techniques combining geological models and field surveys are
deemed the most reliable. Very recently, novel techniques have been proposed based on
fuzzy logic [74] or Artificial Intelligence (AI) and Machine Learning (ML) based on extreme
gradient boosting (XGBoost) models and deep neural networks (DNNs) combining indoor
radon measurement records, property registers, and geogenic information [54]. Analyzing
the single case of Italy for the sake of conciseness, the national weighted average for the
population was 70 Bq m−3. As shown in Figure 1, the situation is, however, very diversified
in the Italian regions: the average concentration of radon is from 20 to 40 Bq m−3 in the
Liguria, Marche, and Basilicata regions to around 80–120 Bq m−3 in Campania, Lazio,
Lombardy, and Friuli-Venezia Giulia [71,75].
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3. Radon in Buildings

The role of building materials as a source of indoor radon, typically concrete compo-
nents [76–80] such as specific supplementary cementitious materials or aggregates, specific
ceramic or rock tiles [81], specific masonry blocks [76–78], and fillers for historical vaults,
thick bearing walls and floors [82], is generally minor compared to the soil. The contribution
of building materials to the world’s average radon concentration in dwellings is estimated
at around 15–20%, corresponding to a radon concentration of around 10–15 Bq m−3 [83].
However, some situations differ significantly from these values; building materials of
natural origin obtained from soils particularly rich in U-238 and Th-232 could have con-
centrations of activity even 10–20 times higher than the estimated average. In Sweden,
for example, since the 1950s, it was found that concrete employing aggregates with a
high percentage of alum shale had a high concentration of Ra-226, producing a signifi-
cant concentration contribution of Rn-222, up to about 400 Bq m−3 [76]. Subsequently,
materials of natural origin with a high radioactivity content were also identified in other
countries, such as certain granites, particularly in central-southern Italy [84], where natural
pozzolanic binders were found to have similar properties. Among the materials with a
high concentration of activity, in addition to those of natural origin, there are also materials
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composed of products resulting from industrial processes such as gypsum, a by-product
of the phosphate industry, and coal ash, a by-product of fuel-fired power plant solids.
These materials can have very high Ra-226 concentrations and make the building material
an essential source of radon [85]. Similar considerations apply to concrete or ceramic
binders coming from blast furnace slag or to masonry blocks containing red mud from the
aluminum production chain. Whether the building material has its own radon content
or whether it became exposed to radon gas and/or contaminated water coming from the
contact ground, the exhalation into the built environments occurs through the materials.
Therefore, the characterization of the exhalation rate of materials is of crucial importance to
determine the potential radon risk. The radon hazard from building materials is typically
characterized by laboratory testing on samples, for example, with spectroscopic meth-
ods [79,80,86–88] or employing in the laboratory similar devices and techniques used for
the indoor survey [89–91], and numerical models have been proposed and fine-tuned to
predict radon flux, exhalation rate, and emanation fraction from different materials [92–95].
Critical Wall Radon Exhalation Flux (WRF), above which the radon risk may be relevant
and worth survey and investigation, is set by some authors at 10 × 10−3 Bq·m−2·s−1 [94].
It is noted that a high increase in the exhalation rate depends upon humidity conditions
since it is experimentally assessed that the exhalation rate can exponentially increase with
absolute humidity [96,97].

As previously mentioned, usually, the primary source of indoor radon is soil, depend-
ing on the geological sub-structure of the site [98] or on the presence of nuclear waste
in the area [48]. Depending on the mechanisms of radon diffusion from the ground, the
premises of buildings located in the basement or on the ground floor are generally those
particularly affected by the phenomenon [99]. Indeed, the main factors determining the
risk of exposure to radon are geological (subsoil structure composition); technological, re-
ferring to the building (cellar floor permeability, cellar aeration, air-tightness of the homes);
and behavioral, referring to the inhabitants (aeration habits of the occupants, tendency
to spend time in environments in contact with the ground) [100–103]. In addition to the
ground, radon could be present in domestic water [104] and thus enter into apartments on
higher floors [105]. Radon in water can contribute up to 15% of the total exposure [106,107].
Aeration, depending on cellar passive aeration, airtightness of the building surfaces, and
the tendency of the inhabitants to leave windows open, plays a crucial role in determining
the indoor radon concentration, which increases when ventilation is low and there is little
air exchange rate [91,108]. The concentration of radon can undergo significant daily and
seasonal variations [36,46,75,109,110]. Typically, the highest values are observed in the
early morning hours, when the temperature difference between the inside and the outside
is more significant [111] although, rather than temperature, the driving phenomenon is
the pressure gradient, which may also depend upon atmospheric fluctuations and wind
conditions [112–116].

For the same reason, in winter, the concentrations are, on average, higher than in
summer, but the variability is very high [117]. For example, in South Tyrol, the radon
concentration in houses increases when the ground freezes. Frost probably hinders radon’s
escape from the ground, favoring its escape where the ground is not frozen. For the
above reasons, typical detection measurements are carried out with passive dosimeters
alternatively based on solid-state nuclear track [118], active carbons, or electrets, which
are installed in the environment and are recommended to be monitored for a full year
continuously. Using passive dosimeters allows individuation of the mean annual radon
exposure. Active instruments such as spark or ionization chambers are employed when
the daily variation is interesting.

The type of building and quality have a fundamental role in the entry of radon, favored
by cracks in the floors and the lack of sealing; for example, the points where the service
pipes enter the building [112]. It should be emphasized that prefabricated construction
techniques (e.g., precast concrete large panel structures) are critical at this level due to many
structural and non-structural joints, constituting possible preferential gas entryways [13].
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The pressure difference between the inside and outside of buildings is the primary mecha-
nism that transports radon from the ground in indoor environments. Generally, the interior
of a building is depressed compared to the outside, so there is a suction of air from the
ground through the cracks and openings present in the structure of the building [113,114].
It is noted that, following the growing global interest toward reduction of the anthropic
environmental impact, many energy-inefficient buildings and dwellings have recently or
are currently being subjected to energy retrofitting, with interventions which, in the case of
the European Union, are apparently going to be mandatory based on specific directives.
Such interventions are typically carried out by adding internal or external thermal insula-
tion layers and replacing window frames with more thermally efficient ones. Whether such
interventions are implemented together with a proper mechanical ventilation system or not,
they strongly reduce the permeability of the building envelope, with possible repercussions
on indoor air quality and a potential increase in exposure to radon [108,119–126].

Whatever the source of indoor radon (soil, building materials, or water), the concentra-
tion in buildings varies from 10 to 70,000 Bq m−3 [127]. The world average value is around
40 Bq m−3 [83]. Figure 2 shows the entry routes of radon into a building.
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Another isotope of radon that could be found in significant amounts indoors is Rn-220,
the radioactive decay product of Th-232 and, therefore, known as thoron. It is characterized
by a short half-life of 55.6 s, which strongly limits its diffusion in the environment. There is
considerable variability in concentration from one place to another, but concentration levels
are generally within the range of 0.2–12 Bq m−3 [128]. In recent years, interest in thoron has
grown considerably; due to its short half-life, the concentration in dwellings comes more
from building materials than the soil. An example is given by the tuff of central-southern
Italy, which is particularly rich in this isotope [113]. Some studies have also shown that in
some exceptional cases, as in the case of dwellings built in natural cavities in the Chinese
provinces of Shanxi and Shaanxi, the concentration of thoron decay products may be higher
than those of radon offspring [129,130].

4. Mitigation Systems

Knowledge of indoor radon sources is essential to making proper, cost-effective design
decisions for new buildings and to tackle remedial actions in existing buildings [131–133].
As seen above, soil, building materials, and contaminated aquifers contribute in different
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proportions to the concentration found in indoor environments. Below are some mitigation
systems, divided into direct and indirect, and precautions for new buildings.

Direct systems act directly on the indoor air through special equipment that can reduce
the radon concentration and its decay products. They alter the composition of the air and,
consequently, the expected behavior of radon and its decay products. From the literature
analysis, it clearly emerges that the most recommended technique is soil depressurization
by acting with radon pipes below the slab-on-grade or with radon wells right outside the
building plan [134–146]. Pressurization of the building is an arguable technique since it is
effective in some situations [140] but ineffective in other ones [112]. Mechanical ventilation
was proved to be efficient in many situations [40,141,147], although the efficiency of the
mechanism of radon dilution and transport outdoors did not increase much with respect
to the correct activation of passive natural ventilation [112]. Moreover, the installation of
HEPA and carbon-active filters had a controversial effect [148,149]. The use of electrostatic
precipitators yielded promising outcomes [150].

A specific reduction in the concentration of radon with these techniques is not nec-
essarily correlated to a reduction in risk, especially if they are not supplied continuously
and properly maintained; i.e., the radon concentration can be mitigated during the treat-
ment, but after some time after the treatment is supplied, the concentration may come
back to the original level [151] if additional passive measures are not provided as well.
For these reasons, it is insufficient to apply such systems alone in buildings with high
gas concentrations [149]. Single applications are recommended in those buildings where
the concentrations slightly exceed the risk levels or in environments where an existing
ventilation system can be easily and economically adapted to the purpose, and eventually
repeated periodically. As stated in [152], parameters such as the configuration of the house,
the age of the house, and whether the measures are installed by a major contractor, a
local builder, or the householder can affect the effectiveness of the selected solution or
combination of solutions. The most common techniques and devices are summarized
in Table 1.

Indirect systems are another intervention that reduces radon entry from the ground
into the building. These techniques apply to buildings, both under construction and ex-
isting, on the ground or underground floor or with rooms in direct contact with the soil
through slabs or walls on grade. The most typical intervention, as shown in Figure 3, con-
sists of aerating the cellar with a system of low-cost small domes of different depths, which
are placed over the concrete slab-on-grade. After they are inter-connected among different
fields and with vertical inlets/outlets, the reinforced concrete pavement is cast above them.
It is to be noted that the dome elements cannot be placed in correspondence with the struc-
tural foundation elements, either if they are punctual (isolated foundations) or a grid of
beams (continuous inverted beams). This system is not compatible with plate foundations.
It is noted that this system may allow a great reduction in the radon diffusion within the
environment [112,137] by natural dilution and dispersion of the gas, although it does not
represent alone a perfect barrier due to the unavoidable presence of non-ventilated areas
where the structural foundation elements are present (e.g., the foundation beam grid to be
cast in Figure 3), and to the possible presence of cracks in the concrete slab. Its effectiveness
is typically increased with the combination of a waterproofing layer positioned either below
or above the concrete slab [153]. The efficiency of typical membranes used as waterproofing
horizontal layers or vertical vapor-proof layers is analyzed experimentally in [76,154–156],
despite experimental evidence suggesting that membranes alone, i.e., without ventilation
of the cellar, may fail in limiting the radon exhalation [135,141]. Nevertheless, positive
experiences were reported in [157]. Polymer-based cement plasters were assessed as an
alternative to traditional bitumen and polymeric products [158]. The indirect systems with
their description are shown in Table 2.
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Table 1. Direct systems and their description.

System Description References

Electrostatic
precipitators/Ion

generators

Electrostatic precipitators use an electric field to attract and collect charged radon
particles, preventing their release into the air. On the other hand, ion generators
produce ions that attach to radon particles, making them heavier and more likely to
settle, reducing their presence in the air. Both technologies aim to minimize radon
concentrations by collecting or altering radon particles’ behavior.

[150]

Mechanical
ventilation

Fans are used to increase mechanical ventilation to cause air movement;
consequently, they favor the deposition of radon decay products on surfaces and
reduce their concentration in the air. Fans can usually be combined with heat
exchangers, which allows for limiting heat dispersion during ventilation operations.
They can also be combined with filters, some specific for radon mitigation based on
activated carbon-type materials that can retain the atmospheric detail on which a
fraction of the radon decay products is attached.

[40,141,147]

Pressurization of
the building

This technique involves reducing, and possibly reversing, the pressure difference
between the inside and outside of the building through the forced introduction of air
that puts pressure on the building itself, reducing the cause that generates the entry
of radon. It should be noted that the overpressure of buildings has some possible
drawbacks: in addition to the difficulty of achieving positive pressure due to the
poor tightness of the buildings as a whole and the cost of a ventilation system,
pressurizing the building commits the occupants to observe a specific behavior, such
as the habit of opening windows, and can decrease, again due to the greater
exchange of air, the preservation of heat, with consequent increases in energy
consumption and cost.

[112,140]

Soil
depressurization

The technique consists of constructing a well of about 0.2–0.5 m3 below (sub-slab) or
near the building (well) where the remedial action must be operated. In the well, a
depression is produced through fans, and consequently, the radon present in the
surrounding soil is sucked outwards and then diverted from its path to the inside of
the building. Soil depressurization is suitable for buildings with a high radon
concentration and sometimes represents the only effective solution.

[134–146]
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the environment [112,137] by natural dilution and dispersion of the gas, although it does 
not represent alone a perfect barrier due to the unavoidable presence of non-ventilated 
areas where the structural foundation elements are present (e.g., the foundation beam grid 
to be cast in Figure 3), and to the possible presence of cracks in the concrete slab. Its effec-
tiveness is typically increased with the combination of a waterproofing layer positioned 
either below or above the concrete slab [153]. The efficiency of typical membranes used as 
waterproofing horizontal layers or vertical vapor-proof layers is analyzed experimentally 
in [76,154–156], despite experimental evidence suggesting that membranes alone, i.e., 
without ventilation of the cellar, may fail in limiting the radon exhalation [135,141]. Nev-
ertheless, positive experiences were reported in [157]. Polymer-based cement plasters 
were assessed as an alternative to traditional bitumen and polymeric products [158]. The 
indirect systems with their description are shown in Table 2. 
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Table 2. Indirect systems and their description.

System Description References

Ventilation of the
cellar/crawl space

Increasing the natural ventilation of the crawl space by installing a fan for forced
ventilation or opening vents for air passage dilutes the radon concentration. Forced
ventilation can be achieved by pushing or sucking air: in the first case, in addition to
mixing with air low in radon coming from the outside, it is possible to obtain,
through appropriate regulation of the incoming and outgoing flow rates, also an
effect of overpressure concerning the ground that counteracts the emission of radon
toward the crawl space itself, in analogy to the principles of ionization of the
building. In the second case, the air entering the crawl space is taken not from the
outside but from inside the building, thus also combining the effect of increasing
ventilation of the building itself.

[112,137]

Sealing of the
entrance routes from

the ground

It may be partial or total; partial sealing is used for the individual visible cracks in
the floors, the floor wall joints, and the passages of the services. However, cracks are
often not easily identified and sometimes not reachable. The total sealing is borne by
the entire surface of the decking and possibly the walls in direct contact with the
ground. Some specially tested products have very low or negligible radon
permeability, such as polyethene or materials coupled in multiple layers with
aluminum or PVC. In some cases, these barriers are rigid and are produced in such a
way as to form a gap of a few millimeters between the floor and the covering. In
addition, a natural or forced ventilation system can be applied to suck the radon in
the cavities. Radon penetration in concrete members on grade can also be mitigated
by installing during construction a waterproofing layer laying either below the
slab-on-grade in order to mitigate the entrance of the gas through it or, with less
efficacy in reducing the possible permeability bridges, above the slab-on-grade.

[143,155]

Sealing of the
entrance routes from

the walls

In those cases where the emission comes from the walls, either by intrinsic radon
concentration or by permeability through them, a reduction in radon concentration
can be obtained by applying synthetic coatings. Polyvinyl materials or epoxy resins
can reduce the emission by an order of magnitude after a necessary and accurate
preparation work of the base.

[143,155]
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Finally, the precautions to be followed when constructing new buildings are reported.
In fact, during construction, adopting special measures creates conditions to prevent or at
least reduce radon entry. The most important factors are shown in Table 3.

Table 3. Precautions for new buildings.

System Description References

Choice of
building materials

Generally, for the construction of foundations and walls in the underground parts,
concrete gives the most significant guarantees of radon insulation and is preferred to
perforated bricks. Regarding the upper part of the house, from this point of view,
the choice of materials is less critical.

[86,87,89]

Design and use
of premises

As a rule, the radon problem mainly concerns environments in direct contact with
the ground. However, houses on the ground floor above cellars or empty rooms are
also affected. Therefore, it would be appropriate to discourage using basements for
residential purposes. Garages or storage always open on the ground floor or
basement can protect the upper rooms from radon, particularly in crawl spaces. All
strategies separating the premises from the ground help prevent radon ingress.

[112,137]

Stairs, elevator
shafts, vertical

ducts, chimneys

During the design phase, communication channels between inhabited areas and
areas in contact with the ground must be avoided or treated since they can facilitate
radon transport in the inhabited part of the house. Stairs leading to cellars should be
able to be closed at least in one place with a well-sealed door.

[143]

Passages of
pipelines from

the ground

Any plant part of the building that penetrates the ground constitutes a potential
radon infiltration point. Water and gas pipes should be introduced from the side
walls, not the floor, ensuring good pipe ventilation near the building. The same
applies to small-diameter pipes, such as electrical and antenna cables, which must
be sealed with elastic materials. The sewage system should cross the cellar floor in
as few places as possible.

[143]

Thermal
insulation

A state-of-the-art building should have a thermal insulation layer and an
appropriate waterproofing sheath between heated and unheated rooms. Even in the
case of external insulation of the walls of a building, where vapor condensation is
harder to occur, care must be taken. Radon can spread to the upper floors through
the gaps in the insulating layer if the insulating coating penetrates the ground. It is
essential to completely seal the insulating layer or to install short stoppers to avoid
radon penetrating indoors.

[143,153]

According to a survey conducted in Switzerland, only 46% of the buildings where a
radon concentration of 1000 Bq m−3 was exceeded underwent remediation actions, the
main cause being the high costs of the intervention work [159]. It is, however, promising
that further surveying conducted in the UK proved that after proper regulations aimed
at fighting the exposure to radon were put in place by the government, the concentration
dropped significantly [57,133], indicating that imposing passive means of protection is
effective. Moreover, in combination with the passive means of protection, the new construc-
tions or the existing ones undergoing extensive retrofitting should be provided with the
predisposition to apply an active measure to smartly and rapidly solve those cases where
passive measures may not be enough to mitigate the phenomenon and bring the radon
concentration below the target one.

5. Discussion

The health risk linked to the presence of radon is more severe than previously thought,
and in the light of currently available knowledge, radon has become a health problem of ut-
most importance. In 2013, the European Council issued the Council Directive 2013/59/Eu-
ratom, which establishes basic safety standards relating to protection against the dangers
deriving from exposure to radiation, and it recommends lower indoor radon concentration
values in existing and new buildings. Moreover, some voluntary building certifications
such as LEED include systems for improving the comfort of closed environments in the
requirements, including mitigating the radon risk.
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Considering the persistently low levels of risk perception within the population, it
becomes imperative to implement interventions that elucidate and disseminate a clear
and comprehensive understanding of associated risks. Elevating public awareness is
paramount, as heightened consciousness would likely prompt a more concerted emphasis
on developing and implementing mitigation systems. These systems play a crucial role in
minimizing exposure to radon gas. This study aims to foster awareness of the issue and
propose practical solutions to reduce the inherent risks.

6. Conclusions

This work presents how radon risk is mapped, how it creeps into buildings, and what
technologies are used to decrease indoor concentration. In total, four direct systems that
allow the removal of indoor radon, three indirect systems that limit the percolation of
gas and contaminated water, and five precautions for buildings under construction are
described. Improving the safety of new buildings and adapting existing ones through
the techniques described are essential to ensure health protection for the population. The
sustainable design of new buildings or retrofitting of existing ones must be carried out in
synergy with the mitigation systems of pollutants such as radon.

In summary, this review could be interesting for the following several reasons:

1. Public health: radon is a natural radioactive gas that can infiltrate buildings, increasing
the risk of lung cancer in case of exposure to high levels over time. Radon pollution
is indiscriminate in its impact, affecting individuals across various demographics.
The heightened prevalence of severe conditions, notably lung cancer, underscores
the urgency of addressing this public health concern. Despite the significant health
implications, a notable lack of awareness exists regarding the potential dangers of
radon contamination. Increased public awareness and the implementation of targeted
preventive measures shown in this study are imperative to mitigate the widespread
health risks associated with radon exposure.

2. Regulations and laws: many countries have regulations requiring radon mitigation.
A review of radon mitigation systems can be helpful for anyone involved in building
design, construction, or renovation.

3. Sustainability: radon mitigation can be integrated into sustainable construction
projects, improving indoor air quality and avoiding unnecessary energy losses. This
aspect is becoming increasingly relevant in the context of sustainable building.

4. Technological innovation: research and development of new technologies for radon
mitigation are ongoing. This review could highlight the latest discoveries and innova-
tive solutions in the field.

5. Awareness: educating the public and professionals on the issues is essential to raising
awareness about radon and mitigation systems. This review can contribute to this
awareness effort.

Generally, this review can interest anyone involved in construction, public health, and
scientific research.
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47. Zalewski, M.; Karpińska, M.; Mnich, Z.; Kapała, J. Radon concentrations in buildings in the north-eastern region of Poland.

J. Environ. Radioact. 1998, 40, 147–154. [CrossRef]
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