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Abstract
Robust optimization is proving to be a fruitful tool to study problems with uncertain data.
In this paper we deal with the minmax aproach to robust multiobjective optimization. We
survey the main features of this problemwith particular reference to results concerning linear
scalarization and sensitivity of optimal values with respect to changes in the uncertainty
set. Furthermore we prove results concerning sensitivity of optimal solutions with respect
to changes in the uncertainty set. Finally we apply the presented results to mean-variance
portfolio optimization.

Keywords Multiobjective optimization · Robust optimization · Portfolio optimization

1 Introduction

Many real-world decision problems arising in engineering andmanagement depend on uncer-
tain parameters. This parameters’ uncertainty may be due to limited observability of data,
noisy measurements, implementations and prediction errors. Stochastic optimization and
robust optimization frameworks have classically allowed to model this uncertainty within a
decision-making framework.

Stochastic optimization assumes that the decision maker has complete knowledge about
the underlying uncertainty through a known probability distribution. The probability distri-
bution of the random parameters is inferred from prior beliefs, experts opinions, errors in
predictions based on the historical data or a mixture of these.

In robust optimization, instead, no arbitrary assumption on the distribution of parameters
is required. A robust solution is defined introducing a different optimization problem known
as a robust counterpart that allows to find a “worst-case-oriented” optimal solution. Robust
optimization is proving to be a fruitful tool to study problems with uncertain data. Since the
seminal paper by Ben-Tal and Nemirovski (1998), several authors have studied the problem
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both in scalar and multiobjective settings [see e.g. (Hayashi et al., 2013; Skanda & Lebiedz,
2013; Souyris et al., 2013; Suzuki et al., 2013; Goh & Sim, 2011)]. More recently, a detailed
monograph has been devoted to the topic (Ben-Tal & El Ghaoui, 2009) and survey papers by
Gabrel et al. (2014); Bertsimas et al. (2011) collected major issues and applications of scalar
robust optimization. The need for such a tool arises when a constrained optimization problem
depends upon uncertain parameters that may affect both the objective function and/or the
constraints. This occurs in many real-world applications of optimization in industries, energy
markets, finance, to quote some fields [see e.g. (Hu et al., 2011; Hassanzadeh et al., 2014;
Aouam et al., 2016; Zugno&Conejo, 2015; Gregory et al., 2011) and the references therein],
due to unknown future developments, measurement or manufacturing errors, incomplete
information inmodel development, and so on. In such circumstances, stochastic optimization
is often applied, but this approach requires the choice of a probability distribution that can
hardly be motivated but for the technical capability of solving the problem.

Robust optimization has also been extended to multiobjective problems, see e.g. Kuroiwa
and Lee (2012); Crespi et al. (2017) and several theorethical issues have been investigated by
using the componentwise minmax approach. Financial applications of the minmax approach
to robust multiobjective optimization can be found e.g. in Schöttle andWerner (2009), Fliege
and Werner (2014) where robust portfolio selection is investigated.

We remark that a different way to deal with robust multiobjective optimization problems
arises observing that the so-called robust solutions of a multiobjective optimization problem
are deeply related to solutions of a set optimization problem [see e.g. (Ehrgott et al., 2014;
Ide et al., 2014; Crespi et al., 2017)].

In this paper we deal with the minmax aproach to robust multiobjective optimization. We
survey the main notions and results related to this approach with particular reference to linear
scalarization and optimality conditions.

Then we investigate the issue of sensitivity of the solutions of robust multiobjective opti-
mization problems with respect to variations of the uncertainty set. We first recall results
about sensitivity of the optimal values with respect to changes in the uncertainty set. In par-
ticular we observe that when robust solutions of a multiobjective optimization problem are
considered, a “loss of efficiency” occurswith respect to the solution obtained in the “nominal”
problem, i.e. the problem in which the uncertain parameters assume a fixed value that can be
an estimation of the “true” value [see e.g. Ben-Tal and Nemirovski (1998)]. In the scalar case,
assuming a minimization problem, this simply means the robust optimal value is “greater”
or equal than the optimal value of the nominal problem and robust solutions are ε-solutions
of the nominal problem. We estimate location of efficient frontiers of the nominal problem
and the robust problem and the related efficiency loss through set distances, according to the
shape of the uncertainty set. Thereafter, we prove results concerning the sensitivity of the
optimal solutions with respect to changes in the uncertainty set.

Finally, we consider applications of the presented results to mean-variance portfolio opti-
mization.

The paper is organized as follows. In Sect. 2 we recall the formulation of a Robust Multi-
objective Optimization Problem (RMP). In Sect. 3 we recall results about linear scalarization
of a RMP and we give optimality conditions under convexity assumptions. In Sect. 4 we first
recall results about sensitivity of optimal values (efficient frontiers) of a RMP with respect to
changes in the uncertainty set. Thenwe prove results about the sensitivity of optimal solutions
with respect to changes in the uncertainty set. Section 5 gives an application of the presented
results to Mean-Variance Portfolio Optimization. Finally, Sect. 6 concludes the paper with
some suggestions for future research.
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2 Robust multiobjective optimization: problem formulation

Throughout this paperRn denotes theEuclidean space of dimension n. Given a lower bounded
function g : Rn → R and a closed convex set X ⊆ R

n , consider the scalar optimization
problem

inf
x∈X g(x) (P)

A point x0 ∈ X is a solution of problem (P) when g(x0) = inf x∈X g(x). We consider now
an uncertain optimization problem

inf
x∈X f (x, u) (UP)

where f : Rn ×R
p → R, u is an uncertain parameter, with u ∈ U for some convex compact

set U ⊆ R
p . We assume f is continuous w.r.t. u and f (·, u) is lower bounded on X for every

u ∈ U .
Problem (UP) has been extensively studied in the literature (see e.g. Ben-Tal andElGhaoui

(2009) and the references therein). Following (Ben-Tal & El Ghaoui, 2009), we associate to
problem (UP) the Robust Optimization Problem

inf
x∈X max

u∈U f (x, u) (RP)

Problem (RP) describes a worst-case oriented attitude of the decision maker and is called the
robust counterpart of problem (UP).

In order to extend problem (RP) to the multiobjective case we recall some basic notions
in multiobjective optimization [see e.g. Sawaragi et al. (1985)]. We consider the problem

min
x∈X g(x) (MP)

where g(x) = (g1(x), . . . , gm(x)) with gi : Rn → R, i = 1, . . . ,m and X ⊆ R
n is a closed

convex set.
A point x0 ∈ X is said to be a (Pareto) efficient solution of problem (MP) when

(Im(g) − g(x0)) ∩ (−R
m+) = {0}

where Im(g) is the image of g, or equivalently, there does not exist x ∈ X such that g(x) ≤
g(x0) and g(x) �= g(x0), where a ≤ b if a ∈ b − R

m+.
A point x0 is said to be a weakly efficient solution of problem (MP) when

(Im(g) − g(x0)) ∩ (−intRm+) = ∅
or equivalently, there does not exist x ∈ X such that g(x) < g(x0), where a < b if
a ∈ b − intRm+.

A point x0 is said to be a properly efficient solution of problem (MP) it it is an efficient
solution and there exists a number M > 0 such that for all i = 1, . . . ,m and x ∈ X satisfying
gi (x) < gi (x0) there exists an index j such that g j (x0) < g j (x) and

gi (x0) − gi (x)

g j (x) − g j (x0)
≤ M (1)

The set of efficient (resp. weakly efficient, properly efficient) solutions of problem (MP)
is denoted by Eff(MP) (resp. WEff(MP), PEff(MP)). We will set
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Min(MP) = {g(x) : x ∈ Eff(MP)};
WMin(MP) = {g(x) : x ∈ WEff(MP)};
PMin(MP) = {g(x) : x ∈ PEff(MP)}

Clearly PEff(MP) ⊆ Eff(MP) ⊆ WEff(MP) and PMin(MP) ⊆ Min(MP) ⊆
WMin(MP).

Now we consider an uncertain multiobjective optimization problem

min
x∈X ( f1(x, u1), . . . , fm(x, um)) (UMP)

where fi : Rn ×R
p → R, i = 1, . . . ,m are continuous functions w.r.t. ui , with ui ∈ Ui and

Ui ⊆ R
p , i = 1, . . . ,m.

The robust counterpart of (UMP) is defined as [see e.g. Kuroiwa and Lee (2012), Kuroiwa
and Lee (2014)]

min
x∈X

(
max
u1∈U1

f1(x, u1), . . . , max
um∈Um

fm(x, um)

)
(RMP)

A robust efficient (weakly efficient, properly efficient) solution of (UMP) is defined as a
vector x0 ∈ X that is an efficient (weakly efficient, properly efficient) solution of (RMP).

3 Robust multiobjective optimization: scalarization and optimality
conditions

In this section we recall linear scalarization methods for finding robust properly efficient
solutions and robust weakly efficient solutions of problem (UMP). As a consequence of these
results it is possible to prove optimality conditions for robust multiobjective optimization
problems. We recall that, given the multiobjective optimization problem (MP) the following
characterizations of weakly and properly efficient solutions by means of linear scalarization
hold (see e.g. Sawaragi et al. (1985)).

Theorem 3.1 (i) If there exist numbers βi ≥ 0, i = 1, . . . ,m, not all zero, such that x0 ∈ X
minimizes function

m∑
i=1

βi gi (x) (2)

then x0 ∈ WEff(MP). If functions gi are convex, i = 1, . . . ,m and x0 ∈ WEff(MP),
then there exist numbers βi ≥ 0, i = 1, . . . ,m, not all zero, such that x0 minimizes
function (2).

(ii) If there exist numbers βi > 0, i = 1, . . . ,m such that x0 ∈ X minimizes function (2),
then x0 ∈ PEff(MP). If functions gi are convex, i = 1, . . . ,m and x0 ∈ PEff(MP), then
there exist numbers βi > 0, i = 1, . . . ,m such that x0 minimizes function (2).

The next result, due to Kuroiwa and Lee (2012) extends Theorem 3.1 to robust multiob-
jective optimization problems. We set

Ui (x
0) = {ui ∈ Ui : fi (x

0, ui ) = max
ui∈Ui

fi (x
0, ui )} (3)

Theorem 3.2 In problem (UMP) assume fi (x, ui ) are convex with respect to x ∈ X and
concave with respect to ui ∈ Ui .
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(i) x0 ∈ X is a robust properly efficient solution for problem (UMP) if and only if there
exist numbers λ0i > 0, and vectors u0i ∈ Ui (x0), i = 1, . . . ,m, such that

m∑
i=1

λ0i fi (x
0, u0i ) ≤

m∑
i=1

λ0i fi (x, u
0
i ), ∀x ∈ X (4)

i.e. x0 minimizes function
∑m

i=1 λ0i fi (x, u
0
i ) over X. This is equivalent to say that x

0 is
properly efficient for the problem of minimizing

( f1(x, u
0
1), . . . , fm(x, u0m)) (5)

(ii) x0 ∈ X is a robust weakly efficient solution for problem (UMP) if and only if there exist
numbers λ0i ≥ 0, not all zero, and vectors u0i ∈ Ui (x0) i = 1, . . . ,m, with u0i ∈ Ui (x0)
when λ0i > 0 such that

m∑
i=1

λ0i fi (x
0, u0i ) ≤

m∑
i=1

λ0i fi (x, u
0
i ), ∀x ∈ X (6)

i.e. x0 minimizes function
∑m

i=1 λ0i fi (x, u
0
i ) over X. This is equivalent to say that x

0 is
weakly efficient for the problem of minimizing the multiobjective function (5)

The next result is an immediate consequence of Theorem 3.2. We denote by ∂x fi (x0, ui )
the subgradient of function fi (·, ui ) with respect to x at x0 ∈ X , i.e.

∂x fi (x
0, ui ) = {v ∈ R

n : fi (x, ui ) ≥ fi (x
0, ui ) + 〈v, x − x0〉} (7)

and by NX (x0) the normal cone to the set X at the point x0 ∈ X , i.e.

NX (x0) = {v ∈ R
n : 〈v, x − x0〉 ≥ 0} (8)

Theorem 3.3 In problem (UMP) assume fi (x, ui ) are convex with respect to x ∈ X and
concave with respect to ui ∈ Ui .

(i) A point x0 ∈ X is a robust properly efficient solution for problem (UMP) if and only if
there exist λ0i > 0, u0i ∈ Ui (x0), i = 1, . . . ,m, such that

0 ∈
m∑
i=1

λ0i ∂x fi (x
0, u0i ) + NX (x0) (9)

(ii) A point x0 ∈ X is a robust weakly efficient solution for problem (UMP) if and only if
there exist λ0i ≥ 0, not all zero, u0i ∈ Ui i = 1, . . . ,m with u0i ∈ Ui (x0) when λi > 0,
such that

0 ∈
m∑
i=1

λ0i ∂x fi (x
0, u0i ) + NX (x0) (10)

Proof The proof is an immediate consequence of Theorem 3.2, the necessary and sufficient
optimality conditions for scalar convex optimization and the linearity of the subgradient [see
e.g. Rockafellar (1970)] and is omitted. 
�
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4 Robust multiobjective optimization: sensitivity to uncertainty

Various degrees of uncertainty can occur for the same objective function. Here we also
introduce compact, convex subsets U0

i ⊆ Ui representing the nominal instances of our robust
optimization problem, as the least achievable uncertainty. Moreover, we consider sets

Wλ
i := (1 − λ)U0

i + λUi (11)

where λ ∈ [0, 1]. Clearly

W1
i = Ui (high uncertainty)

W0
i = U0

i (low uncertainty)

An extreme, yet meaningful situation is represented by U0
i = {u0i } that depicts the absence

of uncertainty.

4.1 Sensitivity of the optimal values

In this subsection we survey results regarding the sensitivity of the set WMin (RMPλ) with
respect to changes in the uncertainty set described by variations of the parameter λ [see
Crespi et al. (2018)].

We assume maxui∈U0
i
fi (·, ui ) is lower bounded on X , and we set

E fi (x) = max
ui∈Ui

fi (x, ui ) − max
ui∈U0

i

fi (x, ui ) (12)

and

E fi = sup
x∈X

E fi (x) (13)

E fi = inf
x∈X E fi (x) (14)

assuming E fi is finite, i = 1, . . . ,m. Clearly, since U0
i ⊆ Ui , E fi (x) ≥ 0, ∀x ∈ X .

Remark 4.1 Simple calculations show that E fi (x) assumes the following particular forms.

(i) Assume U0
i = {u0i }. If fi (x, ui ) = 〈 fi (x), ui 〉 + hi (x), with fi : Rn → R

p , hi : Rn →
R, it holds

E fi (x) = max
u′
i∈Ui−u0i

〈 fi (x), u′
i 〉,

which, for Ui = B(u0i ) (unit ball in R
p) entails

E fi (x) = max
b∈B(0)

〈 fi (x), b〉 = ‖ fi (x)‖

If fi (x, ui ) = 〈x, ui 〉 + hi (x) and Ui = B(u0i ), it holds

E fi (x) = ‖x‖.
(ii) Assume fi (x, ui ) = 〈x, ui 〉 + hi (x) and consider uncertainty sets of ellipsoidal type.

Set

U = {u = (u1, . . . , um) :
m∑
i=1

ci‖ui − u0i ‖ ≤ δ} (15)
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where δ > 0 and ci > 0, i = 1, . . . ,m and let Ui be the projection of U on the i-th
component. Then we have

E fi (x) = δ

ci
‖x‖. (16)

The robust counterpart relative to Wλ
i is

min
x∈X

(
max

w1∈Wλ
1

f1(x, w1), . . . , max
wm∈Wλ

m

fm(x, wm)

)
(RMPλ)

Whenλ = 0 the robust counterpart shows the lowest level of uncertainty achievable (possibly
none at all). We are going to study the behavior of the optimal values and optimal solutions
of (RMPλ) as λ changes. For simplicity sake we will set:

(i) f λ(x) =
(
maxw1∈Wλ

1
f1(x, w1), . . . ,maxwm∈Wλ

m
fm(x, wm)

)
;

(ii) E f = (
E f1 , . . . , E fm

)
;

(iii) E f =
(
E f1 , . . . , E fm

)
.

From the definitions, we clearly have f 0 ≤ f λ and 0 ≤ E f ≤ E f .
We need the following relation between sets and the next definition (see e.g. Kuroiwa

(2001), Luc (1989)). For A, B ⊆ R
m we denote

A ≤l B if A + R
m+ ⊇ B, (17)

or equivalently A ≤l B, if for every b ∈ B there exists a ∈ A such that a ≤ b holds. This
relation is reflexive and transitive, but not antisymmetric.

Definition 4.1 A set A ⊆ R
m is said to be Rm+-closed when A + R

m+ is closed.

Now we will discuss location of the robust minimal or weakly minimal values.

Proposition 4.1 (Crespi et al., 2018) Assume that Im( f 0) is Rm+-closed. Then set relations

Min (RMP0) ≤l Min(RMPλ) andWMin (RMP0) ≤l WMin(RMPλ)

hold for every λ ∈ [0, 1].
Remark 4.2 When m = 1, i.e. a scalar optimization problem is considered, Proposition 4.1
simply states that the optimal value of the Robust Optimization Problemwith low uncertainty,
(RMP0), is less or equal then the optimal value for the Robust Optimization Problem (RMPλ)

with uncertainty measured by the parameter λ. Hence, the previous proposition basically
states that there is an efficiency loss due to higher uncertainty since the weakly efficient
frontier of problem (RMPλ) lies above the weakly efficient frontier of problem (RMP0)
("above" is intended with respect to the ≤l order).

The next result allows us to give an upper bound for the efficiency loss due to uncertainty.

Proposition 4.2 (Crespi et al., 2018) Assume that functions fi (x, ui ) are convex in each
variables x ∈ X and ui ∈ Ui , and Im( f λ), λ ∈ [0, 1], is Rm+-closed. Then the set relation

WMinRMPλ ≤l WMin(RMP0) + λE f .

holds.
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Remark 4.3 The convexity assumption on fi (·, ui ) in Proposition 4.2 can be weakened by
R
m+ -convexity of Im( f λ).

Combining Propositions 4.1 and 4.2 we get the following corollary.

Corollary 4.1 (Crespi et al., 2018) Assume that functions fi (x, ui ) are convex in each vari-
ables x ∈ X and ui ∈ Ui , and Im( f λ), λ ∈ [0, 1], is Rm+-closed. Then set relations

WMin (RMP0) ≤l WMin(RMPλ) ≤l WMin(RMP0) + λE f (18)

hold.

We now wish to estimate the distance between the efficient frontiers of RMP0 and RMPλ.
A set A ⊆ R

m is said to beRm+-closed-convex-minorized if A+R
m+ is closed and convex,

and there exists x ∈ R
m such that x +R

m+ ⊇ A. Let C be the family of all Rm+-closed-convex
minorized nonempty subsets of Rm .

We define a binary relation≡ on C by: A ≡ B if A+R
m+ = B+R

m+ for any A, B ∈ C. Then
≡ is an equivalence relation and we can define the equivalence class [A] = {B ∈ C | A ≡ B}
and the quotient set C/ ≡= {[A] | A ∈ C}, For D = {d ∈ R

m+ | ‖d‖ = 1}, function
H : (C/≡)2 → R, which is defined as follows, is a metric [see e.g. Kuroiwa (2003), Kuroiwa
and Nuriya (2006)]:

H(A, B) := H([A], [B]) := sup
d∈D

| inf
a∈A

〈d, a〉 − inf
b∈B〈d, b〉| (19)

Corollary 4.2 (Crespi et al., 2018) Under the assumptions of Corollary 4.1, we have

H(WMin (RMP0),WMin(RMPλ)) ≤ λ‖E f ‖.
and

[WMin(RMPλ)] → [WMin (RMP0)] as λ ↓ 0

in the metric H.

The next result gives a lower bound for the efficiency loss due to uncertainty.

Proposition 4.3 (Crespi et al., 2018) Assume that functions fi (x, ui ) are convex in x ∈ X
and concave in ui ∈ Ui , and Im( f 0) is Rm+-closed. Then set relation

WMin (RMP0) + λE f ≤l WMin(RMPλ).

holds.

Combining the previous results we can give upper and lower bounds for the efficiency
loss as stated in the next corollary.

Corollary 4.3 (Crespi et al., 2018) Assume that fi (x, ui ) = 〈 fi (x), ui 〉 + hi (x) where fi :
R
n × R

p → R are convex, hi : Rn → R, i = 1, . . . ,m, and Im( f λ) are Rm+-closed. Then
set relations

WMin (RMP0) + λE f ≤l WMin(RMPλ) ≤l WMin(RMP0) + λE f (20)

hold.

Corollary 4.4 (Crespi et al., 2018) Under the assumption of the previous Corollary, we have

λ‖E f ‖ ≤ H(WMin (RMP0),WMin(RMPλ)) ≤ λ‖E f ‖.
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4.2 Sensitivity of optimal solutions

Wenow establish results regarding the sensitivity of optimal solutionswith respect to changes
in the uncertainty set. We need the following definitions [see e.g. Li and Xu (2010)].

Definition 4.2 Let f : X → R. We say that x0 ∈ X is an isolated minimizer of order α > 0
and constant h > 0 when for every x ∈ X it holds

f (x) − f (x0) ≥ h‖x − x0‖α (21)

Definition 4.3 We say that fi (x, ·) is Hölder of order δ > 0 on Ui with constant mi > 0,
uniformly wth respect to x ∈ X when

| fi (x, u1i ) − fi (x, u
2
i )| ≤ mi‖u1i − u2i ‖δ (22)

for every u1i , u
2
i ∈ Ui and x ∈ X .

Theorem 4.1 Let X be a compact set and assume that

(i) fi (x, ·) is Hölder of order δ > 0 on Ui with constant mi > 0, uniformly wth respect to
x ∈ X, i = 1 . . . ,m.

(ii) fi (x, ui ) are convex with respect to x ∈ X and concave with respect to ui ∈ Ui

Let u0 = (u01, . . . , u
0
m) and

L(x, u0) =
m∑
i=1

βi fi (x, u
0
i ) (23)

with βi ∈ [0, 1], i = 1, . . . ,m and
∑m

i=1 βi = 1. Let x0 ∈ X be an isolated minimizer of
order α and constant h for function L(x, u0).

Then there exists x(λ) ∈ WEff(RMPλ) such that

d(x(λ),WEff(RMP0)) ≤
(
2λ

h

)1/α {
max

i=1,...,m

[
mi (D(Ui ))

δ
]}1/α

(24)

where d(x, A) = infa∈A ‖x − a‖ denotes the distance between the point x and the set A and
D(A) denotes the diameter of the set A, i.e.

D(A) = sup
x,y∈A

‖x − y‖ (25)

Proof We have L(x, u0) − L(x0, u0) ≥ h‖x − x0‖α . Let x(λ) ∈ X be a minimizer of
function

Lλ(x) =
m∑
i=1

βi max
ui∈Wλ

i

fi (x, ui ) (26)

Hence x(λ) ∈ WEff (RMPλ) by Theorem 3.1.
We have

m∑
i=1

βi max
ui∈Wλ

i

fi (x, ui ) = max
(u1,...,um )∈(Wλ

1 ,...,Wλ
m )

m∑
i=1

βi fi (x, ui ) (27)

and by using Ky-Fan’s Minimax Theorem ( Fan (1953)) we get

max
(u1,...,um )∈(Wλ

1 ,...,Wλ
m )

min
x∈X

m∑
i=1

βi fi (x, ui ) = max
(u1,...,um )∈(Wλ

1 ,...,Wλ
m )

m∑
i=1

βi fi (x(λ), ui ) (28)
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It follows the existence of vectors ūi ∈ Wλ
i (x(λ)), i = 1, . . . ,m (see (3) for the definition

of Wλ
i (x(λ))) such that ∀x ∈ X

m∑
i=1

βi fi (x, ūi ) ≥ max
(u1,...,um )∈(Wλ

1 ,...,Wλ
m )

m∑
i=1

βi fi (x(λ), ui ) ≥
m∑
i=1

βi fi (x(λ), ūi ), (29)

i.e. we get the existence of ūi ∈ Wλ
i , i = 1, . . . ,m . such that x(λ) minimizes function

L(x, u) =
m∑
i=1

βi fi (x, ūi ) (30)

It holds

L(x0, ū) − L(x(λ), ū) = L(x0, u0) − L(x(λ), u0) + w (31)

where

w = [
L(x0, ū) − L(x0, u0)

] + [
L(x(λ), u0) − L(x(λ), ū)

]
(32)

We have

|w| ≤ |L(x0, ū) − L(x0, u0)| + |L(x(λ), u0) − L(x(λ), ū)| ≤ (33)
m∑
i=1

βi | fi (x(λ), ūi ) − fi (x(λ), u0i )| +
m∑
i=1

βi | fi (x(λ), u0i ) − fi (x(λ), ūi )| ≤ (34)

2λ
m∑
i=1

βimi (D(Ui ))
δ ≤ 2λ max

i=1,...,m

[
mi (D(Ui ))

δ
]

(35)

We claim that

L(x(λ), u0) − L(x0, u0) ≤ |w| (36)

Indeed, suppose to the contrary that L(x(λ), u0) − L(x0, u0) − |w| > 0. If w = 0, then

L(x0, u0) − L(x(λ), u0) > 0 (37)

which contradicts to x0 minimizer for L(x, u0). If w �= 0 then

L(x(λ), ū) − L(x0, ū) > 0 (38)

which again contradicts to x(λ) minimizer for L(x, ū). Observe now that since x0 is an
isolated minimizer of order α and constant h, we have

h‖x(λ) − x0‖α ≤ L(x(λ), u0) − L(x0, u0) (39)

and hence

h‖x(λ) − x0‖α ≤ 2λ max
i=1,...,m

[
mi (D(Ui ))

δ
]

(40)

So it holds

‖x(λ) − x0‖ ≤
(
2λ

h

)1/α {
max

i=1,...,m

[
mi (D(Ui ))

δ
]}1/α

(41)

which concludes the proof. 
�
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Remark 4.4 If in Theorem 4.1 we assume βi ∈ (0, 1], i = 1, . . . ,m with
∑m

i=1 βi = 1 then
we get the existence of a point x(λ) ∈ PEff(RMPλ) such that

d(x(λ),PEff(RMP0)) ≤
(
2λ

h

)1/α {
max

i=1,...,m

[
mi (D(Ui ))

δ
]}1/α

(42)

5 Application tomean-variance portfolio optimization

We apply the results of the previous sections to mean-variance portfolio optimization. We
recall that the themean-variance portfolio optimizationmodel dates back toMarkowitz (1952)
[see also Markowitz (1968)]. The basic idea is that a portfolio is solely characterized by the
two quantities risk (mostly measured in terms of the variance or volatility) and expected
return. Since an investor is seeking for an allocation with low risk and high expected return,
a trade-off between these two conflicting aims has to be made.

Consider a financial market with n risky assets defined on a suitable probability space in a
single period setting. We assume their multivariate distribution has parameters μ and and �

representing the vector of expected returns and the variance–covariance matrix, respectively.
We also assume

X = {x ∈ R
n : xi ≥ 0,

n∑
i=1

xi = 1} (43)

is the set of admissible portfolios (i.e. we admit no shortselling). The efficient frontier in
portfolio optimization is obtained as the set of solutions of the following problem:

minx∈X ( f1(x, μ), f2(x, �)) (44)

where f1(x, μ) = −〈μ, x〉; f2(x, �) = xT�x . However, the nominal values of μ and �

are not known before the optimal portfolio is selected, although their realization will affect
the payoff (this is an issue already pointed out in (Markowitz, 1952)). The Decision Maker,
therefore, faces an uncertainty problem that we canmodel by assuming that the couple (μ,�)

ranges in some uncertainty set U . Assume (μ0, �0) ∈ R
n × M

n+ is a nominal instance (e.g.
the one that will be realized or the one can be expected under some arbitrary distribution
assumption). Following Fliege and Werner (2014) we assume U is of ellipsoidal type i.e.

U = {
(μ,�) ∈ R

n × M
n+ : ‖μ − μ0‖ + c‖� − �0‖ ≤ r

}
(45)

Here Mn+ denotes the set of positive semidefinite square matrices of order n. We denote by
U1 ⊆ R

n the projection of U on Rn and by U2 ⊆ M
n+ the projection of U onMn+. WithMn++

we denote the set of positive definite square matrices of order n. To comply with the notation
of the previous sections we can identify the matrix � with an element of Rn2 . Hence, the
robust counterpart of Problem (44) is

minx∈X (maxμ∈U1 − 〈μ, x〉,max�∈U2 x
T�x) (46)

Set

Wλ
1 = (1 − λ)μ0 + λU1

Wλ
2 = (1 − λ)�0 + λU2

Remark 4.1 gives

E f1(x) = r‖x‖ (47)
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while simple calculations show that

E f2(x) = r

c
‖x‖2 (48)

It follows

E f = r

(
1,

1

c

)
, E f = r

(√
n

n
,
1

cn

)
(49)

Denote by RMPλ the robust counterpart of problem (44) with uncertainty sets Wλ
1 and Wλ

2 .
Corollaries 4.3 and 4.4 give

WMin (RMP0) + λr

(√
n

n
,
1

cn

)
≤l WMin(RMPλ) ≤l WMin(RMP0) + λr

(
1,

1

c

)
(50)

and

λr

√
n + c2

cn
≤ H(WMin (RMP0),WMin(RMPλ)) ≤ λr

√
c2 + 1

c2
(51)

Inequalities (50) set upper and lower bounds for the efficiency loss due to uncertainty that
one incurs by considering problem RMPλ. The lefthand inequality in (50) states that the

weakly efficient frontier for problem RMPλ is shifted upwards in the direction
(√

n
n , 1

cn

)
and the “magnitude” of this shifting is at least λr . Hence, the lefthandside in (50) gives
an estimation of the “minimum” efficiency loss that one incurs, with respect to problem

RMP0, at uncertainty level given by λ. Observe that both components in E f =
(√

n
n , 1

cn

)
are decreasing with respect to n and E f converges to (0, 0) as n → +∞. This means that

when the number of assets increases, the minimum efficiency loss in RMPλ with respect to
RMP0 decreases, which can be seen as an effect of portfolio diversification (i.e. increasing
the number of assets in the portfolio we have a reduction of the minimum efficiency loss that
one incurs at a given uncertainty level λ).

Similarly, formula (51) states upper and lower bounds for the distance betweeen efficient
frontiers of problems RMP0 and RMPλ.

Observing that f1 is linear both in x and μ and f2 is convex in x and linear in �, we can
apply Theorem 3.2 to get the following result which gives a characterization of solutions of
problem RMPλ in terms of linear scalarization.

Theorem 5.1 (i) A point x̄ ∈ WEff (RMPλ) if and only if there exist β1, β2 ≥ 0, not both
zero, μ̄ ∈ Wλ

1 , �̄ ∈ Wλ
2 such that x̄ minimizes

− β1〈μ̄, x〉 + β2x
T �̄x (52)

i.e. x̄ is weakly efficient for the portfolio optimization problem with returns μ̄ and
variance-covariance matrix �̄.

(ii) A point x̄ ∈ PEff(RMPλ) if and only if there exist β1, β2 > 0, μ̄ ∈ Wλ
1 , �̄ ∈ Wλ

2 such
that x̄ ∈ X minimizes

− β1〈μ̄, x〉 + β2x
T �̄x (53)

i.e. x̄ is properly efficient for the portfolio optimization problem with returns μ̄ and
variance-covariance matrix �̄.
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Finally, we prove the following result which is a counterpart of Theorem 4.1 for the mean-
variance portfolio optimization problem. We denote by TX (x) be the tangent cone to X at x0

[see e.g. Rockafellar (1970)], i.e.

TX (x̄) = cl{a(x − x0), x ∈ X , a ≥ 0} (54)

Theorem 5.2 Assume �0, � ∈ M
n++. Let β1, β2 ∈ [0, 1], with β1 + β2 = 1 and assume

x̄ ∈ X is a minimizer for the function

− β1〈μ0, x〉 + β2x
T�0x (55)

(i) Let β2 > 0. Then there exists x(λ) ∈ WEff (RMPλ) such that

d(x(λ),WEff (RMP0)) ≤
(
2λ

h

)1/2 (
max
i=1,2

[D(Ui )]
)1/2

≤ (56)

2

(
λ

h

)1/2 (
max

{
r ,

r

c

}) 1
2

where h = mind∈TX (x0)∩S d
T�0d and S denotes the unit sphere in R

n.
(ii) Let β2 = 0. Then there exists x(λ) ∈ PEff(RMPλ) such that

d(x(λ),PEff(RMP0)) ≤ 2λ

h

(
max
i=1,2

[D(Ui )]
)

≤ 4

(
λ

h

) (
max

{
r ,

r

c

})
(57)

where h = mind∈TX (x0)∩S〈−μ0, d〉.
Proof (i) We first observe that f1(x, μ0) and f2(x, �0) are Hölder of degree 1 i.e. Lipschitz

on X as functions of μ and � respectively, uniformly with respect to x ∈ X . This is due
to the to the fact that f1 and f2 are differentiable, continuously with respect to μ and
�. Further f1 and f2 are convex as functions of x and linear as functions of to μ and �

respectively. Let

l(x) = −β1〈μ0, x〉 + β2〈xT�0x〉 (58)

Since x0 minimizes l(x) over X it holds

〈∇l(x0), d〉 ≥ 0 (59)

for every d ∈ TX (x0) (see Rockafellar (1970)). Hence, for d ∈ X and t > 0 we have,
since l(x) is a quadratic function

l(x) − l(x0) = 〈∇l(x0), x − x0〉 + 1

2
(x − x0)T∇2l(x0)(x − x0) (60)

≥ 1

2
(x − x0)T∇2l(x0)(x − x0) (61)

It follows

l(x) − l(x0) ≥ ‖x − x0‖2 1

2‖x − x0‖2 (x − x0)T∇2(x0)(x − x0) ≥ h‖x − x0‖2 (62)

where, since ∇2l(x0) = 2�0. Hence x0 is an isolated minimizer order 2 and constant h
and the thesis follows from Theorem 4.1. The last inequality follows since by (45) we
have

D(U1) ≤ r , D(U2) ≤ r

c
(63)
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(ii) The proof is similar to that of point i) and is omitted.

�

6 Concluding remarks

We conclude this paper with a glimpse on possible further research.
We often have partial knowledge on the statistical properties of the model parameters.

Specifically, the probability distribution quantifying the model parameter uncertainty is
known ambiguously. A typical approach to handle this ambiguity, is to estimate the proba-
bility distribution using statistical tools. The decision-making process can then be performed
with respect to the estimated distribution. Such an estimation can be imprecise. Ambigu-
ous stochastic optimization is a modeling approach that protects the decision-maker from
the ambiguity in the underlying probability distribution. Ambiguity about probability dis-
tribution can be modelled using the concept of imprecise probability or more generally the
notion of set-valued probability [see e.g. La Torre et al. (2021)]. A different way to model
this ambiguity is to assume the underlying probability distribution is unknown and lies in an
ambiguity set of probability distributions.

This last approach, as in robust optimization, hedges against the ambiguity in probability
distribution by taking a worst-case (minmax) approach (Distributionally Robust Multiobjec-
tive Optimization).

Extensions of the presented results toDistributionallyRobustMultiobjectiveOptimization
are a first direction for further research.

As pointed out, the Robust Optimization approach is a worst-case oriented approach. For
this reason robust solutions of an optimization problem have been also called pessimistic
solutions. Indeed, optimistic solutions have been considered in the literature as solutions of
the best-case oriented multiobjective optimization problem with objective functions

min
ui∈Ui

fi (x, ui ), i = 1 . . . ,m (64)

In order to model the level of pessimism one can consider the multiobjective optimization
problem with objective functions

f pii (x) = pi max
ui∈Ui

fi (x, ui ) + (1 − pi ) min
ui∈Ui

fi (x, ui ) (65)

where pi ∈ [0, 1] describes the level of pessimism for objective i . The study of problem (65)
is another possible direction for further research.

Funding Open access funding provided byUniversità degli Studi dell’Insubriawithin theCRUI-CAREAgree-
ment.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/


Annals of Operations Research

References

Aouam, T., Muthuraman, K., & Rardin, R. L. (2016). Robust optimization policy benchmarks and modeling
errors in natural gas. European Journal of Operational Research, 250(3), 807–815.

Ben-Tal, A., El Ghaoui, L., & Nemirovski, A. (2009). Robust optimization. Princeton University Press.
Ben-Tal, A., & Nemirovski, A. (1998). Robust convex optimization. Mathematics of Operations Research,

23, 769–805.
Bertsimas, D., Brown, D. B., & Caramanis, C. (2011). Theory and applications of robust optimization. SIAM

Review, 53, 464–501.
Crespi, G. P., Kuroiwa, D., & Rocca, M. (2017). Quasiconvexity of set-valued maps assures well-posedness

of robust vector optimization. Annals of Operations Research, 251, 89–104.
Crespi, G. P., Kuroiwa, D., & Rocca, M. (2018). Robust optimization: Sensitivity to uncertainty in scalar and

vector cases, with applications. Operations Research Perspectives, 5, 113–119.
Ehrgott, M., Ide, J., & Schöbel, A. (2014). Minmax robustness for multi-objective optimization problems.

European Journal of Operational Research, 239(1), 17–31.
Fan, K. (1953). Minimax theorems. Proceedings of The National Academy of Sciences of the United States of

America, 39(1), 42–47.
Fliege, J., & Werner, R. (2014). Robust multiobjective optimization & applications in portfolio optimization.

European Journal of Operational Research, 234(2), 422–433.
Gabrel, V., Murat, C., & Thiele, A. (2014). Recent advances in robust optimization: an overview. European

Journal of Operations Research, 235, 471–483.
Goh, J., & Sim, M. (2011). Robust optimization made easy with rome. Operations Research, 59, 973–985.
Gregory, C., Darby-Dowman, K., & Mitra, G. (2011). Robust optimization and portfolio selection: The cost

of robustness. European Journal of Operational Research, 212(2), 417–428.
Hassanzadeh, F., Nemati, H., & Sun, M. (2014). Robust optimization for interactive multiobjective pro-

gramming with imprecise information applied to r&d project portfolio selection. European Journal of
Operational Research, 238, 41–53, 10. https://doi.org/10.1016/j.ejor.2014.03.023.

Hayashi, S., Nishimura, R., & Fukushima, M. (2013). SDP reformulation for robust optimization problems
based on nonconvex QP duality. Computational Optimization and Applications, 55, 21–47.

Hu, J., Homem de Mello, T., & Mehrotra, S. (2011). Risk-adjusted budget allocation models with application
in homeland security. IIE Transactions, 43(12), 819–839.

Ide, J., Köbis, E., Kuroiwa, D., Schöbel, A., & Tammer, C. (2014). Fixed point theory and applicationsthe
relationship betweenmulti-objective robustness concepts and set-valued optimization.FixedPoint Theory
and Applications, 83.

Kuroiwa, D. & Nuriya, T. (2006). A generalized embedding vector space in set optimization. In Proceedings
of the forth international conference on nonlinear and convex analysis.

Kuroiwa, D. (2001) On set-valued optimization. Nonlinear Analysis: Theory, Methods & Applications, 47,
1395-1400, 08.

Kuroiwa, D., & Lee, G. (2014). On robust multiobjective convex optimization. Journal of Nonlinear and
Convex Analysis, 15, 1125–1136, 01.

Kuroiwa, D. (2003). Existence theorems of set optimization with set-valued maps. Journal of Information and
Optimization Sciences, 24(1), 73–84.

Kuroiwa, D., & Lee, G. M. (2012). On robust multiobjective optimization. Vietnam Journal of Mathematics,
40, 305–317.

La Torre, D., Mendivil, F., & Rocca, M. (2021). Modeling portfolio efficiency using stochastic optimization
with incomplete information and partial uncertainty. Annals of Operations Research. https://doi.org/10.
1007/s10479-021-04372-x

Li, S. J., & Xu, S. (2010). Sufficient conditions of isolated minimizers for constrained programming problems.
Numerical Functional Analysis and Optimization, 31(6), 715–727.

Luc, D.T. (1989). Theory of vector optimization. Lecture Notes in Economics and Mathematical Systems,
Springer-Verlag.

Markowitz, H. M. (1952). Portfolio selection. Journal of Finance, 7(1), 71–91.
Markowitz, H. M. (1968). Portfolio selection: efficient diversification of investments. Yale University Press.
Sawaragi, Y., Nakayama, H., & Tanino, T. (1985). Theory of multiobjective optimization, volume 176 of

Mathematics in Science and Engineering. Academic Press, Inc., Orlando, FL. ISBN 0-12-620370-9.
Schöttle, K., &Werner, R. (2009). Robustness properties of mean-variance portfolios.Optimization, 58, 641–

663.
Skanda, D., & Lebiedz, D. (2013). A robust optimization approach to experimental design for model discrim-

ination of dynamical systems. Mathematical Programming Ser. A, 141, 405–433.

123

https://doi.org/10.1016/j.ejor.2014.03.023
https://doi.org/10.1007/s10479-021-04372-x
https://doi.org/10.1007/s10479-021-04372-x


Annals of Operations Research

Souyris, S., Cortés, C. E., Ordóñez, F., &Weintraub, A. (2013). A robust optimization approach to dispatching
technicians under stochastic service times. Optimization Letters, 7, 1549–1568.

Suzuki, S., Kuroiwa, D., & Lee, G. M. (2013). Surrogate duality for robust optimization. European Journal
of Operations Research, 231, 257–262.

Tyrrell Rockafellar, R. (1970). Convex analysis. Princeton Mathematical Series. Princeton University Press.
Zugno,M., &Conejo, A. J. (2015). A robust optimization approach to energy and reserve dispatch in electricity

markets. European Journal of Operational Research, 247(2), 659–671.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	Sensitivity to uncertainty and scalarization in robust multiobjective optimization: an overview with application  to mean-variance portfolio optimization
	Abstract
	1 Introduction
	2 Robust multiobjective optimization: problem formulation
	3 Robust multiobjective optimization: scalarization and optimality conditions
	4 Robust multiobjective optimization: sensitivity to uncertainty
	4.1 Sensitivity of the optimal values
	4.2 Sensitivity of optimal solutions

	5 Application to mean-variance portfolio optimization
	6 Concluding remarks
	References




