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H I G H L I G H T S  

• Multilevel modelling was applied to predict subjects’ thermal preference vote in a dynamic thermal environment. 
• The beta and ordinal mixed-effects models are both valid alternatives for modelling subjects’ thermal preference votes. 
• Two procedures were used to implement subjects’ feedback within the occupant-centric building design and operation paradigm. 
• The population-averaged procedure is suitable for the building design phase. 
• The cluster-specific procedure is appropriate for the building operation phase.  
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A B S T R A C T   

A comfortable indoor environment should be one of the main services buildings provide. However, technical 
building systems are typically designed and operated according to fixed set-point temperatures determined by 
the ‘one-size-fits-all’ principle assuming universal thermal comfort requirements, which has been questioned in 
the last fifty years. Designing and implementing comfortable set-point modulations that consider occupant 
feedback would be beneficial in terms of increasing comfort, potentially reduce energy consumption and 
significantly support the clean energy transition. An exploratory study aimed at predicting the thermal prefer-
ences of human subjects exposed to a dynamic thermal environment is presented. Using data acquired from a 
laboratory experiment where subjects were exposed to precisely controlled thermal ramps in an ‘office-like’ 
climatic chamber, cluster-specific and population-averaged methods are designed to handle the group-level re-
sidual during the prediction of the thermal preference votes. The results show that both approaches are valid 
strategies for modelling thermal preference votes and are effective in supporting a concrete occupant-centric 
building design and the building’s operation. Furthermore, the population-averaged approach is suitable for 
the occupant-centric building design phase, where the target is an ‘average’ occupant. The cluster-specific 
method is best suited to meet the needs of a specific occupant and is suitable for implementation in the oper-
ational phase of the building.   

1. Introduction 

A comfortable indoor environment should be one of the primary 
services buildings provide. Nowadays, all thermal comfort standards 
include recommendations concerning the indoor thermal conditions for 
both the design and operation phases of buildings. Currently, the most 
frequently cited thermal comfort standards, namely ASHRAE 55:2020 
[1], ISO 7730:2005 [2] and EN 16798–1:2019 [3], which was formerly 

EN 15251:2007 [4], propose requirements based on Fanger model 
(beyond also including other approaches), which solves the heat balance 
equations between the human body and its surroundings, represented as 
a uniform environment. Fanger defined the ‘Predicted Mean Vote’ 
(PMV) as an index that predicts the mean thermal sensation vote on a 
standard scale for a large group of persons exposed to a given combi-
nation of metabolic activity level, clothing insulation and four thermal 
environmental variables characterising the indoor space: dry-bulb air 
temperature, mean radiant temperature, air velocity and relative 
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humidity [5]. The PMV model is generally considered a static model 
because it is only suited for predicting thermal sensation under a steady 
state or slowly changing indoor conditions (i.e., rate of change lower 
than 2.0 K/h) [2]. Based on the PMV, Fanger introduced another index 
called the ‘Predicted Percentage of Dissatisfied’ (PPD) to establish a 
quantitative prediction of the percentage of thermally dissatisfied peo-
ple. Additionally, thermal dissatisfaction can be caused by other local 
factors (e.g., drafts) and is known as local discomfort. For naturally 
conditioned spaces, ASHRAE 55:2020 [1] prescribes the use of the 
adaptive model, while EN 16798–1:2019 [3] suggests it only as a 
possible alternative to the Fanger approach. In 1973, in the first adaptive 
comfort paper published, Nicol and Humphreys [6] hypothesised the 
presence of ‘control mechanisms’ (feedback loops) between the occu-
pants’ thermal comfort perception and their behaviour in buildings. 
After this, research activity on the topic remained muted until the turn of 
the century, when intensification of research interest occurred, and 
several papers were published (e.g., [7,8]). The hypothesis of adaptive 
thermal comfort predicts that contextual factors and past thermal his-
tory modify occupant’s thermal expectations and preferences [9]. As a 
result, people in warm climate zones would prefer higher indoor tem-
peratures than people living in cold climate zones, which contrasts with 
the assumptions underlying comfort standards based on the PMV/PPD 
model [9]. Before inclusion in the standard EN 15251, the adaptive 
approach was also used by McCartney and Nicol [10] to develop an 
adaptive control algorithm (ACA) that was intended to be ‘an alternative 
to fixed temperature setpoint controls within buildings’ and ‘was also 
tested in two air-conditioned buildings as part of the SCATs project’ with 
promising results consisting in energy saving without compromising 
occupants’ perceived thermal comfort [10]. In current standards, 
Fanger’s PMV/PPD model is the prerogative of mechanically heated 
and/or cooled buildings, while the adaptive thermal comfort model is 
reserved for free-running buildings. EN 16798–1:2019 [3], citing 
ISO 7730:2005 [2], defines different categories of indoor environments 
for mechanically heated and cooled buildings, namely I, II, III and IV, 
with category I being the most stringent in terms of the management of 
interior conditions. An upper PPD bound is associated with each of the 
four PMV ranges (and therefore each category level), varying from 6 % 
to 25 % (see Table 1). A similar schema is present in ASHRAE 55:2020 
[1], where the ‘acceptable thermal environment for general comfort’ is 
defined as − 0.5 < PMV < + 0.5, corresponding to category II in 

Table 1. 
The categories described in Table 1 are recommended for designing 

mechanically heated and cooled buildings. In practice, assuming the 
occupants’ clothing insulation and metabolic activity levels and the 
relative humidity and air velocity of the environment, the PMV ranges 
can be represented in terms of acceptable operative temperature ranges. 
Maintaining a tight PMV or temperature range demands more energy 
than allowing a wider operative temperature range. A large increase in 
energy consumption could only be justified if a tightly controlled ther-
mal environment were to be more comfortable than one under less 
control. Arens et al. [11] investigated this specific aspect by examining 
the acceptability of the temperature ranges associated with categories I, 
II and III of the EN 15251:2007 [4] standard via three databases on 
occupant satisfaction (specifically, the ASHRAE RP 884 [12], SCATs 
[10] and Berkeley City Center Project [13] databases). The authors 
found that in terms of satisfaction, building occupants do not benefit 
from an indoor environment that is tightly controlled (i.e., a category I 
environment). Furthermore, they identified only a small difference in 
satisfaction between categories II and III. Consequently, designing and 
controlling indoor environments, such as office buildings, following the 
strict specifications suggested, for example, for category I of 
EN 15251:2007 [4], is unreasonable [11]. However, the real issue can 
be traced back to using the PMV/PPD indexes as the theoretical basis for 
building control and operation in the first place. In a review paper, de 
Dear et al. [14] state that many rigorous field studies (e.g., [15–17]), 
founded by ASHRAE in the 1980 s and 90 s, have clearly found the ‘one- 
size-fits-all’ approach to achieving a universally comfortable environ-
ment ‘to be a failure’. The main issue is that the PMV index represents a 
steady-state thermal comfort model that predicts the mean thermal 
sensation for a large group of people. Therefore, it fails to account for 

Nomenclature 

I The identity matrix 
k The category of the dependent variable 
M The total number of the simulated random effect 
n The number of events 
u The vector of the random effects 
X The design matrix of the fixed effects 
x The vector of the fixed effects 
x Indicates a generic variable 
Y The vector or matrix of the response variable 
Y Indicates a random value of the response variable (usually 

accompanied by a subscript) 
Z The design matrix of the random effects 
β The vector of parameters of the fixed effects 
β A scalar indicating a parameter of the fixed effects (usually 

accompanied by a subscript) 
γ The vector of the cumulative probabilities 
γ A scalar indicating a cumalive probability (usually 

accompanied by a subscript) 
η The vector of the linear predictor term 
η A scalar indicating the linear predictor term (usually 

accompanied by a subscript) 
μ The vector of the expected values 
μ A scalar indicating the expectd value (usually accompanied 

by a subscript) 
π The vector of probabilities 
π A scalar indicating a probability (usually accompanied by a 

subscript) 
σ2 The variance 
σ The standard deviation 
Σ The variance–covariance matrix 
τ The latent threshold parameter 
ϕ The precision parameter 

Subscripts 
d Indicates the dth day 
i Indicates the ith observation 
k Indicates the kth category of the dependent variable 
n Indicates the dimension of a square matrix 
p Indicates the pth participant 
r Indicates the rth thermal ramp  

Table 1 
Default design categories for mechanically heated and cooled buildings.  

Category PMV PPD (%) 

I –0.2 < PMV < +0.2 <6 
II –0.5 < PMV < +0.5 <10 
III –0.7 < PMV < +0.7 <15 
IV –1.0 < PMV < +1.0 <25  
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dynamic and non-uniform thermal environments as well as individual 
differences. In practice, the indoor environment frequently changes 
abruptly across buildings or between various parts within a single 
building. For instance, manually- operated thermostats, windows and 
window shades can result in considerable and non-systematic changes 
across the indoor environment. Automatic controllers exhibit, to a lesser 
degree, a similar behaviour. Moreover, activity modifies an individual’s 
basal metabolic rate over time, and the addition or removal of clothes 
affects their heat balance. In other words, the steady-state assumption at 
the root of the Fanger comfort model is very often violated (Ref [18] 
citing [19]). Building temperature ranges should therefore be based on 
real-time empirical evidence regarding the needs of the occupants. 
Measures to improve occupant feedback capabilities should be included 
in the routine control and operation of the building as well as specified 
in building designs. For example, Park et al. [20] analyse occupant- 
centric control (OCC) research, focusing on field-implementation case 
studies in buildings under realistic conditions. The authors offer a 
methodological analysis focusing on the various strategies utilised to 
integrate OCC into existing building systems. Another example can be 
found in Jung and Jazizadeh [21]. In this review, the authors, dis-
tinguishing between simulations and field evaluations, proposed a tax-
onomy for human-in-the-loop HVAC operations and reviewed methods 
for integrating human dynamics to control HAVC. 

Furthermore, implementing dynamic modulations of the set-point 
temperature might help time-shift and/or reduce peak space heating 
and cooling needs, improving the energy flexibility of buildings. 

In this context, individual differences between people play an 
essential role. When it comes to thermal comfort, individual differences 
result in situations where distinct people perceive the same thermal 
environment in different ways (i.e., they have inter-individual differ-
ences) and/or when the same individual assesses the same environment 
differently at different times or in different situations (i.e., this indi-
vidual presents intra-individual differences). Humphreys and Nicol [22] 
suggested that inter-individual differences encompass both temperature 
differences to be considered neutral and differences in the interpretation 
of the semantic scale categories. In contrast, intra-individual differences 
refer to personal judgments that differ from time to time. Machine 
learning/data-driven algorithms used for predicting individual comfort 
responses have exploded in popularity recently and include the classi-
fication tree (e.g., [23]), random forest (e.g., [24]), gradient boosting 
method (e.g., [25]), support vector machine (e.g., [26]), Gaussian pro-
cess classification (e.g., [27]) and artificial neural networks (e.g., [28]). 
Although these techniques appear to have the potential to improve 
prediction ability at the level of a single building occupant, their 
inherent character as ‘black box’ models renders them fundamentally 
unfit to explain their outputs. In predictive modelling, direct interpret-
ability regarding the relationship between the predictors (Xs) and the 
outcome of interest (Y) is not required; however, transparency is 
desirable. 

In summary, there is a need for a reassessment of how buildings are 
designed and operated. Implementing comfortable set-point modula-
tions in buildings that consider occupant feedback would be beneficial 
to comfort, potentially reduce energy consumption and significantly 
support the clean energy transition. As a consequence, HVAC design and 
operation should consider both the inter- and intra-individual differ-
ences among and within the occupants, respectively. 

1.1. Research aim 

A paradigm shift from ‘set-point-based’ control to ‘perception-based’ 
human-in-the-loop control of buildings is necessary to increase comfort, 
reduce energy consumption, and support the transition to clean energy. 
However, considering these aspects in the building design phase would 
also be beneficial. 

The present research is an exploratory study aimed at predicting the 
thermal preference vote of human subjects exposed to a dynamic 

thermal environment. Therefore, the objective of this work is to develop 
a model for prediction (i.e., forecasting new data points), not for infer-
ence (i.e., testing theoretical hypotheses). Here, the data-generation 
process is viewed as a ‘transparent’ tool for developing good pre-
dictions. However, the modelling strategy does not aim to model the 
effect of temporal patterns directly but rather to account for them (i.e., 
account for the lack of independence associated with temporal data). 
The model is developed using data acquired from a laboratory experi-
ment, where subjects were exposed to precisely-controlled thermal 
ramps in an ‘office-like’ climatic chamber. 

2. Methodology 

2.1. Data acquisition 

The dataset used in this study comes from an experimental study 
conducted by Favero et al. [29] in the ZEB Test Cell Laboratory on the 
Norwegian University of Science and Technology (NTNU) premises 
(Trondheim campus) between September 2019 and January 2020. 
Thirty-eight participants (29 females and 9 males) were recruited from 
the university campus to participate in a randomised crossover trial, that 
is, a longitudinal study, in which they were subjected to a randomised 
sequence of thermal exposures (i.e., thermal ramps). Two identical cli-
matic chambers, furnished like typical single offices, were used to 
recreate the changes in the environment induced by thermal ramps. 
Space heating and cooling were provided by a constant air-volume 
system that supplied 100 % fresh air from outside that was distributed 
by a 2 m-long perforated fabric tube installed at the ceiling. The oper-
ative temperature set-point of 22.0 ± 1.0 ◦C was determined using the 
thermal comfort limit for winter established for Category A of ISO 
7730–2005 [2]. The rates of the temperature changes were: (i) ± 4.4 K/ 
h, (ii) ± 3.4 K/h, (iii) ± 2.2 K/h and (iv) ± 1.4 K/h, as recommended by 
ASHRAE 55:2017 [30]. 

During the experiment, participants were not asked to perform any 
specific tasks and were allowed to carry out their typical office activities. 
Nevertheless, the subjects were required to fill out computer-based 
questionnaires at scheduled intervals. By means of graphic categorical 
scales (see Fig. 1), these questionnaires were used to assess perception, 
evaluation, preference, and acceptability of the thermal environment. 
Further details on the experimental set-up, as well as the experimental 
conditions and procedure, can be found in Favero et al. [29]. 

2.2. Statical modelling 

Multilevel models (also commonly referred to as mixed or hierar-
chical models) are a regression-based approach to dealing with clustered 
and nested data [31]. When individuals form groups or clusters, it is 
reasonable to expect that two randomly selected individuals from the 
same group will tend to be more alike than two individuals selected from 
different groups. Following similar reasoning, measurements taken on 
the same individual on different occasions will be more highly corre-
lated than measurements taken from different individuals. Therefore, 
whenever data are clustered and/or nested, the assumption of inde-
pendent errors is violated. 

This experimental study examines a mixture of hierarchical and 
crossed relationships. As shown in Fig. 2, different measurements on the 
thermal environment (level 1) are nested within experiment conditions 
(level 2), which, in turn, are cross-classified by participant and day 
(level 3). It is essential to mention that the multilevel structure defined 
here is not the property of a model but rather the property of the 
experimental/study design, which is then reflected in the data, which 
the model then encapsulates. 

Within the multilevel framework, there are different modelling 
strategies that can be used. In this study, two different modelling stra-
tegies were applied, namely the beta mixed-effects model (a beta model 
including random effects) and the ordinal mixed-effects model (an 
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ordinal model including random effects). These two approaches are 
described in the following sections. 

2.2.1. Beta mixed-effects model 
Generalised linear models1 (GLMs) constitute a large class of models 

where the conditional distribution of the response variable Yi is assumed 
to follow an exponential family distribution with mean μi. The latter is 
assumed to be some function of ηi = xT

i β, where xi is the vector of 
covariates for the ith observation and β is the respective vector of pa-
rameters to be estimated. However, one of the assumptions behind the 
model is the independence of the errors, which cannot be assumed 
whenever data are clustered and/or nested (see Section 2.2). To deal 
with dependent errors, GLMs can be extended to generalised linear 
mixed models, in which the linear predictor η contains random effects (i. 
e., Zu) in addition to the fixed effects (i.e., Xβ). 

Fig. 1. Subjective scales used to assess perception, evaluation, preference, and acceptability of the thermal environment. Note. The numerical values of the scale 
were not shown to the participants during data collection. 

1 This class of models is not to be confused with general linear model which 
usually refers to linear regression models – generally assuming a normal con-
ditional distribution of the response. 
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In this study, the conditional distribution of the response variable Y 
is assumed to follow a beta distribution, where its mean μ is linked to 
linear predictor η through a logit function: 

Y ∼ Beta(μ,ϕ)
Logit(μ) = η
η = Xβ + Zu
u ∼ Normal(0,Σ)

(1)  

where ϕ is the precision parameter, and X (whose row i is xT
i and con-

tains the ith observation of the covariates) and Z are the design matrices 
for the fixed and random effects, respectively. The reader is referred to 
Appendix A for more details about the mathematical notation and a 
practical example. For the sake of clarity and brevity, the beta mixed- 
effects model with the logit link will hereafter be referred to as simply 
the beta model. 

2.2.2. Ordinal mixed-effects model 
Cumulative link models (CLMs) belong to the ordinal regression 

model class and can be performed using GLMs. A cumulative model is 
used when latent variable representation is desired. Here, the dependent 
variable Y is the categorisation of a latent (unobservable) continuous 
variable Ỹ. Therefore, there are some latent thresholds parameters τk, 
with k ∈ {1, ...,K}, that divide the values of Ỹ into K+1 bins, that is, the 
observable ordered categories of Y. CLMs assume independence of er-
rors and are not suited for modelling clustered and/or nested data. Their 
extensions for dealing with the dependent errors are the cumulative link 
mixed models (CLMMs). 

In a CLMM, the conditional distribution of the response variable Yi 

for the ith observation is assumed to follow a multinomial distribution 
with probability vector πi = {πi1, ..., πik}, where πik = Pr(Yi = k). The 
cumulative probability corresponding to πik is γik = Pr(Yi ≤ k); hence, 
γik = πi1 + ... + πik. The cumulative probabilities are then mapped to the 
real numbers through a link function. In this study, the logit function 
was chosen as that link function. The mathematical formulation of the 
model can be written as: 

Y ∼ Multinomial(n, π)
Logit(γk) = 1τk − η
η = Xβ + Zu
u ∼ Normal(0,Σ)

(2)  

where the τk are the thresholds parameters and η is the linear predictor 
term with a fixed effect component (i.e., Xβ) without an intercept2 and a 
random effect component (i.e., Zu). The reader is referred to Appendix A 
for more details about the mathematical notation and a practical 
example. For the sake of clarity and brevity, the ordinal mixed-effects 
model with the logit link will hereafter be referred to as simply the 
ordinal model. 

2.2.3. Computing predictions using a multilevel model 
Research setting aims to make predictions for certain values of x (e. 

g., adjusting the values of one x at a time or for combinations of x-values 
that reflect ‘typical’ persons) rather than calculating a probability for 
each individual in the sample. However, for a multilevel model, the 
treatment of the group-level residual u (i.e., group random effect) for 
these ‘out-of-sample’3 predictions must be considered. 

In this study, two different procedures were used to handle the 
group-level residual during prediction. For the ordinal model, the first 
procedure consisted of holding the group-level residual at its mean of 
zero and calculating the probabilities for some specific x-values. It 
should be noted that the calculated predictions are not the mean 
response probabilities for the specific x-value because γik is a nonlinear 
function of u(as is πi). However, since u is assumed to be normally 
distributed with mean = median = 0, the Logit(γik) for x = x* and u = 0 
is equal to the median γik for x = x* across groups. This is the case 
because the logit transformation does not affect the rank order of the 
observations. The response probabilities thus calculated have a cluster- 
specific interpretation. 

The second procedure outlined a simulation-based approach, which 
consisted of the following steps:  

i. Generate M values for the random effect u from the Normal(0,Σ)
distribution;  

ii. For each simulated value (m = 1, ...,M) calculate, for the given 
x-value, the cumulative response probabilities for each K+1 or-
dered categories of Y;  

iii. Compute the mean of the M cumulative response probabilities 
calculated in (ii) for each of the K+1 ordered categories of Y;  

iv. Repeat steps (i) – (iii) for a different x-value. 

The generated M values for the random effect should be a large 
number, here fixed at 1⋅104. This approach results in probabilities with a 
population-averaged interpretation (i.e., averaged across experimental 
conditions, participants and days). The same two procedures were 
applied to the beta model, with the difference that the prediction was 
not a vector (i.e., probabilities of voting in each category) but rather a 
single number (i.e., predicted mean). 

2.3. Data pre-processing and analysis 

A total of 314 thermal ramps were performed, for a total of 1522 
votes. There were three missing values for thermal perception and 
evaluation, six for thermal preference and 14 for thermal acceptability. 
However, since only thermal preference was of interest in this study, 
only the missing values for the latter were eliminated. As a result, the 
final sample size was reduced to 1516 observations. Fig. 3(a) illustrates 
the distribution of the thermal preference votes. 

As shown in Fig. 1, thermal preference ratings were measured using a 
graphical categorical scale. Participants could cast their vote by placing 
a diagonal line anywhere within the limits of the scale (i.e., within 
‘lower’ and ‘higher’). Consequently, the resulting distribution of votes is 
on a continuous, but bounded, scale (Fig. 3(a)). In this study, the con-
ditional distribution of the response (i.e., Y|μ) is assumed to follow a 
beta distribution. However, since any beta distribution’s probability 
density function (pdf) is defined only on the interval (0,1), the depen-
dent variable needs to be rescaled. Therefore, the thermal preference 
votes were scaled so that the values at the boundary of the scale, − 1 (i. 
e., ‘lower’) and +1 (i.e., ‘higher’), were mapped to + 0.001 and + 0.999, 
respectively. 

As an alternative approach to the beta model, the ordinal model was 

Fig. 2. Schematic of the three-level hierarchical study: repeated measures 
within experimental conditions cross-classified by participant and day. 

2 Omitting the intercept term allows the full set of thresholds τ1, ..., τk to be 
identified. 

3 The term ‘out-of-sample’ is used here to highlight that fixing variables at 
some values (e.g., their mean) may not reflect any actual person in the sample. 
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chosen. However, the ordinal model requires the dependent variable to 
be categorical, which entails categorising the thermal preference votes. 
Therefore, the votes were binned into five categories according to the 
thresholds − 0.6, − 0.2, + 0.2, and + 0.6:  

a) thermal preference votes < − 0.6 were defined as ‘lower’;  
b) − 0.6 ≤ thermal preference votes < − 0.2 were defined as ‘slightly 

lower’;  
c) − 0.2 ≤ thermal preference votes ≤+0.2 were defined as ‘without 

change’;  
d) +0.2 < thermal preference votes ≤+0.6 were defined as ‘slightly 

higher’;  
e) thermal preference votes >+0.6 were defined as ‘higher’. 

The frequency distribution of the resulting bins can be observed in 
Fig. 3(b). 

In a regression-type model, the shape of the distribution of a pre-
dictor has no direct impact on the model itself. Therefore, there is no real 
a priori need to transform or categorise a predictor based on its distri-
bution. Of greater importance is the correlation between predictors (i.e., 
whether or not there is collinearity4). There are two types of collinearity: 
structural and data-based collinearity. The former is a mathematical 
artefact originating from composing new predictors from other pre-
dictors, such as powers (higher-order terms) or products (interaction 
terms) of predictors. The latter is a ‘property’ of the data itself, which 
can be the result of, for example, a poorly designed experiment. To 
manage the first type of collinearity, predictors lacking a meaningful 
zero were centred by their grand mean; it should be noted that this 
standardisation procedure can facilitate the interpretation of the model 
[32]. Data-based collinearity is more challenging and regrettably, is the 
most common form of the two. It is typically dealt with via the removal 
of one or more of the collinear predictors from the regression model. 
Variable selection was performed with an automated backward elimi-
nation employing the Akaike information criterion (AIC) as the selection 
criterion. 

Table 2 presents the descriptive statistics of all the dependent vari-
ables used to infer the models. Detailed information concerning these 

variables can be found in Appendix B, while the instruments’ accuracy 
can be found in Favero et al. [29]. 

All statistical analyses were performed using R [33] with the RStudio 
integrated development environment [34]. The beta model and the 
ordinal model were determined with the glmmTMB package [35] and 
ordinal package [36], respectively. Automated backward elimination 
was performed with the buildmer package [37] and all the graphs were 

Fig. 3. Frequency distributions of (a) the thermal preference votes and (b) its categorisation. Note. The dotted lines represent the thresholds used for the catego-
risation, that is, − 0.6, − 0.2, + 0.2, and + 0.6. 

Table 2 
Descriptive statistics of the variables used in the models.  

Variable Code Unit Mean* Frequency* Median 
(1st, 25th, 
75th, 
99th)** 

Thermal 
resistance of 
clothing 

Clothing clo  0.86  – 0.87 (0.54, 
0.78, 0.97, 
1.11) 

Gender Gender female  –  0.78 – 
male  –  0.22 – 

Age Age years  27.11  – 25 (20, 22, 
30, 49) 

Body Mass 
Index 

BMI kg/m2  22.09  – 21.67 
(17.42, 
20.69, 
23.94, 
29.24) 

Time lived in 
Norway 

Time. 
Norway 

≤ 3 years  –  0.53 – 
greater 
than 3 
years  

–  0.47 – 

Air velocity Air.vel m/s  <0.10  – 0.00 (0.00, 
0.00, 0.00, 
0.06) 

Time of day Time. 
day 

morning  –  0.47 – 
afternoon  –  0.53 – 

Vapour 
pressure 

Vap.pre kPa  0.70  – 0.70 (0.39, 
0.58, 0.82, 
1.06) 

Operative 
temperature 

Top ◦C  22.39  – 22.10 
(18.79, 
21.08, 
23.72, 
27.33)  

* the mean refers to continuous variables, whereas the frequency refers to 
categorical variables 

** where 1st, 25th, 75th and 99th represent percentiles 

4 Collinearity is semantically equivalent to multicollinearity. In a general 
sense, collinearity refers to ‘the condition of being collinear’ and is a property of 
a set of explanatory variables, not just pairs of them. 
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created with the ggplot2 package [38]. The significance level for all an-
alyses was set at 0.05. 

3. Results 

In this section, the main results of the statical analysis are presented. 
Table 3 list all the variables used in the two models (i.e., the beta and 
ordinal models). 

3.1. Testing for cluster effects 

In Section 2.2, the experimental study was described as a mixture of 
hierarchical and crossed relationships. Nevertheless, before proceeding 
with the analysis, it was essential to establish that the three-level cross- 
classified model fit the data significantly better than the simpler three- 
levels models and the two-level model nested within it (see Fig. 4). 
The single-level model (i.e., the model without random effects) was also 
checked. The likelihood ratio (LR) test was used to perform this initial 
check. 

This preliminary analysis was carried out for both the beta and 
ordinal models, and its results are presented in Table 4. Here, the three- 
level cross-classified model is compared with the nested models. For 
both the beta and ordinal models, the three-level cross-classified model 
offers a better fit to the data. 

3.2. Initial model 

In this section, the initial full model is presented. The formulation of 

the linear predictor ηi is the same for the beta and ordinal models and 
can be written as: 

ηi = β1clothing ci + β2(genderi)+ β3age ci + β4BMI ci + β5(time.norwayi)

+ β6air.veli + β7(time.dayi) + β8vap.pre ci + β9top ci + u(2)
ramp ID(i)

+ u(3)
participant ID(i) + u(3)

day ID(i)

(3)  

where the subscript i is used to stress dependence on the ith observation. 
Since the three-level cross-classified model fits the data better (see 
Section 3.1), all three random components were added to the initial 
model. Only the main results of applying automated backward elimi-
nation are illustrated in the following sections. 

3.3. Ordinal model 

Table 5 summarises the results of the ordinal model after automated 
backward elimination has been applied. Here, the coefficient estimates 
are given in units of ordered logits (or ordered log-odds). Five significant 
predictors were identified – thermal resistance of clothing, Body Mass 
Index, air velocity, time of day and operative temperature – all nega-
tively associated with Logit(γk). The ordinal package [36] parametrises 
the model as: 

Logit(γk) = 1τk − η = 1τk − Xβ − Zu (4) 

so a negative coefficient for β indicates that an increase of the 
associated variable xi decreases the thermal preference vote. Stated 
analogously, votes for higher categories (e.g., prefer ‘higher’) are less 
likely. Nevertheless, the aim of this study is not inference but prediction; 
therefore, the specific values of the model’s coefficients are not of in-
terest. Furthermore, utilising any automated model selection procedure 
(e.g., automated forward selection, backward elimination or stepwise 
selection) should be avoided for inferential purposes. The parameter 
estimates are biased away from zero, the standard error and p values are 
too low and the confidence intervals are too narrow (page 68 of [39]), 
leading to misleading results. For prediction purposes, model selection 
can indeed provide a better bias-variance trade-off and improve the out- 
of-sample error [40,41]. 

The estimated coefficients for a multilevel model are referred to as 
cluster-specific effects. For instance, the coefficient of Top_c in Table 5 is 
interpreted as the effect of a one-unit change in Top_c on the log-odds 
that Pr(Y ≤ k) for a given cluster (i.e., while the unobserved character-
istics captured by the random effects are held constant). However, 
considering the effects in this manner implies that individuals are 
compared with the exact same value for fixed and random effects. For 
some variables (e.g., gender) or other specific purposes, a comparison 
averaging across unobserved characteristics in the population is often of 
interest. In such a situation, population-averaged probabilities should be 
derived (see Section 2.2.3). 

Fig. 5 shows the predicted probabilities as functions of the operative 
temperature for the cluster-specific and population-averaged proced-
ures. It can be seen that the probabilities calculated with the two 
methods are dissimilar. For example, the maximum predictive proba-
bility for ‘without change’ is about 91 % for the cluster-specific 
approach, while it is only 55 % for the population-averaged one. 
Fig. 6(a) shows the probability mass for the ordinal model and cluster- 
specific procedure. These probabilities are plotted as a function of 
three different operative temperatures while holding the other cova-
riates constant at their centred values and fixing the random effects at 
zero. Fig. 6(b) shows the population-averaged procedure’s results. 

3.4. Beta model 

Table 6 summarises the results for the beta model after automated 
backward elimination has been applied. Here, the estimated coefficients 

Table 3 
Covariates used in the models.  

Classification 
(level) 

Code Variable Type Unit 

Days (level 3) Day_ID    
Participants 

(level 3) 
Participant_ID    
Gender Gender Categorical, 

time- 
independent 

Female 
(reference)/ 
Male 

Age_c Age 
(centred) 

Continuous, 
time- 
independent 

Years 

BMI_c Body Mass 
Index 
(centred) 

Continuous, 
time- 
independent 

kg/m2 

Time.Norway Time lived in 
Norway 

Categorical, 
time- 
independent 

Less than or 
equal to 3 
years 
(reference)/ 
More than 3 
years 

Experimental 
conditions 
(level 2) 

Ramp_ID    
Time.day Time of day Categorical, 

time- 
independent 

Morning 
(reference)/ 
Afternoon 

Clothing_c Thermal 
resistance of 
clothing 

Continuous, 
time- 
independent 

clo 

Measurement 
occasions 
(level 1) 

Timepoint    
Top_c Operative 

temperature 
(centred) 

Continuous, 
time- 
dependent 

◦C 

Vap.pre_c Vapour 
pressure 
(centred) 

Continuous, 
time- 
dependent 

kPa 

Air.vel Air velocity Continuous, 
time- 
dependent 

m/s 

Therm.pref Thermal 
preference 

Continuous/ 
Categorical, 
time- 
dependent 

–  
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are given in units of logits. Four significant predictors were identified – 
thermal resistance of clothing, Body Mass Index, time of day and oper-
ative temperature – all negatively associated with Logit(μ) (the intercept 
was not considered). 

Fig. 7 shows the predicted responses as functions of the operative 
temperature using the cluster-specific and population-averaged pro-
cedures. The predicted response μ is the inverse of the link function, 
which in this study corresponds to the inverse of the logit: 

μ = Logit− 1(η) = Logistic(η) = 1
1 + e− η =

1
1 + e− (Xβ+Zu) (5) 

More details about the mathematical formulation can be found in the 

Appendix A. 
All the lines in Fig. 7 are plotted as a function of the operative 

temperature while the other covariates (i.e., the fixed effects) are held 
constant at their centred values. However, these lines differ in the 
random effects, specifically: 

- The solid black line (cluster-specific procedure) has the random ef-
fect fixed at zero;  

- The dashed black lines (cluster-specific procedure) have the random 
effect fixed at the 16th and 84th percentiles (which correspond 
roughly to ± 1 standard deviation above and below the mean);  

- The solid red line (population-averaged procedure) has the random 
effect derived from simulation (see Section 2.2.3). 

Fig. 4. Schematics of the (a) single-level model, (b) two-level model and (c and d) two simpler three-level models nested within the three-level cross-classified model.  

Table 4 
Preliminary check.  

Modelling 
strategy 

Model comparison LR test statistic 

Ordinal model  
Testing for multilevel model (see  
Fig. 4(a)) 

χ2(3) = 534.4, p < 0.
001  

Testing for participants and days (see  
Fig. 4(b)) 

χ2(2) = 59.271, p <

0.001  
Testing for participants (see Fig. 4(c)) χ2(1) = 12.854, p <

0.001  
Testing for days (see Fig. 4(d)) χ2(1) = 55.981, 

p < 0.001 
Beta model  

Testing for multilevel model (see  
Fig. 4(a)) 

χ2(3) = 675.77, p <

0.001  
Testing for participants and days (see  
Fig. 4(b)) 

χ2(2) = 49.328, p <

0.001  
Testing for participants (see Fig. 4(c)) χ2(1) = 10.946, p <

0.001  
Testing for days (see Fig. 4(d)) χ2(1) = 46.525, p <

0.001  

Table 5 
Regression coefficients for the predictors in the ordinal model (after applying 
automated backward elimination).  

Fixed Effects  coeff se (coeff) z p value 

Threshold 1,τ1  − 6.325 0.383  − 16.519 –– 
Threshold 2,τ2  − 4.245 0.345  − 12.307 –– 
Threshold 3,τ3  2.065 0.306  6.761 –– 
Threshold 4,τ4  4.070 0.327  12.441 –– 
Clothing_c  − 3.483 1.375  − 2.532 0.011* 
BMI_c  − 0.218 0.093  − 2.338 0.019* 
Air.vel  − 12.584 5.503  − 2.287 0.022* 
Time.day morning reference    

afternoon − 0.474 0.238  − 1.988 0.047* 
Top_c  − 1.519 0.077  − 19.719 < 0.001* 
Random effects  sd var   
Ramp_ID (Intercept) 1.585 2.512   
Day_ID (Intercept) 1.008 1.017   
Participant_ID (Intercept) 1.158 1.340   

Number of groups: Ramp_ID = 314, Day_ID = 68, Participant_ID = 38 
* indicates a significant term. 
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The points in Fig. 7 are the observed thermal preference votes. While 
the predicted central tendency follows the general trend of the data, the 
predictions do not agree well with the observations, particularly close to 
the upper (i.e., prefer ‘higher’) and lower (i.e., prefer ‘lower’) 
boundaries. 

Fig. 8(a) shows the pdfs generated from the beta model’s estimated 
parameters (i.e., μ and ϕ) using the cluster-specific procedure. Each pdf 
is plotted as a function of three different operative temperatures while 
the other covariates are held constant at their centred values and the 
random effects are fixed at zero. It can be observed that the dispersion of 
the probability densities is relatively high. For instance, for an operative 
temperature of 26 ◦C, the probability of voting equal or lower 0.50 (i.e., 
from ‘lower’ to ‘without change’ on the continuous scale) is about 93 %, 

implying a 7 % probability of voting higher than that. Fig. 8(b) shows 
the categorised probabilities of the predicted thermal preference votes. 
Fig. 9 presents the pdfs generated from the beta model with the 
population-averaged procedure. Here, as in Fig. 8, each pdf is plotted as 
a function of three different operative temperatures while the other 
covariates are held constant at their centred values, but the random 
effects are the results of simulations (see Section 2.2.3). 

4. Discussion 

Different approaches can be found in the literature for OCC for 
building (e.g., [42–44]). Futhrtmore, diverse modelling strategies have 
been developed to predict occupant’ thermal preferences, many of 

Fig. 5. Predicted probabilities of a thermal preference vote using the (a) cluster-specific and (b) population-averaged procedures.  
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which can be found in the review of Park et al. [20], Jung and Jazizadeh 

[21] and Ngarambe et al. [45]. Among them a large portion are machine 
learning/data-driven algorithms. Even though there is sometimes 
overlap in goals and algorithms, statistical modelling and machine 
learning are based on two different concepts. The basic goal of stochastic 
modelling is to understand which probabilistic model could have 
generated the data observed. The usual procedure can be synthesised in 
the following steps: (i) choose a potential model from a plausible model 
family, (ii) fit the model to the data (i.e., estimate its parameters), and 
(iii) contrast the fitted model with other models. After selecting a model, 
this is used to conduct investigations, such as hypothesis testing and 
predicting new values. The estimated model becomes the lens used to 
interpret the data. Usually, a model that reasonably approximates the 
underlying stochastic process that has generated the data predicts well. 
On the contrary, machine learning is a data-driven application that is 
inspired by pattern recognition and focuses on regression, classification, 
and clustering techniques. The underlying stochastic process is 
frequently of secondary importance. Of course, stochastic models and 
procedures may be used to frame many machine learning approaches. 
However, the data are not regarded as having been created by that 
model. Instead, the main objective is figuring out which method or 

Fig. 6. Predicted probabilities of a thermal preference vote using the (a) cluster-specific and (b) population-averaged procedures for three different operative 
temperatures. 

Table 6 
Regression coefficients for the predictors in the beta model (after applying 
automated backward elimination).  

Fixed Effects  coeff se (coeff) z p value 

(Intercept)  0.301 0.091  3.319 < 0.001* 
Clothing_c  − 1.291 0.456  − 2.829 0.005* 
BMI_c  − 0.077 0.029  − 2.634 0.008* 
Time.day morning Reference    

afternoon − 0.177 0.083  − 2.136 0.033* 
Vap.pre_c  − 0.627 0.340  − 1.845 0.065 
Top_c  − 0.413 0.018  –23.121 <0.001* 
Random effects  sd var   
Ramp_ID (Intercept) 0.565 0.320   
Day_ID (Intercept) 0.311 0.096   
Participant_ID (Intercept) 0.343 0.177   

Number of groups: Ramp_ID = 314, Day_ID = 68, Participant_ID = 38 
Dispersion parameter: 6.38 

* indicates a significant term. 
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approach performs the specific task. Although these techniques appear 
to have the potential to improve prediction ability at the level of a single 
building occupant, their inherent character as ‘black box’ models ren-
ders them fundamentally unfit to explain their outputs. Interpretability 
is one of the primary problems with machine learning and can be an 
issue in a specific setting. For instance, understanding why a model 
reached a particular conclusion is fundamental in a building design 
setting. In this study, the statistical modelling strategies applied are a 
transparent tool and, as such, can be easily used in contexts where 
interpretability is required. Moreover, while the data used to develop 
the model in this study derives from a laboratory experiment with a 
mechanically conditioned environment, the modelling strategies are 
independent of this aspect. As such, they could also be applied to a 
naturally conditioned space. 

In the literature, examples of statistical modelling can be found in the 
study of Daum et al. [46]. The authors create personalised thermal 
comfort profiles using multinomial logistic regression, a regression 
technique used to analyse a dependent variable measured on a cate-
gorical scale. The main difference with ordinal regression is that the 
categorical data are assumed to have no intrinsic ordering. Not taking an 
inherent order of the dependent variable makes the model more flexible 
than ordinal regression. However, it is essential to mention that this 
flexibility comes at a price. The number of parameters to estimate will 
drastically increase because k − 1 different linear predictor term (ηk) are 
needed for the k category of the dependent variable (only k − 1 because 
one category of the dependet variable is used as reference). In our study, 
since the dependent variable has five categories, this would have led to 
having, for example, four parameters for the operative temperature to 
estimate instead of only one. More parameters to estimate would require 
a larger sample size. The other difference compared with the study of 
Daum et al. [46] is that the diversity between subjects is directly 
accounted for in the model through the random effects term. Doing so 
makes it possible to model and predict the thermal preference of a 
specific (using the cluster-specific procedure) and a ‘general’ occupant 
(using the population-averaged procedure). In addition, the beta model 
allows doing the same when the thermal preference votes are measured 
on a continuous, but bounded, scale. 

In the next sections, the results previously illustrated are examined 

and interpreted. To begin with, the variables selected by the beta and 
ordinal model are contrasted and discussed. Subsequently, the beta and 
ordinal models are compared based on their predictive capabilities and 
the cluster-specific and population-averaged approaches are analysed. 
Finally, the limitations of the study are provided. 

4.1. Variables selection 

As explain in Section 1.1, the focus of the study is prediction and not 
inference; therefore, the specific value of the models’ coefficients is not 
of interest. However, it is useful to compare variables selection across 
the models and contrast the relative importance of these variables. 
Table 5 and Table 6 show that automated backward elimination selected 
different sets of predictors for the two models. Four out of five predictors 
are shared by the two models (Clothing_c, BMI_c, Time.day and Top_c), 
while the fifth variables differ. For the ordinal model, automated 
backward elimination selected Air.vel, whereas for the beta model, Vap. 
pre_c was selected. In any attempt to understand the relative importance 
of the parameters estimated for the models, a direct comparison between 
their absolute values would be meaningless because the variables are 
measured using different units. Furthermore, several units could be used 
to measure the same variable. For example, if the operative temperature 
had been measured in degrees Fahrenheit instead of degrees Celsius, its 
estimated regression coefficient would have been different. However, 
the importance of the variable would not have changed. The relative 
importance of the predictors could be obtained via standardisation (i.e., 
subtracting the mean from each observed variable and dividing by its 
standard deviation) before conducting the statistical analysis. The 
resulting parameters estimated by the model are on the same scale and 
can be directly compared. The results of this procedure are show in 
Table 7. Here, even though the two models have different predictors, the 
order of relative importance of the common predictors is the same. The 
variables that differ between the two models are of minor relative 
importance. However, this importance is purely statistical. To determine 
the practical importance of the variables, subject-area expertise is 
required. Note that p values cannot be used directly to assess the 
importance of the predictors. A predictor can have a small p value when 
it has a very precise estimate, low variability, or a large sample size. As a 
result, even effect sizes that are small in practice might have extremely 
low p values. Understanding the practical importance of the predictors is 
beyond the scope of this study and is not pursued further. However, for 
inferential purposes, it is of the utmost importance. 

As mentioned in Section 2.3, the Akaike information criterion (AIC) 
was used for variable selection. This metric is based on the maximised 
log-likelihood value with a penalty for including more parameters; it is a 
trade-off between goodness of fit (assessed by the likelihood function) 
and parsimony (the smaller the number of parameters, the lower the 
penalty). However, the AIC tends to over-parameterised, thus selecting 
models with a higher number of predictors, which could explain why the 
first four relatively important predictors were common to the two 
models, while their least relatively important predictors differed. 

4.2. Models’ comparison 

The Akaike information criterion is generally used to compare 
different possible models and determine which one best fits the data. 
However, it cannot be used to compare models with different likelihood 
functions.5 For example, for a discrete distribution (e.g., ordinal 
response), the likelihood refers to the joint probability mass of the data, 
whereas for a continuous distribution (e.g., continuous response), the 
likelihood refers to the joint probability density of the data. Therefore, 
models based on continuous and ordinal responses cannot be compared 
directly. For this reason, the two models are compered graphically in 

Fig. 7. Predicted responses using the cluster-specific (black line) and 
population-averaged (red line) procedures. Note. The points are the observed 
thermal preference votes. 

5 This is generally true for all probability-based statistics. 
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terms of predicted probabilities (see Fig. 6, Fig. 8 and Fig. 9). However, 
it is important to point out that this method poses a limitation: a 
different categorisation of the beta distribution would lead to different 
probabilities. The same applies for the categorisation of the thermal 
preference vote used to estimate the ordinal model (see Fig. 3). Never-
theless, by comparing the probabilities estimated by the two models, the 
following general observations can be made. On the one hand, the 
ordinal model is more flexible in the sense that it can handle different 
probability distributions (virtually any probability distribution). For 
example, in Fig. 6, it can handle the spike in the probabilities for the 
‘without change’ category for an operative temperature of 23 ◦C. On the 
other hand, the beta model is more detailed since it provides a pdf. For 
example, in Fig. 8(a), the predicted probability of observing a thermal 
preference vote between 0.45 and 0.55 for an operative temperature of 
23 ◦C is 19.2 %. An alternative approach to comparing the two models 
would be to calculate the mean of the estimated probabilities for the 
ordinal model and contrast it with the predicted mean response of the 
beta model. The mean of the probabilities can be written as: 

Mean Pr =
∑K

1
πkk (6)  

where πk is the probability of a specific category k, k ∈ {1, ...,K}. Here, 
the category prefer ‘lower’ was mapped to 1 and the category prefer 
‘higher’ was mapped to 5. The resulting mean probabilities were then 
rescaled between + 0.001 and + 0.999 to match the predicted mean 
response of the beta model. Fig. 10 shows this comparison. For the 
ordinal model, the cumulative probability γk is the inverse of the link 
function, which in this study corresponds to the inverse of the logit: 

γk = Logit− 1(1τk − η) = Logistic(1τk − η) = 1
1 + e− (1τk − η)

=
1

1 + e− (1τk − Xβ− Zu) (7) 

The probability of a specific category k is calculated as πk = γk − γk− 1. 
The probabilities of all the categories are then used to calculate the mean 
as in Eq. (6). More details about the mathematical formulation can be 
found in the Appendix A. 

Fig. 8. (a) Probability densities and (b) categorised probabilities of the predicted response using the cluster-specific procedure for three different operative tem-
peratures. Note. The dotted lines in (a) represent the thresholds used for categorisation. 
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As in Fig. 7, all the lines in Fig. 10 are plotted as a function of the 
operative temperature while the other covariates (i.e., the fixed effects) 

are held constant at their centred values, but they differ in the random 
effects. Specifically:  

- The solid black line (beta model, cluster-specific procedure) has the 
random effect fixed at zero (as in Fig. 7);  

- The solid red line (beta model, population-averaged procedure) has 
the random effect derived from simulation (as in Fig. 7);  

- The dashed black line (ordinal model, cluster-specific procedure) has 
the random effect fixed at zero;  

- The dashed red line (ordinal model, population-averaged procedure) 
has the random effect derived from simulation. 

It can be seen that the curve produced by using the cluster-specific 
procedure for the ordinal model has three inflexion points. This partic-
ular behaviour can be explained by looking at the predicted probabilities 
in Fig. 5(a). Between the operative temperatures of 22–24 ◦C, the pre-
dicted probabilities for ‘without change’ were much greater than all the 
others (from 80 % up to more than 90 %). Consequently, within this 
range, the calculated mean was greatly affected by these probabilities. 
The same behaviour can be observed for the population-averaged curve 

Fig. 9. (a) Probability densities and (b) categorised probabilities of the predicted response using the population-averaged procedure for three different operative 
temperatures. Note. The dotted lines in (a) represent the thresholds used for the categorisation. 

Table 7 
Predictors’ relative importance for both the beta and ordinal models.  

Modelling strategy Predictor  Standardise coeff Rank* 

Ordinal model Clothing  − 0.464 4 
BMI  − 0.567 2 
Air.vel  − 0.163 5 
Time.day morning Reference  

afternoon − 0.474 3 
Top  − 2.917 1 

Beta model Clothing  − 0.172 4 
BMI  − 0.199 2 
Time.day morning Reference  

afternoon − 0.177 3 
Vap.pre  − 0.102 5 
Top  − 0.793 1  

* the higher the absolute value of the standardise coefficient, the higher the 
rank. 
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to a lesser extent. However, more considerable differences are visible at 
the tails of the curves, that is, the two extremities. Here, the beta model’s 
mean response curve has tails that are heavier than the mean of the 
estimated probabilities for the ordinal model. Despite these differences, 
both the beta and ordinal models are both valid strategies for modelling 
thermal preference votes. However, the choice between the two models 
should be made based on how the response variable is measured. The 
beta model is a suitable choice when the thermal preference votes are 
measured on a continuous, but bounded, scale. In contrast, the ordinal 
model is appropriate when a categorical scale is used. Unfortunately, in 
the thermal comfort field, it is common practice to analyse subjective 
human thermal responses independently of how they were measured 
[47]. 

Furthermore, both models identified the largest random-effect 
component at the ‘experimental condition’ level, indicating that differ-
ences in conditions were the primary source of variability (see Table 5 
and Table 6). Therefore, the variability in how individuals react to 
different dynamic conditions is higher than the variability between in-
dividuals, which may indicate that there could be unmodeled informa-
tion in the variance at this level (i.e., the ‘experimental condition’). For 
instance, the different rates of temperature change could play a role both 
in terms of absolute magnitude (i.e., the specific value of the rate of 
change) and sign (i.e., heating or cooling). To this aim, modelling stra-
tegies that model the effect of temporal patterns directly should be used 
(e.g., time series). Furthermore, if the variability of the environmental 
condition were significantly reduced (i.e., a static environment created), 
the inter-individual differences (i.e., difference between individuals) 
would be dominant. 

4.3. Approaches’ comparison 

The predicted thermal preference votes were calculated from the two 
models using two different approaches: fixing the random effects at their 
mean of zero (cluster-specific procedure) and using a simulation 
approach with M = 1⋅104 (population-averaged procedure). Regarding 
the ordinal model, from Fig. 6 it can be seen that the most evident 

difference between the cluster-specific and the population-averaged 
procedures are the predicted probabilities for an operative tempera-
ture of 23 ◦C. Here, the predictive probability for ‘without change’ is 
about 91 % for the cluster-specific approach, while it is only 55 % for the 
population-averaged one. The reason for the discrepancy lies in the fact 
that the level 2 variance (σ̂2

ramp ID = 2.512) and the level 3 variances 

(σ̂2
day ID = 1.017 and σ̂2

participant ID = 1.340) are not close to zero. As the 

between-cluster variances σ̂2
ramp ID, σ̂2

day ID and σ̂2
participant ID in the 

random-intercepts model increase, the curves will be further apart. For 
an example the reader is referred to Appendix C. The advantage of 
having predictive probabilities as outcomes is that they are their own 
error measures. In Fig. 6, the predicted probability of ‘without change’ 
for the cluster-specific approach is 91 %; if one decided not to choose 
this category as the expected outcome, the probability of this being an 
error is, by definition, 91 %. Following the same reasoning, for the 
population-averaged approach, not selecting ‘without change’ as the 
expected outcome has a 55 % probability of being an error. As a standard 
practice, the ordinal model regards the category with the highest 
probability as the predicted outcome (i.e., thermal preference vote). 
However, utilising a hard threshold, such as the automatic selection of 
the category with the higher probability, does not fully use the infor-
mation contained in the probabilities. For example, in Fig. 5(b), such a 
threshold would lead to ‘slightly lower’ and ‘slightly higher’ never being 
selected. Here the necessity of defining a utility/cost function that, for 
example, maximises the expected utility or minimises the expected cost. 
With regard to the beta model, from Fig. 8 and Fig. 9 it can be seen that, 
for both the cluster-specific and population-averaged procedures, the 
distributions of the probability densities (and analogously, the cat-
egorised probabilities) for an operative temperature equal to 23 ◦C are 
the same. The predicted mean response of the beta model intersects the 
thermal preference vote at 0.5, at which the prediction at uramp ID =

uday ID = uparticipant ID = 0 (the median) equals the mean prediction (see 
Fig. 7). The median (i.e., cluster-specific) curve is lower than the 
population-averaged curve for a predicted thermal preference vote 
lower than 0.5 but is higher for a predicted thermal preference vote 
higher than 0.5. Consequently, the cluster-specific probability densities 
(i.e., the median probabilities) become skewed faster than the 
population-averaged ones (i.e., the mean probabilities) at operative 
temperatures higher or lower than 23 ◦C (see Fig. 8 and Fig. 9 for the 
operative temperatures of 20 ◦C and 26 ◦C). 

4.4. Limitations 

This study’s limitations arise from some simplifications introduced 
during the statistical modelling. For both models, the functional form 
was assumed to be linear for simplicity (see Eq. (3)). As a consequence, 
the models do not account for potential nonlinearities. However, non-
linearities could be considered, for example, by using smoothing splines. 
Another simplification derives from assuming that all the independent 
variables were measured exactly, that is, ‘error-free’. When covariates 
are measured with errors, the parameter estimates do not tend to the 
true values, even in extensive samples. For simple linear regression, this 
effect is known as the attenuation bias and leads to an underestimation 
of the coefficient. For more complex methods, such as multilevel models, 
this issue deserves a proper treatise and is beyond the scope of this study. 

For a beta model, the conditional variance is var(Yi|U = u) =

μi(1 − μi)/(1+ϕ), where μi is the mean and ϕ is the precision parameter. 
The parameter ϕ is known as the precision parameter because for fixed 
μi, the larger the ϕ, the smaller the variance of Yi. Therefore, the vari-
ance is not constant but rather a function of the mean and the precision 
parameter, here assumed to be constant. However, the precision 
parameter can be modelled as a function of some predictors, for 
example, the operative temperature. In this study, this possibility was 
not explored and should examined in future studies. 

To apply an ordinal model, the dependent variable must be cate-

Fig. 10. Predicted responses using the cluster-specific (black solid and dashed 
lines) and population-averaged (red solid and dashed lines) procedures for the 
beta and ordinal models, respectively. Note. The points are the observed ther-
mal preference votes. 
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gorical. For this reason, the dependent variable was binned into five 
categories according to the thresholds − 0.6, − 0.2, + 0.2, and + 0.6. 
However, these cut-off points were arbitrary and indirectly assumed to 
be the same for all participants. When a categorical scale is used to 
measure the dependent variable, this choice is made directly by single 
responders. Consequently, it is unlikely to be the same for all responders 
(see, for example, [48]). While this study used categorisation to apply 
the ordinal model, we do not encourage this practice in ‘normal’ cir-
cumstances. It is more appropriate to measure the variable directly with 
a categorical scale. As stated earlier, cut-off points are arbitrary and 
generally do not have practical/scientific meaning. Furthermore, the 
ordinal model has an additional assumption called ‘proportional odds’ 
(or equal slope assumptions). This assumption implies that the threshold 
parameters τk are independent of the regression variables or, equiva-
lently, that the regression parameters are not allowed to vary with k, a 
specific category of Y. This restriction derives from the fact that the 
thresholds are theoretically linked with the response measure (and 
therefore assumed to be part of the measurement procedure), not to the 
predictor’s value. However, the ordinal package [36], does not yet 
implement this feature when there is more than one random effect. 
Therefore, testing for partial and non-proportional odds (called ‘nominal 
effects’ in [36]) was not possible. 

Moreover, multilevel models offer additional modelling possibilities 
that this paper has not discussed. For instance, in both the models used 
in this study, the slope coefficients of the predictors added to the models 
were assumed to be fixed across higher-level units. However, it is 
possible that the relationships between the responses and the predictors 
vary across these higher classification units (e.g., between participants). 
In multilevel models, it is possible to allow the effects of the predictors to 
vary randomly across higher classification units by adding a random 
slope to the model, which can be translated into checking whether, for 
example, the effect of the temperature differs across different occupants 
and to what degree of magnitude. 

5. Conclusions and future perspectives 

This study aimed to predict the thermal preference votes of human 
subjects exposed to a dynamic thermal environment. To this aim, two 
different statistical models were proposed, namely the beta and ordinal 
models. Based on the analyses carried out, the following points can be 
made concerning the two models:  

- A three-level cross-classified model fit the data significantly better 
than the simpler three-levels models, the two-level model and the 
single-level model nested within it. Nevertheless, it is important to 
note that the multilevel structure described here is not a character-
istic of the model. It is a feature of the experimental/study design 
represented by the data and encapsulated in the model. Therefore, it 
is essential to know how, where and when the data were collected (i. 
e., the metadata) to model them appropriately.  

- In predictive modelling, direct interpretability regarding the model 
is not required; however, transparency is desirable. Multilevel 
models can model complex structures and at the same time, offer the 
advantage of having transparent outputs and modelling steps in 
contrast to machine learning/data-driven algorithms, which are 
basically ‘black box’ models.  

- While likelihood-based statistics (e.g., Akaike information criterion, 
Bayesian information criterion) cannot be used to contrast the two 
models’ performances directly, some qualitative observations can be 
made by comparing the probabilities estimated by the two models. 
On the one hand, the ordinal model is more flexible in the sense that 

it can handle different probability distributions (virtually any prob-
ability distribution). On the other hand, the beta model is more 
detailed because it provides a pdf. The two models used in this study 
are both valid strategies for modelling thermal preference votes. 
However, the choice between the ordinal and the beta models should 
be made based on how the response variable is measured. 

Furthermore, two distinct procedures were used in this study, 
namely the cluster-specific and the population-averaged procedures, to 
predict the thermal preference votes. These two methods apply directly 
to the concept of occupant-centric building design and operation. The 
population-averaged approach is suitable for the occupant-centric 
building design phase, where the target is the ‘general’ occupant. On 
the other hand, during the building operation phase, the notion of a 
‘general’ occupant is pointless, and the focus should be on satisfying the 
needs of the specific occupant. In this case, a cluster-specific procedure 
is appropriate. This procedure can be carried out by measuring the 
specific occupant response to the environment and consequently 
updating the probabilities of the population-averaged procedure. These 
procedures could be used to design more energy-efficient and satisfying 
control strategies according to occupants’ feedback(e.g., Ref [49]) in an 
occupant-centric [20] or human-in-the-loop [21] approach. 
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Appendix A. Mathematical background and examples 

In this study-two modelling strategies are used, specifically the beta mixed-effects model with the logit link (simply referred as beta model) and the 
ordinal mixed-effects model with the logit link (simply referred as ordinal model). Both these models belong to a broad class of models called 
generalized linear mixed models. 

There are four components that are common to any generalised linear mixed models:  

- Random component (of the response variable): Specifies the probability distribution of the response variable, such as the normal distribution for Y 
(i.e., Y ∼ Normal

(
μ, σ2)) in the (classical) linear regression model. In general, there is no separate error term. Classical linear regression is a special 

case in which the error term can be extract from the distributional assumption (i.e., Y = μ + ε, where μ = Xβ and ε ∼ Normal
(
0, σ2));  

- Link function: Specifies the link between the random and the systematic components. It denotes the relationship between the predicted response 
value (e.g., the mean) and the covariates;  

- Systematic component: Specifies the covariates in the model, more specifically, how they are combined (usually through a linear combination);  
- Random component (of the random effect): Specifies the probability distribution of the random effects, usually assuming a normal distribution 

with zero mean (i.e., u ∼ Normal(0,Σ)). 

Below, for both beta and ordinal model, the mathematical formulation and examples are provided. 

Beta model 

The beta model, as specified in Eq. (1), is: 

Y ∼ Beta(μ,ϕ)
Logit(μ) = η
η = Xβ + Zu
u ∼ Normal(0,Σ)

(A1)  

where the conditional distribution of the response variable Y is assumed to follow a beta distribution. Here, its expected value (i.e., its mean μ) is linked 
to linear predictor η through a logit function. The logit function is defined as the inverse of the cumulative distribution function (cdf) of the standard6 

logistic distribution: 

Logit− 1(η) = Logistic(η) = 1
1 + e− η (A2) 

Eq. (A1) is expressed in matrix notation. For a specific case it can be written as: 

Ypdri ∼ Beta
(
μpdri,ϕ

)

Logit
(
μpdri

)
= ηpdri

ηpdri = xT
pdriβ + up + ud + ur

up ∼ Normal
(

0, σ2
p

)
; iid

ud ∼ Normal
(
0, σ2

d

)
; iid

ur ∼ Normal
(
0, σ2

r

)
; iid

(A3)  

where the subscript p indicates a participant, d a day, r a thermal ramp, and i is the ith obsevation. 
If for example, we consider:  

- two participants (no. 1 and 2), where participant 1 visited the lab on days 1 and 2 while participant 2 visited the lab on days 2 and 3,  
- each day has two ramps (named 1–6) and only two observation per ramp. 

We obtain: 
the 16 × 1 vector of the response variable 

Y = [Y1111,Y1112,Y1121,Y1122,Y1231,Y1232, Y1241, Y1242, Y2231,Y2232,Y2241,Y2242,Y2351,Y2352,Y2361, Y2362, ]
T 

the 11 × 1 vector of the random effects 

u =
[
up(1), up(2), ud(1), ud(2), ud(3), ur(1), ur(2), ur(3), ur(4), ur(5), ur(6)

]T 

with variance–covariance matrix equal to 

Σ =

⎡

⎢
⎢
⎢
⎣

σ2
pI2 0 0

0 σ2
dI3 0

0 0 σ2
r I6

⎤

⎥
⎥
⎥
⎦

where In is the identity matrix of dimension n 

6 The logistic distribution is defined by two parametes: a location parameter μ and a scale parameter s. When μ = 0 and s = 1, the logistic distribution is called 
standard logistic distribution, that is: Logistic(x; μ = 0, s = 1) = 1

1+e− (x− μ)/s = 1
1+e− x 
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the 16 × 11 design matrix of the random effects 

Z =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 1 0 0 1 0 0 0 0 0
1 0 1 0 0 1 0 0 0 0 0
1 0 1 0 0 0 1 0 0 0 0
1 0 1 0 0 0 1 0 0 0 0
1 0 0 1 0 0 0 1 0 0 0
1 0 0 1 0 0 0 1 0 0 0
1 0 0 1 0 0 0 0 1 0 0
1 0 0 1 0 0 0 0 1 0 0
0 1 0 1 0 0 0 1 0 0 0
0 1 0 1 0 0 0 1 0 0 0
0 1 0 1 0 0 0 0 1 0 0
0 1 0 1 0 0 0 0 1 0 0
0 1 0 0 1 0 0 0 0 1 0
0 1 0 0 1 0 0 0 0 1 0
0 1 0 0 1 0 0 0 0 0 1
0 1 0 0 1 0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Ordinal model 

The ordinal model, as specified in Eq. (2), is: 

Y ∼ Multinomial(n, π)
Logit(γk) = 1τk − η
η = Xβ + Zu
u ∼ Normal(0,Σ)

(A4)  

where the conditional distribution of the response variable Y is assumed to follow a multinomial distribution with probability vector π = {π1, ..., πk}, 
where πk = Pr(Y = k). The cumulative probability corresponding to πk is γk = Pr(Y ≤ k); hence, γk = π1 + ... + πk. Here the cumulative probabilities 
are then mapped to the real numbers through a logit function. In the ordinal model, the logit is function of the linear predictor η and 1τk, the vector of 
laten thresholds parameters τk, with k ∈ {1, ...,K}. That is: 

γk = Logit− 1(1τk − η) = Logistic(1τk − η) = 1
1 + e− (1τk − η) (A5) 

Eq. (A4) is expressed in matrix notation. For a specific case it can be written as: 

Pr
(
Ypdri = k

)
= πk

γpdri,k = Pr
(
Ypdri ≤ k

)
= π1 + ...+ πk

Logit
(
γpdri,k

)
= τk − ηpdri

ηpdri = xT
pdriβ + up + ud + ur

up ∼ Normal
(

0, σ2
p

)
; iid

ud ∼ Normal
(
0, σ2

d

)
; iid

ur ∼ Normal
(
0, σ2

r

)
; iid

(A6)  

where the subscript p indicates a participant, d a day, r a thermal ramp, i is the ith observation, and k is a category of the dependent variable. 
If for example, we consider:  

- two participants (no. 1 and 2), where participant 1 visited the lab on days 1 and 2 while participant 2 visited the lab on days 2 and 3,  
- each day has two ramps (named 1–6) and only two observation per ramp. 

We obtain, for a specific category k: 
the 16 × 1 vector of the response variable 

Y = [Y1111,Y1112,Y1121,Y1122,Y1231,Y1232, Y1241, Y1242, Y2231,Y2232,Y2241,Y2242,Y2351,Y2352,Y2361, Y2362, ]
T 

the 11 × 1 vector of the random effects 

u =
[
up(1), up(2), ud(1), ud(2), ud(3), ur(1), ur(2), ur(3), ur(4), ur(5), ur(6)

]T 

with variance–covariance matrix equal to 

Σ =

⎡

⎢
⎢
⎢
⎣

σ2
pI2 0 0

0 σ2
dI3 0

0 0 σ2
r I6

⎤

⎥
⎥
⎥
⎦

where In is the identity matrix of dimension n 

the 16 × 11 design matrix of the random effects 
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Z =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 1 0 0 1 0 0 0 0 0
1 0 1 0 0 1 0 0 0 0 0
1 0 1 0 0 0 1 0 0 0 0
1 0 1 0 0 0 1 0 0 0 0
1 0 0 1 0 0 0 1 0 0 0
1 0 0 1 0 0 0 1 0 0 0
1 0 0 1 0 0 0 0 1 0 0
1 0 0 1 0 0 0 0 1 0 0
0 1 0 1 0 0 0 1 0 0 0
0 1 0 1 0 0 0 1 0 0 0
0 1 0 1 0 0 0 0 1 0 0
0 1 0 1 0 0 0 0 1 0 0
0 1 0 0 1 0 0 0 0 1 0
0 1 0 0 1 0 0 0 0 1 0
0 1 0 0 1 0 0 0 0 0 1
0 1 0 0 1 0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Appendix B. Frequency distributions for the independent variables  

Fig. B1. Frequency distributions for the continuous variables: (a) thermal resistance of clothing, (b) age, (c) Body Mass Index, (d) air velocity, (e) vapour pressure 
and (f) operative temperature. Note. The vertical black marks at the bottom of each figure are the rug plots. 
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Appendix C. Population-averaged and cluster-specific predictions 

In Fig. 6, the differences between the predicted probabilities for the cluster-specific and the population-averaged procedures depend on the 
between-cluster variances. As the between-cluster variances σ̂2

ramp ID, σ̂2
day ID and σ̂2

participant ID in the random-intercepts model increase, the curves will 
be further apart. This situation can be observed in Fig. C1 for category k ≤ 3 (i.e., from the ‘lower’ to ‘without change’ category). 

The predicted cumulative response probabilities always intersect at p = 50%, the point at which the prediction at uramp ID = uday ID = uparticipant ID =

0 (the median) equals the mean prediction. The median (i.e., cluster-specific) curve is lower than the population-averaged curve for predicted 
probabilities lower than 50 %, while the median curve is higher for probabilities greater than 50 %. As a result, for a given range of Top values, the 
cluster-specific predicted probabilities will be greater than the population-averaged ones. In this case, for the category k = 3 (i.e., ‘without change’), 
for Top values between 20.8 ◦C and 25.4 ◦C, the cluster-specific predicted probabilities are higher than the population-averaged ones (see Fig. C2). The 
dashed black lines in both Fig. C1 and Fig. C2 are cluster-specific effects, where the random effects uramp ID, uday ID and uparticipant ID were set to their 16th 
and 84th percentiles (i.e., uramp ID = { − 1.11, 1.19}, uday ID = { − 0.56, 0.69} and uparticipant ID = { − 1.05, 0.93}) and then added (i.e., { − 2.71, 2.80}). 
The 16th and 84th percentiles were chosen because they correspond roughly to ± 1 standard deviation above and below the mean and encompass 
about 68 % of the observed random effects for Ramp_ID, Day_ID and Participant_ID. 

Fig. B2. Frequency distributions for the categorical variables: (a) gender, (b) time lived in Norway and (c) time of day.  

Fig. C1. Predicted cumulative response probabilities for category k ≤ 3 (i.e., from the ‘lower’ to ‘without change’ category) using the cluster-specific (black line) and 
population-averaged (red solid line) procedures. 
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