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Abstract: Antibiotic therapy is one of the most important strategies to treat bacterial infections. The
overuse of antibiotics, especially in the perinatal period, is associated with long-lasting negative
consequences such as the spread of antibiotic resistance and alterations in the composition and
function of the gut microbiota, both of which negatively affect human health. In this review, we
summarize recent evidence about the influence of antibiotic treatment on the neonatal gut micro-
biota and the subsequent negative effects on the health of the infant. We also analyze the possible
microbiome-based approaches for the re-establishment of healthy microbiota in neonates.
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1. Introduction

Antibiotic therapy is fundamental to the treatment of infectious diseases in humans
and represents one of the greatest medical advances of the last century [1]. However,
antibiotic overuse is associated with important negative consequences, such as the spread
of antibiotic resistance. Despite this, the worldwide use of antibiotics is increasing [2]. Fur-
thermore, in recent years, several studies have demonstrated that although most antibiotic
courses are associated with limited adverse effects, antibiotics can negatively affect the
gut microbiota, with short- and long-term consequences on the host’s health [3]. Such
alterations may be particularly significant in the first years of life, which represent critical
windows of growth and development for both the host and the gut microbiota [4,5]. In
this context, the use of antibiotics in the perinatal period, either in the mother or in the
neonate, may have dramatic and long-lasting consequences for the infant’s gut microbiota.
Antibiotic-induced changes in the infant’s saprophytic microbial community have been
associated with intestinal diseases and a predisposition to a range of illnesses later in
life [6–8]. This review synthesizes the more recent evidence from the literature suggest-
ing that perinatal antibiotic treatment may influence the homeostasis and function of the
neonate’s gut microbiota, with negative consequences on the infant’s health, including
the early onset of antibiotic resistance. The main evidence pointing to microbiome-based
approaches for the re-establishment of a healthy microbiota in neonates is also discussed.

2. Gut Microbiota Composition in the Early Stages of Life

The enteric microbiota is composed of a rich and dynamic population of microorgan-
isms, including bacteria, viruses, archaea, fungi, and protozoa. The predominant microbial
community is that of bacteria, consisting of approximately 3.8 × 1013 cells, with a number
of genes exceeding 100–150-fold the number of human genes [9,10]. The gut microbiota
represents the most abundant microbial population in the human body, playing a key
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role in the control of host health, both locally and systemically. In the gut, the sapro-
phytic commensal bacteria influence nutrient and drug metabolism, the development of
the immune system, and the defense against pathogenic microorganisms [11]. This rich
ecosystem is not static, and undergoes significant variations during the host’s lifespan,
especially in extreme conditions, i.e., during infancy and aging, when the microbiome
has different degrees of diversity and is composed of different representative taxa with
respect to the healthy adult gut microbiome [12]. Such characteristic variations of the gut
microbiome composition may not only depend upon external influences but also on the
host’s health status [12,13]. In this context, the period from conception to the age of 2 years
represents a critical growth window, characterized by the rapid development of metabolic,
endocrine, neural, and immune functions, the correct programming of which may reduce
the risk of developing diseases later in life [5]. Fetal exposure to microbial metabolites,
as well as microbial colonization of the neonatal gut, helps underlay the formation of an
interconnected network between the host and the symbiotic microbial community. This
network is important for participating in the maintenance of the gut’s barrier function,
influencing immune responses and nutrient absorption and promoting optimal growth
and neurodevelopment [4,11]. In the early stages of life, the gut microbiome becomes more
diverse, reaching a stable adult-like composition by 2–4 years of age [12]. Any factor that
alters the composition or function of the gut microbiota (i.e., dysbiosis) in this early period
of life may represent a risk factor, predisposing the host to diseases such as allergies, asthma,
cardiovascular disease, obesity, inflammatory bowel disease, irritable bowel syndrome,
and neurodevelopmental disorders [4,13]. Several factors may influence the composition
and activity of the infant gut microbiota, such as gestational age, mode of birth, infant
feeding, environment, hospitalization, and antibiotic treatment [13]. In order to evaluate
the consequences of these perinatal exposures on the shaping of the infant microbiota, it is
crucial to define the characteristics of a normal infant microbiome. In the next paragraphs,
an overview of the available data on the composition of the healthy gut microbiome in
neonates is presented, distinguishing between prenatal and postnatal influences.

2.1. Prenatal Period

Various studies have shown that the amniotic membrane, amniotic fluid, placenta,
meconium, and umbilical cord blood harbor different microbial communities in healthy
pregnancies, contravening the conventional concept that the fetus is sterile [14]. Interest-
ingly, the levels of placental, amniotic, and meconium microbiota are more elevated in
preterm infants, suggesting a potential influence of prenatal microbial exposure on the
growth and length of gestation [15]. However, it is not yet clear-cut whether this microbial
presence is a cause or effect of preterm birth and impaired growth. The in utero microbial
presence is, however, much criticized, owing to possible sample contamination, limited
detection approaches, and evidence of bacterial viability [16]. Indeed, intrauterine life
is characterized by limited exposure to microbes, and neonatal gut colonization occurs
prevalently during and after birth [12,14].

An important issue to be considered is the possible in utero exposure to microbial
metabolites produced by the mother’s gut microbiome, which may influence fetal growth
and development, contributing to early signaling pathways at the fetal–maternal inter-
face [4]. Notably, some metabolic alterations occurring during pregnancy may be correlated
with changes in gut microbiota. Whether such changes may influence the developing fetus,
however, remains to be clarified [4].

2.2. Postnatal Period

The colonization of an infant’s gut is fundamental for the development and maturation
of the immune function and, consequently, of the health of the individual [17]. During the
postnatal period, the shaping of the microbiome composition occurs in two major coloniza-
tion steps, interleaved by the weaning period at about 6 months of age [12]. Following
birth, the neonatal gut is rapidly colonized by facultative anaerobes, with a relatively high
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abundance of strains belonging to the families of Enterobacteriaceae, Bifidobacteriaceae,
and Clostridiaceae, and low levels of Lachnospiraceae and Ruminococcaceae [18–20]. These
microorganisms, by consuming the available oxygen, generate an appropriate anaerobic
atmosphere, allowing the successive growth of strict anaerobic taxa with an increase in
the overall bacterial diversity. The establishment of an adult-like microbiota, with a high
relative abundance of Bacteroidetes and Firmicutes, is observed by 1–3 years of life, af-
ter weaning, when the food source and composition change from being liquid and rich
in fat to being solid and rich in carbohydrates [20,21]. The composition and function
of the microbiota still develop after weaning and remain significantly different from the
healthy adult microbiota until 7–12 years of age to support the ongoing development of the
individual [22].

The infant microbiota is susceptible to a variety of environmental factors, including
the mode of birth, prematurity, the birth location (home versus hospital), diet (for example,
breastfeeding versus formula feeding), maternal gestational diet and weight, pet ownership,
disease state and stress, and antibiotic treatment, with long-lasting consequences on the
physical and mental health of the individual, at least for some of these effects [12,23].

The mode of delivery represents one of the first factors influencing the neonatal gut
microbiota, although the effects of the mode of birth on microbiota composition are no
longer apparent by 6–8 weeks of age [18] or, according to other studies, by the first 2 years of
life [24]. Vaginally delivered term infants are initially colonized by a microbiota that belongs
to the maternal vaginal flora, especially Lactobacillus, Prevotella, and Sneathia spp. [14,25].
Cesarean-section-born term infants have a gut microbiota that resembles the maternal skin,
with high levels of Clostridium difficile, Streptococcus, Staphylococcus, and Propionibacterium
spp., and a reduced concentration of Actinobacteria and Bacteroidetes [14,25]. However, in
one study, no correlation was observed between the specific maternal skin microbiota and
the microbiota of their cesarean-section-born infants, suggesting the existence of other
nonmaternal sources for bacterial colonization [26].

Another important factor influencing postnatal microbiota composition is the ges-
tational age at birth. The microbiota of preterm infants’ (gestational age < 34 weeks) is
characterized by low diversity and increased levels of potentially pathogenic bacteria [14],
even if interindividual variations remain elevated. It has been suggested that a preterm
infants’ microbiota can be distributed into five or six common bacterial clusters, defining a
“preterm gut community type”, each one characterized by a specific genus of dominance.
However, the establishment of the gut microbiota in preterm neonates still needs to be
fully clarified [14]. For preterm infants, the environment has a more influential role, and
their microbiota may be composed of bacterial species which belong to hospital surfaces
and feeding and intubation tubing, such as Staphylococcus epidermidis, Klebsiella pneumoniae,
Escherichia coli, Enterobacteria, and Streptococci; subsequently, these are replaced by other
anaerobic bacteria (such as Bifidobacterium, Bacteroides, Clostridium, and Eubacterium) during
the end of the first week of life [14]. Bifidobacteria are predominant in the healthy term
infants’ microbiota and are much less represented in preterm neonates and not detected
before a post-menstrual age of 30 weeks [27,28].

In preterm infants, a significant amount of the premature microbial gut population
is environmentally acquired via the microbial exchange between the room and the occu-
pant. Brooks and colleagues carried out a metagenomic study of the microbes present in
50 preterm newborns and in the environment of the neonatal intensive care unit (NICU) [29].
In both sites, Staphylococcus epidermidis, Enterococcus faecalis, Pseudomonas aeruginosa, and
Klebsiella pneumoniae were found, and these microorganisms were present in the environ-
ment after and often before their detection in the preterm gut. A later study from the same
research group suggested that hospitalized preterm infants and their caregivers shaped the
microbiomes of NICU rooms [30]. Similar results were presented in a recent multicenter
prospective observational study showing that bacterial patterns of VLBW (very low birth
weight) newborns at the fourth postnatal week were influenced by NICU practices [31]. Ge-
netic factors may also contribute to the development of the neonatal gut microbiota because
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it has been found that related twins, although exposed to a different NICU environment,
have similar gut microbiota [28].

Soon after birth, the microbial composition is greatly influenced by feeding. Breast-
feeding favors the development of a simple community of obligate anaerobes, characterized
by higher levels of Bifidobacteria compared to those of formula-fed neonates, which re-
main elevated after weaning. The low gut bacterial diversity in breastfeeding infants is
suggested to depend on the presence of oligosaccharides in human milk, which represent
important nutritional substrates for Bifidobacteria [32]. Although Bacteroides, Streptococcus,
and Lactobacillus are present in breastfed infants’ microbiota, the microbiota of formula-fed
infants is composed of a higher abundance of E. coli, C. difficile, and Bacteroides fragilis [14,33].
Maturation towards an “adult-like” microbiota, mainly composed of Bacteroidetes and Fir-
micutes, and with increased diversity, seems to depend upon the cessation of breastfeeding,
rather than exposure to solid food [34,35]. Such a trajectory towards a mature microbiota,
however, does not exclude ongoing adaptation in the microbial community composition
during childhood [23,36,37].

3. Perinatal Antibiotic Treatment and Neonatal Gut Microbiota

The timing, duration, and type of antibiotic exposure are of particular importance
when considering the main factors influencing the composition and function of the neonatal
gut microbiota. The impact of antibiotic treatment on the developing neonate’s microbiota
may derive both from maternal antibiotic uptake during pregnancy and lactation and from
direct exposure to infants, owing to their health status. In the following paragraphs, we
consider both conditions, distinguishing between the consequences of direct and indirect
antibiotic exposure in term and preterm neonates.

3.1. Maternal Antibiotic Exposure

Maternal antibiotic treatment may influence the infant microbiota composition through
prenatal exposure to the fetus or changes in the mother’s microbiota or breastfeeding [38].
Intrapartum antibiotic prophylaxis (IAP) is used in up to 40% of women in both elective
and emergency cesarean sections and women colonized with group B streptococcus (GBS,
Streptococcus agalactiae) [39]. Maternal antibiotics may affect neonatal microbial colonization
in two ways:

- Via the umbilical cord—antibiotics reach the fetus’s blood and they persist up to at
least ten hours after administration [25,40].

- Antibiotics can modify the maternal vaginal and intestinal microbiome, causing an
alteration in vertical microbial transmission and post-natal immunity [25,41].

Antibiotic treatment during labor modifies the development of the gut microbiota in
preterm neonates, reduces intestinal host defenses, causes some alterations in the vaginal
microbiota before delivery, and influences the composition of the neonatal oral micro-
biota [42]. Perinatal antibiotic prophylaxis is useful to prevent GBS infection in neonates.
Cephazolin and benzylpenicillin are the two most frequently used intrapartum antibiotics
which reduce different strains of oral streptococci and this could explain the decreased
concentration of the Streptococcaceae family in infants born to mothers who received intra-
partum antibiotics. Oral streptococci are important for the establishment of later colonizers
due to the production of polysaccharides and adhesins that recruit Gram-positive and
Gram-negative bacteria. As a result, the altered oral streptococcal concentration leads to
oral colonization by Proteobacteria, which is a cause of dysbiosis and inflammation [42,43].

IAP may also lead to decreased diversity and a lower concentration of Lactobacilli in the
vaginal microbiota, which may be associated with a high risk of preterm delivery and may
cause an increased risk of vaginal GBS infection [44–46]. In particular, IAP is associated
with a lower relative concentration of Actinobacteria, especially Bifidobacteriaceae, and a more
relative abundance of Proteobacteria compared with non-exposed infants [25,39,47]. It is
known that Bifidobacteria may stimulate genes which promote mucosal integrity and reduce
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the expression of inflammatory genes, whereas Proteobacteria are associated with metabolic
and inflammatory diseases [25,48].

Finally, there are few data available regarding the effects of IAP on breast milk compo-
sition. It has been reported that mothers with IAP have a lower concentration or absence of
Bifidobacterium spp. in their milk [39,49,50].

3.2. Neonatal Antibiotic Exposure: Consequences for Term Infants

The neonatal gut microbiota is influenced by the timing, the duration, and the type
of antibiotic exposure. Empiric antibiotic therapy is associated with lower intestinal bac-
terial diversity and a major concentration of Enterobacter in term infants during the first
month [51].

In full-term infants, antibiotic administration during the first hours of life reduced the
level of Bifidobacterium in the days immediately after birth and subsequently increased the
levels of Enterobacteriaceae [52] (Figure 1).
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It is important to point out that dysbiosis of the gut microbiota is probably an important
risk factor for early-onset sepsis (EOS), as shown by Zhou et al., because patients with EOS
have a different microbiota composition, such as a high concentration of Bifidobacterium
and Staphylococcus spp. [44].

A retrospective, cross-sectional study led by Rooney et al. disclosed that in all infants
within one week of discontinuation of the therapy, each additional day of antibiotics was
associated with a lower concentration of obligate anaerobes such as Bifidobacteria, Lactobacilli,
Bacteroides and butyrate-producers such as Bifidobacteriaceae, Bacteroidaceae, Eubacteriaceae,
Fusobacteriaceae at the end of therapy [48,53] (Figure 1). A low Bacteroidetes concentration
has been associated with an increased risk of developing type 1 diabetes, asthma, and
allergic disease [54].

It has been also demonstrated that neonatal antibiotic therapy may be associated with
decreased growth during the first year of life, whereas during infancy and childhood it
might be linked to an increased risk of overweight and obesity [55]. This decreased growth
is more severe in neonates who receive a full course of antibiotics. The possible cause of
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this growth impairment may be antibiotic-mediated dysbiosis, such as the reduction of
Bifidobacterium, which plays an important role in the digestion of dietary compounds and
modulates host energy metabolism and satiety [55]. Additionally, impaired childhood
growth is associated with poor neurodevelopment outcomes [56,57] and an increase in
cardiometabolic risk factors later in life [58,59].

The duration of therapy also increases the risk of Clostridium difficile or antimicrobial
resistance. For these reasons, co- or post-administration of probiotics may represent a feasi-
ble treatment aimed at reducing the effects of antibiotics on gut microbiota [53]. Actually,
probiotics may restore the intestinal micro-ecological balance as well as the intestinal barrier
and improve intestinal colonization by inhibiting the excessive growth of opportunistic
pathogens [60].

3.3. Neonatal Antibiotic Exposure: Consequences for Preterm Infants

Antibiotic use is a common neonatal practice for the prevention and treatment of
sepsis, which is one of the main causes of mortality and morbidity in preterm infants [38].

Preterm neonates have a different gut microbiota composition, with the delayed col-
onization of common bacteria such as Bifidobacteria and Bacteroides and an increased
concentration of pathogens such as Clostridia (Figure 1). This differing microbiota compo-
sition may be due to premature birth, the influence of the hospital environment, medical
interventions after birth, and the use of antibiotics [44,61]. Unfortunately, for various
reasons, such as chorioamnionitis or the premature rupture of membranes, prolonged
antibiotic therapy is frequently applied for these babies and perinatal antibiotic expo-
sure may increase the risk of late-onset sepsis (LOS) and NEC [51,52]. This is probably
due to an overall decrease in IL-17A production in the gut and an increase in bacterial
translocation [62].

Gibson et al. demonstrated that the administration of meropenem, cefotaxime, and
ticarcillin-clavulanate in preterm infants led to a significantly reduced gut microbiota
diversity, whereas ampicillin, vancomycin, and gentamicin had non-uniform effects on
species richness [63].

In an observational study led by Zwittink et al., short- (≤3 days) and long-lasting
(≥5 days) intravenous antibiotic treatment (amoxicillin/ceftazidime) during the first postna-
tal week in 15 late preterm infants (35 ± 1 weeks of gestation) severely affected their normal
intestinal colonization. Both treatments had negative effects on the Enterobacteriaceae family,
reduced the concentration of Bifidobacterium, and increased the presence of Enterococcus for
up two weeks after the discontinuation of treatment, which represented a health risk for the
infants [38] (Figure 1). Only the short-term therapy allowed the recovery of Bifidobacterium
concentrations within the first six postnatal weeks, which could control other bacterial
species and play an important role in early-life tolerance induction and immune system
maturation [38]. The use of broad-spectrum antibiotics during the first week of life is
suggested to be associated with different levels of inflammatory markers such as sVCAM-1,
sCD14, sCD19, sCD27, IL-1RII, sVEGF-R1, and HSP70 (a stress-responsive protein) at
1 year of age [64]. In addition, infantile colic during the first 3 months of life is associated
with increased inflammatory markers such as IL-33, whereas children with eczema have a
reduced capacity to induce Th1 cytokines (such as IFN-γ and CXCL9) [64].

Other studies confirmed that a short-term antibiotic treatment lasting less than three
days in infants may have only mild and temporary effects on the gut microbiota composi-
tion and their metabolites [52,65].

Zhu et al. analyzed the stool microbiota and metabolites in 36 preterm neonates
divided into three groups. Two were treated with penicillin and moxalactam or piperacillin-
tazobactam for 7 days, whereas one was antibiotic-free. Both treated groups exhibited
a reduction of gut bacterial diversity and an increase in dangerous bacteria such as
Streptococcus, which can cause serious infections such as neonatal sepsis, and Pseudomonas.
The piperacillin-tazobactam group also exhibited an overgrowth of Enterococcus, which is
intrinsically resistant to different antibiotics and may cause nosocomial infections [51].



Antibiotics 2023, 12, 258 7 of 13

In this way, probiotics may help to reduce the incidence of necrotizing enterocolitis
(NEC), late-onset sepsis, and the mortality of preterm neonates [60].

Early-life antibiotic therapy could increase the presence of pathogenic, antibiotic-
resistant Enterobacteriaceae, which are especially resistant to beta-lactam antibiotics [66].
Additionally, in the genomic context, the expression of antibiotic resistance genes may
be influenced by exposure to antibiotics in early life [67]. There are several pieces of evi-
dence related to the development of multidrug resistance genes in Gram-negative bacteria,
especially after prolonged antibiotic treatment. Third-generation Cephalosporins or Car-
bapenems are more frequently associated with the development of antibiotic resistance
among Gram-negative bacteria than Aminoglycosides [48,68–70]. Antibiotics also select
bacteria expressing resistance genes in the gut microbiota [48].

Trasand et al. demonstrated that antibiotic exposure during the first six months of life
was associated with increases in body mass from 10 to 38 months, whereas later exposure
(6–14 months, 15–23 months) was not consistently associated with an increased body
mass [71]. Subtherapeutic antibiotic doses may be associated with an increased body mass
in farm animals and laboratory mice, whereas this has not been observed in children with
repeated antibiotic treatment [67]. In a systematic review, the antibiotic-induced reduction
of gut microbiota diversity was associated with various long-lasting consequences, such as
obesity and inflammatory disease [48,72]. Perinatal exposure to broad-spectrum antibiotics
such as ampicillin induced dysbiosis, which seemed to be associated with alterations of
colonic CD4+ T cells and in particular of neuropilin-negative RORYt+ and Foxp-3 positive
Tregs. This change may lead to compromised immune tolerance, with the development of
immunologic and metabolic disease [72].

Finally, in a systematic review that identified 129 studies, alterations of human in-
testinal microbiota due to antibiotics exposure were reported. In particular, amoxicillin,
amoxicillin/clavulanate, cephalosporins, macrolides, clindamycin, tigecycline, quinolones,
and fosfomycin increased the abundance of Enterobacteriaceae other than E. coli (espe-
cially Citrobacter spp., Enterobacter spp., and Klebsiella spp.). Amoxicillin, cephalosporins,
macrolides, clindamycin, quinolones, and sulphonamides decreased the concentration
of E. coli, whereas amoxicillin/clavulanate, in contrast to other penicillins, increased the
abundance of E. coli. Piperacillin and ticarcillin, carbapenems, macrolides, clindamycin,
and quinolones strongly decreased the abundance of anaerobic bacteria [73].

4. Possible Strategies for the Prevention of Dysbiosis and Restoration of the Microbial
Community after Antibiotic Exposure

In the literature, different pieces of evidence are emerging related to microbiome-based
approaches for the restoration of a healthy microbiota in neonates.

Antibiotic treatment in neonatal infections has important negative effects on gut
microbiota due to the reduction of the populations of Bifidobacterium and Lactobacillus. These
bacterial species may promote gut health and may prevent pathogen colonization [74].
Although the use of probiotics such as Bifidobacterium longum, Lactobacillus acidophilus, and
Enterococcus faecalis seems not to restore the composition and diversity of the neonatal gut
microbiota, the simultaneous use of probiotics and antibiotics might have a more beneficial
effect by promoting an increase in the presence of Bifidobacterium [75].

Single probiotic strains, such as Saccharomyces bourlardii, Lactobacillus reuteri, Lactobacil-
lus acidophilus and Bifidobacterium lactis, have shown modest improvements in gut health,
whereas the greatest success has been observed in probiotic mixes [74]. The use of three to
eight different bacterial strains may reduce LOS in enterally-fed infants because different
bacterial species may have complementary roles in restoring gut health and providing
protection [76,77]. However, probiotics with a single strain or a mixture of Lactobacillus
rhamnosus GG, S. boulardii, L. reuteri, Lactobacillus sporogenes, or B. breve have shown limited
effects in reducing LOS in formula-fed preterm neonates [78]. These data have suggested
that nutrition might influence the efficacy of probiotics.
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In a 10-year observational study led by Beck and colleagues, it was demonstrated
that supplementation with two different probiotics in preterm infants—one with Bifidobac-
terium bifidum plus L. acidophilus and the second one with B. bifidum, B. longum subsp.
infantis and L. acidophilus—was associated with a faster transition into two different Bifi-
dobacterium spp. and to positive health outcomes [79]. In these neonates, an important
bifidogenic role was performed by breastmilk [79]. Breastmilk-fed neonates have a higher
concentration of Bifidobacterium and Bacteroides, whereas formula-fed infants maintain Enter-
obacteriaceae for longer periods of time [80]. Human milk oligosaccharides (HMOs), which
are multifunctional glycans that are naturally present in human milk [81], counteract the
negative effects of antibiotics by increasing the levels of Bifidobacteria and decreasing those
of staphylococci [79] (Figure 2). Bifidobacterium produces short-chain fatty acids (SCFAs)
that reduce gut permeability and preserve the integrity of the intestinal barrier [82]. In
addition, HMOs seem not only to have prebiotic effects on commensal bacteria but also to
exhibit antimicrobial activity against pathogens such as group B Streptococcus (GBS), which
is the main organism responsible for neonatal infections [83] (Figure 2). HMOs may serve
as a substrate to modify the growth of GBS. They also have anti-adhesive effects because
they work as soluble ligand analogs and block pathogen adhesion [81]. Finally, they seem
to have glycomic modifying effects by altering glycan expression on the epithelial cells,
reducing bacterial attachment [81]. HMOs also provide protection against viral infections
because they promote the maturation of the immune system, along with a more balanced
Th1/Th2 cytokine response, and stimulate commensal bacterial growth [81].
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In this way, breastmilk components, such as HMOs, growth factors, immunological
factors, and probiotic bacteria could establish a healthy gut microbiota and might promote
more effective crosstalk among probiotics, gut microbiota, and the immune system [78].

Some evidence has revealed that supplementation with Bifidobaterium-containing
probiotics during hospitalization after preterm birth might prevent the persistence of
antibiotic resistance genes in the gut microbiome, such as aminoglycoside and beta-lactam
resistance [84–86].

Finally, probiotic, prebiotic, or synbiotic administration to cesarean-born neonates
might be associated with improvements in some health outcomes through their immunomod-
ulatory effects, such as decreasing atopic and infectious diseases or increasing the immune
vaccination response [87].

5. Conclusions

During prenatal and postnatal life, infants are colonized by different microorganisms.
Gut colonization is a dynamic process, influenced by a wide range of factors such as the
mode of delivery, diet, environment, feeding, and antibiotic treatment. Antibiotic-induced
alterations of the gut microbiota might affect the maturation of the immune system and
increase susceptibility to obesity, diabetes, inflammatory bowel disease, and immune-
related diseases such as asthma and allergies. Additionally, dysbiosis causes an increased
risk of early adverse outcomes such as NEC, sepsis, and fungal infections. However, the
rapid interruption of antibiotic treatment and the use of probiotics may allow for the
recovery of the composition of the gut microbiota and appear to have beneficial effects on
human health.

An important possible future strategy could involve the consideration of microbiota
as a possible intervention target to promote infants’ health, because full-term delivery, a
lack of perinatal antibiotic exposure, and the use of probiotics seem to be protective factors
against gut dysbiosis and all its consequences.
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