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A B S T R A C T   

Near-infrared (NIR) spectroscopy is a well-established analytical technique that has been used in many appli
cations over the years. Due to the advancements in the semiconductor industry, NIR instruments have evolved 
from benchtop instruments to miniaturised portable devices. The miniaturised NIR instruments have gained 
more interest in recent years because of the fast and robust measurements they provide with almost no sample 
pretreatments. 

However, due to the very different configurations and characteristics of these instruments, they need a 
dedicated optimization of the measurement conditions, which is crucial for obtaining reliable results. To 
comprehensively grasp the capabilities and potentials offered by these sensors, it is imperative to examine errors 
that can affect the raw data, which is a facet frequently overlooked. In this study, measurement error covariance 
and correlation matrices were calculated and then visually inspected to gain insight into the error structures 
associated with the devices, and to find the optimal preprocessing technique that may result in the improvement 
of the models built. 

This strategy was applied to the classification of sweet and bitter almonds, which were measured with the 
three portable low-cost NIR devices (SCiO, FlameNIR+ and NeoSpectra Micro Development Kit) after removing 
the shelled, since their classification is of utmost importance for the almond industry. The results showed that 
bitter almonds can be classified from sweet almonds using any of the instruments after selecting the optimal 
preprocessing, obtained through inspection of covariance and correlation matrices. Measurements obtained with 
FlameNIR + device provided the best classification models with an accuracy of 98 %. The chosen strategy 
provides new insight into the performance characterization of the fast-growing miniaturised NIR instruments.   

1. Introduction 

Near-infrared (NIR) spectroscopy is a type of vibrational spectros
copy that detects changes in the vibrations of molecules in response to 
electromagnetic radiation. This non-invasive method harnesses the 
interaction of near-infrared light with matter to reveal valuable infor
mation about the composition and molecular structure of various sub
stances. As almost all the organic molecules absorb light in the mid- 
infrared region and this is reflected in the overtone bands that appear 

in the near-infrared region, this technology is especially valuable when 
analysing food samples, which are mostly made of organic matter [1,2]. 
Furthermore, vibrational spectroscopy has some advantages over other 
analytical techniques because it can monitor analytes with high selec
tivity without the need for time-consuming and usually not-green sam
ple treatments [3,4]. Because it is robust and non-destructive, NIR 
spectroscopy has become a successful analysis tool in many fields, such 
as the agri-food, pharmaceutical, and polymer industry [5]. 

One of the main challenges in using NIR techniques is that a 
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spectrum consists of a number of bands emerging from overtones and 
combination modes that substantially overlap with each other, making it 
difficult to analyse the information contained in them. Another major 
challenge in NIR spectroscopy is the presence of baseline shifts and 
drifts, which needs to be corrected in order to build proper models. 
Consequently, chemometric tools are commonly employed during data 
analysis to correct and extract information from NIR spectra. These 
techniques help overcome the mentioned problems caused by the high 
complexity of the raw signal, which is of multivariate nature [6,7]. 

The use of chemometrics in spectroscopy is growing as the recent 
advancements in the semiconductor industry have led to the miniatur
isation of classical laboratory instruments into handheld spectroscopic 
devices. The downsizing of the spectrometers is, among others, due to 
incorporating novel technological solutions, e.g., based on MEMS 
(micro-electro-mechanical systems) and MOEMS (micro-opto-electro- 
mechanical systems). The fabricated miniaturised spectrometers have 
lower costs compared to benchtop instruments, which allows their use 
by a broader range of users and applications. For example, rapid analysis 
of milk [8], classification of edible oils [9] or prediction of nutritional 
parameters in insect powders [10]. These spectrometers follow the ob
jectives of green analytical chemistry, providing rapid, non-destructive, 
and on-field analysis with almost no sample pretreatments and minimal 
use of reagents [11]. These on-field analyses with miniaturised spec
trometers are of utmost importance in the industry because using con
ventional benchtop instruments requires transferring the sample to a 
laboratory, where the sample may undergo alteration and the obtention 
of the results may be delayed. The real-time monitoring in the produc
tion facilities ensures quality and safety matters and allows rapid 
intervention when a problem is detected. Moreover, it allows fast quality 
control checks by regulatory bodies in the markets and factories 
[12–14]. 

The aforementioned reduction in the dimension and cost of the 
spectrometers may result in lower performances compared with bulky 
instruments. The benchtop NIR instruments are mature devices that 
have been well studied and characterized in the past 20 years. They have 
uniform performances, rely on the same types of instrumentation such as 
the light source, and the measurements are made in the controlled 
conditions of the laboratory. The spectral wavelengths of the NIR region 
range from 800 to 2500 nm (12,500 to 4000 cm− 1), and benchtop de
vices usually cover the entire region. On the other hand, portable NIR 
spectrometers cover a portion of the NIR region and have lower spectral 
resolutions. They rely on different and new solutions due to the engi
neering difficulties of miniaturisation aspects. Such diverse technologies 
cause non-uniform performance and require more device-specific opti
mizations [5,15,16]. 

There has been an increasing effort to stablish the performance pa
rameters of these miniaturised NIR devices in recent years. Some of the 
articles found in the literature focus on the assessment of the classifi
cation, identification or predictive abilities of these devices applied to 
different fields and their performance comparison with benchtop de
vices [17–23]. However, since the field of miniaturised NIR spectrom
eters is very new and evolving very fast, the sources of variability 
associated to these instruments are not yet well known for the different 
applications. So, a complete characterization of these newly developed 
spectrometers still needs to be explored and adapted to different types of 
samples, although there are some attempts to transfer the calibration 
data from benchtop instruments to miniaturised devices [24,25]. There 
are a few studies that have investigated the sources of variability in 
miniaturised devices that affect their performance, to understand the 
underlying error structures and develop optimal strategies for new 
measurements and applications [26–30]. Thus, these miniaturised 
spectrometers require a more in-depth evaluation of the measurement 
errors, caused by the various sources of variability present in the data 
acquisition, to get the best performance characterization that can pro
duce reliable models. 

The main objective of this work was to characterize the errors 

associated with three low-cost miniaturised NIR instruments, of 
different robustness and price, when analysing whole almonds: SCiO 
(Consumer Physics, few thousand euros + software), FlameNIR+ (Ocean 
Optics, around ten thousand euros), and NeoSpectra Micro Development 
Kit (Si-Ware Systems, a couple thousand euros + periodic subscription). 
Each of the three NIR spectrometers uses different technological solu
tions and covers a different region of the NIR spectra so that the data are 
complementary and just overlap in a very narrow part of the spectra. 
The study identifies underlying error types and structures through the 
analysis of multivariate measurement errors, which is a well-established 
statistical way to characterize error structures by building error 
covariance and correlation matrices from replicas of the spectra. The 
effectiveness of multivariate measurement error and its incorporation 
during data analysis for other analytical instruments has been studied, 
but its application to miniaturised NIR spectrometers is very limited and 
missing in the literature [29,31–33]. Recently, Gorla et al. [28] tried to 
reveal the error sources in one miniaturised instrument and used this 
information to determine different properties of forage samples. Simi
larly, Wentzell et al. [29] studied the error structures present in NIR 
spectra of wood samples for differentiating the tree species. They 
concluded that by evaluating error structures present in the data, 
optimal analytical strategies can be developed. 

As a second objective, the best spectral preprocessing for each in
strument was identified through the inspection of error covariance and 
correlation plots. Finally, to test the effectiveness of the proposed 
method, the performances of all three instruments were evaluated to 
classify bitter and sweet almonds, which has already been tried with not 
so low-cost miniaturised NIR spectrometers [34,35]. One of the most 
important aspects of the almond industry is the discrimination of bitter 
almonds from sweet ones since it affects their commercialization and 
usage in a variety of foods. Apart from the unpleasant taste, bitter al
monds have serious health risks because they contain toxic compounds 
such as amygdalin, whose hydrolysis creates benzaldehyde and cyanide, 
the latter causing poisoning and potentially accidental death. 

2. Materials and methods 

2.1. Instrumentation 

All measurements were performed using three portable NIR spec
trometers: SCiO (Consumer Physics, Herzliya, Israel), FlameNIR+
(Ocean Optics, Dunedin, USA), and NeoSpectra Micro Development Kit 
(Si-Ware Systems, Cairo, Egypt). The working principle and the instru
mental solutions are different in the three devices. 

SCiO is a pocket-size NIR spectrometer that has a weight of 35 g and 
its dimensions are 67.7 × 40.2 × 18.8 mm. It acquires spectra in the 
740–1070 nm wavelength range with interpolated spectra with a reso
lution of 1 nm (331 variables) [36,37]. It can perform measurements 
both in contact and distance mode and is usually used for solid samples. 
The distance between the sample and the device should be less than 10 
mm. SCiO should be connected to a smartphone via Bluetooth, and the 
spectra are recorded using ‘The Lab’ app available for Android and iOS 
systems. The app does not allow setting any measurement parameters, 
and the scan time is less than 5 s. The spectra can then be downloaded 
from the private area of a cloud web address (thelab.consumerphysics. 
com). The device should be calibrated each time it is turned on using 
a calibration standard on the back cover of the device. The device can be 
used in two operation modes: connected to a power supply or running on 
battery. Regarding technological solutions, SCiO has a light source 
based on light-emitting diodes (LEDs), making the device more 
cost-effective and decreasing power consumption. SCiO contains a sili
con detector based on complementary metal-oxide-semiconductor 
(CMOS) in the form of a 4 × 3 photodiode array with optical filters 
over the individual pixels. No initial warm-up is required. To perform 
the measurements, the SCiO device was fully charged and background 
acquisitions were acquired before starting each measurement session. 
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The spectra were acquired in reflectance mode by directly pointing the 
device onto the almonds at a fixed distance of around 0.5 cm, fixed 
geometry and avoiding the tilting (Fig. 1a). 

The FlameNIR+ is a miniaturised NIR spectrophotometer that 
weights 989 g (including all modules) and its dimensions are 89.1 ×
63.3 × 31.9 mm. The captured spectra cover a range between 970 and 
1700 nm with a resolution of 6 nm (128 variables). As it is a modular 
spectrometer consisting of different probes and optic fibres, several 
measurement modes can be arranged: surface measurement in direct or 
diffuse reflectance, or transmittance/absorbance or fluorescence mea
surements in a cuvette. The spectrometer is powered and controlled by a 
computer connected via a USB cable; instead, the NIR light source is 
directly connected to a power supply. The number of scans, integration 
time and measurement modes can be changed in the freely available 
‘OceanView’ software. For an adequate measurement, a black reference 
and a white reference must be collected first, which, in the case of diffuse 
reflectance measuring arrangement, consists of measuring a spectrum 
with the NIR light source turned off and another spectrum of the Spec
tralon™ (Labsphere, Sutton, USA) sample with the source turned on. As 
suggested by the manufacturer, the white or blank reference must be 
periodically repeated during the usage as the temperature and mea
surement conditions may vary. To reduce this variation, a previous 
warm-up of the NIR light source is recommended. The detector of the 
spectrometer consists of an uncooled InGaAs array. The measurements 
with the FlameNIR + device were performed in reflectance mode, using 
an optic fibre probe located in a probe holder and attached to the light 
source and the spectrometer (Fig. 1b). 

The NeoSpectra device has a weight of 17 g and dimensions of 32 ×
32 × 22 mm. The wavelength range is from 1350 to 2558 nm (134 
variables) with a varying spectral resolution that ranges from 5 nm to 17 
nm as wavelength numbers increase. Only contact measurements can be 
performed, as optimal signal is acquired when the sample is in contact 
with the window containing the light source and sensor. The device 
must be connected to a computer via a USB cable, and the spectra are 
collected by a software (SpectroMOST Micro) and are stored in the 
computer. It allows configuring some parameters such as the scan time, 
run mode (single or continuous measurements), display mode (reflec
tance or absorbance), and data interpolation in each spectrum collected. 
A reflection standard such as Spectralon™ is required when the software 
is started or when any operational parameter is changed. The instru
mental design of NeoSpectra consists of a light source made of three 
halogen tungsten lamps that require an initial warm-up before per
forming the measurements to stabilize the light intensity. The wave
length selector is a Michelson interferometer made by the MEMS 
technique and has a single InGaAs photodetector [21,22]. For the 
NeoSpectra measurements, background acquisitions were performed at 
the beginning of the measurements and every hour thereafter, because 
NeoSpectra needs frequent background resets due to the heating of 
optical components [28]. An initial warm-up of 20 min, simply using a 
continuous measurement setting but without placing any sample on the 
window, was performed before each measurement session, then, the 

scanning time was set to 2 s for the samples. The almonds were put 
directly on the NeoSpectra window (Fig. 1c) and were acquired in 
reflectance mode. 

All measurements with the three devices were performed at room 
temperature under ambient light. The average raw spectra of the sweet 
and bitter almonds obtained with the three devices are shown in Fig. 2. 
Additionally, the standard deviation of the spectra of each device can be 
seen in supplementary Fig. S1. 

2.2. Samples 

The samples included different varieties of almonds from La Palma 
d’Ebre, in Tarragona, Catalonia, Spain. All almonds were from the same 
harvesting season and were collected in September 2022. A total of 150 
almonds were analysed after removing the shell, of which 75 were sweet 
almonds, and 75 were bitter almonds. The sweet almonds were from 
three different varieties; 25 were of the Ferragnes variety (group S1) and 
50 were from two local varieties of Comuna almonds (groups S2 and S3), 
which are the most processed in the Spanish industry [38]. The bitter 
almonds belonged to three different non-identified varieties, with 
different external morphology, coming from different fields of the same 
region (groups B1, B2 and B3). 

For a preliminary study of error sources, 18 almonds were randomly 
chosen: 9 sweet and 9 bitter, 3 of each variety. Two different types of 
replicates were used in the measurements: replacement replicates, that 
is, changing the position of the sample each time (randomly, assuring 
both faces of the almond are positioned at least once) when it is 
measured, to account for variations related to the sample position; and 
instrumental replicates, that is, measuring the spectra without moving 
the sample to account for variations related to the instrument [29]. 
Three replacement replicates and five instrumental replicates for each 
position were measured per each sample, in the same analytical session, 
accounting for the heterogeneity of the samples and instrumental 
variations. 

Upon analysing the outcomes of the initial experiment, the rest of 

Fig. 1. Almond measurement set-ups for a) SCiO, b) FlameNIR+ and c) NeoSpectra devices.  

Fig. 2. Average raw spectra of sweet and bitter shelled almonds measured with 
SCiO, FlameNIR+ and NeoSpectra. 
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almonds were measured randomly along 10 days, to include the vari
ability of the measurement session into the models as happens in real- 
working conditions. Three repositioning replicates were acquired 
randomly, ensuring that each face was analysed at least once. The 
spectra of the replacement replicates of the almonds used for the pre
liminary study (three of each almond) were added to this data set. The 
spectra of all replicates for each almond were further used for data 
analysis and modelling by assigning them the class of the almond they 
belong to. 

2.3. Statistical data analysis 

MATLAB R2021b (Mathworks Inc., Natick, MA, USA) and 
PLS_Toolbox version 9.0 for MATLAB (Eigenvector Inc, Manson, WA, 
USA) installed on a PC with Windows operating system were used for 
data analysis. Data were organized in an X matrix for each instrument, 
containing the samples in the rows and the wavelengths in the columns. 
In the case of SCiO and NeoSpectra, the spectra were transformed from 
reflectance to absorbance units. In the case of FlameNIR+, the sensor 
directly provided absorbance values. Error Covariance Matrices (ECMs) 
were calculated using in-house routines with MATLAB 2021b, while 
Partial Least Squares Discriminant Analysis (PLS-DA) was performed 
with the PLS_Toolbox 9.0. For the PLS-DA models, a Y vector was 
defined, containing dummy values for the classes (zeros for sweet al
monds and ones for bitter almonds). Different spectral pre-processing 
methods were tested but only the most relevant are shown in this 
article: detrending, standard normal variate (SNV), and first and second 
Savitzky–Golay derivatives (2nd order polynomial, 15-point window; 
after optimization) and the combination of these two with SNV. After 
spectral pre-processing, data were finally mean-centred in all calcula
tions. The original data set was split into a calibration set and a test set 
using the onion algorithm, as implemented in the PLS_Toolbox: 2/3 of 
the samples were maintained in the calibration set making sure all types 
of almonds were well and equally represented in both sets. To validate 
the multivariate models, both cross-validation (5 data splits and 5 iter
ations – on calibration set) and external validation were used. The se
lection of the best models was determined by striking a balance between 
minimizing the number of latent variables (LVs), and maximising both 
sensitivity (samples belonging to a class correctly assigned to that class) 
and specificity (samples not belonging to the class correctly not assigned 
to that class) all of which collectively contribute to accuracy (correctly 
assigned samples). 

2.3.1. Error covariance matrix (ECM) 
ECMs are a practical way to characterize multivariate measurement 

errors by describing the relationships between measurement errors 
across the channels/wavelengths [26]. An ECM is a symmetric matrix, in 
which the diagonal elements contain the variance of the measurement 
error at each channel and the off-diagonal elements contain the 
covariance of the errors between pairs of channels. ECMs are typically 
represented graphically, and their visual analysis provides interesting 
information on the magnitude and type of errors. The ECM is a useful 
tool to find the structure associated to the measured errors (e.g., pro
portional errors, constant errors, …) so that the choice of the optimal 
data preprocessing may be derived. When there is insufficient prior 
knowledge about the error types and structures in a measurement (as is 
the case in this work with miniaturised instruments), then the ECMs are 
calculated from the experimental estimation method, which is based on 
the analysis of the replicates. To calculate the covariance matrix using 
this method, the (approximate) true spectrum of a sample is estimated 
from the mean of the spectral replicates of that sample. Then, a residual 
matrix is calculated by subtracting the estimation of the real value from 
each replicate spectrum. Finally, the error covariance matrix is calcu
lated as the covariance between the residuals, as shown in Eq. (1): 

Σcov =
1

(n − 1)
∑n

k=1
(Xk − X)T

(Xk − X) (1)  

where Σcov is the covariance matrix of the ith sample, n is the number of 
replicates of the ith sample, Xk is the measured spectrum of the kth 
replicate for the ith sample, and X is the mean spectrum of n replicates. 

The covariance matrix depends on the magnitudes of the variances, 
and this makes their visual interpretation difficult when there are few 
channels with significantly higher variances (e.g., certain wavelengths 
with much lower precision than the rest of wavelengths). Variations 
among other channels can be hidden. For this reason, error correlation 
matrices were also calculated by scaling the variances and thus 
removing the effects of magnitudes of variations. The error correlation 
matrix, with all the values scaled between +1 and − 1, contains the 
correlation coefficients of the covariance matrix and is calculated as 
shown in Eq. (2). 

Σcorr =Σcov .

/ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

diag(Σcov)diag(Σcov)
T

√

(2) 

Unless the number of replicates for a sample is high (>20 if inde
pendent and identically distributed errors are assumed), the error 
covariance matrix has a certain degree of uncertainty. For this reason, it 
is important to have a sufficient number of replicates or otherwise to 
pool the error covariance over different subsets of samples by taking the 
mean of all covariance matrices (Σpooled). The pooling solution is 
generally preferred with NIR spectra because the measurement data do 
not change very much for the same types of samples [33]. In this 
particular case, covariance matrices were pooled over the 150 almonds. 

2.3.2. Partial Least Squares Discriminant Analysis (PLS-DA) 
PLS-DA is a supervised method used to classify samples based on 

specific properties assigned as different classes. In PLS-DA, a PLS 
regression model that links the independent variables (X matrix of NIR 
spectra in our case) to a vector Y containing the assigned classes as 
integer numbers is calculated. In this case, 0 was assigned to indicate 
sweet almonds, and 1 was assigned for bitter almonds. An unknown 
sample is classified using the projected value of the PLS model. This 
value, which is a real number rather than an integer, ought to ideally be 
near to the values used to define the class (here either 0 or 1). A cut-off 
value or a threshold, between 0 and 1, is established to maximize the 
selectivity and specificity of the model; so that an unknown sample is 
assigned to class 1 if the prediction is larger than the cut-off value, or 
assigned to class 0 if it is lower than the cut-off value. This threshold is 
set by minimizing the probability of both false positives and false neg
atives (assuming that the predicted values for each class are approxi
mately normally distributed), using the algorithm implemented in the 
PLS_Toolbox. Additionally, for the construction of the models, the right 
number of latent variables (LVs) must be chosen to prevent underfitting 
or overfitting the models. The LVs are linear combinations of the initially 
selected variables that maximize the discrimination among the groups 
[39]. In this work, the number of LVs was chosen considering a 
compromise between the complexity of the model and the accuracy in 
prediction, in order to avoid overfitted models. 

3. Results and discussion 

3.1. Preliminary study of error sources 

In the study of error covariance and correlation matrices, it is crucial 
to identify the type of replicates that will have an impact on these 
matrices. Instrumental variations are expected to have a smaller effect 
on the measurement errors than the sample variations due to the het
erogeneity of the sample, as seen in previous works [28]. To corroborate 
this, for all three instruments, error covariance matrices were calculated 
with the spectra acquired from the 18 almonds selected for this 
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preliminary study, shown in Fig. 3. Additionally, error correlation 
matrices for the same spectra can be seen in supplementary Fig. S2. 

As Fig. 3 shows, spectra of both types of almonds recorded with all 
three spectrometers gave similar error structure. The effects that might 
influence the measurements affect in a comparable scale the spectra of 
both types of almonds. Spectra of sweet and bitter almonds can thus be 
used together in the estimation of error covariance and correlation 
matrices, to find an optimal preprocessing method that will work for all 
considered almonds. 

Furthermore, from Fig. 3 it can be concluded that the effects 
observed in the error covariance matrices of instrumental replicates are 
negligible when compared to the replacement replicates, as the latter 
ones have a considerably bigger scale (around 3 orders of magnitude, 
with the exception of the central point in NeoSpectra, related to sample 
heating). This is an expected result, given that the measurements ob
tained from an instrument, including a low-cost miniaturised instru
ment, exhibit minimal fluctuations during the timeframe in which these 
spectra were recorded. However, it is important to note that when 
performing the measurement, the exact positioning, e.g., angle and 
distance between the sensor and the sample, may not be consistently 
replicated and this may be reflected in the error structures. Based on 
these results, the almonds were analysed in triplicate, performing only 
repositioning replications. 

3.2. Multivariate statistical analysis 

3.2.1. Error covariance matrix (ECM) 
The error covariance and correlation plots, calculated for the 

replacement replicates of each sample and averaged for all 150 samples, 
were visually inspected to understand the error types and structures for 
the three sensors. Fig. 4 shows the error covariance and error correlation 
matrices of the three instruments. 

In the case of SCiO, the errors seem to be somehow homoscedastic, 
which is a type of error that has a uniform variance across the channels 
on the diagonal of the covariance matrix. This can be seen from Fig. 4a, 
in which diagonal elements have similar values. In addition, the errors 

were also highly correlated (Fig. 4d), which means that there is a rela
tionship among the errors for different variables since most of the cor
relation matrix was close to one. A constant offset noise was observed, 
which is a type of correlated noise that can be seen in all three in
struments and it is usually caused by temperature drifts or changing 
light scattering effects [40]. These effects shift the entire signal by a 
constant value and can be seen from the fact that covariance values were 
non-zero across all channels. This offset noise might be due to the 
repositioning of the almonds between replacement replicate scans. 
Additionally, a multiplicative noise can also be observed from the fact 
that the error covariance is proportional to the spectral signal (e.g., the 
peaks between 900 and 1000 nm) by comparing covariance matrix from 
Fig. 4a with the spectral signal from Fig. 2. Constant offset and multi
plicative noise are typical characteristics of NIR spectra, which can be 
caused by different variations in the sample or the instrument [28,40]. 

Regarding the measurements with FlameNIR+, the magnitude of 
errors in the covariance matrix was smaller compared to the other de
vices, suggesting better measurement stability. On contrast, the errors 
seem to be heteroscedastic, this is, inconsistent across the diagonal of the 
matrix (Fig. 4b). The error types were similar to the other instruments, 
with a high correlation among them (Fig. 4e), additionally, a constant 
offset was observed; especially in the 1440–1600 nm region, which later 
can be corrected with appropriate preprocessing. 

As for NeoSpectra measurements, the error structures showed more 
heteroscedastic errors across all regions (Fig. 4c). The noise proportional 
to the spectral signal was also present. Errors were higher in magnitude 
than in FlameNIR+, although a bit lower than in SCiO. This was already 
predicted from the noisier spectra given by NeoSpectra, especially in the 
range of 1400–1800 nm (supplementary Fig. S1Supplementary Fig. S1). 
The higher errors, such as the peak present around 1900–1950 nm, 
which corresponds to the first overtone of the water absorption band, is 
probably related to the heating up of the sample and its dehydration 
during the measurement, as this instrument not only enlightens the 
measured point but a broad area (see Fig. 1c) [41]. 

Fig. 3. Error covariance matrices for the SCiO, FlameNIR+ and NeoSpectra spectrophotometers considering different types of replicates: replacement, instrumental 
and both; averaging the matrices for sweet and bitter almonds separately. 
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3.2.2. Spectral preprocessing 
Different preprocessing methods were applied to the whole data set 

of 150 almonds, while evaluating the plots to see their effect on the noise 
structures. For this, it is hypothesized that the preprocessing method 
that is more capable of removing the heteroscedasticity in the data will 
result in the best performing classification model, as a normal distri
bution of the errors is one of the assumptions of the PLS model calcu
lation [28]. In an attempt to correct the error structures present in the 
data, the most common preprocessing methods used in infrared spec
troscopy were tested [40]. 

Fig. 5 shows the error correlation matrices for different preprocess
ing methods. In general, it can be observed that preprocessing the data 
results in smoother surfaces and less correlated (more randomly 
distributed) errors, with the higher correlations only being present in the 
diagonal of the matrix. At the same time, preprocessing makes the error 
more homoscedastic, as the variance of the errors becomes more equally 

distributed through all the spectrum (supplementary Fig. S3). De
rivatives and derivatives combined with SNV seem to be the best se
lection, as the plots show that the errors have a more random 
distribution compared to raw data or other preprocessings. From this it 
is postulated that these preprocessing methods would be the most 
adequate to apply for building the classification models of almonds. 

3.2.3. Classification of almonds 
PLS-DA models were built for each set of spectra with a different 

preprocessing method and their performance was evaluated using the 
test set. For building the models for the FlameNIR+ and NeoSpectra 
instruments, the last part of the spectra (>1650 nm and >2400 nm, 
respectively) was removed, as a better performance was obtained. In 
addition, a cross-validation was carried out in the calibration set using 
ten iterations of the 5-fold random subset validation. Table 1 shows the 
performance indicators of the external validation set for each 

Fig. 4. Measurement error covariance and correlation matrices calculated from spectra acquired with SCiO (a,d), FlameNIR+ (b,e) and NeoSpectra (c,f), respec
tively. The matrices are pooled over the whole set of 150 samples, both sweet and bitter with the replacement replicates. 

Fig. 5. Error correlation matrices calculated from raw spectra and using different preprocessing methods for different spectrophotometers, where yellow colour 
shows the highest positive correlation. 
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classification model. 
As it can be seen, the accuracy of the model is related with the ho

moscedasticity and randomness of the error present in the spectral 
replicates used for modelling. The greater the degree of diagonalisation 
in the error correlation matrix, the greater the accuracy achieved by 
PLS-DA models, when using the same spectrometer and a similar num
ber of latent variables (LVs). This indicates that the character of the 
errors (heteroscedasticity or homoscedasticity; and randomness or cor
relation) of the input data in fact does affect the outcome of the model, 
and that the analysis of error correlation matrices can serve as a valuable 
approach to assess the suitability of a preprocessing method before 
constructing prediction or classification models [42]. 

However, the error correlation matrices must be considered as an 
indicative tool and not as a rule to follow, as there are more factors 
involved in providing a successful classification or prediction model. 
Although this study focused on plotting these matrices and the error 
distribution, complementary techniques have been proposed to help the 
analyst better describe or use these matrices, such as error distribution 
histograms [30]. In the end, the implications of using different pre
processing methods should be further studied by an analyst and the final 
models should be properly validated. 

For this particular case, from Table 1 can be deduced that the best 
results were obtained for the FlameNIR + instrument, which offered a 
model with a global classification accuracy of 98 %. However, very good 
results can also be achieved with the other two, much cheaper sensors. 
From this it can be concluded that it is possible to use a portable NIR 
instrument for classifying bitter and sweet almonds with a high perfor
mance. Furthermore, this is accomplished with a rather simple data 
preprocessing step and a parsimonious model. In addition, it can be 
noted that the performance of the models is not affected by the fact of 

having different varieties of almonds, as they are capable of modelling 
all the groups adequately. Fig. 6 shows the discrimination plot of this 
classification model for the FlameNIR + device, that is, preprocessed 
using the second derivative (Savitzky-Golay, 2nd order polynomial, 15- 
point window). 

4. Conclusions 

Error covariance and correlation matrices have been proven to be a 
method with high potential to study and quantify the errors present in 
the data provided by miniaturised instruments, offering a structured 
characterisation of the sources of variability that may influence the 
performance of three low-cost miniaturised NIR spectrometers, in this 
case. 

The visualisation of these matrices has been proposed as a method to 
select the optimal preprocessing methods that could lead to obtain better 
classification models during the data analysis stage, to distinguish sweet 
and bitter almonds and potentially other applications. In addition, the 
effect of instrumental and replacement replicates on the data sets was 
studied through the error covariance matrices. It was concluded that, 
across all devices, the instrumental variations had an insignificant 
impact on the measurements when compared to the variations arising 
from sample repositioning, rendering them negligible. 

Furthermore, the proposed PLS-DA models successfully classified the 
almonds, this is, after applying the optimal preprocessing determined 
through the visual inspection of covariance and correlation matrices. All 
three spectrometers: SCiO, FlameNIR+ and NeoSpectra showed to be 
capable of classifying whole almonds by bitterness, with FlameNIR +
performing better. 
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Table 1 
Performance indicators of the PLS-DA models built for each spectrophotometer using different preprocessing methods, where the model selected as optimal for each 
instrument is marked in bold and italics. #LV: number of Latent Variables; TPR: True Positive Rate (correctly classified bitter almonds); TNR: True Negative Rate 
(correctly classified sweet almonds); ACC: Classification Accuracy (total number of correctly classified almonds).   

SCiO FlameNIR+ NeoSpectra 

#LV TPR TNR ACC #LV TPR TNR ACC #LV TPR TNR ACC 

Raw 3 0.86 0.48 0.69 3 0.72 0.88 0.80 3 0.87 0.80 0.84 
Detrend 3 0.86 0.44 0.67 3 0.68 0.88 0.78 2 0.87 0.85 0.86 
SNV 4 0.71 0.65 0.69 4 0.80 0.92 0.86 2 0.87 0.85 0.86 
1st Deriv. 3 0.82 0.70 0.76 4 0.76 1.00 0.88 2 0.90 0.85 0.88 
1st Deriv.+SNV 4 0.88 0.76 0.82 4 0.92 0.96 0.94 3 0.90 0.85 0.88 
2nd Deriv. 3 0.96 0.88 0.92 4 0.96 1.00 0.98 2 0.97 0.80 0.90 
2nd Deriv.+SNV 4 0.96 0.92 0.94 4 0.92 0.96 0.94 2 1.00 0.80 0.92  

Fig. 6. PLS-DA discrimination plot for the model with highest accuracy for the 
prediction of the different varieties of bitter and sweet almonds (coloured in 
groups with different symbols) present in the test set, measured with FlameN
IR+. The threshold is marked with a dotted line. 
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[22] J. Riu, G. Gorla, D. Chakif, R. Boqué, B. Giussani, Rapid analysis of milk using low- 
cost pocket-size NIR spectrometers and multivariate analysis, Foods 9 (2020) 1090, 
https://doi.org/10.3390/FOODS9081090. Page 1090 9 (2020. 

[23] H. Yan, H.W. Siesler, Identification performance of different types of handheld 
near-infrared (NIR) spectrometers for the recycling of polymer commodities, Appl. 
Spectrosc. 72 (2018) 1362–1370, https://doi.org/10.1177/0003702818777260. 

[24] J.A.F. Pierna, P. Vermeulen, B. Lecler, V. Baeten, P. Dardenne, Calibration transfer 
from dispersive instruments to handheld spectrometers, Appl. Spectrosc. 64 (2010) 
644–648, https://doi.org/10.1366/000370210791414353. 
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discrimination of almonds (Prunus amygdalus) with respect to their bitterness by 
using near infrared and partial least squares-discriminant analysis, Food Chem. 153 
(2013) 15–19, https://doi.org/10.1016/j.foodchem.2013.12.032. 

J. Ezenarro et al.                                                                                                                                                                                                                                

https://doi.org/10.1016/j.talanta.2024.126271
https://doi.org/10.1016/j.talanta.2024.126271
https://doi.org/10.3390/FOODS11101465
https://doi.org/10.1016/J.TIFS.2006.09.003
https://doi.org/10.1016/J.TIFS.2006.09.003
https://doi.org/10.1016/J.COFS.2020.04.008
https://doi.org/10.1080/10408347.2010.515468
https://doi.org/10.1080/10408347.2010.515468
https://doi.org/10.1002/CHEM.202002838
https://doi.org/10.1002/CHEM.202002838
https://doi.org/10.1255/JNIRS.295
https://doi.org/10.1002/9780470047705.CH3
https://doi.org/10.1002/9780470047705.CH3
https://doi.org/10.3390/FOODS9081090
https://doi.org/10.3390/FOODS10112856/S1
https://doi.org/10.3390/FOODS10112856/S1
https://doi.org/10.3390/FOODS11213524/S1
https://doi.org/10.3389/FCHEM.2023.1214825
https://doi.org/10.1080/10408347.2022.2047607
https://doi.org/10.1080/10408347.2022.2047607
https://doi.org/10.3390/MI9100478
https://doi.org/10.1088/0022-3727/42/13/133001
https://doi.org/10.1016/J.ACA.2018.04.004
https://doi.org/10.1016/J.ACA.2018.04.004
https://doi.org/10.1177/0960336020916815
https://doi.org/10.1177/0960336020916815
https://doi.org/10.1039/C6AN02439D
https://doi.org/10.1039/C6AN02439D
https://doi.org/10.1016/J.TALANTA.2019.120115
https://doi.org/10.1177/0003702816638284
https://doi.org/10.1177/0003702816638284
https://doi.org/10.1016/J.JPBA.2018.07.048
https://doi.org/10.1016/J.JPBA.2018.07.048
https://doi.org/10.3390/FOODS10112856/S1
https://doi.org/10.3390/FOODS10112856/S1
https://doi.org/10.3390/FOODS9081090
https://doi.org/10.1177/0003702818777260
https://doi.org/10.1366/000370210791414353
https://doi.org/10.1016/J.CHEMOLAB.2012.02.001
https://doi.org/10.3390/FOODS12030493/S1
https://doi.org/10.3390/FOODS12030493/S1
https://doi.org/10.3390/CHEMOSENSORS11030182/S1
https://doi.org/10.3390/CHEMOSENSORS11030182/S1
https://doi.org/10.1016/J.ACA.2022.339900
https://doi.org/10.1016/J.ACA.2022.339900
https://doi.org/10.1139/cjc-2017-0730
https://doi.org/10.3390/MOLECULES28247999
https://doi.org/10.3390/MOLECULES28247999
https://doi.org/10.1016/J.ACA.2020.06.066
https://doi.org/10.1016/J.ACA.2020.06.066
https://doi.org/10.5935/0103-5053.20130293
https://doi.org/10.1016/J.CHEMOLAB.2004.09.017
https://doi.org/10.1016/J.JFOODENG.2020.110406
https://doi.org/10.1016/J.JFOODENG.2020.110406
https://doi.org/10.3390/FOODS10061221
https://doi.org/10.3390/MOLECULES24030428
https://doi.org/10.3390/MOLECULES24030428
https://doi.org/10.1007/978-981-15-8648-4_8
https://doi.org/10.1007/978-981-15-8648-4_8
https://www.mapa.gob.es/es/agricultura/temas/producciones-agricolas/frutas-y-hortalizas/Analisis%20realidad%20productiva%20frutos%20de%20cascara.aspx
https://www.mapa.gob.es/es/agricultura/temas/producciones-agricolas/frutas-y-hortalizas/Analisis%20realidad%20productiva%20frutos%20de%20cascara.aspx
https://www.mapa.gob.es/es/agricultura/temas/producciones-agricolas/frutas-y-hortalizas/Analisis%20realidad%20productiva%20frutos%20de%20cascara.aspx
https://doi.org/10.1016/j.foodchem.2013.12.032


Talanta 276 (2024) 126271

9

[40] Å. Rinnan, F. Van Den Berg, S.B. Engelsen, Review of the most common pre- 
processing techniques for near-infrared spectra, Trends Anal. Chem. 28 (2009) 
1201–1222, https://doi.org/10.1016/j.trac.2009.07.007. 

[41] H. Büning-Pfaue, Analysis of water in food by near infrared spectroscopy, Food 
Chem. 82 (2003) 107–115, https://doi.org/10.1016/S0308-8146(02)00583-6. 

[42] F. Allegrini, A.C. Olivieri, Recent advances in analytical figures of merit: 
heteroscedasticity strikes back, Anal. Methods 9 (2017) 739–743, https://doi.org/ 
10.1039/c6ay02916g. 

J. Ezenarro et al.                                                                                                                                                                                                                                

https://doi.org/10.1016/j.trac.2009.07.007
https://doi.org/10.1016/S0308-8146(02)00583-6
https://doi.org/10.1039/c6ay02916g
https://doi.org/10.1039/c6ay02916g

	Measurement errors and implications for preprocessing in miniaturised near-infrared spectrometers: Classification of sweet  ...
	1 Introduction
	2 Materials and methods
	2.1 Instrumentation
	2.2 Samples
	2.3 Statistical data analysis
	2.3.1 Error covariance matrix (ECM)
	2.3.2 Partial Least Squares Discriminant Analysis (PLS-DA)


	3 Results and discussion
	3.1 Preliminary study of error sources
	3.2 Multivariate statistical analysis
	3.2.1 Error covariance matrix (ECM)
	3.2.2 Spectral preprocessing
	3.2.3 Classification of almonds


	4 Conclusions
	Funding
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A Supplementary data
	References


