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Cauchy universality and random billiards
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Motion in bounded domains represents a paradigm in several settings: from billiard dynamics, to random
walks in a finite lattice, with applications to relevant physical, ecological, and biological problems. A remarkable
universal property, involving the average of return times to the boundary, has been theoretically proposed
and experimentally verified in quite different contexts. We discuss here mechanisms that lead to violations of
universality, induced by boundary effects and we also emphasize the role played by replacing straight lines with
random walks in this framework. We suggest that our analysis should be relevant where nonhomogeneity appears
in the stationary probability distribution in bounded domain.
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What do neutrons and ants have in common? A possible
answer, generalizing a geometric result established by Cauchy
[1], is that their average residence time 〈τ 〉 in a d-dimensional
bounded domain � does not depend on the nature of their
dynamics, nor on the shape of the bounded region; it is propor-
tional to the ratio between the volume V� and the surface ��

of �: 〈τ 〉 = ηdV�/�� = τC , where ηd is a numerical factor
depending only on space dimensionality d (in the case we will
consider in detail d = 2 and η2 = π ) [2].

More precisely, the Cauchy theorem concerns the case
where 〈τ 〉 is the mean length of randomly distributed chords
intersecting a convex body: geometric generalizations of this
results have been discussed since then (see [3–5]; in particular
the Cauchy theorem has been extended to nonconvex bodies
in [6]). From a physical perspective, Cauchy theorem plays
an important role in evaluating the residence time of neutrons
(assuming they have a constant speed v0) in a bounded region,
provided their density is homogeneous and isotropic, and the
medium is nonscattering [7–9].

An unexpected breakthrough came from two independent
studies (in wildly different contexts) [10,11]: in [10] it was
claimed that the average chord length is preserved even if the
bounded medium is scattering (so the trajectories of entering
particles are not straight lines but random paths), while the
same result was stated in [11], when considering the average
time spent by ants injected in a bounded domain before they
leave it (see also [12]). This appears very surprising since,
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intuitively, if we replace straight segments (or arcs) with
erratic trajectories, we expect that a twofold mechanism
deeply modifies the dynamics (stochastic short returns to the
boundary, and long wandering walks in the domain without
touching the boundary); see [13]. A considerable effort has
been conveyed in checking under which conditions this gen-
eralized Cauchy universality holds [14–16], in particular the
importance of homogeneous probability distribution inside
the domain and of detailed balance in the scattering kernel
have been pointed out. Remarkably, Cauchy universality has
been recently supported by experimental results, in bacterial
motion [17], and light propagation in scattering media [18,19].

On the other side, complex dynamics in bounded domains
is sometimes associated with nonhomogeneous distributions,
like in the case of active particles (see for instance [20–22]),
or in the presence of interactions with the walls [23], so a
natural question is whether Cauchy universality is maintained
when nonuniform densities are present, or boundary effects
are taken into account.

This is the main point we are going to discuss, provid-
ing examples where boundary conditions lead to nonuniform
stationary probability distribution and violations of Cauchy
universality; we will consider both the case of rectilinear
trajectories between successive collisions with the boundary
(billiard) and the case where instead particles move in the
interior of the body in a stochastic fashion (random walk).

In order to provide a simple geometric setting (which is
typical of experimental realizations, too [17]) we will take
� as the unit, 2d, disk, and consider a particle moving with
a constant speed (v0 = 1) inside �. To fix the dynamics we
have to specify ( i) the way the particle moves inside � after
a collision with the boundary and (ii) the rules prescribing
the outgoing angle, once the ingoing angle is known, at a
collision. Both prescriptions can be either deterministic or
stochastic: the invariance of the average chord length (which
in our units is τC = π/2) has been verified up to now for both
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billiard and random walk cases for elastic (specular reflec-
tion) boundary collisions [10,11,14–16]. While considering
the distribution of random chords for a disk is a well defined
procedure, recasting it in a billiard framework requires some
care, since a circular billiard table with elastic reflections
defines an integrable system. Before going on let us fix our
notation. We will denote by x a generic point in the interior of
�, and by ψ the angle between the speed of the particle and a
fixed direction; in this way (xt , ψt ) are the coordinates of the
point at time t in the continuous time flow. When considering
the collision map instead (mapping the position from one col-
lision with the boundary to the next), the relevant coordinates
will be denoted by q ∈ ∂� and θ ∈ [−π/2, π/2] outgoing
angle with respect to the normal vector nq (pointing inward)
at q (alternatively we may use the the angle φ ∈ [0, 2π ], of
the outgoing speed with respect to the oriented tangent at q
(φ = θ + π/2). In the case of a circular billiard table (with
specular reflections), if we start a trajectory at q0 with out-
going angle θ0, chords will be all equal to τθ0 = 2 cos(θ0) (in
our units R = 1). This is not due to an unfortunate choice of
the billiard table, since all sufficiently smooth strictly convex
billiard tables are nonergodic [24] (for general references on
billiard dynamics, see [25–27]). We can, however, average
over the initial outgoing angle by choosing an appropriate
measure

τ =
∫ π/2

−π/2
μ(dθ0)τθ0 . (1)

It is easy to check that we can recover the Cauchy result (τ =
τC = π/2) if we choose μ(θ0) = ρ(θ0)dθ0 = 1

2 cos(θ0)dθ0.
This is indeed the invariant distribution for the outgoing angle
for a chaotic billiard with a uniform stationary distribution for
the continuous flow (with specular reflections) [26,28]; it also
corresponds to the angular dependence of the flux generated
by a uniform and isotropic distribution of particles entering
the bounded region from outside. We remark that (1) holds for
arbitrary shapes (in particular nonconvex) of the billiard table;
indeed τ is recovered as a time average only under ergodicity
(to our knowledge the interpretation of the average chord as a
Birkhoff sum for a billiard map has been pointed out for the
first time in [29]).

An alternative derivation of this result (that provides the
first example of our general setting) is to consider a ran-
dom billiard, where the deterministic rule for the outgoing
angle, at a collision point with the boundary, is replaced by a
probability distribution density Pq(θ |θin) (which in principle
may depend, or not, on the collision point q and the ingoing
angle). The Knudsen case [30–32] corresponds to the choice
(Lambert reflections)

Pq(θ |θin) = PK (θ ) = 1
2 cos(θ ). (2)

In this framework, checking for Cauchy universality con-
sists of replacing rectilinear motion between collisions with a
stochastic process, for instance, in [11,15] a Pearson random
walk is considered: the particle travels with a constant speed
for a random time t (or distance, since v = 1) extracted from
an exponential distribution

QE (t ) = 1

λ
exp(−t/λ). (3)

FIG. 1. Time average 〈τ 〉 of the time between collisions, for
increasing number of collisions, computed for different values of the
parameter of the exponential distribution (3) λ, and elastic reflec-
tions. The dashed line corresponds to τC .

At the end of the rectilinear walk (at space point x), the
direction of the velocity is randomly reoriented, according to
a chosen distribution density. In this paper (following [11,15])
we will employ the random reorientation; the new direction
ψ+ is independent of the old orientation ψ−: ψ+ is a random
variable uniform in [0, 2π ] [33]. If the exponential excursion
crosses ∂�, it is reflected back according to the boundary
conditions we are considering.

We first check the case of elastic boundary conditions
(specular reflections). In this case we already know Cauchy
universality holds, but this numerical experiment is useful to
gauge how the asymptotic result is reached by increasing the
statistics, see Fig. 1.

There are two physical motivations that suggest consider-
ing deviations from specular reflections: the case in which
the agent is not properly modeled by a point particle (see
for instance [34]), and possible roughness of the boundary
[35,36]. Other physical situations are modeled by nonstandard
boundary conditions as well [37]. The first example we study
is that of a fully random billiard [38] (Evans random billiard),
where the particle moves ballistically between collisions,
while the outgoing angle θ is a random variable, independent
on the ingoing angle, uniformly distributed in [−π/2, π/2].
For this random billiard, the dynamics enjoys strong ergodic
properties [38,39]; we mention that such a billiard also has
an independent interest in sampling problems of convex sets
[40]. The average chord between collisions is easily computed
as in (1), where now μR(dθ0) = dθ0/π , corresponding to a
collision rule

Pq(θ |θin) = PR(θ ) = 1

π
. (4)

As a matter of fact,

τ = τR =
∫ π/2

−π/2
μR(dθ0)τθ0 = 4

π
, (5)

which is different from the Cauchy value. Actually, the iden-
tity (5), together with estimates for other geometric shapes,
has been discussed in the framework of integral geometry,
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see [41,42], where the average chord theorem is discussed,
with an emphasis on different notions of “random set of
chords.” In terms of billiard dynamics, the elastic reflection
law corresponds to what has been called μ randomness, while
Evans random billiard is referred to as ν randomness [42,43].
Random reflections have also been considered in the problem
of mean free path of electrons moving in a wire [44]. Since
the Lambert form of the invariant measure (2) is strictly asso-
ciated to a uniform stationary density for the billiard flow, we
expect that Evans random billiards will present a nonuniform
stationary probability distribution in space, as we show now.
We will denote the invariant probability density for the flow
as �(x, φ) [45]. In all the cases we will consider rotational
invariance is preserved (in biological settings however more
complex patterns may arise [46]), so

�(x, φ) = 1

2π
g(r), (6)

where r is the distance of x from the center of the disk �. In
this way, �(r) = 2πrg(r) is the stationary probability distri-
bution of the distance from the origin: for a uniform spatial
probability distribution [g(r) constant], we have �(r) = 2r.

Now consider a chord [of length 2 cos(θ0)] corresponding
to an outgoing angle θ0: the values of r along the chord range
from sin(θ0) to one, and a uniform distribution along the chord
leads to the corresponding r density

Wθ0 (r) = 1

cos(θ0)

r√
r2 − sin2(θ0)

r ∈ [sin(θ0), 1]. (7)

Now we evaluate the average of this expression by using the
appropriate measure, and by taking into account that the single
θ0 contribution has to be weighted by the ratio of the chord
length and the average τR:

℘R(θ0) = 2 cos(θ0)

4/π
, (8)

so

�R(r) =
∫ arcsin(r)

0
μR(dθ0)℘R(θ0)Wθ0 (r). (9)

By changing variable r sin(θ0) = sin(α), we get

�R(r) = r
∫ π/2

0
dα

1√
1 − r2 sin2(α)

= rK (r2), (10)

where K (s) is the complete elliptic integral of the first kind
[47]. The expression Eq. (10) deviates from the linear be-
havior corresponding to a uniform density (and it has a
logarithmic singularity as r → 1, due to the complete ellip-
tic integral), so the random billiard, for which the Cauchy
formula does not hold has a nonuniform spatial probability
distribution (see Fig. 2, first two lines), peaking close to the
boundary.

Though our analytic argument in deriving Eq. (10) is
not rigorous, the result can be validated by employing the
findings in [38].

A natural question is then to check what happens when
we substitute ballistic walks between collisions with an expo-
nential random walk of parameter λ [Eq. (3)], with uniform
direction resetting. This is illustrated in Fig. 3. As we see
there is no universal behavior by varying λ, while when the

FIG. 2. Radial probability for the random billiard and per-
turbed elastic reflections (see text). The numerical distributions were
obtained by discretizing the trajectories with a 10−4 time step, con-
sidering 108 collisions, and binning into 2500 intervals the r range.

average excursion grows, we are close to the random billiard
estimate (5), while on the other side for very short average
steps the mean chord grows. Our numerical data do not allow
to conclude if a well defined value is reached in the limit
λ → 0.

Finally we consider another kind of boundary conditions,
where possible roughness of the boundary is incorporated in
a milder way than fully random reflections. The suggestion
came from [48], where an ε stochastic perturbation of elastic
boundary conditions was shown to lead to ergodic behavior
for strictly convex billiard tables. More precisely, fix ε ∈
[0, π/2], and denote by φel the outgoing angle (measured with
respect to the oriented tangent), determined by the specular
reflection law. The random elastic perturbed billiard is then
defined by making the outgoing angle a random variable,
uniformly distributed in the interval [φel − ε, φel + ε], for

FIG. 3. Time average 〈τ 〉 of the time between collisions, for
increasing number of collisions, computed for different values of
the parameter of the exponential distribution (3) λ, for the random
billiard. The dashed line corresponds to τR, while the dashed dotted
line is Cauchy value τC .
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FIG. 4. Time average 〈τ 〉 of the time between collisions, for
increasing number of collisions, computed for a billiard with random
elastic perturbation (see text). For very small perturbations the results
are very close to the fully random outgoing angle case. The dashed
line corresponds to τR, while the dashed dotted line corresponds to
the Cauchy value τC .

φel > ε and φel < π − ε; the rule must be modified when φel

is sufficiently close to the tangent to avoid orbits leaving the
region �. A possible choice is [48] to reset φel to ε when φel <

ε, with the new outgoing angle uniformly distributed in [0, 2ε]
(and the analogous prescription when φel is close to π ). One
expects that for very small ε one should recover the universal
behavior, since the elastic reflection law is only slightly per-
turbed. Numerical experiments, however, suggest that instead
the behavior is closer to the fully random billiard (see Fig. 2);
the radial distribution displays the same logarithmic (weak)
singularity close to the boundary. This somehow surprising
result is confirmed by simulations on the average chord, see
Fig. 4. When the perturbation is very small the simulations
are very close to the random billiard value (5). A theoretical
support for such findings comes from considering the reduced
discrete dynamics for the outgoing angle φn → φn+1. Away
from small intervals around 0 and π , the stochastic dynamics
is equivalent to a random walk with a uniform and symmetric
jump distribution of width ε, so, away from the boundaries we
expect a uniform stationary distribution [49].

These features completely change when, while maintaining
a stochastic perturbation of elastic reflections at the boundary,
we turn from billiards to random walks (we still consider
path segments generated by an exponential distribution of
parameter λ followed by a uniform random redirection of the
velocity direction). A complete analysis is outside the scope
of the present paper, we just point out when the mean free path

FIG. 5. Time average 〈τ 〉 of the time between collisions, for
increasing number of collisions, computed for weakly stochastically
perturbed elastic perturbation, ε = π/200 (see text), and an exponen-
tial random walk between collisions. For λ not too big, the results are
very close to the Cauchy estimate. The dashed line corresponds to τC .

λ is sufficiently small, Cauchy universality is recovered (but
the average chord does vary on increasing λ); see Fig. 5.

In conclusion, we have considered the average chord prob-
lem for either deterministic or stochastic motion in a bounded
domain, for which remarkable universal properties have been
proposed. Inspired by possible complex mechanisms alter-
ing the specular reflection law for complex agents, we have
considered random boundary conditions of different types.
Typically under these conditions Cauchy universality is vio-
lated, and this is associated to the appearance of nonuniform
spatial densities. In general, when random walks are consid-
ered instead of billiard ballistic motion between collisions, the
picture modifies, and, in particular, when considering slightly
stochastically perturbed elastic reflections, in the small aver-
age jump regime Cauchy universality is restored. This may
be relevant for other physically important problems of motion
in confined systems, like the narrow escape problem [50],
since enhanced spatial density close to the boundary increases
the probability of hitting the target. Random reflections may
also be relevant when considering reversible sticking to ∂�

(see for instance [51–53]), since when a particles sticks to the
boundary, it is natural to consider the release outgoing angle
as random, uncorrelated to the incoming direction.
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